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Scaling up MIMO: Opportunities and
Challenges with Very Large Arrays

Fredrik Rusek, Daniel Persson Buon Kiong Ladi, Erik G. Larssoh,
Thomas L. Marzettg Ove Edfors$, and Fredrik Tufvesson

|. INTRODUCTION

MIMO technology is becoming mature, and incorporated imeerying wireless
broadband standards like LTE [1]. For example, the LTE stash@llows for up to 8
antenna ports at the base station. Basically, the more @adethe transmitter/receiver
is equipped with, and the more degrees of freedom that theagadion channel can
provide, the better the performance in terms of data rateindr reliability. More
precisely, on a quasi-static channel where a codeword spamss only one time
and frequency coherence interval, the reliability of a poampoint MIMO link scales
according to Prob(link outage)}» SNR ™" where n; and n, are the numbers of
transmit and receive antennas, respectively, and SNR isSSitpeal-to-Noise Ratio.
On a channel that varies rapidly as a function of time andueeqgy, and where
circumstances permit coding across many channel cohermetergals, the achievable
rate scales asiin(n,, n,) log(1+SNR). The gains in multiuser systems are even more
impressive, because such systems offer the possibilityattsinit simultaneously to
several users and the flexibility to select what users toddeefor reception at any
given point in time [2].

The price to pay for MIMO is increased complexity of the haadlev(number of RF
chains) and the complexity and energy consumption of theasigrocessing at both
ends. For point-to-point links, complexity at the receiigeusually a greater concern
than complexity at the transmitter. For example, the cowipleof optimal signal
detection alone grows exponentially with [3], [4]. In multiuser systems, complexity

at the transmitter is also a concern since advanced codingnses must often be
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used to transmit information simultaneously to more thae oser while maintaining
a controlled level of inter-user interference. Of courgegther cost of MIMO is that
of the physical space needed to accommodate the antenchas]jimg rents of real
estate.

With very large MIMQ we think of systems that use antenna arrays with an order of
magnitude more elements than in systems being built todgya$iundred antennas or
more. Very large MIMO entails an unprecedented number cfrards simultaneously
serving a much smaller number of terminals. The disparitpumber emerges as a
desirable operating condition and a practical one as whk. fumber of terminals that
can be simultaneously served is limited, not by the numbenténnas, but rather by
our inability to acquire channel-state information for artimnited number of terminals.
Larger numbers of terminals can always be accommodated impioing very large
MIMO technology with conventional time- and frequency4idien multiplexing via
OFDM. Very large MIMO arrays is a new research field both in cwmication theory,
propagation, and electronics and represents a paradiginirshihe way of thinking
both with regards to theory, systems and implementatioe. Ultimate vision of very
large MIMO systems is that the antenna array would consisthadll active antenna
units, plugged into an (optical) fieldbus.

We foresee that in very large MIMO systems, each antennaugeg extremely low
power, in the order of mW. At the very minimum, of course, wentwvi keep total
transmitted power constant as we increagei.e., the power per antenna should be
« 1/n;. But in addition we should also be able to back off on to&l transmitted
power. For example, if our antenna array were serving aaitggminal then it can be
shown that the total power can be made inversely propoittona, in which case the
power required per antenna would bel/n?. Of course, several complications will
undoubtedly prevent us from fully realizing such optinmagtower savings in practice:
the need for multi-user multiplexing gains, errors in Chelrtate Information (CSI),
and interference. Even so, the prospect of saving an orderaghitude in transmit
power is important because one can achieve better systdéarmpance under the same
regulatory power constraints. Also, it is important beeatise energy consumption
of cellular base stations is a growing concern. As a bonugerak expensive and
bulky items, such as large coaxial cables, can be eliminaltegether. (The coaxial
cables used for tower-mounted base stations today are uputocentimeters in

diameter!) Moreover, very-large MIMO designs can be madeeexely robust in
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that the failure of one or a few of the antenna units would mmireciably affect

the system. Malfunctioning individual antennas may be \mafgped. The contrast to
classical array designs, which use few antennas fed fronglagower amplifier, is

significant.

So far, the large-number-of-antennas regime, wheandn,. grow without bound,
has mostly been of pure academic interest, in that some dsjimpapacity scaling
laws are known for ideal situations. More recently, howgteis view is changing,
and a number of practically important system aspects inatgefn,, n,) regime have
been discovered. For example, [5] showed that asymptlytiaaln; — oo and under
realistic assumptions on the propagation channel with awatth of 20 MHz, a time-
division multiplexing cellular system may accommodate enttran 40 single-antenna
users that are offered a naveragethroughput of 17 Mbits per second both in the
reverse (uplink) and the forward (downlink) links, and aotighput of 3.6 Mbits per
secondwith 95% probability These rates are achievablgthout cooperation among
the base stationand by relatively rudimentary techniques for CSI acqusitbased
on uplink pilot measurements.

Several things happen when MIMO arrays are made large., Bmstasymptotics
of random matrix theory kick in. This has several consegesn@hings that were
random before, now start to look deterministic. For examtile distribution of the
singular values of the channel matrix approaches a detasticifunction [6]. Another
fact is that very tall or very wide matrices tend to be verylwehditioned. Also when
dimensions are large, some matrix operations such as ionersan be done fast, by
using series expansion techniques (see the sidebar). limihef an infinite number of
antennas at the base station, but with a single antenna eertlisn linear processing
in the form of maximum-ratio combining for the uplink (i.enatched filtering with the
channel vector, sak) and maximum-ratio transmission (beamforming with/||h||)
on the downlink is optimal. This resulting processing is m@stent of time-reversal,
a technique used for focusing electromagnetic or acousdieew/ [7], [8].

The second effect of scaling up the dimensions is that thiamoise can be averaged
out so that the system is predominantly limited by interiesefrom other transmitters.
This is intuitively clear for the uplink, since coherent eaging offered by a receive
antenna array eliminates quantities that are uncorrelaegeen the antenna elements,
that is, thermal noise in particular. This effect is lessiobs on the downlink, however.

Under certain circumstances, the performance of a verelargay becomes limited
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by interference arising from re-use of pilots in neighbgraells. In addition, choosing
pilots in a smart way does not substantially help as long estinerence time of the
channel is finite. In a Time-Division Duplex (TDD) settingig effect was quantified
in [5], under the assumption that the channel is reciprondl that the base stations
estimate the downlink channels by using uplink receivedtgil

Finally, when the aperture of the array grows, the resatutibthe array increases.
This means that one can resolve individual scattering centéth unprecedented
precision. Interestingly, as we will see later on, the comitation performance of
the array in the large-number-of-antennas regime depe&sdsdn the actual statistics
of the propagation channel but only on the aggregated piiepesf the propagation
such as asymptotic orthogonality between channel vecteseceated with distinct
terminals.

Of course, the number of antennas in a practical system tdrenarbitrarily large
owing to physical constraints. Eventually, when letting or n, tend to infinity,
our mathematical models for the physical reality will bred@wn. For example,
the aggregated received power would at some point exceetrahemitted power,
which makes no physical sense. But long before the matheahatiodels for the
physics break down, there will be substantial engineerifigulties. So, how large is
“Infinity” in this paper? The answer depends on the preciseuonstances of course,
but in general, the asymptotic results of random matrix thewe accurate even for
relatively small dimensions (even 10 or so). In general, ekt of systems with at
least a hundred antennas at the base station, but proballyhen a thousand.

Taken together, the arguments presented motivate entigslytheoretical research
on signal processing and coding and network design for \aemgel MIMO systems.
This article will survey some of these challenges. In paféic we will discuss ultimate
information-theoretic performance limits, some pradtatgorithms, influence of chan-

nel properties on the system, and practical constraintherantenna arrangements.

A. Outline and key results

The rest of the paper is organized as follows. We start withriaf hreatment
of very large MIMO from an information-theoretic perspeeti This provides an
understanding for the fundamental limits of MIMO when themmer of antennas
grows without bound. Moreover, it gives insight into whae tbptimal transmit and

receive strategies look like with an infinite number of anteh at the base station.
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It also sets the stage for the ensuing discussions on redlishsmitter and receiver
schemes.

Next, we look at antennas and propagation aspects of laryMFirst we demon-
strate how and why maximume-ratio transmission beamforneizug focus power not
only in a specifidirectionbut to a giverpointin space and we explain the connection
between this processing and time-reversal. We then discussme detail mutual
coupling and correlation and their effects on the channphaciy, with focus on the
case of a large number of antennas. In addition, we provisldteebased on measured
channels with up td 28 antennas.

The last section of the paper is dedicated to transmit arelveschemes. Since the
complexity of optimal algorithms scales with the number ofemnas in an unfavor-
able way, we are particularly interested in the structure performance of approxi-
mate, low-complexity schemes. This includes variantsradr processing (maximum-
ratio transmission/combining, zero-forcing, MMSE) andaxlthms that perform local
searches in a neighborhood around solutions provided Badialgorithms. In this
section, we also study the phenomenonpdbt contamination which occurs when
uplink channel estimates are corrupted by mobiles in distalts that reuse the same
pilot sequences. We explain when and why pilot contaminatanstitutes an ultimate

limit on performance.

[I. INFORMATION THEORY FORVERY LARGE MIMO A RRAYS

Shannon’s information theory provides, under very prédgispecified conditions,
bounds on attainable performance of communications syst@atording to the noisy-
channel coding theorem, for any communication link ther@gapacityor achievable
rate, such that for any transmission rate less than the capdldye exists a coding
scheme that makes the error-rate arbitrarily small.

The classical point-to-point MIMO link begins our discussiand it serves to
highlight the limitations of systems in which the workingtamnas are compactly
clustered at both ends of the link. This leads naturally ith® topic of multi-user
MIMO which is where we envision very large MIMO will show itgeatest utility.
The Shannon theory simplifies greatly for large numbers ¢oéramas and it suggests

capacity-approaching strategies.
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A. Point-to-point MIMO

1) Channel model:A point-to-point MIMO link consists of a transmitter having
an array ofn; antennas, a receiver having an arraynpfantennas, with both arrays
connected by a channel such that every receive antenna jecsub the combined
action of all transmit antennas. The simplest narrowbandhamgless channel has the

following mathematical description; for each use of thercted we have
x =pGs+w, (1)

where s is the n;-component vector of transmitted signals,is the n,-component
vector of received signal<s is then, x n; propagation matrix of complex-valued
channel coefficients, and is then.-component vector of receiver noise. The scalar
p is a measure of the Signal-to-Noise Ratio (SNR) of the lirtkisi proportional

to the transmitted power divided by the noise-variance, iaradso absorbs various
normalizing constants. In what follows we assume a norratn such that the

expected total transmit power is unity,

E{ls|*} =1, (2)

where the components of the additive noise vector are Indkpe and Identically
Distributed (IID) zero-mean and unit-variance circulagmmetric complex-Gaussian
random variablesd\VV (0, 1)). Hence if there were only one antenna at each end of
the link, then within (1) the quantities G, x andw would be scalars, and the SNR
would be equal tp|G|>.

In the case of a wide-band, frequency-dependent (“delayasly) channel, the
channel is described by a matrix-valued impulse responbg tine equivalent matrix-
valued frequency response. One may conceptually decontippsbannel into parallel
independent narrow-band channels, each of which is destribthe manner of (1).
Indeed, Orthogonal Frequency-Division Multiplexing (OWID rigorously performs
this decomposition.

2) Achievable rate:With IID complex-Gaussian inputs, the (instantaneous)ualut
information between the input and the output of the poirpdmt MIMO channel (1),
under the assumption that the receiver has perfect knowleddhe channel matrix,

G, measured in bits-per-symbol (or equivalently bits-pgesrmel-use) is

C = I(z;s) = log, det (Im + ﬁGGH) , (3)

Uz
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where [(x; s) denotes the mutual information operatdr,  denotes then, x n,
identity matrix and the superscriptl® denotes the Hermitian transpose [9]. The
actual capacity of the channel results if the inputs are optimized accordmghe
water-filling principle. In the case th&@G" equals a scaled identity matrig; is in
fact the capacity.

To approach the achievable rafé the transmitter does not have to know the
channel, however it must be informed of the numerical valuthe achievable rate.
Alternatively, if the channel is governed by known statistithen the transmitter can
set a rate which is consistent with an acceptahléage probability For the special
case of one antenna at each end of the link, the achievalel§3abecomes that of

the scalar additive complex Gaussian noise channel,
C =log, (1+p|G?) . (4)

The implications of (3) are most easily seen by expressiegaithievable rate in

terms of the singular values of the propagation matrix,
G =D, ¥" ()

where® and ¥ are unitary matrices of dimension x n, andn; x n; respectively,

and D, is an, x n; diagonal matrix whose diagonal elements are the singulaesa

{v1, 12, *+* Vminmen) }- The achievable rate (3), expressed in terms of the singular
values,
min(ng,nr) pl/2
C = 1 1+ 55 6
; 0g, ( o ) : (6)

is equivalent to the combined achievable rate of paralhslifor which the/-th link
has an SNR ofv? /n;. With respect to the achievable rate, it is interesting tasaer
the best and the worst possible distribution of singulan@al Subject to the constraint
(obtained directly from (5)) that

min(ng,nr)

Z v =Tr (GGH) , (7)

(=1
where “Tr” denotes “trace”, the worst case is when all but one of thgudar values

are equal to zero, and the best case is when all ofithén,, n,) singular values are
equal (this is a simple consequence of the concavity of tharlthm). The two cases
bound the achievable rate (6) as follows,

Tr (GGE - Tr (GGH
log, (1 -+ w) < C < min(ng,n,) - logy <1 + pr(_)) . (8)

N ny min(ng, n;)
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If we assume that a normalization has been performed su¢hthtbamagnitude of
a propagation coefficient is typically equal to one, tﬁﬁr(GGH) ~ nyn;, and the

above bounds simplify as follows,

log, (1 + pn,) < C < min(ng,n,) - log, (1 + w) . 9)
ny,

The rank-1 (worst) case occurs either for compact array®uhbihe-of-Sight (LOS)
propagation conditions such that the transmit array caresatlve individual elements

of the receive array and vice-versa, or under extreme keypapagation conditions.
The equal singular value (best) case is approached whemtheseof the propagation
matrix are 11D random variables. Under favorable propamgatonditions and a high
SNR, the achievable rate is proportional to the smaller efrtmber of transmit and
receive antennas.

3) Limiting cases:Low SNRs can be experienced by terminals at the edge of a

cell. For low SNRs only beamforming gains are important drelachievable rate (3)

becomes

p-Tr (GGH)
ng In 2

Jus

In2

This expression is independent:gf and thus, even under the most favorable propaga-

C(,0%0 ~

(10)

tion conditions the multiplexing gains are lost, and frora gerspective of achievable
rate, multiple transmit antennas are of no value.

Next let the number of transmit antennas grow large whileplkee the number
of receive antennas constant. We furthermore assume tkhatoth-vectors of the

propagation matrix are asymptotically orthogonal. As aseguence [10]

H
(GG ) ~1,, . (11)
ng >Ny

T,
and the achievable rate (3) becomes

Cm>>nr ~ 10g2 det (Inr +p- Inr)
=y -logy(1+p) , (12)

which matches the upper bound (9).
Then, let the number of receive antennas grow large whil@ikgethe number of
transmit antennas constant. We also assume that the coleators of the propagation

matrix are asymptotically orthogonal, so

H
(G G) ~1I, . (13)
ny >Nt

Ny
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The identitydet(I + AA") = det(7 + A" A), combined with (3) and (13), yields

Chosn, = log,det (Im + ﬁGHG)

un

~ g -log, <1 + pnr) ; (14)

ny

which again matches the upper bound (9). So an excess nunib@ansmit or
receive antennas, combined with asymptotic orthogonafityre propagation vectors,
constitutes a highly desirable scenario. Extra receiverard@s continue to boost the
effective SNR, and could in theory compensate for a low SNé&Rraatore multiplexing
gains which would otherwise be lost as in (10). Furthermorghogonality of the
propagation vectors implies that [ID complex-Gaussianutaare optimal so that the
achievable rates (13) and (14) are in fact the true chanmelotizes.

B. Multi-user MIMO

The attractive multiplexing gains promised by point-tarpgdIMO require a favor-
able propagation environment and a good SNR. Disappoip@nfprmance can occur
in LOS propagation or when the terminal is at the edge of tHe E&tra receive
antennas can compensate for a low SNR, but for the forwatdthis adds to the
complication and expense of the terminal. Very large MIMQx ¢ally address the
shortcomings of point-to-point MIMO.

If we split up the antenna array at one end of a point-to-pMiVIO link into
autonomous antennas we obtain the qualitatively diffeMualti-User MIMO (MU-
MIMO). Our context for discussing this is an array &f antennas - for example a
base station - which simultaneously servésautonomous terminals. (Since we want
to study both forward- and reverse link transmission, we abandon the notatiomn;
andn,.) In what follows we assume that each terminal has only ortenaa. Multi-
user MIMO differs from point-to-point MIMO in two respectfrst, the terminals are
typically separated by many wavelengths, and second, thertals cannot collaborate
among themselves, either to transmit or to receive data.

1) Propagation: We will assume TDD operation, so the reverse link propagatio
matrix is merely the transpose of the forward link propawatinatrix. Our emphasis
on TDD rather than FDD is driven by the need to acquire chastak-information
between extreme numbers of service antennas and much smatiers of terminals.

The time required to transmit reverse-link pilots is indegent of the number of
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antennas, while the time required to transmit forward-Ipilots is proportional to
the number of antennas. The propagation matrix in the reverk, G, dimensioned
M x K, is the product of 8/ x K matrix, H, which accounts for small scale fading
(i.e., which changes over intervals of a wavelength or Jemsyl aK x K diagonal
matrix, D}/ ?, whose diagonal elements constitutd{ax 1 vector, 3, of large scale
fading coefficients,

G = HD}’. (15)

The large scale fading accounts for path loss and shadonga@lhus the:-th column-
vector of H describes the small scale fading between thé terminal and theV/
antennas, while thg-th diagonal element ()D;/2 is the large scale fading coefficient.
By assumption, the antenna array is sufficiently compadt aheof the propagation
paths for a particular terminal are subject to the same Isecgke fading. We normalize
the large scale fading coefficients such that the small $adiag coefficients typically
have magnitudes of one.

For multi-user MIMO with large arrays, the number of antengeeatly exceeds the
number of terminals. Under the most favorable propagatmmditions the column-

vectors of the propagation matrix are asymptotically oythaal,

<GHG) - DY’ (—HHH) Dy
M M>»K M M>»K

2) Reverse link:On the reverse link, for each channel use, fhéerminals collec-
tively transmit a’ x 1 vector of QAM symbolsg,, and the antenna array receives

a M x 1 vector,x,,
Xy = \/Equ + Wy, (17)

wherew, is the M x 1 vector of receiver noise whose components are independdnt a
distributed as’ A/(0, 1). The quantityp, is proportional to the ratio of power divided

by noise-variance. Each terminal is constrained to havexprated power of one,
E{lgil’} =1, k=1,--- K . (18)

We assume that the base station knows the channel.

Remarkably, the total throughput (e.g., the achievable-gate) of reverse link
multi-user MIMO is no less than if the terminals could colbahte among themselves
[2],

Csumr = log, det (IK + prGHG) ) (19)
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If collaboration were possible it could definitely make chahcoding and decoding
easier, but it would not alter the ultimate sum-rate. The sata is not generally
shared equally by the terminals; consider for example tise gehere the slow fading
coefficient is near-zero for some terminal.

Under favorable propagation conditions (16), if there iargé number of antennas
compared with terminals, then the asymptotic sum-rate is

Comrmsr ~ logydet (Ix + Mp,Dg)
K

k=1
This has a nice intuitive interpretation if we assume thatablumns of the propagation

matrix are nearly orthogonal, i.6G"G ~ M - Ds. Under this assumption, the base

station could process its received signal by a Matche@HNF),
GHXr = \/EGHqu + GHWr
~ M,/p.Dsq, + G"w, . (21)

This processing separates the signals transmitted by ffezedlit terminals. The de-
coding of the transmission from theth terminal requires only thé-th component
of (21); this has an SNR ol p, 5, which in turn yields an individual rate for that
terminal, corresponding to thieth term in the sum-rate (20).

3) Forward link: For each use of the channel the base station transmifs>al
vector, s, through itsM antennas, and th& terminals collectively receive & x 1

vector, x¢,
Xp = /prG s + wy (22)

where the superscript “T” denotes “transpose”, ands the K x 1 vector of receiver
noise whose components are independent and distributéVds, 1). The quantity
pr is proportional to the ratio of power to noise-variance. bl transmit power is

independent of the number of antennas,
B{llsel?} =1 (23)

The known capacity result for this channel, see e.g. [113],[Assumes that the
terminals as well as the base station know the channelILebe a diagonal matrix

whose diagonal elements constitutekax 1 vector «. To obtain the sum-capacity
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requires performing a constrained optimization,

Clum.t = I}lai( log, det (I + psGD,G"),
Tk
K
subject to nyk =1, %w>0,VEk. (24)
k=1

Under favorable propagation conditions (16) and a largesxof antennas, the

sum-capacity has a simple asymptotic form,

Coamtyusg = r{naif log, det (IK + pr}Y/QGHGD}Yp)
Yk

~ r?a? log, det (Ix + MpsD,Dg)
o

K

= max Z logy (1 + MpeyiBr) (25)
{w} 1

where is constrained as in (24). This result makes intuitive sahslkee columns
of the propagation matrix are nearly orthogonal which oscasymptotically as the

number of antennas grows. Then the transmitter could use@eMF linear precoder,

1 x*y—1/2 y1/2
st = —G*D;'"*D?q;, 26
f \/M B P Qf ( )

whereq; is the vector of QAM symbols intended for the terminals SU&tE {|g: > = 11,
andp is a vector of powers such thgt:lepk = 1. The substitution of (26) into (22)
yields the following,

xi ~ \/prMD}* D} q; + wy, (27)

which yields an achievable sum-rate E,ﬁil log, (1 + Mpepifr) - identical to the

sum-capacity (25) if we identifp = ~.

[[I. ANTENNA AND PROPAGATION ASPECTS OV ERY LARGE MIMO

The performance of all types of MIMO systems strongly degeoi properties of
the antenna arrays and the propagation environment in wh&kystem is operating.
The complexity of the propagation environment, in comboratvith the capability of
the antenna arrays to exploit this complexity, limits thhiagable system performance.
When the number of antenna elements in the arrays increasaseet both opportu-
nities and challenges. The opportunities include increéaspabilities of exploiting the
propagation channel, with better spatial resolution. Wil separated ideal antenna
elements, in a sufficiently complex propagation environtrard without directivity

and mutual coupling, each additional antenna element iattesy adds another degree
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of freedom that can be used by the system. In reality, thotlghantenna elements
are never ideal, they are not always well separated, andrtpagation environment
may not be complex enough to offer the large number of degreéé®edom that a
large antenna array could exploit. In this section we ilatgt and discuss some of
these opportunities and challenges, starting with an el@miphow more antennas
in an ideal situation improves our capability to focus thddfistrength to a specific
geographical point (a certain user). This is followed by aalgsis of how realistic
(non-ideal) antenna arrays influence the system perforenanan ideal propagation
environment. Finally, we use channel measurements to sslgnoperties of a real

case with a 128-element base station array serving 6 sargérna users.

A. Spatial focus with more antennas

Precoding of an antenna array is often saidli@ct the signal from the antenna
array towards one or more receivers. In a pure LOS envirohrdeecting means that
the antenna array forms a beam towards the intended resgitlean increased field
strength in a certain direction from the transmitting artaypropagation environments
where non-LOS components dominate, the concept of digedtie antenna array
towards a certain receiver becomes more complicated. In filae field strength is
not necessarily focused in thdirection of the intended receiver, but rather to a
geographicapoint where the incoming multipath components add up constreigtiv
Different techniques for focusing transmitted energy tgactic location have been
addressed in several contexts. In particular, it has draitentgon in the form of
Time Reversal (TR) where the transmitted signal is a tinvensed replica of the
channel impulse response. TR with single as well as muligpitennas has been
demonstrated lately in, e.g., [7], [13]. In the context abthaper the most interesting
case is MISO, and here we speak of Time-Reversal Beam For(iRgF). While
most communications applications of TRBF address a relgtigmall number of
antennas, the same basic techniques have been studiedrfostalwo decades in
medical extracorporeal lithotripsy applications [8] waHarge number of “antennas”
(transducers).

To illustrate how large antenna arrays can focus the elecgnmetic field to a
certain geographic point, even in a narrowband channel, seetlie simple geomet-
rical channel model shown in Figure 1. The channel is congaget00 uniformly

distributed scatterers in a square of dimenstoA\ x 800\, where X is the signal
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400 scatterers

M element

1600 A 800 A

Fig. 1. Geometry of the simulated dense scattering enviemiywith 400 uniformly distributed scatterers in a
800 x 800 A area. The transmid/-element ULA is placed at a distance of 168Grom the edge of the scatterer
area with its broadside pointing towards the center. Twglsiscattering paths from the first ULA element to an

intended receiver in the center of the scatterer area angnsho

wavelength. The scattering pointg)(shown in the figure are the actual ones used in
the example below. The broadside direction of flieelement Uniform Linear Array
(ULA) with adjacent element spacing @f = A\/2 is pointing towards the center of
the scatterer area. Each single-scattering multipath ooet is subject to an inverse
power-law attenuation, proportional to distance squam@p@agation exponent 2),
and a random reflection coefficient with 11D complex Gaussiatribution (giving a
Rayleigh distributed amplitude and a uniformly distritdifghase). This model creates
a field strength that varies rapidly over the geographicaaatypical of small-scale
fading. With a complex enough scattering environment anaffecgently large element
spacing in the transmit array, the field strength resultimgnf different elements in
the transmit array can be seen as independent.

In Figure 2 we show the resulting normalized field strengtla ismall 10X x 10A
environment around the receiver to which we focus the traesthsignal (using MF
precoding), for ULAs withd = \/2 of size M = 10 and M = 100 elements. The
normalized field strength shows how much weaker the fielchgtheis in a certain
position when the spatial signature to the center point &luather than the correct
spatial signature for that point. Hence, the normalized! fegtength is 0 dB at the
center of both figures, and negative at all other points.ifeiguillustrates two important
properties of the spatial MF precoding: (i) that the fieldesgth can be focused to
a point rather than in a certain direction and (ii) that monteanas improve the
ability to focus energy to a certain point, which leads tosl@gerference between
spatially separated users. Witff = 10 antenna elements, the focusing of the field

strength is quite poor with many peaks inside the studied.drereasingV/ to 100
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[dB]

10 A

Fig. 2. Normalized fieldstrength in B) x 10 X area centered around the receiver to which the beamformsing i
done. The left and right pseudo color plots show the fieldngtite when anA/ = 10 and anM = 100 ULA are

used together with MF precoding to focus the signal to a vecen the center of the area.

antenna elements, for the same propagation environmemsgjdsrably improves the
field strength focusing and it is more than 5 dB down in mosthef $tudied area.
While the example above only illustrates spatial MF prengdn the narrowband
case, the TRBF techniques exploit both the spatial and teehdomains to achieve an
even stronger spatial focusing of the field strength. Witbugimn many antennas and
favorable propagation conditions, TRBF will not only fogoewer and yield a high
spectral efficiency through spatial multiplexing to mangrimals. It will also reduce,
or in the ideal case completely eliminate, inter-symbogifdgrence. In other words,
one could dispense with OFDM and its redundant cyclic prefiach base station
antenna would 1) merely convolve the data sequence intefwletie £-th terminal
with the conjugated, time-reversed version of his estinfatethe channel impulse
response to thé-th terminal, 2) sum the< convolutions, and 3) feed that sum into
his antenna. Again, under favorable propagation conditiamd a large number of

antennas, inter-symbol interference will decrease sicantiy.

B. Antenna aspects

It is common within the signal processing, communicatioms eformation theory
communities to assume that the transmit and receive argesmeaisotropic and uni-
polarized electromagnetic wave radiators and sensorpectgely. In reality, such
isotropic unipolar antennas do not exist, according to &umental laws of electro-
magnetics. Non-isotropic antenna patterns will influertee MIMO performance by
changing the spatial correlation. For example, directivgei@nas pointing in distinct
directions tend to experience a lower correlation than diogetive antennas, since

each of these directive antennas “see” signals arrivingn faodistinct angular sector.
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In the context of an array of antennas, it is also common isgl@mmunities to
assume that there is no electromagnetic interaction (ouahwoupling) among the
antenna elements neither in the transmit nor in the recem@emrhis assumption is
only valid when the antennas are well separated from onehanot

In the rest of this section we consider very large MIMO arraysere the overall
aperture of the array is constrained, for example, by theeaiizhe supporting structure
or by aesthetic considerations. Increasing the numbertehaa elements implies that
the antenna separation decreases. This problem has bemimedan recent papers,
although the focus is often on spatial correlation and thecefbf coupling is often
neglected, as in [14]-[16]. In [17], the effect of coupling the capacity of fixed
length ULAs is studied. In general, it is found that mutualgling has a substantial
impact on capacity as the number of antennas is increaseal fined array aperture.

It is conceivable that the capacity performance in [17] cannbbproved by compen-
sating for the effect of mutual coupling. Indeed, couplimmpensation is a topic of
current interest, much driven by the desire of implementiiglO arrays in a compact
volume, such as mobile terminals (see [18] and referenca®itt). One interesting
result is that coupling among co-polarized antennas caneoegily mitigated by
the use of optimal multiport impedance matching radio fexguy circuits [19]. This
technique has been experimentally demonstrated only fdo dpur antennas, though
in principle it can be applied to very large MIMO arrays [20evertheless, the
effective cancellation of coupling also brings about diisining bandwidth in one
or more output ports as the antenna spacing decreases [a@%]can be understood
intuitively in that, in the limit of small antenna spacingetarray effectively reduces
to only one antenna. Thus, one can only expect the array & tfe same charac-
teristics as a single antenna. Furthermore, implementragtisal matching circuits
will introduce ohmic losses, which reduces the gain thatclsevable from coupling
cancellation [18].

Another issue to consider is that due to the constraint iayaaperture, very large
MIMO arrays are expected to be implemented in a 2D or 3D artactire, instead
of as a linear array as in [17]. A linear array with antennanglets of identical gain
patterns (e.g., isotropic elements) suffers from the mmobbf front-back ambiguity,
and is also unable to resolve signal pathsboth azimuth and elevation. However,
one drawback of having a dense array implementation in 2DDois3he increase of

coupling effects due to the increase in the number of adjaargtiennas. For the square
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array (2D) case, there are up to four adjacent antennasébbed the same distance)
for each antenna element, and in 3D there are up to 6. A fupihaslem that is
specific to 3D arrays is that only the antennas located onuHace of the 3D array
contribute to the information capacity [22], which in effeestricts the usefulness of
dense 3D array implementations. This is a consequence ontibgral representation
of Maxwell's equations, by which the electromagnetic figidide the volume of the
3D array is fully described by the field on its surface (asswrsufficiently dense
sampling), and therefore no additional information can k&aeted from elements
inside the 3D array.

Moreover, in outdoor cellular environments, signals temaitrive within a narrow
range of elevation angles. Therefore, it may not be feadineghe antenna system
to take advantage of the resolution in elevation offered &yseé 2D or 3D arrays to
perform signaling in the vertical dimension.

The complete Single-User MIMO (SU-MIMO) signal model witimtannas and
matching circuit in Figure 3 (reproduced from [23]) is useddemonstrate the per-
formance degradation resulting from correlation and mluteapling in very large
arrays with fixed apertures. In the figur&, and Z, are the impedance matrices of
the transmit and receive arrays, respectivglyandi,; are the excitation and received
currents (at the-th port) of the transmit and receive systems, respectiaglglu,; and
v (Zs and Z)) are the source and load voltages (impedances), respgctave v;; is
the terminal voltage across tlig¢h transmit antenna por&G,,.. is the overall channel
of the system, including the effects of antenna coupling readching circuits.

Recall that the instantaneous capakity/ given by (3) and equals
p o~ ~ H
Cie = logy det (| I, + n_GmCGmC , (28)
t

where
Gue = 2r1R*(Z\+ Z,)'GR; ', (29)

is the overall MIMO channel based on the complete SU-MIMOnalgmodel, G
represents the propagation channel as seen by the transinieeeive antennas, and
R, = Re{Z\}, R, = Re{Z}. Note thatG.,. is the normalizedversion of G,

shown in Figure 3, where the normalization is performed wépect to the average

IFrom this point and onwards, we shall for simplicity refethelog — det formula with 11D complex-Gaussian

inputs as “the capacity” to avoid the more clumsy notatiorfaahievable rate”.
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channel gain of a SISO system [23]. The source impedancexn#irdoes not appear
in the expression, sina@.,. represents the transfer function between the transmit and
receive power waves, and; is implicit in p [23].

To give an intuitive feel for the effects of mutual couplinge next provide two
examples of the impedance matt?, one for small adjacent antenna spacing ()05
and one for moderate spacing ()5 The following numerical values are obtained
from the induced electromotive force method [24] for a ULAnsiting of three

parallel dipole antennas:

72.9 + j42.4 T1.4+ j24.3 67.1+ j7.6
Z.(0.050) = | 71.4+ j24.3 729+ j42.4 714+ 5243 |,
67.1+57.6 714+ j24.3 729+ jd42.4

and
72,9+ j424  —12.5—29.8 4.0+ j17.7

Z,(0.50) = | —12.5—j29.8 729+ j42.4 —12.5— j29.8
4.0+ j17.7  —12.5—529.8 72.9+ j42.4

It can be observed that the severe mutual coupling in the ahgde= 0.05) results

in off-diagonal elements whose values are closer to theodi@gelements than in
the case ot/ = 0.5\, where the diagonal elements are more dominant. Desp#ge thi
the impact of coupling on capacity is not immediately obgipsince the impedance
matrix is embedded in (29), and is conditioned by the loadrisné,. Therefore, we
next provide numerical simulations to give more insighoitihe impact of mutual
coupling on MIMO performance.

In MU-MIMO systems, the terminals are autonomous so that we can assume that
the transmit array is uncoupled and uncorrelated. If thenKoker model [25] is
assumed for the propagation chan@k ¥'/2Gyp¥,./*, where®, and ¥, are the
transmit and receive correlation matrices, respectiaiy,Gyp is the matrix with 11D
Rayleigh entries [23]. In this casﬁ{tl/2 = Ik and Z; is diagonal. For the particular
case ofM = K, Figure 4 shows a plot of the uplink ergodic capacity (or agerrate)
per user(Cy,./ K, versus the antenna separation for ULAs with a fixed apedfife\
at the base station (with up fd = K = 30 elements). The correlation but no coupling

case refers to the MIMO channél = \Ilﬂ/QGHD\Ilé/Q, whereas the correlation and

%For a given antenna arrag. = Z, by the principle of reciprocity.

*We remind the reader that in MU-MIMO systems, we replageandn, with K and M respectively.
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coupling case refers to the effective channel maix. in (29). The environment is
assumed to be uniform 2D Angular Power Spectrum (APS) andbiiR isp = 20
dB. The total power is fixed and equally divided among all ss&000 independent
realizations of the channel are used to obtain the averaggacitg. For comparison,
the corresponding ergodic capacity per user is also caémllfor K users and an
M?-element receive Uniform Square Array (USA) witlh = K and an aperture size
of 5\ x 5), for up to M? = 900 elements.

As can be seen in Figure 4, the capacity per user begins tovfedh the element
spacing is reduced to belo@5)\ for the USAs, as opposed to belaws A for the
ULAs, which shows that for a given antenna spacing, packiogenelements in more
than one dimension results in significant degradation iracidyp performance. Another
distinction between the ULAs and USAs is that coupling isantfbeneficial for the
capacity performance of ULAs with moderate antenna spagtiagbetweert.15\ and
0.7)), whereas for USAs the capacity with coupling is considyeliwer than that
with only correlation. The observed phenomenon for ULAsimsilgr to the behavior
of two dipoles with decreasing element spacing [18]. Theoeipling induces a larger
difference between the antenna patterns (i.e., anglediliypover this range of antenna
spacing, which helps to reduce correlation. At even small@enna spacings, the
angle diversity diminishes and correlation increaseseffogy with loss of power due
to coupling and impedance mismatch, the increasing coivalaesults in the capacity
of the correlation and coupling case falling below that o ttorrelation only case,
with the crossover occuring at approximateély5X. On the other hand, each element
in the USAs experiences more severe coupling than that irJth&s for the same
adjacent antenna spacing, which inherently limits anglersity.

Even though Figure 4 demonstrates that both coupling anéletion are detrimen-
tal to the capacity performance of very large MIMO arraystigé to the 1ID case,
it does not provide any specific information on the behavibiGa,.. In particular,
it is important to examine the impact of correlation and dmgpon the asymptotic
orthogonality assumption made in (16) for a very large awai a fixed aperture in a
MU setting. To this end, we assume that the base stationséive 15 single antenna
terminals. The channel is normalized so teathuser terminal has a reference SNR

“Rather than advocating the practicality @60 users in a single cell, this assumption is only intended to
demonstrate the limitation of aperture-constrained vargd MIMO arrays at the base station to support parallel

MU-MIMO channels.

October 21, 2011 DRAFT



20

Il
il

|

| . ]

|

| . .

| . .

Y A ) N S |
Transmitter Channel Receiver _

Fig. 3. Diagram of a MIMO system with antenna impedance rmesriand matching networks at both link ends

(freely reproduced from [23]).
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Fig. 4. Impact of correlation and coupling on capacity peieana over different adjacent antenna spacing for

autonomous transmitterd/ = K and the apertures of ULA and USA af@ and 5\ x 5, respectively.

p/K = 10 dB in the SISO case with conjugate-matched single antedsasefore, the
coupling and correlation at the base station is the resuinpfementing the antenna
elements as a square array of fixed dimensiong 5\ in a channel with uniform 2D
APS. The number of elements in the receive USAvaries from 16 to 900, in order
to support one dedicated channel per user.

The average condition number éfﬁcémc/[( is given in Figure 5(a) for 1000
channel realizations. Since the propagation channel isnasd to be IID in (29) for
simplicity, D5 = I'. This implies that the condition number G, G/ K should
ideally approach one, which is observed for the 11D Raylaighe. By way of contrast,

it can be seen that the channel is not asymptotically orthalgas assumed in (16)
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Fig. 5. Impact of correlation and coupling on (a) asymptatithogonality of the channel matrix and (b) max

sum-rate of the reverse link, fdK = 15.

in the presence of coupling and correlation. The corresipgnehaximum rate for the
reverse link per user is given in Figure 5(b). It can be seanifftoupling is ignored,

spatial correlation yields only a minor penalty, relativethe IID case. This is so
because the transmit array of dimensidisx 5\ is large enough to offer almost
the same number of spatial degrees of freedém=15) as in the IID case, despite
the channel not being asymptotically orthogonal. On thesiottand, for the realistic
case with coupling and correlation, adding more receivenetds into the USA will

eventually result in a reduction of the achievable ratepiedaving a lower average
condition number than in the correlation but no couplingecakhis is attributed to
the significant power loss through coupling and impedancamaich, which is not

modeled in the correlation only case.

C. Real propagation - measured channels

When it comes to propagation aspects of MIMO as well as vergelaIMO
the correlation properties are of paramount interest,esithose together with the
number of antennas at the terminals and base station degsnine orthogonality
of the propagation channel matrix and the possibility toasete different users or
data streams. In conventional MU-MIMO systems the ratiowhber of base station

antennas and antennas at the terminals is usually closeatoldast it rarely exceeds
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2. In very large MU-MIMO systems this ratio may very well erdel100; if we also

consider the number of expected simultaneous ud€rsthe ratio at least usually
exceeds 10. This is important because it means that we haveotential to achieve
a very large spatial diversity gain. It also means that tletadice between the null-
spaces of the different users is usually large and, as nresttibefore, that the singular
values of the tall propagation matrix tend to have stablelarge values. This is also
true in the case where we consider multiple users where wecaasider each user
as a part of a larger distributed, but un-coordinated, MIMGtam. In such a system
each new user “consumes” a part of the available diversityldd certain reasonable
assumptions and favorable propagation conditions, it, \uibwever, still be possible
to create a full rank propagation channel matrix (16) wher¢ha eigenvalues have
large magnitudes and show a stable behavior. The questioowsvhat we mean by
the statement that the propagation conditions should bardale? One thing is for
sure: As compared to a conventional MIMO system, the reqerdgs on the channel
matrix to get good performance in very large MIMO are relaked large extent due
to the tall structure of the matrix.

It is well known in conventional MIMO modeling that scattesé¢end to appear in
groups with similar delays, angle-of-arrivals and andtelepartures and they form
so-called clusters. Usually the number of active clusterd distinct scatterers are
reported to be limited, see e.g. [26], also when the numbphgs$ical objects is large.
The contributions from individual multipath componentsdmging to the same cluster
are often correlated which reduces the number of effecte#terers. Similarly it has
been shown that a cluster seen by different users, so caliedglusters, introduces
correlation between users also when they are widely seghif@{7]. It is still an
open question whether the use of large arrays makes it pedsilresolve clusters
completely, but the large spatial resolution will make ispible to split up clusters
in many cases. There are measurements showing that a alastée seen differently
from different parts of a large array [28], which is benefigace the correlation
between individual contributions from a cluster then isrdased.

To exemplify the channel properties in a real situation wasoder a measured
channel matrix where we have an indoor 128-antenna baserstainsisting of four
stacked double polarized 16 element circular patch araay®,6 single antenna users.
Three of the users are indoors at various positions in arcadfaoom and 3 users are

outdoors but close to the base station. The measuremengspsgormed at 2.6 GHz
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with a bandwidth of 50 MHz. In total we consider an ensemblel@® snapshots
(taken from a continuous movement of the user antenna alo®g @ m line) and
161 frequency points, giving us in total 16100 narrow-baedlizations. It should
be noted, though, that they are not fully independent dudéeonbn-zero coherence
bandwidth and coherence distance. The channels are neetiat remove large scale
fading and to maintain the small scale fading. The mean pawer all frequency
points and base station antenna elements is unity for atsuse Figure 6 we plot
the Cumulative Distribution Functions (CDF) of the ordegggenvalues oG G (the
leftmost solid curve corresponds to the CDF of the smallegrwalue etc.) for the
6 x 128 propagation matrix (“Meas 6x128"), together with the cepending CDFs
for a6 x 6 measured conventional MIMO (“Meas 6x6") system (where weehased
a subset of 6 adjacent co-polarized antennas on the basenktais a reference
we also plot the distribution of the largest and smallesemiglues for a simulated
6 x 128 and 6 x 6 conventional MIMO system (“IID 6x128” and “lID 6x6”) with
independent identically distributed complex GaussiamientNote that, for clarity of
the figure, the eigenvalues are not normalized with the nummbantennas at the base
station and therefore there is an offsetl0flog,,(M). This offset can be interpreted
as a beamforming gain. In any case, the relative spread dfijemvalues is of more
interest than their absolute levels.

It can be clearly seen that the large array provides eigaasahat all show a stable
behavior (low variances) and have a relatively low spreada(sdistances between
the CDF curves). The difference between the smallest agegdarigenvalue is only
around 7 dB, which could be compared with the conventignal6 MIMO system
where this difference is around 26 dB. This eigenvalue spoearesponds to that of a
6x24 conventional MIMO system with [ID complex Gaussianruie matrix entries.
Keeping in mind the circular structure of the base statioe@ma array and that half
of the elements are cross polarized, this number of ’effecthannels is about what
one could anticipate to get. One important factor in realishannels, especially for
the uplink, is that the received power levels from differasers are not equal. Power
variations will increase both the eigenvalue spread andvéinence, and will result
in a matrix that still is approximately orthogonal, but wlehe diagonal elements of

G"G have varying mean levels, namely th&; matrix in (16).
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the largest and smallest eigenvalues are shown for clarity.

IV. TRANSCEIVERS

We next turn our attention to the design of practical traivere. A method to
acquire CSI at the base station begins the discussion. Tketisguss precoders and

detection algorithms suitable for very large MIMO arrays.

A. Acquiring CSI at the base station
In order to do multiuser precoding in the forward link anded#ibn in the reverse

link, the base station must acquire CSI. Let us assume tedteélquency response of
the channel is constant ovéi-,, consecutive subcarriers. With small antenna arrays,
one possible system design is to let the base station argeraresmit pilot symbols
to the receiving units. The receiving units perform charesimation and feed back,
partial or complete, CSI via dedicated feedback channelsh & strategy does not
rely on channel reciprocity (i.e., the forward channel sticae the transpose of the
reverse channel). However, with a limited coherence tirhis, $trategy is not viable
for large arrays. The number of time slots devoted to pilobisgls must be at least as
large as the number of antenna elements at the base statidedlby N¢,,. When
M grows, the time spent on transmitting pilots may surpassdference time of the

channel.
DRAFT
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Consequently, large antenna array technology must rely h@mreel reciprocity.
With channel reciprocity, the receiving units send pilomépls via TDD. Since
the frequency response is assumed constant dgr subcarriers,Ng,, terminals
can transmit pilot symbols simultaneously during 1 OFDM bgininterval. In total,
this requiresK/N¢,, time slots (we remind the reader that is the number of
terminals served). The base station in thth cell constructs its channel estimiﬂ%k,
subsequently used for precoding in the forward link, basedhe pilot observations.

The power of each pilot symbol is denotggl

B. Precoding in the forward link: Collection of results fongle cell systems

User k receives the:-th component of the composite vector
Ty — GTSf —+ wys.

The vectors; is a precoded version of the data symbg}s Each component o
has average powes; /M. Further, we assume that the channel mat@xhas 11D
CN(0,1) entries. In what follows, we derive SNR/SINR (Signal-taelrfierence-plus-
Noise-Ratio) expressions for a number of popular precotietniques in the large
system limit, i.e., with)M/, K — oo, but with a fixed ratioo = M/K. The obtained
expressions are tabulated in Table 1.

Let us first discuss the performance of an Interference Hf€e system which
will subsequently serve as a benchmark reference. The kesirmance that can be
imagined will result if all the channel energy to termirals delivered to terminak

without any inter-user interference. In that case, terinkineeceives the sample;,

M
Z |9ek]* gtk + W
=1

T =

Since (Zﬁl |ggk|2> /M — 1, M — oo, and E {gnqfL} = pi/K, the SNR per
receiving unit for IF systems converges gy as M — oo.

We now move on to practical precoding methods. The conclptsimplest ap-
proach is to invert the channel by means of the pseudo-iavaitss is referred to as
Zero-Forcing (ZF) precoding [29]. A variant of zero forcimgyBlock Diagonalization
[30], which is not covered in this paper. Intuitively, whén grows, G tends to have
nearly orthogonal columns as the terminals are not coaéldue to their physical

separation. This assures that the performance of ZF pregoalll be close to that
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of the IF system. However, a disadvantage of ZF is that psdgscannot be done
distributedly at each antenna separately. With ZF pregpdafi data must instead be
collected at a central node that handles the processing.

Formally, the ZF precoder sets

5= G = GG E) gy

where the superscript “+” denotes the pseudo-inverse of @ixpae. (G')* =
G*(G'G*)~', and v normalizes the average power i to p;. A suitable choice
for v is v = Tr(GTG*)~' /K which averages fluctuations in transmit power due to

G but not tog,. The received sample;, with ZF precoding becomes

drk
Tep = ——= + Wrk.

ﬁ

With that, the instantaneous received SNR per terminallsqua

Pt
NR = -2
SNR K~

- nErETT 0

When both the number of terminals and the number of base station antennas
M grow large, but with fixed rati;v = M/K, Tr(G'G*)~' converges to a fixed

deterministic value [31]

1 M
Tr(G'G* )™ — s K, M — o, e (31)
a —

Substituting (31) into (30) gives the expression in Tabl&He conclusion is that ZF
precoding achieves afNR that tends to the optim&@NR for an IF system with
M — K transmit antennas when the array size grows. Note that wliea K, one
getsSNR = 0.

A problem with ZF precoding is that the construction of theymo-invers¢ G*)* =
G*(G'G*)~' requires the inversion of & x K matrix, which is computationally
expensive. However, as/ grows,(G*G*)/M tends to the identity matrix, which has
a trivial inverse. Consequently, the ZF precoder tend&to which is nothing but a
MF. This suggests that matrix inversion may not be needechwihe array is scaled

up, as the MF precoder approximates the ZF precoder welm&ldy, the MF sets

St = —G*qfa

Vel
with v = Tr(GTG*)/ K. A few simple manipulations lead to an asymptotic exprassio
of the SINR, which is given in Table I.
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From the MF precoding SINR expression, it is seen that theRStHn be made as
high as desired by scaling up the antenna array. Howevetth@recoder exhibits
an error floor since ag; — oo, SINR — «a.

We next turn the attention to scenarios where the base sthtie imperfect CSI.
Let GT denote the Minimum Mean Square Error (MMSE) channel esenwdtthe

forward link. The estimate satisfies,
AT T
G =(G +4/1—-E&°E,

where( < ¢ < 1 represents the reliability of the estimate alRds a matrix with IID
CN(0,1) distributed entries. SINR expressions for MF and ZF prewgpdire given
in Table I. For any reliabilityt, the SINR can be made as high as desired by scaling

up the antenna array.

SNR and SINR expressions & M — o0, M/K =«

Precoding TechniqueH Perfect CSI Imperfect CSI
Benchmark: IF Systen prQ
; & pi(a=1)
Zero Forcing pr(a—1) (1_’2:2) T
i pro & pra
Matched Filter e Py
Vector Perturbation || ~ 2027 (1 — L)17 o <179 N.A.
TABLE |

SNRAND SINREXPRESSIONS FOR A COLLECTION OF STANDARD PRECODING TECHNUES.

Non-linear precoding techniques, such as DPC, Vector Retion (VP) [32], and
lattice-aided methods [33] are important techniques whers not much larger than
K. This is true since in thel/ ~ K regime, the performance gap of ZF to the IF
benchmark is significant, see Table I, and there is room fpravement by non-linear
techniques. However, the gap of ZF to an IF system scales/as — 1). When M
is, say, two timedy, this gap is only 3 dB. Non-linear techniques will operateser
to the IF benchmark, but cannot surpass it. Therefore the gfanon-linear methods
does not at all justify the complexity increase. The measare 128 channels that we
discussed earlier in the paper behave as 4 4. Hence, linear precoding is virtually
optimal and one can dispense with DPC.

For completeness we give an approximate large limit SNR esgion for VP,

derived from the results of [34], in Table I. The expressiersirictly speaking an
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K=15 IF, DPC, ZF
200 T T T T T T
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M = 40
M =15

Sum rate capacity, bits/channel use

Fig. 7. Sum-rate capacities of single cell multiuser MIMG@uding techniques. The channel is [ID complex
GaussiarCN (0, 1), there areK = 15 terminals. Circles show the performance of IF systems, sefsy to DPC,

solid lines refer to ZF, and the dotted lines refer to MF.

upper bound to the SNR, but is reasonably tight [34] so thatait be taken as an
approximation. Fory g 1.79, the SINR expression surpasses that of an IF system,
which makes the expression meaningless. However, for rargkies of «, linear
precoding performs well and there is not much gain in usingaviiivay. For VP, no
SINR expression is available in the literature with impetf€SI.

In Figure 7 we show ergodic sum-rate capacities for MF prexpdZF precoding,
and DPC. As benchmark performance we also show the ensumgate capacity
from an IF system. In all case$s = 15 users are served and we show results for
M = 15, 40, 100. For M = 15, it can be seen that DPC decisively outperforms ZF
and is about 3 dB away from the IF benchmark performance. But/agrows, the
advantage of DPC quickly diminishes. Wit = 40, the gain of DPC is about 1
dB. This confirms that the performance gain does not at atifyuthe complexity
increase. With 100 base station antennas, ZF precodingrpesfalmost as good as
an interference free system. At low SNR, MF precoding isdrdtian ZF precoding.

It is interesting to observe that this is true over a wide ean§ SNRs for the case
of M = K. Sum-rate capacity expressions of VP are currently notlabdlai in the

literature, since the optimal distribution of the inputs %P is not known to date.

C. Precoding in the forward link: The ultimate limit of nooaperative multi cell

MIMO with large arrays

In this section, we investigate the limit of non-cooperatiellular multiuser MIMO

systems asV/ grows without limit. The presentation summarizes and ealdetie
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Fig. 8. lllustration of the pilot contamination concept.fl.éDuring the training phase, the base station in cell
1 overhears the pilot transmission from other cells. Rigt#:a consequence, the transmitted vector from base
station 1 will be partiallypeamformedo the terminals in cell 2.

results of [5]. For single cell as well as for multi cell MIM@he end effect of letting

M grow without limits is that thermal noise and small scale IRy fading vanishes.
However, as we will discuss in detail, with multiple celletmterference from other
cells due to pilot contamination does not vanish. The conegpilot contamination is

novel in a cellular MU-MIMO context and is illustrated in kige 8, but was an issue in
the context of CDMA, usually under the name “pilot pollutiofihe channel estimate
computed by the base station in cell 1 gets contamined frenpiflot transmission of

cell 2. The base station in cell 1 will in effect beamform iigral partially along the

channel to the terminals in cell 2. Due to the beamforming,itherference to cell 2
does not vanish asymptotically d¢ — oc.

We consider a cellular multiuser MIMO-OFDM system with hggaal cells and
Nppr subcarriers. All cells serve& autonomous terminals and hag antennas at
the base station. Further, a sparse scendrig M is assumed for simplicity. Hence,
terminal scheduling aspects are not considered. The basenst are assumed non-
cooperative. Thé/ x K composite channel matrix between theterminals in cellk
and the base station in cellis denotedG,;. Relying on reciprocity, the forward link
channel matrix between the base station in ¢elhd the terminals in celt becomes
G,; (see Figure 9).

The base station in thieth cell transmits the vectas;, which is a precoded version
of the data symbolg,, intended for the terminals in cell. Each terminal in the-th
cell receives his respective component of the compositeovec

Tk = Pt Z ngsfj + wyy. (32)

J
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Fig. 9. The composite channel between the base station liry @&ld the terminals in cekt is denotedG;fj.

As before, each element &¥;; comprises a small scale Rayleigh fading factor as
well as a large scale factor that accounts for geometrioadigon and shadow fading.
With that, Gy;; factors as

Gy = Hi Dy, (33)

In (33), Hy; is a M x K matrix which represents the small scale fading between
the terminals in cellk to the base station in cell, all entries are IIDCN(0,1)
distributed. TheK x K matrix Dgg is a diagonal matrix comprising the elements
Br;j = [Brj1, Brje, - - -» Brjx| @long its main diagonal; each valuk;, represents the
large scale fading between termirfain the k-th cell and the base station in cgll

The base station in the-th cell processes its pilot observations and obtains a
channel estimaté?in of G . In the worst case, the pilot signals in all other cells are
perfectly synchronized with the pilot signals in cell Hence, the channel estimate
G:n gets contamined from pilot signals in other cells,

G = VGL, + 5y > GL 4+ V. (34)
i#£n

In (34) it is implicitly assumed that all terminals transsnidentical pilot signals.
Adopting different pilot signals in different cells doestnimprove the situation much
[5] since the pilot signals must at least be confined to theesaignal space, which
is of finite dimensionality.

Note that, due to the geometry of the cells,,, is generally stronger thafy;,,, i #

n. V, is a matrix of receiver noise during the training phase, umstated with
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all propagation matrices, and comprises W/ (0, 1) distributed elementsp, is a
measure of the SNR during of the pilot transmission phase.

Motivated by the virtual optimality of simple linear prednd from Section IV-B,
we let the base station in cell use the MF(GZH)H = G:m as precoder. We later
investigate zero-forcing precoding. Power normalizatodrthe precoding matrix is
unimportant whenV/ — oo as will become clear shortly. Thieth terminal in thej-th
cell receives theé-th component of the vectat;; = [zs1, g1, - - -, xij]T. Inserting
(34) into (32) gives

H
qfn + wfj' (35)

= Vi G, [@Z G + V!

The composite received signal vectey; in (35) contains terms of the forlﬁij G,

n

As M grows large, only terms wherg= i remain significant. We get
T *

Ltj N Z G;.Gj.

M \/ptpyp n M

qs,, as M — oo.

Further, asM grows, the effect of small scale Rayleigh fading vanishes,
G]TnGjn D

22" s Dy .

7‘{ B]n

Hence, the processed received signal of #tile receiving unit in thej-th cell is

Ttje
— — ﬁ iedfie + 6 inedtne- (36)
M /Py Jitity ; J
The SIR of terminal becomes
2
SIR = —2#£ (37)
En;ﬁj BJQnZ

which does not contain any thermal noise or small scale fpéiffiects! Note that
devoting more power to the training phase does not decréaspilbt contamination
effect and leads to the same SIR. This is a consequence of dhst-vase-scenario
assumption that the pilot transmissions in all cells oyerléathe pilot transmissions
are staggered so that pilots in one cell collide with datatireocells, devoting more
power to the training phase is indeed beneficial. Howeve imulti cell system,
there will always be some pilot transmissions that collidighough perhaps not in

neighboring cells.
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We now replace the MF precoder in (35) with the pseudo-ivefsthe channel

. ~,T L PN o ¥ . . .
estimat G,,,)" = G,,,.(G,,.G,,.)"". Inserting the expression for the channel estimate
~ T

(34) gives
(G, [\/_ZG* +V <[\/_ZGT +Vr [\/@ZG;Z”JrVZ ) .

Again, whenM grows, only products of correlated terms remain significant
T

-1
(G,)" = [ Z G, +V; (Z Dj + piIK> .
p p

The processed composﬂe recelved vector injthie cell becomes

/ 1
%wfj — Z Dﬁjn (Z Dﬂin + p_IK> iy -
n 7 p

Hence, the/-th receiving unit in thej-th cell receives

Pp ﬁjjé Bine
1/ :L’ — 0+ E —_—tns-
vt Z ﬁmf > B+ L ; Zz Bine 1p dint

Pp n7#j
The SIR of terminal becomes

5o/ (O Bje + 52)°
Zn;éj ﬁjnz / (Zz ﬁmé + pp)z.

We point out that with ZF precoding, the ultimate limit is agendent ofp; but not

SIR =

(38)

of p,. As p, — 0, the performance of the ZF precoder converges to that of the M
precoder.

Another popular technique is to first regularize the maﬁlgglGZn before inverting
[29], so that the precoder is given by

G (G G+ 0T),
where § is a parameter subject to optimization. Settihg= 0 results in the ZF
precoder while§ — oo gives the MF precoder. For single cell systenis;an be
chosen according to [29]. For multi cell MIMO, much less isotum, and we briefly
elaborate on the impact @f with simulations that will be presented later. We point
out that the effect op, can be removed by taking= —M/p,.

The ultimate limit can be further improved by adopting a poa#ocation strategy
at the base stations. Observe that we only study non-cangetzase stations. In a
distributed MIMO system, i.e. the processing for severalebstations is carried out
at a central processing unit, ZF could be applied across #ise tations to reduce
the effects of the pilot contamination. This would imply astimation of the factors
{Bkje}, which is feasible since they are slowly changing and arerassd to be constant

over frequency.
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Fig. 10. Cumulative distributions on the SIR for the MF préeg the ZF precoder, and a regularized ZF precoder
with 6 = M /20. The number of terminals served is = 10.

1) Numerical results:We assume that each base station sefves 10 terminals.
The cell diameter (to a vertex) is 1600 meters and no ternsnalowed to get closer
to the base station than 100 meters. The large scale fadatgrfé,;, decomposes
as By = zkjg/r,?;ﬁ, where z;;, represents the shadow fading and abides a log-
normal distribution (i.e10log,(2x;¢) is zero-mean Gaussian distributed with standard
deviationoghadow) With ognaaow = 8 dB andry, is the distance between the base station
in the j-th cell and termina¥l in the k-th cell. Further, we assume a frequency reuse
factor of 1.

Figure 10 shows CDFs of the SIR & grows without limit. We plot the SIR for MF
precoder (37), the ZF precoder (38), and a regularized ZEopler withd = M /20.
From the figure, we see that the distribution of the SIR is noanecentrated around
its mean for ZF precoding compared with MF precoding. Howeve mean capacity
E{log,(1+4SIR)} is larger for the MF precoder than for the ZF precoder (aroL®.@
bits/channel use compared to 9.6 bits/channel use). Witdgalarized ZF precoder,
the mean capacity and outage probability are traded agaau$tother.

We next consider finite values @f . In Figure 11 the SIR for MF and ZF precoding
is plotted againstV/ for infinite SNRsp, and p;. With ’infinite’ we mean that the
SNRs are large enough so that the performance is limitedlbygontamination. The
two uppermost curves show the mean SIRMs— oo. As can be seen, the limit
is around 11 dB higher with MF precoding. The two bottom csrgbow the mean
SIR for MF and ZF precoding for finitd/. The ZF precoder decisively outperforms
the MF precoder and achieves a hefty share of the asymphaticvith around 10-

20 base station antenna elements per terminal. In orderathra given mean SIR,
MF precoding requires at least two orders of magnitude mae [station antenna

elements than ZF precoding does.

October 21, 2011 DRAFT



34

50 X ' |
T S . . z : - : H
300—6 e—o—o - oo !
of @@ ¢
[T SRRy - AN
T 0 g o ]
g i@ @RI |
S of .. S
oL@ e
n -20} @i e e —e— MF. E{SIR}, M — o
SRS  ZE —— ZF. E{SIR}, M — oo
-30% @ MF. E{SIR}
—-40 e e B
-50 ; ‘
10* 102 = |

M

Fig. 11. Signal-to-interference-ratios for MF and ZF p@®s as a function oM. The two uppermost curves
are asymptotic mean values of the SIRMs— oo. The bottom two curves show mean values of the SIR for

finite M. The number of terminals served i§ = 10.

In the particular case, = pr = 10 dB, the SIR of the MF precoder is about 5 dB
worse compared with infinitg, and p; over the entire range af/ showed in Figure

11. Note that as\/ — oo, this loss will vanish.

D. Detection in the reverse link: Survey of algorithms fargle cell systems

Similarly to in the case of MU-MIMO precoders, simple linedatectors are close
to optimal if M > K under favorable propagation conditions. However, opegati
points with M =~ K are also important in practical systems with many users. Two
more advanced categories of methods, iterative filterifgeses and random step
methods, have recently been proposed for detection in thelame MIMO regime.
We compare these methods with the linear methods and toéerehsmethods in the
following. The fundamentals of the schemes are explaineddod-output detection,
experimental results are provided, and soft detection ssutised at the end of the
section. Rough computational complexity estimates for phesented methods are
given in Table II.

1) Iterative linear filtering schemesthese methods work by resolving the detection
of the signaling vectoyy by iterative linear filtering, and at each iteration by means
of new propagated information from the previous estimategofThe propagated
information can be either hard, i.e., consist of decisiomshe signal vectors, or soft,
i.e., contain some probabilistic measures of the tranethgymbols (observe that here,
soft information is propagated between different iteragiof the hard detector). The
methods typically employ matrix inversions repeatedlyimyrthe iterations, which,

if the inversions occur frequently, may be computation&idavy wheni/ is large.
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Luckily, the matrix inversion lemma can be used to remove es@ithe complexity
stemming from matrix inversions.

As an example of a soft information-based method, we desdtie conditional
MMSE with soft interference cancellation (MMSE-SIC) schef85]. The algorithm is
initialized with a linear MMSE estimatg of q. Then for each usek, an interference-
canceled signale; ;,, where subscript is the iteration number, is constructed by
removing inter-user interference. Since the estimatedbsysnat each iteration are
not perfect, there will still be interference from other tssén the signalse; ;. This
interference is modeled as Gaussian and the residualerdede plus noise power is
estimated. Using this estimate, an MMSE filter conditionedfitiered output from
the previous iteration is computed for each useiThe bias is removed and a soft
MMSE estimate of each symbol given the filtered output, isppgated to the next
iteration. The algorithm iterates these steps a predefineaber Ny, of times.

Matrix inversions need to be computed for every realizatigrevery user symbol
qr, and every iteration. Hence the number of matrix inversipeisdecoded vector is
K Nier. One can employ the matrix inversion lemma in order to redhheenumber
of matrix inversions to 1 per iteration. The idea is to foratelthe inversion for user
k as a rank one update of a general inverse matrix at eachioterat

The BI-GDFE algorithm [36] is equation-wise similar to MMSHC [37]. Com-
pared to MMSE-SIC, it has two differences. The linear MMSEefd of MMSE-SIC
depend on the received vector while the BI-GDFE filters, which are functions of
a parameter that varies with iteration, the so-called wtmdision correlation (IDC),
do not. This means that for a chanr@l that is fixed for many signaling vectors,
all filters, which still vary for the different users and i##ions, can be precomputed.
Further, BI-GDFE propagates hard instead of soft decisions

2) Random step methodsfhe methods categorized in this section are matrix-
inversion-free, except possibly for the initializatiomgé, where the MMSE solution
is usually used. A basic matrix inversion-free search metb@arts with the initial
vector, and evaluates the MSE for vectors in its neighbathwdh Nyeign Vectors.
The neighboring vector with smallest MSE is chosen, and tioegss restarts, and
continues like this forVy, iterations. The Likelihood Ascent Search (LAS) algorithm
[38] only permits transitions to states with lower MSE, amsherges monotonically
to a local minima in this way. An upper bound of bit error rateda lower bound

on asymptotic multiuser efficiency for the LAS detector wpresented in [39].
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Tabu Search (TS) [40] is superior to the LAS algorithm in tih@ermits transitions
to states with larger MSE values, and it can in this way avoal minima. TS also
keeps a list of recently traversed signaling vectors, widximum number of entries
Ntabu, that are temporarily forbidden moves, as a means for mosimgy to new
areas of the search space. This strategy gave rise to thetlatge name.

3) Tree-based algorithmsThe most prominent algorithm within this class is the
Sphere Decoder (SD) [3], [41]. The SD is in fact an ML decodbert, which only
considers points inside a sphere with certain radius. Ifgpkere is too small for
finding any signaling points, it has to be increased. Mang-based low-complexity
algorithms try to reduce the search by only expanding thetiba of the tree-nodes
that appear the most “promising”. One such method is the&kstacoder [42], where
the nodes of the tree are expanded in the order of least Eadidistance to the
received signal. The average complexity of the sphere ggdechowever exponential
in K [4], and SD is thus not suitable in the large MIMO regime whéfes large.

The Fixed Complexity Sphere Decoder (FCSD) [43] is a low-ptaxity, subop-
timal, version of the SD. All combinations of the first, say scalar symbols iny
are enumerated, i.e., with a full search, and for each sustbit@tion, the remaining
K —r symbols are detected by means of ZF-DF. This implies thaF@8D is highly
parallelizable sinceS|" hardware chains can be used, and further, it has a constant
complexity. A sorting algorithm employing the matrix ingesn lemma for finding
which symbols should be processed with full complexity aridcl ones should be
detected with ZF-DF can be found in [43].

The FCSD eliminates columns from the matii% which implies that the matrix
gets better conditioned, which in turn boosts the perfoceanf linear detectors. For
M > K, the channel matrix is, however, already well conditionsal the situation
does not improve much by eliminating a few columns. Theersfthe FCSD should
mainly be used in the case of ~ K.

4) Numerical comparisons of the algorithm@é/e now compare the detection algo-
rithms described above experimentally. QPSK is used inimllisitions and Rayleigh
fading is assumed, i.e., the channel matrix is chosen to imalependent components
which are distributed a8\ (0, 1). The transmit power is denoted In all experiments,
simulations are run until 500 symbol errors are counted. W8 add an interference-
free (IF) genie solution, that enjoys the same receive $iggmnaower as the other

methods, without multi-user interference.
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Detection techniqu%‘ Complexity for each realization at H Complexity for each realization o

MMSE MK MK+ K°
MMSE-SIC (M?K + M) Niter
BI-GDFE M K Niter (MQK + MS)NIter
TS ((M + Ntabu) Nneigh + M K) Niter MK? + K*
Fesb (M + K2 +r2)|S|" MK + K°
MAP MK|S|K
TABLE I

ROUGH COMPLEXITY ESTIMATES FOR DETECTORS IN TERMS OF FLOATIBI POINT OPERATIONS IF A
SIGNIFICANT AMOUNT OF THE COMPUTATIONS IN QUESTION CAN BE PR-PROCESSED FOR EACH= IN SLOW

FADING, THE PREPROCESSING COMPLEXITY IS GIVEN IN THE RIGHT COLUMN

As mentioned earlier, when there is a large excess of baserstamtennas, simple
linear detection performs well. It is natural to ask for thembera = M/ K when this
effect kicks in. To give a feel for this, we show the uncodedBierformance versus
«, for the particular case ok = 15, in Figure 12. For the measurements in Figure 12,
we letp ~ 1/M. MMSE-SIC useSNyr = 6, BI-GDFE usesNye = 4 since further
iterations gave no improvement, and the IDC parameter wasechfrom preliminary
simulations. The TS neighborhood is defined as the closedulaton points [40],
and TS usesViier = Ntanu= 60. For FCSD, we choose = 8. We observe that when
the ratioa is above 5 or so, the simple linear MMSE method performs wetlile
there is room for improvements by more advanced detectoeswh< 5.

Since we saw in Figure 12 that there is a wide range @fhere MMSE is largely
sub-optimal, we now consider the ca8é = K. Figure 13 shows comparisons of
uncoded BER of the studied detectors as functions of thempbexities (given in
Table 1l). We consider the case without possibility of preqessing, i.e., the column
entries in Table Il are summed for each schemke= K = 40, and we use = 12
dB. We find that TS and MMSE-SIC perform best. For example, RER of 0.002,
the TS is 1000 times less complex than the FCSD.

Figure 14 shows a plot of BER versus transmit signaling pgwier M/ = K = 40,
when the scheme parameters are the maximum values in theregpein Figure 13.
It is seen that TS and MMSE-SIC perform best across the eahife range presented.
Note that the ML detector, with a search space of &e cannot outperform the IF

benchmark. Hence, remarkably, we can conclude that TS an&EABIC are operating
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not more than 0.9 dB away from the ML detector iy x 40 MIMO.

5) Soft-input soft-output detectionfhe hard detection schemes above are easily
evolved to soft detection methods. One should not in gertEeall conclusions about
soft detection from hard detection. Literature investiggaschemes similar to the ones
above, but operating in the coded large system limit, argreement with Figures 12,
13, and 14. In [44], analytic CDMA spectral efficiency exmiess for both MF, ZF,
and linear MMSE, are given. The results are the followingthi@ limit of large ratios
«, all three methods perform likewise, and as well as the aptimoint detector
and CDMA with orthogonal spreading codes. Rora 20, MF starts to perform
much worse than the other methods.dAt: 4/3, ZF performs drastically worse than
MMSE, but the MMSE method loses significantly in performacoenpared to joint
processing.

With MMSE-SIC, a-priori information is easily incorporaten the MMSE filter
derivation by conditioning. This requires the computatadrthe filters for each user,
each symbol interval, and each decoder iteration [45]. ABOMMSE filter is derived
by unconditional incorporation of the a-priori probalédg, which results in MMSE
filters varying for each user and iteration, similarly to B-GDFE above. Density
evolution analysis of conditional and unconditional MMSE= in a CDMA setting,
and in the limit of infinite N and K, shows that their coded BER waterfall region
can occur within two dB from that of the MAP detector [45]. lerms of spectral
efficiency, the MAP detector and conditional and uncondaloMMSE-SIC perform
likewise.

For random step and tree-based methods, the main probleolstdain a good list
of candidateg-vectors for approximate LLR evaluation, where all bits dotake
the values 0 and 1 at least once. With the TS and FCSD methedstant from lists
containing the hard detection results and the vectorsisedrto achieve this result, for
creating an approximate max-log LLR. If a bit value for a lsfion is missing, or if
higher accuracy is needed, one can add vectors in the yi@hithe obtained set, see
[46]. A soft-output version of the LAS algorithm has beenwhdo operate around
7 dB away from capacity in a coded V-BLAST setting with = K = 600 [38].
Instead of using the max-log approximations for approxingat LR as in [46], the
PM algorithm keeps a sum of terms [47]. There are many othatoaghes which may
be suitable for soft-output large scale MIMO detection,.,eMarkov chain Monte-

Carlo techniques [48].
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Fig. 13. Comparisons of BER of the studied detectors as ifiometof their complexities given in Table 1l. We
consider the case without possibility of pre-processing, the column entries in Table Il are summed for each

scheme. The number of antennds= K = 40, and transmit signaling power= 12 dB.
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Fig. 14. Comparisons of the of the studied detectors foredffit transmit signaling powes. The scheme

parameters are the maximum values in Figure 13 and the nuafitertennas is\/ = K = 40.
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V. SUMMARY

Very large MIMO offers the unique prospect within wirelessimanunication of
saving an order of magnitude, or more, in transmit power. Aegtra bonus, the
effect of small scale fading averages out so that only thehnmiore slowly changing
large scale fading remains. Hence, very large MIMO has thengial to bring radical
changes to the field.

As the number of base station antennas grows, the systemalpetst entirely
limited from the reuse of pilots in neighboring cells, thecadled pilot contamination
concept. This effect appears to be a fundamental challeingerplarge MIMO system
design, which warrants future research on the topic.

We have also seen that the interaction between antennargkeicean incur signifi-
cant losses, both to channel orthogonality and link capak€dr large MIMO systems
this is especially problematic since with a fixed overallrayre, the antenna spacing
must be reduced. Moreover, the severity of coupling probééso depends on the
chosen array geometry, e.g., linear array versus planay.arhe numerical examples
show that for practical antenna terminations (i.e., withcoapling cancellation), the
primary impact of coupling is in power loss, in comparisonttie case where only
spatial correlation is accounted for. Notwithstandings found that moderate coupling
can help to reduce correlation and partially offset the icbjp& power loss on capacity.

We have also surveyed uplink detection algorithms for cagesre the number of
single antenna users and the number of base station antsnabsut the same, but
both numbers are large, e.g. 40. The uplink detection pnolddecomes extremely
challenging in this case since the search space is expahentithe number of
users. By receiver tests and comparisons of several stdte-@rt detectors, we
have demonstrated that even this scenario can be handlede3pecially promising
detectors are the MMSE-SIC and the TS, which both can opeeateclose to the
optimal ML detector.

To corroborate the theoretical models and claims of the pape have also set
up a small measurement campaign using an indoor 128 antéemard base station
and 6 single antenna users. In reality, channels are (dgnerat IID, and thus there
is a performance loss compared to ideal channels. Howdwersdame trends appear
and the measurements indicated a stable and robust perfoemghere are still many
open issues with respect to the behavior in realistic cHarthat need further research

and understanding, but the overall system performance seeng promising.
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Sidebar: Approximate matrix inversion

Much of the computational complexity of the ZF-precoder dhd reverse link
detectors lies in the inversion of/d x K matrix Z. Although base stations have high
computational power, it is of interest to find approximat&isons by simpler means
than outright inversion.

In the following, we review an intuitive method for approxate matrix inversion.

It is known that if aK'xK matrix Z has the property

lim (Ix — Z)" = O,

n—oo

then its inverse can be expressed as a Neumann series [49]

o0

Z' =Y (Ix-2)" (39)

n=0
Ostensibly, it appears that matrix inversion using (39)visnremore complex than

direct inversion since both matrix inversion and multiption areO(K3) operations.
However, in hardware, matrix multiplication is stronglyefgrred over inversion since
it does not require any divisions. Moreover, if only the flesid the inverse times a
vectors = Z 'q is of interest, then (39) can be implemented as a series ofidad
matched filters. The complexity of each matched filter opemais only O(K?).

Let us first consider the case &f x M matrix G with independent andA\/(0,1)
distributed entries. We remind the reader that= M /K. The objective is now to
approximate the inverse of the Wishhart matéx = GG". As K and M grows,
the eigenvalues o converges to a fixed deterministic distribution known as the

Marchenko-Pastur distribution. The largest and the srsiadigenvalues o converge

to
1\? 1)\
Amax(Z4) = [ 14+ —= | , Ain(Z) > |1 — — | .
(2) ( +¢a) (2) ( ﬁ)
Some minor manipulations show that
A | ——Z —>1+2ﬁ, A Z) 512 VY
1+« 1+« 1+« 1+«

Hence, the eigenvalues &t — o/(1 +a)Z = Ix — Z /(M + K) lie approximately
in the range[—2y/a/(1 + @), 2v/a/(1 + «)]; note that2\/a/(1 + «) < 1 whenever

a > 1. Therefore

: 1 "
fin (1= 5 7e2) = o “o
When M/ K is large, say 5-10 or so, (40) converges rapidly, and onlyvatéFms

needs to be computed. For finite dimensidghsnd M, the eigenvalues of a particular
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channel realization can lie outside the rafge./a/(1+«), 2 /a/(1+«a)]. Therefore
an attenuation factof < 1 is introduced. Altogether, the inverse 6f = ZZ" can

be approximated as

R 5 "
-1 o 7 o
T §:<1K T Z). (41)

n=0
Replacing the weighting coefficenf (M + K') with ¢/Tr(Z), ¢ a constant, provides

a robust method for matrix approximation when the channdfimmhas an unknown
distribution. Other techniques, e.g. based on the Caylkeyillon Theorem and ran-
dom matrix theory, have been extensively used for CDMA nemrsi see [50], [51].
If the weighting coefficients are optimized, the matrix irsien in CDMA receivers

can be approximated with onkg 8 terms.
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