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Scaling up MIMO: Opportunities and

Challenges with Very Large Arrays

Fredrik Rusek†, Daniel Persson‡, Buon Kiong Lau†, Erik G. Larsson‡,

Thomas L. Marzetta§, Ove Edfors†, and Fredrik Tufvesson†

I. INTRODUCTION

MIMO technology is becoming mature, and incorporated into emerging wireless

broadband standards like LTE [1]. For example, the LTE standard allows for up to 8

antenna ports at the base station. Basically, the more antennas the transmitter/receiver

is equipped with, and the more degrees of freedom that the propagation channel can

provide, the better the performance in terms of data rate or link reliability. More

precisely, on a quasi-static channel where a codeword spansacross only one time

and frequency coherence interval, the reliability of a point-to-point MIMO link scales

according to Prob(link outage)∼ SNR−ntnr where nt and nr are the numbers of

transmit and receive antennas, respectively, and SNR is theSignal-to-Noise Ratio.

On a channel that varies rapidly as a function of time and frequency, and where

circumstances permit coding across many channel coherenceintervals, the achievable

rate scales asmin(nt, nr) log(1+SNR). The gains in multiuser systems are even more

impressive, because such systems offer the possibility to transmit simultaneously to

several users and the flexibility to select what users to schedule for reception at any

given point in time [2].

The price to pay for MIMO is increased complexity of the hardware (number of RF

chains) and the complexity and energy consumption of the signal processing at both

ends. For point-to-point links, complexity at the receiveris usually a greater concern

than complexity at the transmitter. For example, the complexity of optimal signal

detection alone grows exponentially withnt [3], [4]. In multiuser systems, complexity

at the transmitter is also a concern since advanced coding schemes must often be
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used to transmit information simultaneously to more than one user while maintaining

a controlled level of inter-user interference. Of course, another cost of MIMO is that

of the physical space needed to accommodate the antennas, including rents of real

estate.

With very large MIMO, we think of systems that use antenna arrays with an order of

magnitude more elements than in systems being built today, say a hundred antennas or

more. Very large MIMO entails an unprecedented number of antennas simultaneously

serving a much smaller number of terminals. The disparity innumber emerges as a

desirable operating condition and a practical one as well. The number of terminals that

can be simultaneously served is limited, not by the number ofantennas, but rather by

our inability to acquire channel-state information for an unlimited number of terminals.

Larger numbers of terminals can always be accommodated by combining very large

MIMO technology with conventional time- and frequency-division multiplexing via

OFDM. Very large MIMO arrays is a new research field both in communication theory,

propagation, and electronics and represents a paradigm shift in the way of thinking

both with regards to theory, systems and implementation. The ultimate vision of very

large MIMO systems is that the antenna array would consist ofsmall active antenna

units, plugged into an (optical) fieldbus.

We foresee that in very large MIMO systems, each antenna unituses extremely low

power, in the order of mW. At the very minimum, of course, we want to keep total

transmitted power constant as we increasent, i.e., the power per antenna should be

∝ 1/nt. But in addition we should also be able to back off on thetotal transmitted

power. For example, if our antenna array were serving a single terminal then it can be

shown that the total power can be made inversely proportional to nt, in which case the

power required per antenna would be∝ 1/n2
t . Of course, several complications will

undoubtedly prevent us from fully realizing such optimistic power savings in practice:

the need for multi-user multiplexing gains, errors in Channel State Information (CSI),

and interference. Even so, the prospect of saving an order ofmagnitude in transmit

power is important because one can achieve better system performance under the same

regulatory power constraints. Also, it is important because the energy consumption

of cellular base stations is a growing concern. As a bonus, several expensive and

bulky items, such as large coaxial cables, can be eliminatedaltogether. (The coaxial

cables used for tower-mounted base stations today are up to four centimeters in

diameter!) Moreover, very-large MIMO designs can be made extremely robust in
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that the failure of one or a few of the antenna units would not appreciably affect

the system. Malfunctioning individual antennas may be hotswapped. The contrast to

classical array designs, which use few antennas fed from a high-power amplifier, is

significant.

So far, the large-number-of-antennas regime, whennt andnr grow without bound,

has mostly been of pure academic interest, in that some asymptotic capacity scaling

laws are known for ideal situations. More recently, however, this view is changing,

and a number of practically important system aspects in the large-(nt, nr) regime have

been discovered. For example, [5] showed that asymptotically as nt → ∞ and under

realistic assumptions on the propagation channel with a bandwidth of 20 MHz, a time-

division multiplexing cellular system may accommodate more than 40 single-antenna

users that are offered a netaveragethroughput of 17 Mbits per second both in the

reverse (uplink) and the forward (downlink) links, and a throughput of 3.6 Mbits per

secondwith 95% probability! These rates are achievablewithout cooperation among

the base stationsand by relatively rudimentary techniques for CSI acquisition based

on uplink pilot measurements.

Several things happen when MIMO arrays are made large. First, the asymptotics

of random matrix theory kick in. This has several consequences. Things that were

random before, now start to look deterministic. For example, the distribution of the

singular values of the channel matrix approaches a deterministic function [6]. Another

fact is that very tall or very wide matrices tend to be very well conditioned. Also when

dimensions are large, some matrix operations such as inversions can be done fast, by

using series expansion techniques (see the sidebar). In thelimit of an infinite number of

antennas at the base station, but with a single antenna per user, then linear processing

in the form of maximum-ratio combining for the uplink (i.e.,matched filtering with the

channel vector, sayh) and maximum-ratio transmission (beamforming withhH/||h||)
on the downlink is optimal. This resulting processing is reminiscent of time-reversal,

a technique used for focusing electromagnetic or acoustic waves [7], [8].

The second effect of scaling up the dimensions is that thermal noise can be averaged

out so that the system is predominantly limited by interference from other transmitters.

This is intuitively clear for the uplink, since coherent averaging offered by a receive

antenna array eliminates quantities that are uncorrelatedbetween the antenna elements,

that is, thermal noise in particular. This effect is less obvious on the downlink, however.

Under certain circumstances, the performance of a very large array becomes limited
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by interference arising from re-use of pilots in neighboring cells. In addition, choosing

pilots in a smart way does not substantially help as long as the coherence time of the

channel is finite. In a Time-Division Duplex (TDD) setting, this effect was quantified

in [5], under the assumption that the channel is reciprocal and that the base stations

estimate the downlink channels by using uplink received pilots.

Finally, when the aperture of the array grows, the resolution of the array increases.

This means that one can resolve individual scattering centers with unprecedented

precision. Interestingly, as we will see later on, the communication performance of

the array in the large-number-of-antennas regime depends less on the actual statistics

of the propagation channel but only on the aggregated properties of the propagation

such as asymptotic orthogonality between channel vectors associated with distinct

terminals.

Of course, the number of antennas in a practical system cannot be arbitrarily large

owing to physical constraints. Eventually, when lettingnr or nt tend to infinity,

our mathematical models for the physical reality will breakdown. For example,

the aggregated received power would at some point exceed thetransmitted power,

which makes no physical sense. But long before the mathematical models for the

physics break down, there will be substantial engineering difficulties. So, how large is

“infinity” in this paper? The answer depends on the precise circumstances of course,

but in general, the asymptotic results of random matrix theory are accurate even for

relatively small dimensions (even 10 or so). In general, we think of systems with at

least a hundred antennas at the base station, but probably less than a thousand.

Taken together, the arguments presented motivate entirelynew theoretical research

on signal processing and coding and network design for very large MIMO systems.

This article will survey some of these challenges. In particular, we will discuss ultimate

information-theoretic performance limits, some practical algorithms, influence of chan-

nel properties on the system, and practical constraints on the antenna arrangements.

A. Outline and key results

The rest of the paper is organized as follows. We start with a brief treatment

of very large MIMO from an information-theoretic perspective. This provides an

understanding for the fundamental limits of MIMO when the number of antennas

grows without bound. Moreover, it gives insight into what the optimal transmit and

receive strategies look like with an infinite number of antennas at the base station.
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It also sets the stage for the ensuing discussions on realistic transmitter and receiver

schemes.

Next, we look at antennas and propagation aspects of large MIMO. First we demon-

strate how and why maximum-ratio transmission beamformingcan focus power not

only in a specificdirectionbut to a givenpoint in space and we explain the connection

between this processing and time-reversal. We then discussin some detail mutual

coupling and correlation and their effects on the channel capacity, with focus on the

case of a large number of antennas. In addition, we provide results based on measured

channels with up to128 antennas.

The last section of the paper is dedicated to transmit and receive schemes. Since the

complexity of optimal algorithms scales with the number of antennas in an unfavor-

able way, we are particularly interested in the structure and performance of approxi-

mate, low-complexity schemes. This includes variants of linear processing (maximum-

ratio transmission/combining, zero-forcing, MMSE) and algorithms that perform local

searches in a neighborhood around solutions provided by linear algorithms. In this

section, we also study the phenomenon ofpilot contamination, which occurs when

uplink channel estimates are corrupted by mobiles in distant cells that reuse the same

pilot sequences. We explain when and why pilot contamination constitutes an ultimate

limit on performance.

II. I NFORMATION THEORY FORVERY LARGE MIMO A RRAYS

Shannon’s information theory provides, under very precisely specified conditions,

bounds on attainable performance of communications systems. According to the noisy-

channel coding theorem, for any communication link there isa capacityor achievable

rate, such that for any transmission rate less than the capacity,there exists a coding

scheme that makes the error-rate arbitrarily small.

The classical point-to-point MIMO link begins our discussion and it serves to

highlight the limitations of systems in which the working antennas are compactly

clustered at both ends of the link. This leads naturally intothe topic of multi-user

MIMO which is where we envision very large MIMO will show its greatest utility.

The Shannon theory simplifies greatly for large numbers of antennas and it suggests

capacity-approaching strategies.
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A. Point-to-point MIMO

1) Channel model:A point-to-point MIMO link consists of a transmitter having

an array ofnt antennas, a receiver having an array ofnr antennas, with both arrays

connected by a channel such that every receive antenna is subject to the combined

action of all transmit antennas. The simplest narrowband memoryless channel has the

following mathematical description; for each use of the channel we have

x =
√
ρGs+w , (1)

where s is the nt-component vector of transmitted signals,x is the nr-component

vector of received signals,G is the nr × nt propagation matrix of complex-valued

channel coefficients, andw is thenr-component vector of receiver noise. The scalar

ρ is a measure of the Signal-to-Noise Ratio (SNR) of the link: it is proportional

to the transmitted power divided by the noise-variance, andit also absorbs various

normalizing constants. In what follows we assume a normalization such that the

expected total transmit power is unity,

E
{

‖s‖2
}

= 1 , (2)

where the components of the additive noise vector are Independent and Identically

Distributed (IID) zero-mean and unit-variance circulary-symmetric complex-Gaussian

random variables (CN (0, 1)). Hence if there were only one antenna at each end of

the link, then within (1) the quantitiess, G, x andw would be scalars, and the SNR

would be equal toρ|G|2.
In the case of a wide-band, frequency-dependent (“delay-spread”) channel, the

channel is described by a matrix-valued impulse response orby the equivalent matrix-

valued frequency response. One may conceptually decomposethe channel into parallel

independent narrow-band channels, each of which is described in the manner of (1).

Indeed, Orthogonal Frequency-Division Multiplexing (OFDM) rigorously performs

this decomposition.

2) Achievable rate:With IID complex-Gaussian inputs, the (instantaneous) mutual

information between the input and the output of the point-to-point MIMO channel (1),

under the assumption that the receiver has perfect knowledge of the channel matrix,

G, measured in bits-per-symbol (or equivalently bits-per-channel-use) is

C = I(x; s) = log2 det

(

Inr +
ρ

nt

GGH

)

, (3)

October 21, 2011 DRAFT



7

where I(x; s) denotes the mutual information operator,Inr denotes thenr × nr

identity matrix and the superscript “H” denotes the Hermitian transpose [9]. The

actual capacity of the channel results if the inputs are optimized accordingto the

water-filling principle. In the case thatGGH equals a scaled identity matrix,C is in

fact the capacity.

To approach the achievable rateC, the transmitter does not have to know the

channel, however it must be informed of the numerical value of the achievable rate.

Alternatively, if the channel is governed by known statistics, then the transmitter can

set a rate which is consistent with an acceptableoutage probability. For the special

case of one antenna at each end of the link, the achievable rate (3) becomes that of

the scalar additive complex Gaussian noise channel,

C = log2
(

1 + ρ|G|2
)

. (4)

The implications of (3) are most easily seen by expressing the achievable rate in

terms of the singular values of the propagation matrix,

G = ΦDνΨ
H , (5)

whereΦ andΨ are unitary matrices of dimensionnr × nr andnt × nt respectively,

andDν is anr×nt diagonal matrix whose diagonal elements are the singular values,

{ν1, ν2, · · · νmin(nt,nr)}. The achievable rate (3), expressed in terms of the singular

values,

C =

min(nt,nr)
∑

ℓ=1

log2

(

1 +
ρν2

ℓ

nt

)

, (6)

is equivalent to the combined achievable rate of parallel links for which theℓ-th link

has an SNR ofρν2
ℓ /nt. With respect to the achievable rate, it is interesting to consider

the best and the worst possible distribution of singular values. Subject to the constraint

(obtained directly from (5)) that

min(nt,nr)
∑

ℓ=1

ν2
ℓ = Tr

(

GGH
)

, (7)

where “Tr” denotes “trace”, the worst case is when all but one of the singular values

are equal to zero, and the best case is when all of themin(nt, nr) singular values are

equal (this is a simple consequence of the concavity of the logarithm). The two cases

bound the achievable rate (6) as follows,

log2

(

1 +
ρ · Tr

(

GGH
)

nt

)

≤ C ≤ min(nt, nr) · log2

(

1 +
ρ · Tr

(

GGH
)

nt min(nt, nr)

)

. (8)
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If we assume that a normalization has been performed such that the magnitude of

a propagation coefficient is typically equal to one, thenTr
(

GGH
)

≈ ntnr, and the

above bounds simplify as follows,

log2 (1 + ρnr) ≤ C ≤ min(nt, nr) · log2
(

1 +
ρmax(nt, nr)

nt

)

. (9)

The rank-1 (worst) case occurs either for compact arrays under Line-of-Sight (LOS)

propagation conditions such that the transmit array cannotresolve individual elements

of the receive array and vice-versa, or under extreme keyhole propagation conditions.

The equal singular value (best) case is approached when the entries of the propagation

matrix are IID random variables. Under favorable propagation conditions and a high

SNR, the achievable rate is proportional to the smaller of the number of transmit and

receive antennas.

3) Limiting cases:Low SNRs can be experienced by terminals at the edge of a

cell. For low SNRs only beamforming gains are important and the achievable rate (3)

becomes

Cρ→0 ≈ ρ · Tr
(

GGH
)

nt ln 2

≈ ρnr

ln 2
. (10)

This expression is independent ofnt, and thus, even under the most favorable propaga-

tion conditions the multiplexing gains are lost, and from the perspective of achievable

rate, multiple transmit antennas are of no value.

Next let the number of transmit antennas grow large while keeping the number

of receive antennas constant. We furthermore assume that the row-vectors of the

propagation matrix are asymptotically orthogonal. As a consequence [10]
(

GGH

nt

)

nt≫nr

≈ Inr , (11)

and the achievable rate (3) becomes

Cnt≫nr ≈ log2 det (Inr + ρ · Inr)

= nr · log2(1 + ρ) , (12)

which matches the upper bound (9).

Then, let the number of receive antennas grow large while keeping the number of

transmit antennas constant. We also assume that the column-vectors of the propagation

matrix are asymptotically orthogonal, so
(

GHG

nr

)

nr≫nt

≈ Int . (13)
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The identitydet(I +AAH) = det(I +AHA), combined with (3) and (13), yields

Cnr≫nt = log2 det

(

Int +
ρ

nt
GHG

)

≈ nt · log2
(

1 +
ρnr

nt

)

, (14)

which again matches the upper bound (9). So an excess number of transmit or

receive antennas, combined with asymptotic orthogonalityof the propagation vectors,

constitutes a highly desirable scenario. Extra receive antennas continue to boost the

effective SNR, and could in theory compensate for a low SNR and restore multiplexing

gains which would otherwise be lost as in (10). Furthermore,orthogonality of the

propagation vectors implies that IID complex-Gaussian inputs are optimal so that the

achievable rates (13) and (14) are in fact the true channel capacities.

B. Multi-user MIMO

The attractive multiplexing gains promised by point-to-point MIMO require a favor-

able propagation environment and a good SNR. Disappointingperformance can occur

in LOS propagation or when the terminal is at the edge of the cell. Extra receive

antennas can compensate for a low SNR, but for the forward link this adds to the

complication and expense of the terminal. Very large MIMO can fully address the

shortcomings of point-to-point MIMO.

If we split up the antenna array at one end of a point-to-pointMIMO link into

autonomous antennas we obtain the qualitatively differentMulti-User MIMO (MU-

MIMO). Our context for discussing this is an array ofM antennas - for example a

base station - which simultaneously servesK autonomous terminals. (Since we want

to study both forward- and reverse link transmission, we nowabandon the notationnt

andnr.) In what follows we assume that each terminal has only one antenna. Multi-

user MIMO differs from point-to-point MIMO in two respects:first, the terminals are

typically separated by many wavelengths, and second, the terminals cannot collaborate

among themselves, either to transmit or to receive data.

1) Propagation: We will assume TDD operation, so the reverse link propagation

matrix is merely the transpose of the forward link propagation matrix. Our emphasis

on TDD rather than FDD is driven by the need to acquire channelstate-information

between extreme numbers of service antennas and much smaller numbers of terminals.

The time required to transmit reverse-link pilots is independent of the number of
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antennas, while the time required to transmit forward-linkpilots is proportional to

the number of antennas. The propagation matrix in the reverse link, G, dimensioned

M ×K, is the product of aM ×K matrix,H, which accounts for small scale fading

(i.e., which changes over intervals of a wavelength or less), and aK × K diagonal

matrix, D1/2
β , whose diagonal elements constitute aK × 1 vector,β, of large scale

fading coefficients,

G = HD
1/2
β . (15)

The large scale fading accounts for path loss and shadow fading. Thus thek-th column-

vector ofH describes the small scale fading between thek-th terminal and theM

antennas, while thek-th diagonal element ofD1/2
β is the large scale fading coefficient.

By assumption, the antenna array is sufficiently compact that all of the propagation

paths for a particular terminal are subject to the same largescale fading. We normalize

the large scale fading coefficients such that the small scalefading coefficients typically

have magnitudes of one.

For multi-user MIMO with large arrays, the number of antennas greatly exceeds the

number of terminals. Under the most favorable propagation conditions the column-

vectors of the propagation matrix are asymptotically orthogonal,
(

GHG

M

)

M≫K

= D
1/2
β

(

HHH

M

)

M≫K

D
1/2
β

≈ Dβ. (16)

2) Reverse link:On the reverse link, for each channel use, theK terminals collec-

tively transmit aK × 1 vector of QAM symbols,qr, and the antenna array receives

a M × 1 vector,xr,

xr =
√
ρrGqr +wr , (17)

wherewr is theM×1 vector of receiver noise whose components are independent and

distributed asCN (0, 1). The quantityρr is proportional to the ratio of power divided

by noise-variance. Each terminal is constrained to have an expected power of one,

E
{

|qrk|2
}

= 1, k = 1, · · · , K . (18)

We assume that the base station knows the channel.

Remarkably, the total throughput (e.g., the achievable sum-rate) of reverse link

multi-user MIMO is no less than if the terminals could collaborate among themselves

[2],

Csum r = log2 det
(

IK + ρrG
HG
)

. (19)
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If collaboration were possible it could definitely make channel coding and decoding

easier, but it would not alter the ultimate sum-rate. The sum-rate is not generally

shared equally by the terminals; consider for example the case where the slow fading

coefficient is near-zero for some terminal.

Under favorable propagation conditions (16), if there is a large number of antennas

compared with terminals, then the asymptotic sum-rate is

Csum rM≫K ≈ log2 det (IK +MρrDβ)

=

K
∑

k=1

log2 (1 +Mρrβk) . (20)

This has a nice intuitive interpretation if we assume that the columns of the propagation

matrix are nearly orthogonal, i.e.,GHG ≈ M ·Dβ. Under this assumption, the base

station could process its received signal by a Matched-Filter (MF),

GHxr =
√
ρrG

HGqr +GHwr

≈ M
√
ρrDβqr +GHwr . (21)

This processing separates the signals transmitted by the different terminals. The de-

coding of the transmission from thek-th terminal requires only thek-th component

of (21); this has an SNR ofMρrβk, which in turn yields an individual rate for that

terminal, corresponding to thek-th term in the sum-rate (20).

3) Forward link: For each use of the channel the base station transmits aM × 1

vector,sf , through itsM antennas, and theK terminals collectively receive aK × 1

vector,xf ,

xf =
√
ρfG

Tsf +wf , (22)

where the superscript “T” denotes “transpose”, andwf is theK×1 vector of receiver

noise whose components are independent and distributed asCN (0, 1). The quantity

ρf is proportional to the ratio of power to noise-variance. Thetotal transmit power is

independent of the number of antennas,

E
{

‖sf‖2
}

= 1 . (23)

The known capacity result for this channel, see e.g. [11], [12], assumes that the

terminals as well as the base station know the channel. LetDγ be a diagonal matrix

whose diagonal elements constitute aK × 1 vector γ. To obtain the sum-capacity
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requires performing a constrained optimization,

Csum f = max
{γk}

log2 det
(

IM + ρfGDγG
H
)

,

subject to
K
∑

k=1

γk = 1, γk ≥ 0, ∀ k . (24)

Under favorable propagation conditions (16) and a large excess of antennas, the

sum-capacity has a simple asymptotic form,

Csum fM≫K = max
{γk}

log2 det
(

IK + ρfD
1/2
γ GHGD1/2

γ

)

≈ max
{γk}

log2 det (IK +MρfDγDβ)

= max
{γk}

K
∑

k=1

log2 (1 +Mρfγkβk) , (25)

whereγ is constrained as in (24). This result makes intuitive senseif the columns

of the propagation matrix are nearly orthogonal which occurs asymptotically as the

number of antennas grows. Then the transmitter could use a simple MF linear precoder,

sf =
1√
M

G∗D
−1/2
β D1/2

p qf , (26)

whereqf is the vector of QAM symbols intended for the terminals such thatE {|qfk|2 = 1},

andp is a vector of powers such that
∑K

k=1 pk = 1. The substitution of (26) into (22)

yields the following,

xf ≈
√

ρfMD
1/2
β D1/2

p
qf +wf , (27)

which yields an achievable sum-rate of
∑K

k=1 log2 (1 +Mρfpkβk) - identical to the

sum-capacity (25) if we identifyp = γ.

III. A NTENNA AND PROPAGATION ASPECTS OFVERY LARGE MIMO

The performance of all types of MIMO systems strongly depends on properties of

the antenna arrays and the propagation environment in whichthe system is operating.

The complexity of the propagation environment, in combination with the capability of

the antenna arrays to exploit this complexity, limits the achievable system performance.

When the number of antenna elements in the arrays increases,we meet both opportu-

nities and challenges. The opportunities include increased capabilities of exploiting the

propagation channel, with better spatial resolution. Withwell separated ideal antenna

elements, in a sufficiently complex propagation environment and without directivity

and mutual coupling, each additional antenna element in thearray adds another degree
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of freedom that can be used by the system. In reality, though,the antenna elements

are never ideal, they are not always well separated, and the propagation environment

may not be complex enough to offer the large number of degreesof freedom that a

large antenna array could exploit. In this section we illustrate and discuss some of

these opportunities and challenges, starting with an example of how more antennas

in an ideal situation improves our capability to focus the field strength to a specific

geographical point (a certain user). This is followed by an analysis of how realistic

(non-ideal) antenna arrays influence the system performance in an ideal propagation

environment. Finally, we use channel measurements to address properties of a real

case with a 128-element base station array serving 6 single-antenna users.

A. Spatial focus with more antennas

Precoding of an antenna array is often said todirect the signal from the antenna

array towards one or more receivers. In a pure LOS environment, directing means that

the antenna array forms a beam towards the intended receiverwith an increased field

strength in a certain direction from the transmitting array. In propagation environments

where non-LOS components dominate, the concept of directing the antenna array

towards a certain receiver becomes more complicated. In fact, the field strength is

not necessarily focused in thedirection of the intended receiver, but rather to a

geographicalpoint where the incoming multipath components add up constructively.

Different techniques for focusing transmitted energy to a specific location have been

addressed in several contexts. In particular, it has drawn attention in the form of

Time Reversal (TR) where the transmitted signal is a time-reversed replica of the

channel impulse response. TR with single as well as multipleantennas has been

demonstrated lately in, e.g., [7], [13]. In the context of this paper the most interesting

case is MISO, and here we speak of Time-Reversal Beam Forming(TRBF). While

most communications applications of TRBF address a relatively small number of

antennas, the same basic techniques have been studied for almost two decades in

medical extracorporeal lithotripsy applications [8] witha large number of “antennas”

(transducers).

To illustrate how large antenna arrays can focus the electromagnetic field to a

certain geographic point, even in a narrowband channel, we use the simple geomet-

rical channel model shown in Figure 1. The channel is composed of 400 uniformly

distributed scatterers in a square of dimension800λ × 800λ, whereλ is the signal
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Fig. 1. Geometry of the simulated dense scattering environment, with 400 uniformly distributed scatterers in a

800× 800 λ area. The transmitM -element ULA is placed at a distance of 1600λ from the edge of the scatterer

area with its broadside pointing towards the center. Two single scattering paths from the first ULA element to an

intended receiver in the center of the scatterer area are shown.

wavelength. The scattering points (×) shown in the figure are the actual ones used in

the example below. The broadside direction of theM-element Uniform Linear Array

(ULA) with adjacent element spacing ofd = λ/2 is pointing towards the center of

the scatterer area. Each single-scattering multipath component is subject to an inverse

power-law attenuation, proportional to distance squared (propagation exponent 2),

and a random reflection coefficient with IID complex Gaussiandistribution (giving a

Rayleigh distributed amplitude and a uniformly distributed phase). This model creates

a field strength that varies rapidly over the geographical area, typical of small-scale

fading. With a complex enough scattering environment and a sufficiently large element

spacing in the transmit array, the field strength resulting from different elements in

the transmit array can be seen as independent.

In Figure 2 we show the resulting normalized field strength ina small10λ× 10λ

environment around the receiver to which we focus the transmitted signal (using MF

precoding), for ULAs withd = λ/2 of sizeM = 10 andM = 100 elements. The

normalized field strength shows how much weaker the field strength is in a certain

position when the spatial signature to the center point is used rather than the correct

spatial signature for that point. Hence, the normalized field strength is 0 dB at the

center of both figures, and negative at all other points. Figure 2 illustrates two important

properties of the spatial MF precoding: (i) that the field strength can be focused to

a point rather than in a certain direction and (ii) that more antennas improve the

ability to focus energy to a certain point, which leads to less interference between

spatially separated users. WithM = 10 antenna elements, the focusing of the field

strength is quite poor with many peaks inside the studied area. IncreasingM to 100
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Fig. 2. Normalized fieldstrength in a10× 10 λ area centered around the receiver to which the beamforming is

done. The left and right pseudo color plots show the field strength when anM = 10 and anM = 100 ULA are

used together with MF precoding to focus the signal to a receiver in the center of the area.

antenna elements, for the same propagation environment, considerably improves the

field strength focusing and it is more than 5 dB down in most of the studied area.

While the example above only illustrates spatial MF precoding in the narrowband

case, the TRBF techniques exploit both the spatial and temporal domains to achieve an

even stronger spatial focusing of the field strength. With enough many antennas and

favorable propagation conditions, TRBF will not only focuspower and yield a high

spectral efficiency through spatial multiplexing to many terminals. It will also reduce,

or in the ideal case completely eliminate, inter-symbol interference. In other words,

one could dispense with OFDM and its redundant cyclic prefix.Each base station

antenna would 1) merely convolve the data sequence intendedfor the k-th terminal

with the conjugated, time-reversed version of his estimatefor the channel impulse

response to thek-th terminal, 2) sum theK convolutions, and 3) feed that sum into

his antenna. Again, under favorable propagation conditions, and a large number of

antennas, inter-symbol interference will decrease significantly.

B. Antenna aspects

It is common within the signal processing, communications and information theory

communities to assume that the transmit and receive antennas are isotropic and uni-

polarized electromagnetic wave radiators and sensors, respectively. In reality, such

isotropic unipolar antennas do not exist, according to fundamental laws of electro-

magnetics. Non-isotropic antenna patterns will influence the MIMO performance by

changing the spatial correlation. For example, directive antennas pointing in distinct

directions tend to experience a lower correlation than non-directive antennas, since

each of these directive antennas “see” signals arriving from a distinct angular sector.
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In the context of an array of antennas, it is also common in these communities to

assume that there is no electromagnetic interaction (or mutual coupling) among the

antenna elements neither in the transmit nor in the receive mode. This assumption is

only valid when the antennas are well separated from one another.

In the rest of this section we consider very large MIMO arrayswhere the overall

aperture of the array is constrained, for example, by the size of the supporting structure

or by aesthetic considerations. Increasing the number of antenna elements implies that

the antenna separation decreases. This problem has been examined in recent papers,

although the focus is often on spatial correlation and the effect of coupling is often

neglected, as in [14]–[16]. In [17], the effect of coupling on the capacity of fixed

length ULAs is studied. In general, it is found that mutual coupling has a substantial

impact on capacity as the number of antennas is increased fora fixed array aperture.

It is conceivable that the capacity performance in [17] can be improved by compen-

sating for the effect of mutual coupling. Indeed, coupling compensation is a topic of

current interest, much driven by the desire of implementingMIMO arrays in a compact

volume, such as mobile terminals (see [18] and references therein). One interesting

result is that coupling among co-polarized antennas can be perfectly mitigated by

the use of optimal multiport impedance matching radio frequency circuits [19]. This

technique has been experimentally demonstrated only for upto four antennas, though

in principle it can be applied to very large MIMO arrays [20].Nevertheless, the

effective cancellation of coupling also brings about diminishing bandwidth in one

or more output ports as the antenna spacing decreases [21]. This can be understood

intuitively in that, in the limit of small antenna spacing, the array effectively reduces

to only one antenna. Thus, one can only expect the array to offer the same charac-

teristics as a single antenna. Furthermore, implementing practical matching circuits

will introduce ohmic losses, which reduces the gain that is achievable from coupling

cancellation [18].

Another issue to consider is that due to the constraint in array aperture, very large

MIMO arrays are expected to be implemented in a 2D or 3D array structure, instead

of as a linear array as in [17]. A linear array with antenna elements of identical gain

patterns (e.g., isotropic elements) suffers from the problem of front-back ambiguity,

and is also unable to resolve signal paths inboth azimuth and elevation. However,

one drawback of having a dense array implementation in 2D or 3D is the increase of

coupling effects due to the increase in the number of adjacent antennas. For the square
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array (2D) case, there are up to four adjacent antennas (located at the same distance)

for each antenna element, and in 3D there are up to 6. A furtherproblem that is

specific to 3D arrays is that only the antennas located on the surface of the 3D array

contribute to the information capacity [22], which in effect restricts the usefulness of

dense 3D array implementations. This is a consequence of theintegral representation

of Maxwell’s equations, by which the electromagnetic field inside the volume of the

3D array is fully described by the field on its surface (assuming sufficiently dense

sampling), and therefore no additional information can be extracted from elements

inside the 3D array.

Moreover, in outdoor cellular environments, signals tend to arrive within a narrow

range of elevation angles. Therefore, it may not be feasiblefor the antenna system

to take advantage of the resolution in elevation offered by dense 2D or 3D arrays to

perform signaling in the vertical dimension.

The complete Single-User MIMO (SU-MIMO) signal model with antennas and

matching circuit in Figure 3 (reproduced from [23]) is used to demonstrate the per-

formance degradation resulting from correlation and mutual coupling in very large

arrays with fixed apertures. In the figure,Zt andZr are the impedance matrices of

the transmit and receive arrays, respectively,iti andiri are the excitation and received

currents (at thei-th port) of the transmit and receive systems, respectively, andvsi and

vri (Zs andZ l) are the source and load voltages (impedances), respectively, andvti is

the terminal voltage across thei-th transmit antenna port.Gmc is theoverall channel

of the system, including the effects of antenna coupling andmatching circuits.

Recall that the instantaneous capacity1 is given by (3) and equals

Cmc = log2 det

(

In +
ρ

nt
ĜmcĜ

H

mc

)

, (28)

where

Ĝmc = 2r11R
1/2
l (Z l +Zr)

−1GR
−1/2
t , (29)

is the overall MIMO channel based on the complete SU-MIMO signal model,G

represents the propagation channel as seen by the transmit and receive antennas, and

Rl = Re {Z l}, Rt = Re {Zt}. Note thatĜmc is the normalizedversion ofGmc

shown in Figure 3, where the normalization is performed withrespect to the average

1From this point and onwards, we shall for simplicity refer tothe log− det formula with IID complex-Gaussian

inputs as “the capacity” to avoid the more clumsy notation of“achievable rate”.
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channel gain of a SISO system [23]. The source impedance matrix Zs does not appear

in the expression, sincêGmc represents the transfer function between the transmit and

receive power waves, andZs is implicit in ρ [23].

To give an intuitive feel for the effects of mutual coupling,we next provide two

examples of the impedance matrixZr
2, one for small adjacent antenna spacing (0.05λ)

and one for moderate spacing (0.5λ). The following numerical values are obtained

from the induced electromotive force method [24] for a ULA consisting of three

parallel dipole antennas:

Zr(0.05λ) =











72.9 + j42.4 71.4 + j24.3 67.1 + j7.6

71.4 + j24.3 72.9 + j42.4 71.4 + j24.3

67.1 + j7.6 71.4 + j24.3 72.9 + j42.4











,

and

Zr(0.5λ) =











72.9 + j42.4 −12.5− j29.8 4.0 + j17.7

−12.5− j29.8 72.9 + j42.4 −12.5− j29.8

4.0 + j17.7 −12.5− j29.8 72.9 + j42.4











.

It can be observed that the severe mutual coupling in the caseof d = 0.05λ results

in off-diagonal elements whose values are closer to the diagonal elements than in

the case ofd = 0.5λ, where the diagonal elements are more dominant. Despite this,

the impact of coupling on capacity is not immediately obvious, since the impedance

matrix is embedded in (29), and is conditioned by the load matrix Z l. Therefore, we

next provide numerical simulations to give more insight into the impact of mutual

coupling on MIMO performance.

In MU-MIMO systems3, the terminals are autonomous so that we can assume that

the transmit array is uncoupled and uncorrelated. If the Kronecker model [25] is

assumed for the propagation channelG = Ψ1/2
r GIIDΨ

1/2
t , whereΨt andΨr are the

transmit and receive correlation matrices, respectively,andGIID is the matrix with IID

Rayleigh entries [23]. In this case,Ψ1/2
t = IK andZt is diagonal. For the particular

case ofM = K, Figure 4 shows a plot of the uplink ergodic capacity (or average rate)

per user,Cmc/K, versus the antenna separation for ULAs with a fixed apertureof 5λ

at the base station (with up toM = K = 30 elements). The correlation but no coupling

case refers to the MIMO channelG = Ψ1/2
r GIIDΨ

1/2
t , whereas the correlation and

2For a given antenna array,Zt = Zr by the principle of reciprocity.

3We remind the reader that in MU-MIMO systems, we replacent andnr with K andM respectively.
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coupling case refers to the effective channel matrixĜmc in (29). The environment is

assumed to be uniform 2D Angular Power Spectrum (APS) and theSNR is ρ = 20

dB. The total power is fixed and equally divided among all users. 1000 independent

realizations of the channel are used to obtain the average capacity. For comparison,

the corresponding ergodic capacity per user is also calculated for K2 users and an

M2-element receive Uniform Square Array (USA) withM = K and an aperture size

of 5λ× 5λ, for up toM2 = 900 elements4.

As can be seen in Figure 4, the capacity per user begins to fallwhen the element

spacing is reduced to below2.5λ for the USAs, as opposed to below0.5λ for the

ULAs, which shows that for a given antenna spacing, packing more elements in more

than one dimension results in significant degradation in capacity performance. Another

distinction between the ULAs and USAs is that coupling is in fact beneficial for the

capacity performance of ULAs with moderate antenna spacing(i.e. between0.15λ and

0.7λ), whereas for USAs the capacity with coupling is consistently lower than that

with only correlation. The observed phenomenon for ULAs is similar to the behavior

of two dipoles with decreasing element spacing [18]. There,coupling induces a larger

difference between the antenna patterns (i.e., angle diversity) over this range of antenna

spacing, which helps to reduce correlation. At even smallerantenna spacings, the

angle diversity diminishes and correlation increases. Together with loss of power due

to coupling and impedance mismatch, the increasing correlation results in the capacity

of the correlation and coupling case falling below that of the correlation only case,

with the crossover occuring at approximately0.15λ. On the other hand, each element

in the USAs experiences more severe coupling than that in theULAs for the same

adjacent antenna spacing, which inherently limits angle diversity.

Even though Figure 4 demonstrates that both coupling and correlation are detrimen-

tal to the capacity performance of very large MIMO arrays relative to the IID case,

it does not provide any specific information on the behavior of Ĝmc. In particular,

it is important to examine the impact of correlation and coupling on the asymptotic

orthogonality assumption made in (16) for a very large arraywith a fixed aperture in a

MU setting. To this end, we assume that the base station servesK = 15 single antenna

terminals. The channel is normalized so thateachuser terminal has a reference SNR

4Rather than advocating the practicality of900 users in a single cell, this assumption is only intended to

demonstrate the limitation of aperture-constrained very large MIMO arrays at the base station to support parallel

MU-MIMO channels.
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Fig. 3. Diagram of a MIMO system with antenna impedance matrices and matching networks at both link ends

(freely reproduced from [23]).
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Fig. 4. Impact of correlation and coupling on capacity per antenna over different adjacent antenna spacing for

autonomous transmitters.M = K and the apertures of ULA and USA are5λ and5λ × 5λ, respectively.

ρ/K = 10 dB in the SISO case with conjugate-matched single antennas.As before, the

coupling and correlation at the base station is the result ofimplementing the antenna

elements as a square array of fixed dimensions5λ×5λ in a channel with uniform 2D

APS. The number of elements in the receive USAM varies from 16 to 900, in order

to support one dedicated channel per user.

The average condition number of̂G
H

mcĜmc/K is given in Figure 5(a) for 1000

channel realizations. Since the propagation channel is assumed to be IID in (29) for

simplicity, Dβ = IK . This implies that the condition number of̂G
H

mcĜmc/K should

ideally approach one, which is observed for the IID Rayleighcase. By way of contrast,

it can be seen that the channel is not asymptotically orthogonal as assumed in (16)
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Fig. 5. Impact of correlation and coupling on (a) asymptoticorthogonality of the channel matrix and (b) max

sum-rate of the reverse link, forK = 15.

in the presence of coupling and correlation. The corresponding maximum rate for the

reverse link per user is given in Figure 5(b). It can be seen that if coupling is ignored,

spatial correlation yields only a minor penalty, relative to the IID case. This is so

because the transmit array of dimensions5λ × 5λ is large enough to offer almost

the same number of spatial degrees of freedom (K = 15) as in the IID case, despite

the channel not being asymptotically orthogonal. On the other hand, for the realistic

case with coupling and correlation, adding more receive elements into the USA will

eventually result in a reduction of the achievable rate, despite having a lower average

condition number than in the correlation but no coupling case. This is attributed to

the significant power loss through coupling and impedance mismatch, which is not

modeled in the correlation only case.

C. Real propagation - measured channels

When it comes to propagation aspects of MIMO as well as very large MIMO

the correlation properties are of paramount interest, since those together with the

number of antennas at the terminals and base station determines the orthogonality

of the propagation channel matrix and the possibility to separate different users or

data streams. In conventional MU-MIMO systems the ratio of number of base station

antennas and antennas at the terminals is usually close to 1,at least it rarely exceeds
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2. In very large MU-MIMO systems this ratio may very well exceed 100; if we also

consider the number of expected simultaneous users,K, the ratio at least usually

exceeds 10. This is important because it means that we have the potential to achieve

a very large spatial diversity gain. It also means that the distance between the null-

spaces of the different users is usually large and, as mentioned before, that the singular

values of the tall propagation matrix tend to have stable andlarge values. This is also

true in the case where we consider multiple users where we canconsider each user

as a part of a larger distributed, but un-coordinated, MIMO system. In such a system

each new user “consumes” a part of the available diversity. Under certain reasonable

assumptions and favorable propagation conditions, it will, however, still be possible

to create a full rank propagation channel matrix (16) where all the eigenvalues have

large magnitudes and show a stable behavior. The question isnow what we mean by

the statement that the propagation conditions should be favorable? One thing is for

sure: As compared to a conventional MIMO system, the requirements on the channel

matrix to get good performance in very large MIMO are relaxedto a large extent due

to the tall structure of the matrix.

It is well known in conventional MIMO modeling that scatterers tend to appear in

groups with similar delays, angle-of-arrivals and angle-of-departures and they form

so-called clusters. Usually the number of active clusters and distinct scatterers are

reported to be limited, see e.g. [26], also when the number ofphysical objects is large.

The contributions from individual multipath components belonging to the same cluster

are often correlated which reduces the number of effective scatterers. Similarly it has

been shown that a cluster seen by different users, so called joint clusters, introduces

correlation between users also when they are widely separated [27]. It is still an

open question whether the use of large arrays makes it possible to resolve clusters

completely, but the large spatial resolution will make it possible to split up clusters

in many cases. There are measurements showing that a clustercan be seen differently

from different parts of a large array [28], which is beneficial since the correlation

between individual contributions from a cluster then is decreased.

To exemplify the channel properties in a real situation we consider a measured

channel matrix where we have an indoor 128-antenna base station consisting of four

stacked double polarized 16 element circular patch arrays,and 6 single antenna users.

Three of the users are indoors at various positions in an adjacent room and 3 users are

outdoors but close to the base station. The measurements were performed at 2.6 GHz
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with a bandwidth of 50 MHz. In total we consider an ensemble of100 snapshots

(taken from a continuous movement of the user antenna along a5-10 m line) and

161 frequency points, giving us in total 16100 narrow-band realizations. It should

be noted, though, that they are not fully independent due to the non-zero coherence

bandwidth and coherence distance. The channels are normalized to remove large scale

fading and to maintain the small scale fading. The mean powerover all frequency

points and base station antenna elements is unity for all users. In Figure 6 we plot

the Cumulative Distribution Functions (CDF) of the orderedeigenvalues ofGHG (the

leftmost solid curve corresponds to the CDF of the smallest eigenvalue etc.) for the

6 × 128 propagation matrix (“Meas 6x128”), together with the corresponding CDFs

for a 6× 6 measured conventional MIMO (“Meas 6x6”) system (where we have used

a subset of 6 adjacent co-polarized antennas on the base station). As a reference

we also plot the distribution of the largest and smallest eigenvalues for a simulated

6 × 128 and 6 × 6 conventional MIMO system (“IID 6x128” and “IID 6x6”) with

independent identically distributed complex Gaussian entries. Note that, for clarity of

the figure, the eigenvalues are not normalized with the number of antennas at the base

station and therefore there is an offset of10 log10(M). This offset can be interpreted

as a beamforming gain. In any case, the relative spread of theeigenvalues is of more

interest than their absolute levels.

It can be clearly seen that the large array provides eigenvalues that all show a stable

behavior (low variances) and have a relatively low spread (small distances between

the CDF curves). The difference between the smallest and largest eigenvalue is only

around 7 dB, which could be compared with the conventional6 × 6 MIMO system

where this difference is around 26 dB. This eigenvalue spread corresponds to that of a

6x24 conventional MIMO system with IID complex Gaussian channel matrix entries.

Keeping in mind the circular structure of the base station antenna array and that half

of the elements are cross polarized, this number of ’effective’ channels is about what

one could anticipate to get. One important factor in realistic channels, especially for

the uplink, is that the received power levels from differentusers are not equal. Power

variations will increase both the eigenvalue spread and thevariance, and will result

in a matrix that still is approximately orthogonal, but where the diagonal elements of

GHG have varying mean levels, namely theDβ matrix in (16).
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IV. TRANSCEIVERS

We next turn our attention to the design of practical transceivers. A method to

acquire CSI at the base station begins the discussion. Then we discuss precoders and

detection algorithms suitable for very large MIMO arrays.

A. Acquiring CSI at the base station

In order to do multiuser precoding in the forward link and detection in the reverse

link, the base station must acquire CSI. Let us assume that the frequency response of

the channel is constant overNCoh consecutive subcarriers. With small antenna arrays,

one possible system design is to let the base station antennas transmit pilot symbols

to the receiving units. The receiving units perform channelestimation and feed back,

partial or complete, CSI via dedicated feedback channels. Such a strategy does not

rely on channel reciprocity (i.e., the forward channel should be the transpose of the

reverse channel). However, with a limited coherence time, this strategy is not viable

for large arrays. The number of time slots devoted to pilot symbols must be at least as

large as the number of antenna elements at the base station divided byNCoh. When

M grows, the time spent on transmitting pilots may surpass thecoherence time of the

channel.
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Consequently, large antenna array technology must rely on channel reciprocity.

With channel reciprocity, the receiving units send pilot symbols via TDD. Since

the frequency response is assumed constant overNCoh subcarriers,NCoh terminals

can transmit pilot symbols simultaneously during 1 OFDM symbol interval. In total,

this requiresK/NCoh time slots (we remind the reader thatK is the number of

terminals served). The base station in thek-th cell constructs its channel estimateĜ
T

kk,

subsequently used for precoding in the forward link, based on the pilot observations.

The power of each pilot symbol is denotedρp.

B. Precoding in the forward link: Collection of results for single cell systems

Userk receives thek-th component of the composite vector

xf = GTsf +wf .

The vectorsf is a precoded version of the data symbolsqf . Each component ofsf

has average powerρf/M . Further, we assume that the channel matrixG has IID

CN (0, 1) entries. In what follows, we derive SNR/SINR (Signal-to-Interference-plus-

Noise-Ratio) expressions for a number of popular precodingtechniques in the large

system limit, i.e., withM,K → ∞, but with a fixed ratioα = M/K. The obtained

expressions are tabulated in Table I.

Let us first discuss the performance of an Interference Free (IF) system which

will subsequently serve as a benchmark reference. The best performance that can be

imagined will result if all the channel energy to terminalk is delivered to terminalk

without any inter-user interference. In that case, terminal k receives the samplexfk

xfk =

√

√

√

√

M
∑

ℓ=1

|gℓk|2 qfk + wfk.

Since
(

∑M
ℓ=1 |gℓk|2

)

/M → 1, M → ∞, and E
{

qfkq
H
fk

}

= ρf/K, the SNR per

receiving unit for IF systems converges toρfα asM → ∞.

We now move on to practical precoding methods. The conceptually simplest ap-

proach is to invert the channel by means of the pseudo-inverse. This is referred to as

Zero-Forcing (ZF) precoding [29]. A variant of zero forcingis Block Diagonalization

[30], which is not covered in this paper. Intuitively, whenM grows,G tends to have

nearly orthogonal columns as the terminals are not correlated due to their physical

separation. This assures that the performance of ZF precoding will be close to that
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of the IF system. However, a disadvantage of ZF is that processing cannot be done

distributedly at each antenna separately. With ZF precoding, all data must instead be

collected at a central node that handles the processing.

Formally, the ZF precoder sets

sf =
1√
γ
(GT)+qf =

1√
γ
G∗(GTG∗)−1qf ,

where the superscript “+” denotes the pseudo-inverse of a matrix, i.e. (GT)+ =

G∗(GTG∗)−1, and γ normalizes the average power insf to ρf . A suitable choice

for γ is γ = Tr(GTG∗)−1/K which averages fluctuations in transmit power due to

G but not toqf . The received samplexfk with ZF precoding becomes

xfk =
qfk√
γ
+ wfk.

With that, the instantaneous received SNR per terminal equals

SNR =
ρf
K γ

=
ρf

Tr(GTG∗)−1
. (30)

When both the number of terminalsK and the number of base station antennas

M grow large, but with fixed ratioα = M/K, Tr(GTG∗)−1 converges to a fixed

deterministic value [31]

Tr(GTG∗)−1 → 1

α− 1
, as K, M → ∞,

M

K
= α. (31)

Substituting (31) into (30) gives the expression in Table I.The conclusion is that ZF

precoding achieves anSNR that tends to the optimalSNR for an IF system with

M −K transmit antennas when the array size grows. Note that whenM = K, one

getsSNR = 0.

A problem with ZF precoding is that the construction of the pseudo-inverse(GT)+ =

G∗(GTG∗)−1 requires the inversion of aK × K matrix, which is computationally

expensive. However, asM grows,(GTG∗)/M tends to the identity matrix, which has

a trivial inverse. Consequently, the ZF precoder tends toG∗, which is nothing but a

MF. This suggests that matrix inversion may not be needed when the array is scaled

up, as the MF precoder approximates the ZF precoder well. Formally, the MF sets

sf =
1√
γ
G∗qf ,

with γ = Tr(GTG∗)/K. A few simple manipulations lead to an asymptotic expression

of the SINR, which is given in Table I.
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From the MF precoding SINR expression, it is seen that the SINR can be made as

high as desired by scaling up the antenna array. However, theMF precoder exhibits

an error floor since asρf → ∞, SINR → α.

We next turn the attention to scenarios where the base station has imperfect CSI.

Let Ĝ
T

denote the Minimum Mean Square Error (MMSE) channel estimate of the

forward link. The estimate satisfies,

Ĝ
T
= ξGT +

√

1− ξ2E,

where0 ≤ ξ ≤ 1 represents the reliability of the estimate andE is a matrix with IID

CN (0, 1) distributed entries. SINR expressions for MF and ZF precoding are given

in Table I. For any reliabilityξ, theSINR can be made as high as desired by scaling

up the antenna array.

SNR and SINR expressions asK,M → ∞, M/K = α

Precoding Technique Perfect CSI Imperfect CSI

Benchmark: IF System ρfα

Zero Forcing ρf(α− 1) ξ2 ρf (α−1)

(1−ξ2) ρf+1

Matched Filter ρfα

ρf+1
ξ2ρfα

ρf+1

Vector Perturbation ≈ ρf απ

6

(

1− 1
α

)1−α
, α / 1.79 N.A.

TABLE I

SNRAND SINR EXPRESSIONS FOR A COLLECTION OF STANDARD PRECODING TECHNIQUES.

Non-linear precoding techniques, such as DPC, Vector Perturbation (VP) [32], and

lattice-aided methods [33] are important techniques whenM is not much larger than

K. This is true since in theM ≈ K regime, the performance gap of ZF to the IF

benchmark is significant, see Table I, and there is room for improvement by non-linear

techniques. However, the gap of ZF to an IF system scales asα/(α − 1). WhenM

is, say, two timesK, this gap is only 3 dB. Non-linear techniques will operate closer

to the IF benchmark, but cannot surpass it. Therefore the gain of non-linear methods

does not at all justify the complexity increase. The measured 6×128 channels that we

discussed earlier in the paper behave as ifα ≈ 4. Hence, linear precoding is virtually

optimal and one can dispense with DPC.

For completeness we give an approximate large limit SNR expression for VP,

derived from the results of [34], in Table I. The expression is strictly speaking an
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upper bound to the SNR, but is reasonably tight [34] so that itcan be taken as an

approximation. Forα ' 1.79, the SINR expression surpasses that of an IF system,

which makes the expression meaningless. However, for larger values ofα, linear

precoding performs well and there is not much gain in using VPanyway. For VP, no

SINR expression is available in the literature with imperfect CSI.

In Figure 7 we show ergodic sum-rate capacities for MF precoding, ZF precoding,

and DPC. As benchmark performance we also show the ensuing sum-rate capacity

from an IF system. In all cases,K = 15 users are served and we show results for

M = 15, 40, 100. For M = 15, it can be seen that DPC decisively outperforms ZF

and is about 3 dB away from the IF benchmark performance. But as M grows, the

advantage of DPC quickly diminishes. WithM = 40, the gain of DPC is about 1

dB. This confirms that the performance gain does not at all justify the complexity

increase. With 100 base station antennas, ZF precoding performs almost as good as

an interference free system. At low SNR, MF precoding is better than ZF precoding.

It is interesting to observe that this is true over a wide range of SNRs for the case

of M = K. Sum-rate capacity expressions of VP are currently not available in the

literature, since the optimal distribution of the inputs for VP is not known to date.

C. Precoding in the forward link: The ultimate limit of non-cooperative multi cell

MIMO with large arrays

In this section, we investigate the limit of non-cooperative cellular multiuser MIMO

systems asM grows without limit. The presentation summarizes and extends the
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Fig. 8. Illustration of the pilot contamination concept. Left: During the training phase, the base station in cell

1 overhears the pilot transmission from other cells. Right:As a consequence, the transmitted vector from base

station 1 will be partiallybeamformedto the terminals in cell 2.

results of [5]. For single cell as well as for multi cell MIMO,the end effect of letting

M grow without limits is that thermal noise and small scale Rayleigh fading vanishes.

However, as we will discuss in detail, with multiple cells the interference from other

cells due to pilot contamination does not vanish. The concept of pilot contamination is

novel in a cellular MU-MIMO context and is illustrated in Figure 8, but was an issue in

the context of CDMA, usually under the name “pilot pollution”. The channel estimate

computed by the base station in cell 1 gets contamined from the pilot transmission of

cell 2. The base station in cell 1 will in effect beamform its signal partially along the

channel to the terminals in cell 2. Due to the beamforming, the interference to cell 2

does not vanish asymptotically asM → ∞.

We consider a cellular multiuser MIMO-OFDM system with hexagonal cells and

NFFT subcarriers. All cells servesK autonomous terminals and hasM antennas at

the base station. Further, a sparse scenarioK ≤ M is assumed for simplicity. Hence,

terminal scheduling aspects are not considered. The base stations are assumed non-

cooperative. TheM ×K composite channel matrix between theK terminals in cellk

and the base station in cellj is denotedGkj. Relying on reciprocity, the forward link

channel matrix between the base station in cellj and the terminals in cellk becomes

GT
kj (see Figure 9).

The base station in thek-th cell transmits the vectorsfk which is a precoded version

of the data symbolsqfk intended for the terminals in cellk. Each terminal in thek-th

cell receives his respective component of the composite vector

xfk = ρf
∑

j

GT
kjsfj +wfk. (32)
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Fig. 9. The composite channel between the base station in cell j and the terminals in cellk is denotedGT
kj .

As before, each element ofGkj comprises a small scale Rayleigh fading factor as

well as a large scale factor that accounts for geometric attenuation and shadow fading.

With that,Gkj factors as

Gkj = HkjD
1/2
βkj

. (33)

In (33), Hkj is a M × K matrix which represents the small scale fading between

the terminals in cellk to the base station in cellj, all entries are IIDCN (0, 1)

distributed. TheK × K matrix D
1/2
βkj

is a diagonal matrix comprising the elements

βkj = [βkj1, βkj2, . . . , βkjK] along its main diagonal; each valueβkjℓ represents the

large scale fading between terminalℓ in the k-th cell and the base station in cellj.

The base station in then-th cell processes its pilot observations and obtains a

channel estimatêG
T

nn of GT
nn. In the worst case, the pilot signals in all other cells are

perfectly synchronized with the pilot signals in celln. Hence, the channel estimate

Ĝ
T

nn gets contamined from pilot signals in other cells,

Ĝ
T

nn =
√
ρpG

T
nn +

√
ρp
∑

i 6=n

GT
in + V T

n . (34)

In (34) it is implicitly assumed that all terminals transmits identical pilot signals.

Adopting different pilot signals in different cells does not improve the situation much

[5] since the pilot signals must at least be confined to the same signal space, which

is of finite dimensionality.

Note that, due to the geometry of the cells,Gnn is generally stronger thanGin, i 6=
n. V n is a matrix of receiver noise during the training phase, uncorrelated with
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all propagation matrices, and comprises IIDCN (0, 1) distributed elements;ρp is a

measure of the SNR during of the pilot transmission phase.

Motivated by the virtual optimality of simple linear precoding from Section IV-B,

we let the base station in celln use the MF(Ĝ
T

nn)
H = Ĝ

∗

nn as precoder. We later

investigate zero-forcing precoding. Power normalizationof the precoding matrix is

unimportant whenM → ∞ as will become clear shortly. Theℓ-th terminal in thej-th

cell receives theℓ-th component of the vectorxfj = [xfj1, xfj1, . . . , xfjK ]
T. Inserting

(34) into (32) gives

xfj =
√
ρf
∑

n

GT
jnĜ

∗

nn qfn +wfj

=
√
ρf
∑

n

GT
jn

[

√
ρp
∑

i

GT
in + V T

n

]H

qfn +wfj. (35)

The composite received signal vectorxfj in (35) contains terms of the formGT
jnG

∗
in.

As M grows large, only terms wherej = i remain significant. We get

xfj

M
√
ρfρp

→
∑

n

GT
jnG

∗
jn

M
qfn, as M → ∞.

Further, asM grows, the effect of small scale Rayleigh fading vanishes,

GT
jnG

∗
jn

M
→ Dβjn

.

Hence, the processed received signal of theℓ-th receiving unit in thej-th cell is

xfjℓ

M
√
ρfρp

→ βjjℓqfjℓ +
∑

n 6=j

βjnℓqfnℓ. (36)

The SIR of terminalℓ becomes

SIR =
β2
jjℓ

∑

n 6=j β
2
jnℓ

, (37)

which does not contain any thermal noise or small scale fading effects! Note that

devoting more power to the training phase does not decrease the pilot contamination

effect and leads to the same SIR. This is a consequence of the worst-case-scenario

assumption that the pilot transmissions in all cells overlap. If the pilot transmissions

are staggered so that pilots in one cell collide with data in other cells, devoting more

power to the training phase is indeed beneficial. However, ina multi cell system,

there will always be some pilot transmissions that collide,although perhaps not in

neighboring cells.
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We now replace the MF precoder in (35) with the pseudo-inverse of the channel

estimate(Ĝ
T

nn)
+ = Ĝ

∗

nn(Ĝ
T

nnĜ
∗

nn)
−1. Inserting the expression for the channel estimate

(34) gives

(Ĝ
T

nn)
+ =

[

√
ρp
∑

i

G∗
in + V ∗

n

]([

√
ρp
∑

i′

GT
i′n + V T

n

][

√
ρp
∑

i′′

G∗
i′′n + V ∗

n

])−1

.

Again, whenM grows, only products of correlated terms remain significant,

(Ĝ
T

nn)
+ → 1

Mρp

[

√
ρp
∑

i

G∗
in + V ∗

n

](

∑

i

Dβin
+

1

ρp
IK

)−1

.

The processed composite received vector in thej-th cell becomes
√

ρp
ρf
xfj →

∑

n

Dβjn

(

∑

i

Dβin
+

1

ρp
IK

)−1

qfn.

Hence, theℓ-th receiving unit in thej-th cell receives
√

ρp
ρf
xfjℓ →

βjjℓ
∑

i βijℓ +
1
ρp

qfjℓ +
∑

n 6=j

βjnℓ
∑

i βinℓ +
1
ρp

qfnℓ.

The SIR of terminalk becomes

SIR =
β2
jjℓ / (

∑

i βijℓ +
1
ρp
)2

∑

n 6=j β
2
jnℓ / (

∑

i βinℓ +
1
ρp
)2
. (38)

We point out that with ZF precoding, the ultimate limit is independent ofρf but not

of ρp. As ρp → 0, the performance of the ZF precoder converges to that of the MF

precoder.

Another popular technique is to first regularize the matrixĜ
T

nnĜ
∗

nn before inverting

[29], so that the precoder is given by

Ĝ
∗

nn(Ĝ
T

nnĜ
∗

nn + δ IK)
−1,

where δ is a parameter subject to optimization. Settingδ = 0 results in the ZF

precoder whileδ → ∞ gives the MF precoder. For single cell systems,δ can be

chosen according to [29]. For multi cell MIMO, much less is known, and we briefly

elaborate on the impact ofδ with simulations that will be presented later. We point

out that the effect ofρp can be removed by takingδ = −M/ρp.

The ultimate limit can be further improved by adopting a power allocation strategy

at the base stations. Observe that we only study non-cooperative base stations. In a

distributed MIMO system, i.e. the processing for several base stations is carried out

at a central processing unit, ZF could be applied across the base stations to reduce

the effects of the pilot contamination. This would imply an estimation of the factors

{βkjℓ}, which is feasible since they are slowly changing and are assumed to be constant

over frequency.
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1) Numerical results:We assume that each base station servesK = 10 terminals.

The cell diameter (to a vertex) is 1600 meters and no terminalis allowed to get closer

to the base station than 100 meters. The large scale fading factor βkjℓ decomposes

as βkjℓ = zkjℓ/r
3.8
kjℓ, where zkjℓ represents the shadow fading and abides a log-

normal distribution (i.e.10 log10(zkjℓ) is zero-mean Gaussian distributed with standard

deviationσshadow) with σshadow = 8 dB andrkjℓ is the distance between the base station

in the j-th cell and terminalℓ in the k-th cell. Further, we assume a frequency reuse

factor of 1.

Figure 10 shows CDFs of the SIR asM grows without limit. We plot the SIR for MF

precoder (37), the ZF precoder (38), and a regularized ZF precoder withδ = M/20.

From the figure, we see that the distribution of the SIR is moreconcentrated around

its mean for ZF precoding compared with MF precoding. However, the mean capacity

E{log2(1+SIR)} is larger for the MF precoder than for the ZF precoder (around13.3

bits/channel use compared to 9.6 bits/channel use). With a regularized ZF precoder,

the mean capacity and outage probability are traded againsteachother.

We next consider finite values ofM . In Figure 11 the SIR for MF and ZF precoding

is plotted againstM for infinite SNRsρp and ρf . With ’infinite’ we mean that the

SNRs are large enough so that the performance is limited by pilot contamination. The

two uppermost curves show the mean SIR asM → ∞. As can be seen, the limit

is around 11 dB higher with MF precoding. The two bottom curves show the mean

SIR for MF and ZF precoding for finiteM . The ZF precoder decisively outperforms

the MF precoder and achieves a hefty share of the asymptotic limit with around 10-

20 base station antenna elements per terminal. In order to reach a given mean SIR,

MF precoding requires at least two orders of magnitude more base station antenna

elements than ZF precoding does.
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In the particular caseρp = ρf = 10 dB, the SIR of the MF precoder is about 5 dB

worse compared with infiniteρp andρf over the entire range ofM showed in Figure

11. Note that asM → ∞, this loss will vanish.

D. Detection in the reverse link: Survey of algorithms for single cell systems

Similarly to in the case of MU-MIMO precoders, simple lineardetectors are close

to optimal if M ≫ K under favorable propagation conditions. However, operating

points withM ≈ K are also important in practical systems with many users. Two

more advanced categories of methods, iterative filtering schemes and random step

methods, have recently been proposed for detection in the very large MIMO regime.

We compare these methods with the linear methods and to tree search methods in the

following. The fundamentals of the schemes are explained for hard-output detection,

experimental results are provided, and soft detection is discussed at the end of the

section. Rough computational complexity estimates for thepresented methods are

given in Table II.

1) Iterative linear filtering schemes:These methods work by resolving the detection

of the signaling vectorq by iterative linear filtering, and at each iteration by means

of new propagated information from the previous estimate ofq. The propagated

information can be either hard, i.e., consist of decisions on the signal vectors, or soft,

i.e., contain some probabilistic measures of the transmitted symbols (observe that here,

soft information is propagated between different iterations of the hard detector). The

methods typically employ matrix inversions repeatedly during the iterations, which,

if the inversions occur frequently, may be computationallyheavy whenM is large.
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Luckily, the matrix inversion lemma can be used to remove some of the complexity

stemming from matrix inversions.

As an example of a soft information-based method, we describe the conditional

MMSE with soft interference cancellation (MMSE-SIC) scheme [35]. The algorithm is

initialized with a linear MMSE estimatẽq of q. Then for each userk, an interference-

canceled signalxi,k, where subscripti is the iteration number, is constructed by

removing inter-user interference. Since the estimated symbols at each iteration are

not perfect, there will still be interference from other users in the signalsxi,k. This

interference is modeled as Gaussian and the residual interference plus noise power is

estimated. Using this estimate, an MMSE filter conditioned on filtered output from

the previous iteration is computed for each userk. The bias is removed and a soft

MMSE estimate of each symbol given the filtered output, is propagated to the next

iteration. The algorithm iterates these steps a predefined numberNIter of times.

Matrix inversions need to be computed for every realizationx, every user symbol

qk, and every iteration. Hence the number of matrix inversionsper decoded vector is

KNIter. One can employ the matrix inversion lemma in order to reducethe number

of matrix inversions to 1 per iteration. The idea is to formulate the inversion for user

k as a rank one update of a general inverse matrix at each iteration.

The BI-GDFE algorithm [36] is equation-wise similar to MMSE-SIC [37]. Com-

pared to MMSE-SIC, it has two differences. The linear MMSE filters of MMSE-SIC

depend on the received vectorx, while the BI-GDFE filters, which are functions of

a parameter that varies with iteration, the so-called input-decision correlation (IDC),

do not. This means that for a channelG that is fixed for many signaling vectors,

all filters, which still vary for the different users and iterations, can be precomputed.

Further, BI-GDFE propagates hard instead of soft decisions.

2) Random step methods:The methods categorized in this section are matrix-

inversion-free, except possibly for the initialization stage, where the MMSE solution

is usually used. A basic matrix inversion-free search method starts with the initial

vector, and evaluates the MSE for vectors in its neighborhood with NNeigh vectors.

The neighboring vector with smallest MSE is chosen, and the process restarts, and

continues like this forNIter iterations. The Likelihood Ascent Search (LAS) algorithm

[38] only permits transitions to states with lower MSE, and converges monotonically

to a local minima in this way. An upper bound of bit error rate and a lower bound

on asymptotic multiuser efficiency for the LAS detector werepresented in [39].
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Tabu Search (TS) [40] is superior to the LAS algorithm in thatit permits transitions

to states with larger MSE values, and it can in this way avoid local minima. TS also

keeps a list of recently traversed signaling vectors, with maximum number of entries

NTabu, that are temporarily forbidden moves, as a means for movingaway to new

areas of the search space. This strategy gave rise to the algorithm’s name.

3) Tree-based algorithms:The most prominent algorithm within this class is the

Sphere Decoder (SD) [3], [41]. The SD is in fact an ML decoder,but which only

considers points inside a sphere with certain radius. If thesphere is too small for

finding any signaling points, it has to be increased. Many tree-based low-complexity

algorithms try to reduce the search by only expanding the fraction of the tree-nodes

that appear the most “promising”. One such method is the stack decoder [42], where

the nodes of the tree are expanded in the order of least Euclidean distance to the

received signal. The average complexity of the sphere decoder is however exponential

in K [4], and SD is thus not suitable in the large MIMO regime whereK is large.

The Fixed Complexity Sphere Decoder (FCSD) [43] is a low-complexity, subop-

timal, version of the SD. All combinations of the first, sayr, scalar symbols inq

are enumerated, i.e., with a full search, and for each such combination, the remaining

K−r symbols are detected by means of ZF-DF. This implies that theFCSD is highly

parallelizable since|S|r hardware chains can be used, and further, it has a constant

complexity. A sorting algorithm employing the matrix inversion lemma for finding

which symbols should be processed with full complexity and which ones should be

detected with ZF-DF can be found in [43].

The FCSD eliminates columns from the matrixG, which implies that the matrix

gets better conditioned, which in turn boosts the performance of linear detectors. For

M ≫ K, the channel matrix is, however, already well conditioned,so the situation

does not improve much by eliminating a few columns. Therefore, the FCSD should

mainly be used in the case ofM ≈ K.

4) Numerical comparisons of the algorithms:We now compare the detection algo-

rithms described above experimentally. QPSK is used in all simulations and Rayleigh

fading is assumed, i.e., the channel matrix is chosen to haveindependent components

which are distributed asCN (0, 1). The transmit power is denotedρ. In all experiments,

simulations are run until 500 symbol errors are counted. We also add an interference-

free (IF) genie solution, that enjoys the same receive signaling power as the other

methods, without multi-user interference.
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Detection technique Complexity for each realization ofx Complexity for each realization ofG

MMSE MK MK2 +K3

MMSE-SIC (M2K +M3)NIter

BI-GDFE MKNIter (M2K +M3)NIter

TS ((M +NTabu)NNeigh +MK)NIter MK2 +K3

FCSD (M2 +K2 + r2)|S|r MK2 +K3

MAP MK|S|K

TABLE II

ROUGH COMPLEXITY ESTIMATES FOR DETECTORS IN TERMS OF FLOATING POINT OPERATIONS. IF A

SIGNIFICANT AMOUNT OF THE COMPUTATIONS IN QUESTION CAN BE PRE-PROCESSED FOR EACHG IN SLOW

FADING, THE PRE-PROCESSING COMPLEXITY IS GIVEN IN THE RIGHT COLUMN.

As mentioned earlier, when there is a large excess of base station antennas, simple

linear detection performs well. It is natural to ask for the numberα = M/K when this

effect kicks in. To give a feel for this, we show the uncoded BER performance versus

α, for the particular case ofK = 15, in Figure 12. For the measurements in Figure 12,

we let ρ ∼ 1/M . MMSE-SIC usesNIter = 6, BI-GDFE usesNIter = 4 since further

iterations gave no improvement, and the IDC parameter was chosen from preliminary

simulations. The TS neighborhood is defined as the closest modulation points [40],

and TS usesNIter =NTabu=60. For FCSD, we chooser = 8. We observe that when

the ratioα is above 5 or so, the simple linear MMSE method performs well,while

there is room for improvements by more advanced detectors whenα < 5.

Since we saw in Figure 12 that there is a wide range ofα where MMSE is largely

sub-optimal, we now consider the caseM = K. Figure 13 shows comparisons of

uncoded BER of the studied detectors as functions of their complexities (given in

Table II). We consider the case without possibility of pre-processing, i.e., the column

entries in Table II are summed for each scheme,M = K = 40, and we useρ = 12

dB. We find that TS and MMSE-SIC perform best. For example, at aBER of 0.002,

the TS is 1000 times less complex than the FCSD.

Figure 14 shows a plot of BER versus transmit signaling powerρ for M = K = 40,

when the scheme parameters are the maximum values in the experiment in Figure 13.

It is seen that TS and MMSE-SIC perform best across the entireSNR range presented.

Note that the ML detector, with a search space of size280, cannot outperform the IF

benchmark. Hence, remarkably, we can conclude that TS and MMSE-SIC are operating
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not more than 0.9 dB away from the ML detector for40× 40 MIMO.

5) Soft-input soft-output detection:The hard detection schemes above are easily

evolved to soft detection methods. One should not in generaldraw conclusions about

soft detection from hard detection. Literature investigating schemes similar to the ones

above, but operating in the coded large system limit, are in agreement with Figures 12,

13, and 14. In [44], analytic CDMA spectral efficiency expressions for both MF, ZF,

and linear MMSE, are given. The results are the following. Inthe limit of large ratios

α, all three methods perform likewise, and as well as the optimum joint detector

and CDMA with orthogonal spreading codes. Forα ≈ 20, MF starts to perform

much worse than the other methods. Atα ≈ 4/3, ZF performs drastically worse than

MMSE, but the MMSE method loses significantly in performancecompared to joint

processing.

With MMSE-SIC, a-priori information is easily incorporated in the MMSE filter

derivation by conditioning. This requires the computationof the filters for each user,

each symbol interval, and each decoder iteration [45]. Another MMSE filter is derived

by unconditional incorporation of the a-priori probabilities, which results in MMSE

filters varying for each user and iteration, similarly to forBI-GDFE above. Density

evolution analysis of conditional and unconditional MMSE-SIC in a CDMA setting,

and in the limit of infiniteN andK, shows that their coded BER waterfall region

can occur within two dB from that of the MAP detector [45]. In terms of spectral

efficiency, the MAP detector and conditional and unconditional MMSE-SIC perform

likewise.

For random step and tree-based methods, the main problem is to obtain a good list

of candidateq-vectors for approximate LLR evaluation, where all bits should take

the values 0 and 1 at least once. With the TS and FCSD methods, we start from lists

containing the hard detection results and the vectors searched to achieve this result, for

creating an approximate max-log LLR. If a bit value for a bit position is missing, or if

higher accuracy is needed, one can add vectors in the vicinity of the obtained set, see

[46]. A soft-output version of the LAS algorithm has been shown to operate around

7 dB away from capacity in a coded V-BLAST setting withM = K = 600 [38].

Instead of using the max-log approximations for approximating LLR as in [46], the

PM algorithm keeps a sum of terms [47]. There are many other approaches which may

be suitable for soft-output large scale MIMO detection, e.g., Markov chain Monte-

Carlo techniques [48].
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V. SUMMARY

Very large MIMO offers the unique prospect within wireless communication of

saving an order of magnitude, or more, in transmit power. As an extra bonus, the

effect of small scale fading averages out so that only the much more slowly changing

large scale fading remains. Hence, very large MIMO has the potential to bring radical

changes to the field.

As the number of base station antennas grows, the system getsalmost entirely

limited from the reuse of pilots in neighboring cells, the socalledpilot contamination

concept. This effect appears to be a fundamental challenge of very large MIMO system

design, which warrants future research on the topic.

We have also seen that the interaction between antenna elements can incur signifi-

cant losses, both to channel orthogonality and link capacity. For large MIMO systems

this is especially problematic since with a fixed overall aperture, the antenna spacing

must be reduced. Moreover, the severity of coupling problemalso depends on the

chosen array geometry, e.g., linear array versus planar array. The numerical examples

show that for practical antenna terminations (i.e., with nocoupling cancellation), the

primary impact of coupling is in power loss, in comparison tothe case where only

spatial correlation is accounted for. Notwithstanding, itis found that moderate coupling

can help to reduce correlation and partially offset the impact of power loss on capacity.

We have also surveyed uplink detection algorithms for caseswhere the number of

single antenna users and the number of base station antennasis about the same, but

both numbers are large, e.g. 40. The uplink detection problem becomes extremely

challenging in this case since the search space is exponential in the number of

users. By receiver tests and comparisons of several state-of-the-art detectors, we

have demonstrated that even this scenario can be handled. Two especially promising

detectors are the MMSE-SIC and the TS, which both can operatevery close to the

optimal ML detector.

To corroborate the theoretical models and claims of the paper, we have also set

up a small measurement campaign using an indoor 128 antenna element base station

and 6 single antenna users. In reality, channels are (generally) not IID, and thus there

is a performance loss compared to ideal channels. However, the same trends appear

and the measurements indicated a stable and robust performance. There are still many

open issues with respect to the behavior in realistic channels that need further research

and understanding, but the overall system performance seems very promising.
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Sidebar: Approximate matrix inversion

Much of the computational complexity of the ZF-precoder andthe reverse link

detectors lies in the inversion of aK×K matrixZ. Although base stations have high

computational power, it is of interest to find approximate solutions by simpler means

than outright inversion.

In the following, we review an intuitive method for approximate matrix inversion.

It is known that if aK×K matrix Z has the property

lim
n→∞

(IK −Z)n = 0K ,

then its inverse can be expressed as a Neumann series [49]

Z−1 =

∞
∑

n=0

(IK −Z)n. (39)

Ostensibly, it appears that matrix inversion using (39) is even more complex than

direct inversion since both matrix inversion and multiplication areO(K3) operations.

However, in hardware, matrix multiplication is strongly preferred over inversion since

it does not require any divisions. Moreover, if only the result of the inverse times a

vectors = Z−1q is of interest, then (39) can be implemented as a series of cascaded

matched filters. The complexity of each matched filter operation is onlyO(K2).

Let us first consider the case ofK ×M matrix G with independent andCN (0, 1)

distributed entries. We remind the reader thatα = M/K. The objective is now to

approximate the inverse of the Wishhart matrixZ = GGH. As K and M grows,

the eigenvalues ofZ converges to a fixed deterministic distribution known as the

Marchenko-Pastur distribution. The largest and the smallest eigenvalues ofZ converge

to

λmax(Z) →
(

1 +
1√
α

)2

, λmin(Z) →
(

1− 1√
α

)2

.

Some minor manipulations show that

λmax

(

α

1 + α
Z

)

→ 1 + 2

√
α

1 + α
, λmin

(

α

1 + α
Z

)

→ 1− 2

√
α

1 + α
.

Hence, the eigenvalues ofIK − α/(1 + α)Z = IK −Z/(M +K) lie approximately

in the range[−2
√
α/(1 + α), 2

√
α/(1 + α)]; note that2

√
α/(1 + α) ≤ 1 whenever

α > 1. Therefore

lim
n→∞

(

IK − 1

M +K
Z

)n

= 0K . (40)

WhenM/K is large, say 5-10 or so, (40) converges rapidly, and only a few terms

needs to be computed. For finite dimensionsK andM , the eigenvalues of a particular
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channel realization can lie outside the range[−2
√
α/(1+α), 2

√
α/(1+α)]. Therefore

an attenuation factorδ < 1 is introduced. Altogether, the inverse ofG = ZZH can

be approximated as

Z−1 ≈ δ

M +K

L
∑

n=0

(

IK − δ

M +K
Z

)n

. (41)

Replacing the weighting coefficent1/(M+K) with c/Tr(Z), c a constant, provides

a robust method for matrix approximation when the channel matrix has an unknown

distribution. Other techniques, e.g. based on the Cayley-Hamilton Theorem and ran-

dom matrix theory, have been extensively used for CDMA receivers, see [50], [51].

If the weighting coefficients are optimized, the matrix inversion in CDMA receivers

can be approximated with only≈ 8 terms.
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