
Smart Keys for Cyber-Cars: Secure Smartphone-based
NFC-enabled Car Immobilizer

Christoph Busold,
Ahmad-Reza Sadeghi,
Christian Wachsmann

Intel CRI-SC, TU Darmstadt,
Germany

christoph.busold@cased.de,
ahmad.sadeghi@cased.de,

christian.wachsmann@cased.de

Alexandra Dmitrienko
Fraunhofer SIT, Darmstadt,

Germany
alexandra.dmitrienko@cased.de

Hervé Seudié,
Majid Sobhani,
Ahmed Taha

TU Darmstadt, Germany
herve.seudie@cased.de, majid.

sobhani@cased.de, ahmed.
taha@cased.de

ABSTRACT
Smartphones have become very popular and versatile de-
vices. An emerging trend is the integration of smartphones
into automotive systems and applications, particularly ac-
cess control systems to unlock cars (doors and immobiliz-
ers). Smartphone-based automotive solutions promise to
greatly enhance the user’s experience by providing advanced
features far beyond the conventional dedicated tokens/tran-
sponders.

We present the first open security framework for secure
smartphone-based immobilizers. Our generic security archi-
tecture protects the electronic access tokens on the smart-
phone and provides advanced features such as context-aware
access policies, remote issuing and revocation of access rights
and their delegation to other users. We discuss various
approaches to instantiate our security architecture based
on different hardware-based trusted execution environments,
and elaborate on their security properties. We implemented
our immobilizer system based on the latest Android-based
smartphone and a microSD smartcard. Further, we sup-
port the algorithmic proofs of the security of the underlying
protocols with automated formal verification tools.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; K.6.5
[Security and Protection]: Authentication

General Terms
Security, Design

Keywords
Immobilizer; Mobile Security; Access Control; Delegation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

1. INTRODUCTION
Today, smartphones are high performance platforms pro-

viding a wide range of features and have become an integral
part of our daily life. The increasing computing and stor-
age capabilities, the vast number and variety of apps avail-
able on app stores and new communication interfaces, such
as Near Field Communication (NFC), provide many deploy-
ment possibilities for smartphones, including electronic tick-
eting [1], payment [27] and access control [46, 22]. In this
context, an emerging trend is the integration of smartphones
into modern automotive systems and applications such as ac-
cess control to unlock, configure and start vehicles [41, 39,
47]. In particular, the NFC interface is well-suited for such
applications due to its short nominal communication range
(of a few centimeters) providing basic assurance of the user’s
physical proximity.

In this paper, we focus on smartphone-based NFC-enabled
immobilizer systems. An electronic vehicle immobilizer is
an anti-theft device that prevents starting the vehicle’s en-
gine unless the corresponding access token is (physically)
present and authenticated. Currently, this access token is
a transponder (i.e., an RFID chip) embedded into the me-
chanical car key or a contactless smartcard.

Smartphone-based immobilizer systems promise to enhance
the user experience by providing a variety of appealing new
features and enabling flexible applications beyond what is
provided today by conventional transponder-based immobi-
lizer systems. They do not require users to obtain a physical
transponder but allow them to use their smartphone to re-
motely obtain electronic car keys (or access rights for the
immobilizer). Moreover, access rights can be delegated to
other users, revoked or bound to specific policies. In par-
ticular, automotive applications with a highly dynamic or
large set of users, such as car sharing and fleet management,
can highly benefit from smartphone-based immobilizers.

Despite the mentioned advantages for users, the core chal-
lenge concerns the security aspects of smartphone-based im-
mobilizer systems. Smartphones are complex devices and
appealing targets of attacks (e.g., by malware), especially
when they are used in security-critical applications.

The traditional immobilizers used in practice are closed
and proprietary systems and suffer from various security vul-
nerabilities, as recent attacks show [31, 33, 24, 50]. The rea-
sons are conceptual protocol design flaws as well as the de-

christoph.busold@cased.de
ahmad.sadeghi@cased.de
christian.wachsmann@cased.de
alexandra.dmitrienko@cased.de
herve.seudie@cased.de
majid.sobhani@cased.de
majid.sobhani@cased.de
ahmed.taha@cased.de
ahmed.taha@cased.de

ployment of insecure or weak cryptographic schemes. On the
other hand, several prototypes of commercial smartphone-
based and NFC-enabled immobilizer systems have been in-
troduced recently [41, 39, 47], but without providing tech-
nical details or information on their security properties.

Our goal and contribution. We present an open smart-
phone-based immobilizer system architecture and the un-
derlying security framework, which provides enhanced func-
tional and security features and overcomes the security is-
sues of the conventional immobilizer systems. In particular,
our contribution is as follows:

Framework for smartphone-based immobilizer systems. Our
framework considers the functional and security requirements
on the protocols and the system architecture of a smartphone-
based solution under realistic adversary models.

Evaluation of existing security hardware. We evaluate and
discuss various instantiations of our security architecture us-
ing different approaches to establish trusted execution envi-
ronments on smartphones. We discuss which security guar-
antees can be provided by these instantiations, under which
assumptions, and how some of these assumptions can be
fulfilled by leveraging the features of security hardware cur-
rently available on recent smartphones.

Formal tool-based protocol analysis. Our protocols design is
based on the protocols in [22], which we adapt to the immo-
bilizer system. Additionally, we analyze the security of these
protocols using the automated verification tool ProVerif [15],
which is complementary to the cryptographic security anal-
ysis in [22].

Implementation. We present an implementation of our im-
mobilizer system on Android using the latest smartphone
hardware and a secure microSD smartcard. We show that
it is feasible to implement a secure NFC-enabled and smart-
phone-based immobilizer system. In particular, we discuss
the conditions for the secure integration of enhanced fea-
tures such as delegation under a strong but realistic adver-
sary model, where the adversary has full control over the
software on the smartphone platform. Hereby, we take the
technical limitations of currently available security hardware
for smartphones into account.

Outline. We present our framework for smartphone-based
immobilizer systems and the requirement analysis in Section 2.
We describe the platform security architecture in Section 3
and discuss the available secure hardware in Section 4. We
present the implementation and evaluation of our solution in
Section 5 and analyze its security in Section 6. Finally, we
give an overview of related work in Section 7 and conclude
in Section 8.

2. REQUIREMENT ANALYSIS
We first introduce the system and adversary model, our

assumptions and present our objectives and requirements.

2.1 System Model
Our system model is depicted in Figure 1 and involves a

car manufacturer M, a car C, a car owner O and a car user
U. The manufacturer M produces cars equipped with im-
mobilizers, which are electronic control units that prevent
unauthorized users from starting the car engine. Moreover,

Car User U
with NFC-enabled Mobile Device P

Car Owner O
with NFC-enabled Mobile Device P

3. Issues Token TO

2. Registers

4. Authenticates with TO

6. Authenticates with TU

1. Initializes Car Keys

5. Delegates Token TU

Car C
with NFC-enabled Immobilizer

Car Manufacturer M

Figure 1: System model

M also represents car dealers and service stations authorized
by the car manufacturer. The car owner O is a private per-
son or a company that haspurchased the car and received
an electronic access control token TO from M. The token is
securely deployed and stored on the mobile platform P of
O. The car user U is a person who is authorized by O to use
the car. This can be a friend or a family member of the car
owner, or an employee of the company owning the car. The
authorization is given by means of issuing a delegated access
control token TU which grants U access to C.

2.2 Adversary Model

Communication channels. The adversary A has full con-
trol over all communication channels except the channel be-
tween the car manufacturer M and the car C, which we as-
sume to be secure.1 Specifically, A can eavesdrop, inject,
replay and modify all messages transmitted over the chan-
nels between O and M, O and U, O and C, and U and C.2

Smartphone platform. We assume that each mobile plat-
form P consists of an untrusted host H and a trusted execu-
tion environment (TrEE) S . A can perform software attacks
against the untrusted host H and install, modify or compro-
mise all software components installed on P . However, we
exclude hardware attacks and assume that A cannot com-
promise S . We provide a detailed discussion on instantia-
tions of TrEE on top of different security hardware available
for mobile platforms in Section 4.

Immobilizer. We assume that the immobilizer C is trusted
as in conventional (non-NFC-based) immobilizer systems.
Specifically, we assume that an adversary who compromises
the immobilizer can start the car without attacking the mo-

1A secure communication channel between the car C and the
manufacturer M can be established using standard protocols
such as SSL.
2Note, that we exclude relay attacks since the focus of this
paper is a secure immobilizer system architecture for NFC-
enabled smartphones. One possible solution to reduce the
risk of relay attacks are distance bounding techniques, which
can be combined with our scheme.

bile platform. Hence, we exclude attacks against the immo-
bilizer component.

2.3 Objectives
As in traditional immobilizer systems, our main objective

is to prevent unauthorized access to the immobilizer:

O1: Access control. Only authorized entities, namely O
authorized by M and U authorized by O, should be able to
unlock the immobilizer C.

Further, the performance, i.e., the time needed for authenti-
cation is a significant usability aspect, which is essential for
a positive user experience:

O2: Performance. Authentication of O or U to C should
be performed within an unnoticeable time interval [37, 8].

Moreover, the compatibility to existing smartphones is im-
portant to ensure the applicability of the solution in practice:

O3: Compatibility. An important requirement is the com-
patibility to commodity mobile platforms. The immobilizer
system should be compatible with existing hardware and
require no or only minor changes to the mobile operating
system.

A smartphone-based immobilizer system should enable new
appealing features, such as the remote issuing and revoca-
tion of electronic tokens, remote replacement of electronic
keys in case of loss or theft of the mobile device, or provide
mechanisms to ensure access revocation of former car own-
ers in case of car re-sell. Hence, our additional objectives
are as follows:

O4: Remote issuing. The car manufacturer M should be
able to remotely (e.g., via the Internet) issue and deploy the
electronic access token TO to the car owner O.

O5: Remote revocation. M should be able to remotely
revoke access tokens TO issued t O. Moreover, revocation of
TO by M should automatically revoke all delegated tokens
TU issued by O.

Some other desirable enhanced features include token dele-
gation and support for context-aware access policies:

O6: Delegation. A car owner O should be able to se-
curely delegate her access rights to a third party U.

O7: Policy-based access control. A car owner O should
be able to restrict access of delegated users to the car based
on contextual information such as time and location.

As we discuss later in Section 6, off-the-shelf smartphone
platforms and security hardware can be used to achieve ob-
jectives (O1) to (O5). However, due to the technical con-
straints of available security hardware and the limitations
posed by some security hardware manufacturers, objectives
(O6) and (O7) cannot be realized with the currently avail-
able commodity hardware.

2.4 Security Requirements

Protocol-specific requirements.
The main security objective of an immobilizer system is

the secure authentication of the car owner O (or the dele-
gated user U) to the immobilizer C.

Platform-specific requirements.
Mobile platforms typically host a mobile operating system

that can potentially be compromised and expose all secrets
stored on the platform. Hence, to achieve objective (O1),
the security-sensitive data used in the underlying protocols
must be protected against untrusted code. Therefore, we
define the following security requirements on the underlying
mobile platform:

SR1: Secure storage. Security-sensitive data should not
be accessible by untrusted software components while stored
on the platform.

SR2: Isolation. The system components operating on se-
curity-sensitive data must be trusted and isolated from the
untrusted components.

Further, it has to be ensured that the security sensitive oper-
ations, such as authentication and delegation, are triggered
by the user rather than by malware. Moreover, advanced
use cases, such as delegation and policy-based access con-
trol, rely on security-critical user inputs, such as passwords
and user-defined access-control policies. Hence, for these use
cases we need an additional security requirement:

SR3: Secure user interface. The user (the car owner O
or the car user U) should be able to securely communicate
with the trusted components.

Discussion. To achieve isolation on the platform, one could
apply virtualization-based approaches or use a hardened op-
erating system that provides isolation properties (such as
proposed in [22]). However, this requires changes to the un-
derlying operating system and may be hard to achieve in
practice (O3). Hence, our primary goal is to leverage the
general purpose secure hardware available for commodity
mobile platforms to establish a hardware-isolated trusted
execution environment (TrEE). Although the technology to
achieve the objectives (SR1) to (SR3) is partially available,
it is not widespread. In particular, a secure user interface
(SR3) can be realized only with certain types of secure hard-
ware. We provide an overview of available secure hardware
and discuss its features in more details in Section 4.

3. SYSTEM DESIGN
In this section, we present a secure NFC-based immobi-

lizer system. The solution includes cryptographic protocols
for the secure interaction between the involved entities and
a mobile security architecture to protect security-sensitive
data, such as the cryptographic secrets used in the protocols,
when they are processed and stored on the mobile platform.

3.1 Mobile Platform Security Architecture
Our security architecture is depicted in Figure 2. The ex-

ecution environment of the mobile platform is divided into
two independent worlds: An untrusted host H and a trusted
execution environment S . The host runs on the general pur-
pose processor of the mobile device, while the TrEE is es-
tablished on top of secure hardware. Such secure hardware
can be either embedded into the smartphone or attached
to the mobile device via the standard communication in-
terfaces, which does not require any changes to commodity
platforms.

Depending on the type of the secure hardware used, the
TrEE can either have a direct (secure) connection to the

Figure 2: Mobile platform security architecture.
Dashed boxes indicate optional components that are
not available on current security hardware. Further,
the NFC chip can be either controlled by the smart-
phone OS or have a direct connection to the TrEE,
indicated by dashed lines.

NFC chip or must rely on the untrusted operating system
to handle the NFC (illustrated as a dashed line in Figure 2).
In contrast, the WiFi or the mobile network interface that is
used for the communication with, e.g., the car manufacturer
M, is always managed by the operating system.

The functionality of our system is realized within the
SmartTokens app and the SmartTokensSecure component re-
siding at the application level. The SmartTokens app man-
ages the access control tokens and handles different proto-
cols (such as registration, delegation and authentication),
while the SmartTokensSecure component is only invoked to
perform the computations involving security-critical data,
such as the cryptographic secrets used in the protocols. All
security-sensitive data is handled by the SmartTokensSecure
component. This data never leaves the TrEE in cleartext
and is securely stored in the SecureStorage component of S .

The SmartTokens and SmartTokensSecure apps communi-
cate via a channel established between both execution envi-
ronments. The channel is handled by the TrEEService and
TrEEMgr components residing at the operating system level.
These components are responsible for multiplexing the com-
munication between the different applications running on
the phone. TrEEMgr additionally manages the access of dif-
ferent TrEE applications to the SecureStorage component, so
that other applications, possibly residing within the TrEE,
cannot access the cryptographic parameters of the SmartTo-
kensSecure app.

The user input is handled by two components in the sys-
tem: The user interface UI provided by the operating system
residing within H and a secure user interface SecureUI based
on the TrEE. UI is used for the ordinary interaction with the
user, while all security-sensitive data, such as passwords and
access control policies are handled by the SecureUI compo-
nent. SecureUI is customized with a background picture or
a unique paraphrase only known to the user and the TrEE,
allowing the user to distinguish between SecureUI and UI.

Note, that SecureUI based on the TrEE can be provided
only by certain types of secure hardware, as we discuss later
in Section 4. Thus, this component is optional in our system
architecture (indicated by a dashed box in Figure 2). The

architecture instantiation without the SecureUI can achieve
the basic objectives in Section 2.3, while the advanced ob-
jectives are achievable only in a relaxed adversary model,
where the adversary cannot compromise the UI.

3.2 Protocol Design
Our protocol design is along the lines of the token-based

access control system by Dmitrienko et al. [22]. This scheme
consists of six protocols for initialization, user registration,
token issuing, token delegation and the authentication pro-
tocol for registered and delegated users, respectively. In the
following, we briefly describe these protocols.

Initialization of TrEE. The manufacturer of the trusted
execution environment S installs the SmartTokensSecure app
in S and initializes the SecureStorage of S with a unique
decryption/encryption key pair (skP , pkP) and a platform
certificate certP , which attests that S is a genuine trusted
execution environment and that only S knows the secret de-
cryption key skP that corresponds to the public encryption
key pkP .

Immobilizer initialization. The car manufacturer M ini-
tializes the immobilizer C with an authentication secretKC

Auth

and an encryption key KC
Enc, which are both used in the au-

thentication protocol.

Owner registration. Before purchasing a car, the car
owner O registers her platform P with the car manufac-
turer M. In this process, M verifies the platform certificate
certP of P and generates an authentication secret KO,M

Auth

and decryption key KO,M
Enc for O, which are used later in the

token issuing protocol. Further, M encrypts both keys with
pkP and sends the ciphertext back to S , where the Smart-
TokensSecure app decrypts both keys and stores them in
SecureStorage.

Token issuing. In this protocol, M generates an authenti-
cation key KO

Auth, which is used in the authentication proto-
col to unlock the immobilizer C, and a delegation key KO

Del

that is used in the delegation protocol to create delegated
tokens. Both keys and the identity IDO of O are authenti-
cated with the immobilizer authentication secret KC

Auth and
encrypted under the immobilizer encryption key KC

Enc, i.e.,

σM := MAC
(
KC

Auth; IDO, K
O
Auth,K

O
Del

)

TO := Enc
(
KC

Enc; IDO,K
O
Auth, K

O
Del, σM

)

TO is the access token of O for C and used later in the
authentication protocol. Furthermore, M and the Smart-
TokensSecure app in S establish a secure channel based on
KO,M

Auth and KO,M
Enc , which is used to send TO from M to Smart-

TokensSecure. Finally, SmartTokensSecure storesKO
Auth, K

O
Del

and TO in the SecureStorage of S .
Car owner authentication. The authentication proto-
col is depicted in Figure 3: O uses the SmartTokens app to
initiate an authentication request sent from O’s mobile plat-
form P to the immobilizer C. Then C sends its identifier IDC

and a random N (the bit-length μ of N is a security-critical
parameter [22]) to SmartTokensSecure on P , which replies
with σO to the SmartTokens app in H that eventually sends
(σO,TO) to C. Next, C decrypts TO with KC

Enc to obtain
KO

Auth, verifies σM and σO using KC
Auth and KO

Auth, respec-

Car Owner O TrEE S Host H Immobilizer C

KO
Auth,K

O
Del

TO KC
Enc,K

C
Auth,RevList

N ∈R {0, 1}µ
start auth

start auth

IDC, NIDC, N
m := (IDO, IDC, N)

σO σO,TO
(IDO,KO

Auth,K
O
Del, σM)← Dec(KC

Enc;TO)

σM
?
= MAC(KC

Auth, IDO,KO
Auth,K

O
Del)

IDO
?
�∈ RevList

Reject if any of the above checks fails

Else accept

σO ← MAC(KO
Auth,m)

σO
?
= MAC(KO

Auth, IDO, IDC, N)

Figure 3: Authentication protocol

tively, and accepts only if both verifications are successful.
Otherwise, C rejects.

Token delegation. The car owner O delegates her access
rights to another car user U by creating a delegated token
TU. Specifically, SmartTokensSecure in the TrEE of O’s plat-
form creates an authentication secret KU

Auth for U, authenti-
cates it along with the identifier IDU of U using KO

Auth and
encrypts all data under the delegation key KO

Del:

σO := MAC
(
KO

Auth; IDU,K
U
Auth

)

TU := Enc
(
KO

Del; IDU, K
U
Auth, σO

)

Furthermore, O and U establish a secure channel based on
the platform key of U’s TrEE, which is used to transfer TU

to SmartTokensSecure in the TrEE of U’s device.

Car user authentication. For the authentication of a
delegated car user U, U’s TrEE sends to the immobilizer C
two tokens, TO and TU. C first decrypts TO to obtain KO

Del,
which is then used to decrypt KU

Auth from TU. The rest of
the authentication protocol is the same as in Figure 3. Note
that TU is linked to TO since TU is a ciphertext that can be
decrypted only with the delegation key KO

Del of O, which is
included in TO.

Remote revocation. The remote revocation of tokens is
realized in a form of revocation lists deployed by M to the
car immobilizer C. Revocation of TO by M automatically
revokes all delegated tokens TU issued by O, since TO is
involved in the authentication of each delegated user U.

Secure user input. The token delegation protocol requires
a secure input from the car owner O to the SmartTokensSe-
cure app. Specifically, the car user O must approve the del-
egation of her access rights and specify the corresponding
access control policy for the car user U.

4. SECURE HARDWARE
In the following, we analyze the features of the avail-

able security hardware for smartphones and discuss which
of them are most appropriate for the realization of a secure
smartphone-based immobilizer system.

Most known security hardware available for modern smart-

phones includes ARM TrustZone [4], MShield [11], smart-
cards, SIM-cards and secure microSD cards [26]. A com-
parison of the corresponding features is depicted in Table 1.
Note that all considered security hardware provides secure
storage (SR1) and isolation (SR2).

ARM TrustZone. ARM TrustZone [4] allows for estab-
lishment of a trusted execution environment (TrEE) that
could provide a secure user interface (SR3), eventually fulfill-
ing all of our platform-related security requirements. How-
ever, TrustZone is available only on a few platforms, such
as Apple’s iPhone. Further, it is usually deactivated or
locked by the phone manufacturer and cannot be used by
third party applications running on the phone. Although
the TrustZone API is public and software emulators are
available, only selected third party developers get access to
TrustZone development boards.

MShield. MShield is a closed TrEE that can be used by
third party developers with the help of the on-board creden-
tials (ObC) security framework [11, 34]. However, MShield
is hardly available in practice and can only be found in a
few high-end Nokia smartphones.

SIM-cards. SIM-cards are the most widespread TrEEs and
available on every phone. However, SIM-cards are typically
closed systems controlled by the network operators. Hence,
a solution based on SIM-cards would be available only to
customers of the particular network operator controlling the
SIM-card.

Embedded secure elements. Embedded secure elements
are available on some recent NFC-enabled Android phones,
such as the Samsung Nexus S and the Samsung Galaxy
Nexus. However, they are locked and can only be used with
the Google Wallet payment system [28].

Combining the secure element and the NFC interface into
one chip allows them to operate passively, i.e., without the
power supply of the smartphone platform. In this mode, the
secure element and NFC chips use the RF field generated by
the NFC reader as power supply, a feature NFC inherited
from contactless smartcards. Provided that the NFC chip
in the phone supports this mode, it could be used to run the
authentication protocol (Figure 3) even when the battery of
the phone is depleted. On the protocol side, only a minor

Table 1: Comparison of current secure smartphone hardware

Security hardware Secure storage
(SR1)

Isolation (SR2) Secure user
interface (SR3)

Open to 3rd
parties

Availability

ARM TrustZone [4] + + + - some phones, e.g.,
iPhone (not
activated)

TI MShield [11] + + - with ObC [34] some phones, e.g.,
Nokia

SIM-card + + - - every phone

Embedded SE + + - - some phones, e.g.,
Samsung Nexus S
and Galaxy Nexus

Secure microSD card [26] + + - + any phone with
microSD slot

Secure microSD card
with NFC [49]

+ + - + any phone with
microSD slot &
NFC antenna

modification would be required: The tokens must be stored
in the secure element to make them available to the TrEE
when the host is powered down.

Secure microSD cards. A promising approach is using
secure microSD cards, which are microSD memory cards
that include a secure element. They can be used in every
smartphone with a microSD card slot. Some of these cards
include an NFC chip that uses an NFC antenna integrated
in the microSD card or can be connected to an external
NFC antenna built into the phone [49]. Such microSD cards
enable solutions that reach a large number of users because
they can even be used on phones without an integrated NFC
interface. However, microSD cards with integrated NFC are
hardly available and most stock phones are not equipped
with NFC antennas.

ARM TrustZone seems to be the most suitable TrEE for
our architecture, since it satisfies all platform-related secu-
rity requirements, while all other TrEE types do not provide
a secure user interface. However, developments for Trust-
Zone are currently limited to development boards, thus we
have to consider other types of TrEEs for our prototype.

Our implementation of the smartphone-based immobilizer
system uses an NFC-enabled smartphone with a secure mi-
croSD card, which seems to be the most applicable config-
uration in practice. Due to unavailability of a secure user
interface when using only a microSD card, our prototype im-
plementation achieves only the objectives (O1) - (O5), while
achieving objectives (O6) - (O7) requires either a more en-
hanced TrEE or a weaker adversary model. We provide an
evaluation and detailed discussion of this aspect in Section 6.

5. IMPLEMENTATION AND EVALUATION
We now describe our implementation and present the per-

formance measurements for the authentication protocols.
Figure 4 shows the hardware setup we used.

Smartphone. We implemented the immobilizer applica-
tion on Android using an NFC-enabled Samsung Galaxy S3
smartphone. The NFC hardware of the Galaxy S3 comes
with a built-in secure element used for the Google Wal-
let electronic payment system [28]. However, this secure

element is locked and cannot be used for custom applica-
tions such as our immobilizer system. Therefore, we use a
Giesecke & Devrient Mobile Security Card 1.0, which is a mi-
croSD smart card that allows installation of custom applica-
tions. The underlying smart card operating system complies
to the JavaCard 2.2.2 and GlobalPlatform 2.2.1 specifica-
tions and provides all primitives required by the protocols:
Public-key encryption (RSA), symmetric encryption (AES
in CBC mode), a cryptographic hash function (SHA1) and
a cryptographic random number generator.

The UI component of our architecture is represented by
the keyboard and display drivers already present in the An-
droid OS. The TrEEService implementation is based on the
smart card API provided by the Seek-for-Android project [44].
It enables access to smartcards via APDUs as defined in
ISO7816. The Galaxy S3 stock firmware already contains
this smart card API for the built-in secure element, however,
it is not enabled for the Mobile Security card. Therefore, we
had to replace the firmware of the phone with a custom build
of CyanogenMod9 [20] based on Android 4.0.3 where we in-
cluded the smart card API patches (version 2.3.2). However,
Seek-for-Android plans to release a plugin-in terminal for the
Mobile Security Card, which can be used with the existing
API and thus would not require a custom firmware.

Our implementation of the communication protocols and
the SmartTokens application are based on [22]. However,
they implemented the TrEE in software as an operating sys-
tem service on top of a hardened Android OS. Our system
in contrast does not require a hardened OS but utilizes a
hardware isolated TrEE. The functionality of the SmartTo-
kensSecure component in our architecture (Section 3.2) is
implemented in a JavaCard applet that uses the secure stor-
age of the smart card. Moreover, we implemented an in-
terface to the smart card that is compatible to the existing
SmartTokens application.

Immobilizer. The immobilizer implementation uses a setup
similar to commercially available immobilizer systems [40,
7]. Specifically, we use an Arduino Uno [5], which is a com-
mercial development board based on a 8 bit Atmel AVR mi-
crocontroller with 32 KB memory clocked at 16 MHz. The
Arduino is connected via a Serial Peripheral Interface (SPI)
to an NFC interface [38] based on the PN532 controller [42].

Figure 4: Prototype setup consisting of an Arduino
Uno board with NFC shield, a secure microSD smart
card and a Samsung Galaxy S3 smartphone (left to
right).

Table 2: Performance measurements

User
Type

Challenge
Time (ms)

Response
Time (ms)

Verification
Time (ms)

Session
Time (ms)

Owner 72.05 384.90 24.00 480.95
User 72.20 544.85 41.65 658.70

The implementation of the immobilizer uses the crypto-
graphic primitives provided by the AVR-Crypto-Lib [10],
which is an open source library optimized for AVRmicrocon-
trollers. Furthermore, we adapted the NFC library provided
with the PN532 NFC controller so that the NFC hardware
emulates a contactless smartcard according to the NFC Fo-
rum type 4 and ISO14443-4 specifications [32, 2].

Performance Evaluation. We evaluated the performance
of our implementation of the authentication protocol run-
ning between the smartphone and the immobilizer. For this
purpose, we made the following measurements: (1) the time
required to start the authentication mechanism and to get
the challenge from the immobilizer after the NFC connec-
tion has been established, (2) the time required by the phone
to send the response to the immobilizer, (3) the time re-
quired by the immobilizer to verify the phone’s response,
and (4) the time required for the complete authentication
protocol. The results of our measurements averaged over 20
protocol runs are shown in Table 2. Our solution requires
480.95 ms (±26.95 ms) for the whole authentication process
of the car owner and 658.70 ms (±74.30 ms) for the authen-
tication of the car user, which is sufficient to provide positive
user experience [37].

6. SECURITY CONSIDERATIONS
In this section we discuss our security architecture with

respect to the security objectives outlined in Section 2.4.

6.1 Protocol Analysis
As mentioned in Section 3.2 our protocols are adapted

from [22]. While security proofs of the protocols in crypto-

graphic models are shown in [22], we additionally analyze the
security of the protocols using automated verification tools.
In this context prominent verification tools are ProVerif [15],
Scyther [17] and Avispa [6]. We use ProVerif since it pro-
vides the largest feature set compared to other tools [18,
19, 21]. In contrast to other verification tools, ProVerif al-
lows modeling of any known cryptographic function using
the applied pi calculus specification language [3]. The corre-
sponding protocol specifications were successfully verified by
ProVerif, additionally supporting the cryptographic proofs
and providing the confidence in fulfillment of the security
objectives.

Formal Verification using ProVerif.
ProVerif takes as input a formal description of the proto-

cols, the adversary model and the security objectives based
on the applied pi calculus specification language and proves
or disproves the claimed security properties. This formal
specification includes the following components:

Agents. Agents represent the protocol participants (car
manufacturer M, car owner O, car user U and immobilizer
C), which have different roles such as being the sender/re-
ceiver of a protocol message.

Events. Events model the actions performed by the agents,
such as computations and sending/receiving messages.

Communication channels. The communication channels
are used to transfer messages between the agents.

Security properties. The security properties specify the
confidentiality and authentication objectives of the protocols
(Section 2.4). We use the common ProVerif specification of
authentication based on the correspondence property [16],
which states that every successful execution of a protocol
step implies that the involved entities were honest and fol-
lowed the protocol specification.

Adversary. The adversary and its capabilities are mod-
eled as an agent that aims to violate the security objectives.
Note that ProVerif uses the Dolev-Yao adversary model [23]
by default, which corresponds to the adversary model in
Section 2.2. Further, we assume that the car manufacturer
M, the immobilizer C and the trusted execution environ-
ments S of all mobile platforms are trusted while all other
agents are untrusted.

Based on the formal specification, ProVerif proves or dis-
proves the security properties. Specifically, the confidential-
ity property is checked by searching for protocol states where
the adversary learns at least one of the cryptographic secrets.
The authentication goal is checked by searching for protocol
states where a message originating from the adversary is ac-
cepted by the immobilizer even though the adversary does
not know the underlying authentication secrets.

The detailed formal specification, proof and result of the
formal verification of the protocols using ProVerif can be
found in the full version of this paper.

6.2 Analysis of the Security Architecture
Our security architecture leverages the underlying secu-

rity hardware to satisfy the requirements (SR1) and (SR2).
Particularly, it relies on a separate processor providing an
isolated execution environment and a dedicated secure mem-
ory. Further, to satisfy (SR2), we ensure that the security-
sensitive data is never available in plain text to untrusted
code (as detailed in Section 3.2). Therefore, the code run-
ning on the untrusted host cannot access any secrets which
are stored and processed inside the trusted execution en-
vironment (required by the protocols to achieve objective
(O1), as we showed in Section 6.1.).

6.3 Advanced Security Features
Advanced objectives such as secure delegation (O6) and

policy-based access control (O7) require a secure user in-
terface to handle security-sensitive user input (as discussed
in Section 3.2). Particularly, token delegation relies on a
password-based authentication of the delegated user U against
the car owner O before the delegated token is issued. With-
out a secure user interface, the password can be intercepted
by malware and redirected to a malicious device that can
impersonate U and receive the delegated token TU. Further,
context-aware access control requires the car owner O to
define access control policies during the delegation process.
When entered via an untrusted user interface, the access
policy can be manipulated by a malware without consent of
the car owner.

As we discussed in Section 4, among the currently avail-
able secure hardware ARM TrustZone seems to be capable
of providing a secure user interface. However, currently it
is not freely programmable. Thus, in the following, we dis-
cuss possible alternatives to a secure user interface on the
phone that can provide a reasonable trade-off between the
available technologies and the desired security features.

NFC proximity. NFC proximity provides a means to input
a single bit of information directly into the TrEE. Particu-
larly, a user can authorize or invoke a security sensitive oper-
ation such as token delegation or authentication by tapping
his phone to the NFC reader. However, the following aspects
have to be considered when using NFC proximity to autho-
rize security sensitive operations: First, in case the NFC
interface is handled by the operating system, the malware
can emulate the proximity to the NFC reader by pretending
to receive data from the NFC interface. Thus, NFC-based
proximity can be reliably provided only by TrEEs that fea-
ture a direct connection to the NFC chip so that the un-
trusted operating system cannot spoof the communication.
Examples of such secure hardware are SIM-cards, embedded
secure elements and secure microSD cards with an integrated
NFC chip. Moreover, a powerful adversary with specialized
equipment may extend the nominal NFC range of 10–20 cm
up to 1–10 meters [29] and trigger NFC without consent of
the user. Furthermore, NFC-based proximity may poten-
tially be subject to relay attacks [25]. In this case it can
be applied only in a weaker adversary model that excludes
these kinds of attacks.

NFC proximity enables secure delegation over the NFC
interface. Particularly, the car owner O can authenticate the
user U based on a visual contact, while both platforms can
use a secure channel based on a key established via NFC3.

3Note that the NFC link is commonly assumed not being

However, NFC proximity cannot be used to securely enter
context-aware access control policies.

Car on-board computer. Modern car on-board comput-
ers (e.g., head units) typically have large displays and input
devices that can be leveraged as user interface. Moreover, it
might be reasonable to assume that the car on-board com-
puter (and hence its user interface) is trusted, since attacks
on car on-board computers are much less common than at-
tacks on mobile devices4. Moreover, the attacker control-
ling the car on-board computer most likely will have good
chances to start the car engine directly by attacking its in-
ternal infrastructure.

The system that leverages the car user interface can achieve
both, secure delegation and context-aware access control, as
the car user interface can be used to enter the password re-
quired for the delegation, as well as to define context-aware
security policies in a secure way.

7. RELATED WORK
In this section, we discuss existing immobilizer systems in

practice and in literature. Further, we give an overview on
related work regarding access control with smartphones.

NFC-based Immobilizers.
NXP Semiconductors presented the prototype of an NFC-

based immobilizer system [41]. The security of this approach
relies on the secure element of the smartphone. However,
it is unclear how this secure element is instantiated and
whether this approach requires new phones with special se-
curity hardware. Furthermore, in contrast to our approach,
this system does not consider delegation and may not be us-
able in advanced use cases such as car sharing applications.

NFC-based immobilizer systems supporting car sharing
were proposed independently by the automotive component
suppliers Valeo [39] and Continental [47]. They collaborated
with network operators (Orange and Deutsche Telecom, re-
spectively) and used SIM-cards as secure execution environ-
ments for the protection of their electronic car keys. While
SIM-cards are available on each mobile platform, they are
controlled by different network operators. Hence the solu-
tions by Valeo and Continental would probably be available
only to the customers of those network providers. Further-
more, there is no public information on the security mecha-
nisms used in these solutions.

Transponder-based Immobilizers.
Lemke et al. [35] present a system model and requirement

analysis for electronic immobilizer systems that use dedi-
cated hardware tokens. The proposed model does not cap-
ture advanced use cases such as delegation and thus cannot
be applied to our system. Moreover, their model is con-
cerned with the security aspects of the immobilizer, while
we focus on the security of the user’s mobile device and the
protection of the authentication secrets from the untrusted
mobile OS.

The first open specification of a security protocol stack for

susceptible to man-in-the-middle attacks [29]. Hence, when
combined with visual authentication, it can be used for se-
cure authenticated key establishment.
4More than 25, 000 new malicious Android apps have been
discovered in Q1 and Q2 of 2012 [51], while attacks on on-
board computers are not widespread and very involved [43]

transponder-based immobilizer systems has been published
by Atmel [9, 36]. Tillich et al. [48] uncovered several vulner-
abilities in this stack and proposed fixes. This demonstrates
the advantages of open approach to security design, which
we also follow.

The first attempt of using public-key cryptography in im-
mobilizer systems has been made by Heyszl et al. [30]. They
showed that it is feasible to implement lightweight elliptic
curve cryptography on resource-constrained transponders.
However, since the amount of data to be transferred in their
authentication protocol exceeds the constrained bandwidth
of the NFC interface, their scheme is not appropriate for
NFC-based immobilizer systems.

Delegable Access Control With Smartphones.
Our work is along the lines of the SmartToken system by

Dmitrienko et al. [22], which enables NFC-enabled smart-
phones to maintain electronic access control tokens that can
be delegated to other users. Specifically, we adapt the pro-
tocols of the SmartToken scheme to the immobilizer use case
and provide a tool-based security verification of these proto-
cols. Further, we introduce a new platform security architec-
ture that, in contrast to the architecture of the SmartToken
system, does not rely on trusted operating system compo-
nents and can be built on top of commodity mobile operating
systems.

Another smartphone-based access control system support-
ing delegation of access rights has been presented by Bauer
et al. [14, 12, 13]. The system uses Bluetooth instead of NFC
and is based on public-key cryptography. Delegation is ex-
pressed in form of a digitally signed certificate, while our
delegable access control tokens carrying policies are based
on symmetric cryptography to minimize the communication
overhead and to meet the bandwidth constrains of NFC5.
Further, we consider the mobile platform security aspects of
protecting authentication secrets, while the work by Bauer
et al. considers more complicated (particularly, role-based)
access control policies and usability issues.

8. CONCLUSION
We presented the first open security framework and in-

stantiation for smartphone-based NFC-enabled immobiliz-
ers. Unlike the conventional, closed and proprietary im-
mobilizer systems that suffer from various vulnerabilities,
our open approach allows the independent evaluation of our
solution by the research community. Our framework con-
sists of a set of secure protocols (adapted from [22]) and a
security architecture for the mobile platform. We analyze
the security of the underlying protocols using automated
formal verification tools. Moreover, we analyze the secu-
rity of our architecture and discuss which objectives can be
achieved using off-the-shelf secure hardware for mobile plat-
forms. We show that available hardware allows remote issu-
ing and remote revocation of electronic tokens, which cannot
be achieved with classical (transponder-based) immobilizer
systems. Further, we outline approaches to achieve more
advanced security features, such as secure delegation and
context-aware access control.

5While the nominal NFC transmission rate is 106 kpbs, the
bandwidth usable in practice is only about 10 kbps [45].

9. REFERENCES
[1] MIFARE4Mobile.org. http://mifare4mobile.org/

files/1213/3283/4766/12-03-20_NFC_Ticketing_

Europe_2012.pdf, 2012.

[2] Near Field Communication Forum. http://www.
nfc-forum.org/home/.

[3] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In 28th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’01). ACM, 2001.

[4] T. Alves and D. Felton. TrustZone: Integrated
hardware and software security. Information Quaterly,
3(4), 2004.

[5] Arduino. http://www.arduino.cc/.

[6] A. Armando, D. Basin, Y. Boichut, Y. Chevalier,
L. Compagna, J. Cuellar, P. Hankes Drielsma, P.-C.
Heám, J. Mantovani, S. Mödersheim, D. von Oheimb,
M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò,
and L. Vigneron. The AVISPA tool for the automated
validation of internet security protocols and
applications. In 17th International Conference on
Computer Aided Verification (CAV’05). Springer,
2005.

[7] Atmel. Car access. http://www.atmel.com/
applications/automotive/car_access/default.
aspx.

[8] ATMEL. Automotive Compilation Volume 7
December 2010. http://www.atmel.com/Images/
atmel_autocompilation_vol7_dec2010.pdf, 2010.

[9] Atmel. Open source immobilizer protocol stack.
http://www.atmel.com/dyn/products/tools_card.
asp?tool_id=17197, 2010. registration required.

[10] AVR cryptographic library. Set of cryptographic
primitives for Atmel AVR microcontrollers. https://
www.das-labor.org/wiki/AVR-Crypto-Lib.

[11] J. Azema and G. Fayad. M-Shield mobile security
technology: Making wireless secure. Texas
Instruments white paper, 2008. http://focus.ti.com/
pdfs/wtbu/ti_mshield_whitepaper.pdf.

[12] L. Bauer, L. Cranor, R. W. Reeder, M. K. Reiter, and
K. Vaniea. Comparing access-control technologies: A
study of keys and smartphones. Technical report, 2007.

[13] L. Bauer, L. F. Cranor, M. K. Reiter, and K. Vaniea.
Lessons learned from the deployment of a
smartphone-based access-control system. In 3rd
symposium on Usable privacy and security
(SOUPS’07). ACM, 2007.

[14] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter,
J. Rouse, and P. Rutenbar. Device-enabled
authorization in the Grey system. In 8th International
Conference on Information Security (ISC’05).
Springer-Verlag, 2005.

[15] B. Blanchet. An efficient cryptographic protocol
verifier based on Prolog rules. In 14th IEEE Computer
Security Foundations Workshop (CSFW’01). IEEE
Computer Society, 2001.

[16] B. Blanchet. From secrecy to authenticity in security
protocols. In 9th International Static Analysis
Symposium (SAS’02). Springer Verlag, 2002.

[17] C. Cremers. Scyther - Semantics and Verification of
Security Protocols. Ph.D. dissertation, Eindhoven
University of Technology, 2006.

http://mifare4mobile.org/files/1213/3283/4766/12-03-20_NFC_Ticketing_Europe_2012.pdf
http://mifare4mobile.org/files/1213/3283/4766/12-03-20_NFC_Ticketing_Europe_2012.pdf
http://mifare4mobile.org/files/1213/3283/4766/12-03-20_NFC_Ticketing_Europe_2012.pdf
http://www.nfc-forum.org/home/
http://www.nfc-forum.org/home/
http://www.arduino.cc/
http://www.atmel.com/applications/automotive/car_access/default.aspx
http://www.atmel.com/applications/automotive/car_access/default.aspx
http://www.atmel.com/applications/automotive/car_access/default.aspx
http://www.atmel.com/Images/atmel_autocompilation_vol7_dec2010.pdf
http://www.atmel.com/Images/atmel_autocompilation_vol7_dec2010.pdf
 http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17197
 http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17197
https://www.das-labor.org/wiki/AVR-Crypto-Lib
https://www.das-labor.org/wiki/AVR-Crypto-Lib
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

[18] C. Cremers. Unbounded verification, falsification, and
characterization of security protocols by pattern
refinement. In 15th ACM conference on Computer and
communications security (CCS’08). ACM, 2008.

[19] C. Cremers, P. Lafourcade, and P. Nadeau. Comparing
state spaces in automatic protocol analysis. In Formal
to Practical Security. Springer Berlin Heidelberg, 2009.

[20] CyanogenMod. http://www.cyanogenmod.com/.

[21] N. Dalal, J. Shah, K. Hisaria, and D. Jinwala. A
comparative analysis of tools for verification of
security protocols. IJCNS, 3(10):779–787, 2010.

[22] A. Dmitrienko, A.-R. Sadeghi, S. Tamrakar, and
C. Wachsmann. SmartTokens: Delegable access
control with NFC-enabled smartphones. In 5th
International Conference on Trust & Trustworthy
Computing (TRUST’12), 2012.

[23] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198–207, 1983.

[24] A. Francillon, B. Danev, and S. Čapkun. Relay
attacks on passive keyless entry and start systems in
modern cars. In Network and Distributed System
Security Symposium (NDSS), 2011.

[25] L. Francis, G. Hancke, K. Mayes, and
K. Markantonakis. Practical NFC peer-to-peer relay
attack using mobile phones. In 6th International
Conference on Radio Frequency Identification:
Security and Privacy Issues (RFIDSec’10).
Springer-Verlag, 2010.

[26] Giesecke & Devrient Secure Flash Solutions. The
Mobile Security Card SE 1.0 offers increased security.
http://www.gd-sfs.com/the-mobile-security-card/
mobile-security-card-se-1-0/.

[27] Google. http://www.google.com/wallet/.

[28] Google Wallet. http://www.google.com/wallet/, 2012.

[29] E. Haselsteiner and K. Breitfuß. Security in Near
Field Communication (NFC). Strengths and
weaknesses. In Workshop on RFID Security, 2006.

[30] J. Heyszl and F. Stumpf. Asymmetric cryptography in
automotive access and immobilizer systems. 9th
Embedded Security in Cars Conference, 2011.

[31] S. Indesteege, N. Keller, O. Dunkelman, E. Biham,
and B. Preneel. A practical attack on KeeLoq. In 27th
Annual International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT’08). Springer-Verlag, 2008.

[32] International Organization for Standardization.
International Standard ISO/IEC 14443-4.
Identification cards – Contactless integrated circuit
cards – Proximity cards.

[33] M. Kasper, T. Kasper, A. Moradi, and C. Paar.
Breaking KeeLoq in a flash: On extracting keys at
lightning speed. In 2nd International Conference on
Cryptology in Africa (AFRICACRYPT’09). Springer,
2009.

[34] K. Kostiainen, J.-E. Ekberg, N. Asokan, and
A. Rantala. On-board credentials with open
provisioning. In 4th ACM Symposium on Information,
Computer, and Communications Security
(ASIACCS’09). ACM, 2009.

[35] K. Lemke, A.-R. Sadeghi, and C. Stüble. An open

approach for designing secure electronic immobilizers.
In Information Security Practice and Experience
(ISPEC’05), 2005.

[36] P. Lepek. Configurable, secure, open immobilizer
implementation. In Embedded Security in Cars, 2010.

[37] R. Näätänen, O. Syssoeva, and R. Takegata.
Automatic time perception in the human brain for
intervals ranging from milliseconds to seconds.
Psychophysiology, 41(4):660–663, 2004.

[38] NFC Shield. Near Field Communication interface for
Arduino. http://www.seeedstudio.com/wiki/NFC_
Shield.

[39] NFC World. Orange and Valeo demonstrate NFC car
key concept, 2010. http://www.nfcworld.com/2010/
10/07/34592/

orange-and-valeo-demonstrate-nfc-car-key-concept/.

[40] NXP. Car access and immobilizers. http://www.nxp.
com/products/automotive/car_access_

immobilizers/.

[41] NXP. NXP and Continental demonstrate the world’s
first concept car embedding NFC at Mobile World
Congress, 2011. http://www.nxp.com/news/
press-releases/2011/02/nxp-and-continental-

demonstrate-the-world-s-first-concept-car-

embedding-nfc-at-mobile-world-congress.html.

[42] PN532 Near Field Communication (NFC) controller.
NXP Semiconductors. http://www.nxp.com/products/
identification_and_security/reader_ics/nfc_

devices/series/PN532.html.

[43] Scientific American. Hack My Ride: Cyber Attack
Risk on Car Computers , 2011. http://www.
scientificamerican.com/article.cfm?
id=hack-my-ride.

[44] Secure Element Evaluation Kit for the Android
platform. http://code.google.com/p/
seek-for-android/.

[45] S. Tamrakar, J.-E. Ekberg, and N. Asokan. Identity
verification schemes for public transport ticketing with
NFC phones. In ACM workshop on Scalable Trusted
Computing (STC’11). ACM, 2011.

[46] Telcred. secure offline access control with NFC.
http://www.telcred.com/, 2012.

[47] Telecom. Deutsche Telekom and automotive supplier
Continental demonstrated car keys, 2011. http://www.
telekom.com/innovation/connectedcar/81840.

[48] S. Tillich and M. Wójcik. Security analysis of an open
car immobilizer protocol stack. 10th International
Conference on Applied Cryptograpy and Network
Security (ACNS’12), 2012.

[49] Tyfone. Tyfone to license SideTap MicroSD NFC and
Secure Element Card technologies to AboMem, 2011.
http://tyfone.com/newsroom/?p=541.

[50] R. Verdult, F. Garcia, and J. Balasch. Gone in 360
seconds: Hijacking with Hitag2. In 21st USENIX
Security Symposium, 2012.

[51] ZDNet. Android malware numbers explode to 25,000
in June 2012. http://www.zdnet.com/
android-malware-numbers-explode-to-25000-

in-june-2012-7000001046/, 2012.

http://www.cyanogenmod.com/
http://www.gd-sfs.com/the-mobile-security-card/mobile-security-card-se-1-0/
http://www.gd-sfs.com/the-mobile-security-card/mobile-security-card-se-1-0/
http://www.google.com/wallet/
http://www.google.com/wallet/
http://www.seeedstudio.com/wiki/NFC_Shield
http://www.seeedstudio.com/wiki/NFC_Shield
http://www.nfcworld.com/2010/10/07/34592/orange-and-valeo-demonstrate-nfc-car-key-concept/
http://www.nfcworld.com/2010/10/07/34592/orange-and-valeo-demonstrate-nfc-car-key-concept/
http://www.nfcworld.com/2010/10/07/34592/orange-and-valeo-demonstrate-nfc-car-key-concept/
http://www.nxp.com/products/automotive/car_access_immobilizers/
http://www.nxp.com/products/automotive/car_access_immobilizers/
http://www.nxp.com/products/automotive/car_access_immobilizers/
http://www.nxp.com/news/press-releases/2011/02/nxp-and-continental-
http://www.nxp.com/news/press-releases/2011/02/nxp-and-continental-
demonstrate-the-world-s-first-concept-car-
embedding-nfc-at-mobile-world-congress.html
http://www.nxp.com/products/identification_and_security/reader_ics/nfc_devices/series/PN532.html
http://www.nxp.com/products/identification_and_security/reader_ics/nfc_devices/series/PN532.html
http://www.nxp.com/products/identification_and_security/reader_ics/nfc_devices/series/PN532.html
http://www.scientificamerican.com/article.cfm?id=hack-my-ride
http://www.scientificamerican.com/article.cfm?id=hack-my-ride
http://www.scientificamerican.com/article.cfm?id=hack-my-ride
http://code.google.com/p/seek-for-android/
http://code.google.com/p/seek-for-android/
http://www.telcred.com/
http://www.telekom.com/innovation/connectedcar/81840
http://www.telekom.com/innovation/connectedcar/81840
http://tyfone.com/newsroom/?p=541
http://www.zdnet.com/android-malware-numbers-explode-to-25000-
http://www.zdnet.com/android-malware-numbers-explode-to-25000-
in-june-2012-7000001046/

	Introduction
	Requirement Analysis
	System Model
	Adversary Model
	Objectives
	Security Requirements

	System Design
	Mobile Platform Security Architecture
	Protocol Design

	Secure Hardware
	Implementation and Evaluation
	Security Considerations
	Protocol Analysis
	Analysis of the Security Architecture
	Advanced Security Features

	Related Work
	Conclusion
	References

