
[Sun90] V.S. Sunderam. An Inclusive Session Level Protocol for Distributed Applications. In Proccedings

of ACM SIGCOMM '90, pages 307{314, September 1990.

[Swi88] Daniel C. Swinehart. System Support Requirements for Multi-mediaWorkstations. In Proccedings

of the SpeechTech '88 Conference, pages 82{83, New York, April 1988. Media Dimensions, Inc.

[Tan88] A. Tanenbaum. Computer Networks. Prentice Hall, Inc., second edition edition, 1988.

[Ten89] D. L. Tennenhouse. Layered multiplexing considered harmful. In Proceedings of Protocols for

High Speed Networks; IFIP WG6.1/6.4 Workshop, May 1989.

[Top89] Claudio Topolcic. A report on the connection oriented internet protocol meeting. ST and Co-IP

Working Group Mailing List, August 1989.

[Tur86] J. Turner. Design of an integrated service packet network. IEEE Journal on Selected Areas in

Communication, pages 1373{1380, November 1986.

[Yav89] R.S. Yavatkar. An Architecture for High-Speed Packet Switched Networks. PhD thesis, Purdue

University, August 1989. Also available as TR-898.

[Yav90] Raj Yavatkar. MCP: A Multi-Flow Conversation Protocol for Multi-media Distributed Applica-

tions. Technical Report 181-91, Department of Computer Science, University of Kentucky, 1990.

submitted for publication.

[Zha89] Lixia Zhang. A New Architecture for Packet Switching Network Protocols. PhD thesis, Mas-

sachusetts Institute of Technology, July 1989.

23

[Lam78] L. Lamport. Time, clocks, and the ordering of events ina distributed system. Communications

of the ACM, 21(7):558{565, July 1978.

[Lam84] Leslie Lamport. Using Time Instead of Timeouts. ACM Transactions on Programming Languages

and Systems, 6(2):254{280, April 1984.

[Lan86] Keith A. Lantz. An Experiment in Integrated Multimedia Conferencing. In Proceedings of Con-

ference on Computer-Supported Cooperative Work, pages 267{275, December 1986.

[Lan90] Keith A. Lantz. What is in it for us(ers)?: The Portable O�ce and Desktop Teleconferencing. In

Craig Partridge, editor, Report of the Internet Research Steering Group Workshop on Very-High

Speed Networks, January 1990.

[LBH

+

90] W-H.F. Leung, T.J. Baumgartner, Y.H. Hwang, M.J. Morgan, and S-C Tu. A software architec-

ture for workstations supporting multimedia conferencing in packet switching networks. IEEE

Journal on Selected Areas in Communications, 8(3), April 1990.

[Lei88] Barry Leiner. Critical Issues in High Bandwidth Networking. DARPA Internet Request For

Comments 1077, November 1988. Report of a working group convened by DARPA.

[LG90] T. Little and A. Ghafoor. Synchronization and Storage Models for Multimedia Objects. IEEE

Journal on Selected Areas in Communications, 8(3):413{427, April 1990.

[Li90] Xiangxin Li. M.S. Project Report, December 1990. Department of Computer Science, University

of Kentucky.

[LT90] Charles Lynn and Claudio Topolcic. Experimental internet stream protocol, version ii (st-ii).

DARPA Internet Request For Comments 1190, October 1990. IETF COIP Working Group.

[Lud89] L.F. Ludwig. Multi-Media in ISDN and BISDN: A Paradigm Shift Driven by User Technology

and Applications. BellCore Digest, 1989.

[Mil89] Dave L. Mills. Measured performance of the network time protocol in the internet system. Network

Working Group Request for Comments: 1128, October 1989.

[Mil90] D. Mills. Network time protocol (version 2) speci�cationa nd implementation. Network Working

Group Requests For Comments RFC 1119, July 1990.

[MP89] T. Mazraani and Guru Parulkar. Speci�cation of a Multipoint Congram-oriented High Perfor-

mance Internet Protocol. Technical Report WUCS{89{20, Department of Computer Science,

Washington University, St. Louis, Missouri, 1989.

[Nic90] C. Nicolaou. An Architecture for Real-Time Multimedia Communication Systems. IEEE Journal

on Selected Areas in Communications, 8(3):391{400, April 1990.

[PBS89] L. Peterson, N. Buchholz, and R.D. Schlichting. Preserving and using context information in

interprocess communication. ACM Transactions on Computer Systems, 7(3):217{246, August

1989.

[Pos80] J. Postel. User Datagram Protocol, August 1980. RFC 768.

[SFB

+

87] Mark Ste�k, Gregg Foster, Daniel Bobrow, Kenneth Kahn, Stuan Lanning, and Lucy Suchmann.

Beyond the Chalkboard: Computer Support for Collaboration and Problem Solving in Meetings.

Communications of the ACM, 30(1):32{47, January 1987.

[SG85] Sunil Sarin and Irene Greif. Computer-based Real-Time Conferencing Systems. IEEE Computer,

18(10):33{49, October 1985.

[SGS84] F. Schneider, D. Gries, and R. Schlichting. Fault-tolerant broadcasts. Sci. Compt. Program.,

4(1):1{15, March 1984.

[Str87] C. Strathmeyer. Voice/Data Integration: An Applications Perspective. IEEE Communications

Magazine, 25(12):30{35, December 1987.

22

environment. For instance, our research in exploring di�erent levels of concurrency control spawns

new opportunities for research in identifying new modes of coordination and synchronization sup-

ported at transport and higher protocol layers.

References

[AEHL88] S.R. Ahuja, J.R. Ensor, D.N. Horn, and S.E. Lucco. The Rapport Multimedia Conferencing

System. In Proceedings of the 2nd IEEE Conference on Computer Workstations, pages 52{58,

March 1988.

[BJ87] Ken Birman and Thomas Joseph. Reliable communication in the presence of failures. ACM

Transactions on Computer Systems, 5(1):47{76, Feb 1987.

[CASD84] F. Christian, H. Aghili, R. Strong, and D. Dolev. Atomic Broadcast: From simple message

di�usion to Byzantine Agreement. Technical Report RJ 4540, IBM, October 1984.

[CF89] T. Crowley and H. Forsdick. MMConf: The Diamond Multimedia Conferencing System. In IFIP

WG2.7 Working Conference on Engineering for Human Computer Interaction, August 1989.

[Che86] David R. Cheriton. VMTP: A transport protocol for the next generation of communication

systems. In SIGCOMM '86 Symposium, pages 406{415. ACM, August 1986.

[Che87] G. Chesson. Protocol Engine Design. In USENIX Conference Proceedings, Phoenix, Arizona,

June 1987.

[Che88] G. Chesson. XTP/PE Overview. In Proccedings of 13th Conference on Local Computer Networks,

pages 292{296, Minneapolis, Minnesota, October 1988. IEEE Computer Society.

[Che89] Greg Chesson. XTP Protocol De�nition 3.4, 1989. Protocol Engines, Incorporated, 1900 State

Street, Suite D, Santa Barbara, CA.

[Cla85] D. Clark. The Structuring of Systems Using Upcalls. In Proceedings of the 10th Symposium on

Operating Systems Principles, pages 171{180. ACM, October 1985.

[CM84] J. Chang and N. Maxemchuck. Reliable Broadcast Protocols. ACM Transactions on Computer

Systems, 2(3):251{273, August 1984.

[Com88] Douglas Comer. Internetworking With TCP/IP: Principles, Protocols, and Architecture. Prentice

Hall, Inc., 1988.

[CY89] D.E. Comer and R.S. Yavatkar. Flows: Performance Guarantees in Best E�ort Delivery Systems.

In Proceedings of IEEE INFOCOM '89, pages 100{109. IEEE Computer Society, April 1989.

[Dew90] Prasun Dewan. A Guide to Suite: Version 1.0. Technical Report SERC-TR-60-P, Software

Engineering Research Center, Purdue University, February 1990.

[DKK90] F.R. Dix, M. Kelly, and R. W. Klessig. Access to a public switched multi-megabit data service

o�ering. Computer Communication Review, July 1990.

[EGR89] C. Ellis, S. Gibbs, and G.L. Rein. Design and Use of a Group Editor. In IFIP WG2.7 Working

Conference on Enginerring for Human Computer Interaction. North Holland, August 1989.

[Fer90] D. Ferrari. Client Requirements for Real-time Communication Services. DARPA Internet Request

For Comments 1193, November 1990.

[FKLC88] R. Fish, R. Kraut, M. Leland, and M. Cohen. Quilt: a Collaborative Tool for Cooperative

Writing. In Proceedings of ACM SIGOIS Conference, pages 30{37, 1988.

[FV90] D. Ferrari and D. Verma. A scheme for real-time channel establishment in wide-area networks.

IEEE Journal on Selected Areas in Communications, 8(3), April 1990.

21

when any of the four media (text, image, voice, and video) are used. Third, the conversation ab-

straction allows an application to dynamically combine any number of
ows into a logical entity.

Thus, an application may add or remove
ows from a conversation as and when necessary to allow

more concurrent communication when necessary. The latter two aspects of synchronization are not

addressed by Nicolaou.

6 Summary

In this paper, we have presented a new transport protocol called MCP that provides abstractions

necessary to build multimedia distributed applications. To achieve coordination in a multipoint

ow, MCP provides a token-based mechanism that allows an application to exercise
exible gov-

ernance over the amount of concurrency control desired. To achieve causal synchronization across

tra�c over multiple
ows, MCP includes an abstraction called a multi-
ow conversation. Because

tra�c delivery over constituent connections (such as voice or video) may have delay constraints,

causal ordering is guaranteed only over an interval � determined by delay constraints of constituent

connections.

We have built a prototype implementation of MCP using XTP and are now adding it to a Unix

kernel. Initial experiments in building distributed multi-
ow applications have provided encourag-

ing results. We plan to use MCP to build a distributed interactive environment for collaboration

using multiple media.

Our work has signi�cance in the following areas. First, our research addresses an important

and as yet unexplored aspect of designing suitable communication abstractions to build multimedia

applications. We plan to extend results of our research to design programming language constructs

that would simplify writing distributed multimedia applications. Second, our work also addresses

an often neglected aspect, that of transport-level interfaces to the user applications. A research

working group convened by DARPA [Lei88] has argued for richer transport-layer interfaces in next-

generation networks. Development of interactive, multimedia applications using both synchronous

and asynchronous transport-level interfaces will help uncover alternate, transport-level interfaces.

Third, there is a considerable interest in building applications to foster collaboration and coopera-

tion among scientists and researchers. Our work makes a signi�cant contribution by investigating

new communication methods that support collaborative activities in an interactive, distributed

20

usually provides reliable multicast delivery.

The ISIS system at Cornell provides an asynchronous communication primitive based on \causal

broadcasts". Given a group of processes concurrently broadcasting messages to other members of

the group, causal broadcast guarantees that all the processes will receive messages in the same

predetermined, partial order. The emphasis in ISIS is on providing fault-tolerant and globally

consistent communication in the presence of site and process failures and the aim is to support

consistent updates to replicated, shared objects.

The Psynch [PBS89] protocol developed at the University of Arizona is closely related to the

ISIS approach. It is based on a \conversation" abstraction that de�nes a partial order on the

delivery of messages similar to the causal broadcast in ISIS. Our approach shares some ideas with

the Psynch approach where context information is represented by a global context graph maintained

by each site. Context information is included in each message and a the protocol maintains a copy

of global graph on each host. As explained earlier, a context graph is created independently by

each site in our system and edges in such a graph are delay-dependent.

Little and Ghafoor [LG90] have suggested a formal method for specifying the temporal relation-

ships among multimedia objects. They use timed petri nets to specify the temporal characteristics

among multimedia elements stored in a data base and present an algorithm to retrieve such stored

elements in a manner that preserves the original temporal relationships. However, they do not

consider the problem of maintaining temporal synchronization when such elements are transmitted

over independent
ows.

Nicolaou [Nic90] presents a scheme for implementing synchronization among related streams

originating at the same source by inserting synchronization points in each individual stream. His

work is closely related to our proposal as far as achieving temporal synchronization is concerned.

We allow an application to specify such points in terms of message boundaries in each individ-

ual
ow. However, there are important di�erences between our work and Nicolaou's work. First,

Nicolaou does not consider the problem of concurrency control in a collaborative system where

a group of participants cooperate on a shared, multimedia document. Instead, his work is only

concerned with transporting real-time voice and video in a digital network without disturbing the

temporal relationship speci�ed by a source. Second, we provide mechanisms to achieve both tem-

poral synchronization among related streams and concurrency control among multiple participants

19

5.1 Communication Architecture

In [LBH

+

90], Leung et al. propose a software architecture for workstations to support multimedia

conferencing. In this architecture, a single \multimedia virtual circuit (MVC)" is used to combine

tra�c from various media and multiplex it onto a single, network-layer virtual circuit with variable

bandwidth. The rationale for using this approach is to exploit the inherent, sequenced delivery over

a virtual circuit. Use of a single virtual circuit helps ensure that all packets arrive at the receiver

in the order in which they were sent.

However, this approach su�ers from the following drawbacks. First, the network layer abstrac-

tions supported by ATM or other high-speed networks use a \Type of service" (TOS) parameter

and a bandwidth speci�cation (amount of bandwidth that must be reserved) to guarantee perfor-

mance. Because video and voice have di�erent TOS characteristics and bandwidth requirements,

multiplexing them over a single network layer
ow may lead to ine�ciencies and will not allow the

MVC architecture to exploit medium-speci�c characteristics. For example, acceptable error rates

for voice (up to 1% provided an error burst is shorter than 4 milliseconds) and video (acceptable

error rate depends on the compression and coding techniques used) are entirely di�erent. Second,

the complexity of managing tra�c at both the sender and receiver is higher if di�erent coding

techniques are used for voice and video components of a MVC.

Our approach signi�cantly di�ers from theirs because we use separate network-level
ows to

carry tra�c belonging to di�erent media and enforce synchronization at the transport layer.

5.2 Speci�cation of Synchronization and Temporal Relationships

In the area of distributed systems, some researchers have designed group broadcast primitives

to maintain globally consistent order of delivery when messages are broadcast among a group of

processes. Examples of such primitives include an atomic broadcast [CM84, CASD84], a reliable

broadcast [SGS84], and a causal broadcast [BJ87, PBS89].

In the case of atomic broadcasts, consistent delivery is achieved either by making a group

member responsible to establish an order among broadcasts [CM84] or by delaying delivery of a

message for a period bounded by the granularity of clock synchronization and the intersite packet

delivery time [CASD84]. Overhead and complexity in each case makes these approaches unsuitable

for real-time communication where atomicity is not the primary objective and the network layer

18

speci�es the upcall procedure to be called when one of pre-de�ned status changes occurs on a

conversation. The arguments to the procname include conversation identi�er, an integer code

specifying the kind of change, relevant
ow identi�ers (if any), and the user data received. A

similar primitive is also provided for a
ow.

Such an asynchronous interface is useful for a multimedia application that must simultaneously

handle incoming tra�c and changes in status of multiple connections. For example, a shared image-

display system may specify a routine to be called for automatic updating of the screen when data

is received on a connection that only handles remote mouse and keyboard events.

4.3 Current Status

Currently, we have implemented MCP interface as a collection of library routines on top of the XTP

kernel implementation on Sparcstations. The prototype has served two purposes. First, it forced us

to specify the protocol completely and helped us uncover some design bugs. Second, we have used

the prototype to build a distributed multimedia window-based application involving voice and text

(keystroke and mouse events)
ows. The tra�c over the
ows is simulated using bursty sources

of tra�c that model packet-voice tra�c and the interactive sessions. To verify the performance

advantages of MCP, we have also built the same applications using TCP (Transmission Control

Protocol) as the transport protocol where application layer exercises token-based control and causal

delivery. The latter version not only performs slowly, but also demonstrates the di�culties in

achieving coordination and temporal synchronization at the application layer. We will include the

results of our performance evaluation in the �nal version of this paper.

We are now moving the MCP implementation into the Unix kernel and plan to integrate it with

the Unix socket interface for use with both XTP and Co-IP. Work is also in progress in extending

Suite [Dew90] to build PolySchmues.

5 Related Work

Our work is related to current research in two main areas: communication architecture and speci-

�cation of synchronization and temporal relationships.

17

4.2.4 Token Management

MCP also provides service primitives for replicating, distributing, transferring and deleting a token.

An application can create multiple copies of a token by using the primitive

replicate_token(<token>, <# copies>) and distribute a replicated token using

distribute_token(<token>, <# participants>, <list of participants>).The MCP provider

permits token distribution only if appropriate number of copies of the speci�ed token exist locally.

Sometimes, it may be necessary to divide a discussion group (a multipoint
ow) into smaller,

independent discussion groups. In such a case, controlling token for the
ow must be explicitly

transferred to each group so that each group has its own concurrency control. The service primitive

transfer_token(<token>, <# participants>, <list of participants>) must be used for

this purpose.

Finally, a copy of the tokenmay be destroyed at a site using the primitive delete_token(<token>).

However, the original controlling token for a
ow always remains in existence and is only destroyed

when the
ow is terminated.

4.2.5 Other Features

An interesting feature of MCP is the use of an out-of-band signaling channel for exchanging control

information to manage a
ow or a conversation. Because the transmission and delivery of data over

a multipoint
ow is controlled by transfer of tokens and relevant control information, processing

of normal data is complicated if one uses \in-band signaling" as in traditional transport protocols.

Under in-band signaling, control information related to management of a
ow is inserted in a

data stream. Also, additional control information must be inserted in user data to enforce causal

relationship among
ows in a conversation. To facilitate real-time protocol processing and to

simplify processing of user data, we separate the control information
ow from normal data transfer

using a separate signaling channel.

Another interesting feature is an upcall-based [Cla85] user interface to allow asynchronous,

event-triggered actions. Under such an interface, an MCP user can specify an action to be taken

on receipt of data over a
ow or in case of an event such as a
ow joining or leaving a connection.

The service primitive conv_status(<status change type>, <procname>)

16

The init_flow primitive only creates a
ow at all participating sites. Each participant must

explicitly invoke the primitive accept_flow(<flow name>) before receiving and sending any tra�c

over the
ow. accept_flow returns a
ow identi�er and (optionally) a token if the creator has

requested distribution of the token to that participant. Flow termination is achieved by each

participant using a terminate_flow primitive.

4.2.3 Conversation Management

The service primitive init_conv(<# flows>, <list of flow identifiers>) creates a conver-

sation. The list of constituent
ows may be empty as
ows can be added to a conversation later.

Init_conv is symmetric and requires all the participants to issue the primitive init_conv before

a conversation can be used. The primitive init_conv returns a conversation identi�er to the re-

questing participant and is used in subsequent conversation-speci�c primitives. The tokens from

constituent
ows are implicitly transferred to the conversation at each holding site and are then

managed as part of a conversation.

The primitives join_conv(<conv identifier>, <flow id>) and

leave_conv(<conv identifier>, <flow id>) are used for adding and removing a
ow to and

from a conversation.

Any participant may issue the primitive join_conv; the local conversation provider adds the

requested
ow to the conversation and forwards that request to its peers at other participating

sites. The local conversation provider will also start exchanging control information with its peers

to enforce temporal synchronization for messages sent over the newly added
ow and other con-

stituent
ows. However, at other peer sites, the local participant must explicitly issue the primitive

join_conv before temporal synchronization is enforced for outgoing messages over the requested

ow. This restriction is necessary to avoid confusion resulting from delayed delivery of earlier
ow

tra�c at some sites.

Likewise, the primitive leave_conv simply results in removal of the requested
ow from the

conversation at that site. The local conversation provider informs its peers about the change. Each

participant must explicitly issue the primitive leave_conv at each site before outgoing tra�c over

the requested
ow is not considered subject to temporal synchronization.

15

(eXpress Transfer Protocol) is a lightweight, transfer

2

layer protocol being developed by a group of

researchers and developers at Protocol Engines Incorporated (PEI) [Che88, Che87, Che89]. XTP

o�ers many services, including real-time datagrams, reliable multicast data transfer, and e�cient

bulk data transfer. It allows an application to specify the kind of error control needed and uses

rate control to maintain delivery rates suitable for real-time applications.

Our MCP design is based on XTP

3

. MCP extends the services provided by XTP to provide the

conversation abstraction, multipoint
ows, and token management. In the following, we describe

the services provided by MCP. Our discussion omits the details of protocol headers, addressing

structure, and values of various parameters to keep the exposition clear and relevant.

4.2.1 MCP Services

MCP provides three kinds of services, namely,
ow management, conversation management, and

token management. A MCP provider resides at each site and interacts with its peers residing at

other sites to coordinate management of
ows and conversations. Applications interact with a

MCP provider through a set of service primitives.

4.2.2 Flow Management

Under
ow management, MCP provides service primitives for
ow creation,
ow termination, and

primitives for sending and receiving messages. An application establishes a
ow by using the service

call

init_flow(<flow name>, <flow parameters>, <# participants>, <list of participants>)

The init_flow returns a
ow identi�er (a flow_id) and a token for coordinating data transfer.

The user-speci�ed (that is agreed upon in advance) \
ow name" (in addition to the
ow identi�er)

serves to identify a
ow at each participating site. One or more participants are speci�ed using

a transport-level multicast or unicast address, and
ow parameters include performance (delay

constraints and bandwidth requirements) and error control speci�cations.

2

The transfer layer is formed by combining the functionalities of both network and transport layers of the ISO

OSI model into a single layer.

3

The author is a research a�liate of PEI and has access to the XTP kernel sources.

14

Network Layer (IP, XTP, Co-IP, McHIP)

Multi-Media Applications

Multi-Flow Conversation Protocol (MCP)

Link Layer (802.3, Token ring, SMDS, FDDI)

Figure 2: Protocol layering in the proposed communication architecture.

semantics, and UDP supports an unreliable datagram facility. Subtle interactions of bu�er man-

agement and multiplexing at the session layer with those functions at the transport level and

duplication of some functions (
ow control, sequencing and preserving message boundaries, and

bu�er management) at the session layer led to poor performance.

Some real-time applications such as video are sensitive to the jitter (greater delay in delivery

of tra�c than the maximum allowed for a connection) caused by processing delays arising due

to interactions of bu�er management, layering, and scheduling operations. Tennenhouse [Ten89]

makes a strong case for avoiding unnecessary multiplexing in additional layers of the protocol stack

to reduce such delays.

Based on these observations and our initial experience, we decided to design a new transport

level protocol.

4.2 Protocol Details

Figure 2 shows the proposed communication architecture based on layering in the DARPA Inter-

net protocol suite. At the network layer, we expect to have both connectionless service (IP) as

well as a connection-oriented service such as that provided by Co-IP (Connection-oriented inter-

net protocol) [Top89, LT90], McHIP (Multipoint Connection-oriented High Performance Internet

Protocol) [MP89], or XTP [Che88]. Both Co-IP and McHIP support establishment of connections

with speci�c performance requirements such as bounds on delay and required data rates. Both the

protocols are still under development and their implementations are not yet available to us. XTP

13

Proposition 1. If individual
ows meet
ow delay constraints, MCP ensures delivery of mes-

sages in �-causal (

�

!) order.

The parameter � acts essentially as a tuning knob; when � is zero a conversation only guar-

antees causal synchronization among messages originating from the same sender and when � goes

to in�nity you get strict causality similar to causal broadcast in ISIS. The latter is useful when

dealing with non real-time (\batch") multimedia applications such as mail or a slide presentation

playback where a remote server is sending data from a multimedia storage.

Note that the idea of using and preserving context information is not completely new as it

has been used before in distributed systems [PBS89, BJ87]. However, we have extended it in two

directions. First, we use the context information across tra�c over multiple
ows in a conversation

rather than treating it separately within each individual
ow. Second, the notion of causality

provided is weaker and bound by real-time tra�c delivery constraints as demanded by multimedia

distributed applications.

4 Multi-Flow Conversation Protocol

4.1 Why do we need a new transport protocol?

An important research question is what layer of protocol stack can provide the necessary semantics

of multi-
ow conversations and token-based concurrency control. Both the conversation abstrac-

tion and token-based concurrency control are end-to-end, abstract functions not found in existing

transport protocols such as TCP [Com88], UDP [Pos80], ISO/TP4 [Tan88], and VMTP [Che86].

These features also involve one or more transport level connections spanning multiple sites. Thus,

it seems appropriate to incorporate them in a session layer protocol.

We �rst explored this possibility by designing a session layer protocol. However, we uncovered

some signi�cant performance and implementation problems [Li90].

Implementation of conversations as well as the token-based mechanism over traditional pro-

tocols requires one to implement additional
ow control, a scheduling mechanism for tra�c over

constituent connections, session-level bu�ering, and sequencing at each participating site. Also, the

session layer protocol must hide the incompatible semantics of the underlying transport protocols.

For example, TCP provides a reliable byte stream, VMTP supports a request-response message

12

The purpose of the context is to provide enough information so that receiving sites will deliver

message M

1

in a causal order with respect to messages received at S

1

before sending M

1

.

3. The context information included with each message is a pair <sender_id, mesg_id> for

each constituent
ow of the conversation. That is, the context includes the sequence number

of the last message received at S

1

from each participant before sending M

1

. Thus, the amount

of context is bounded by the number of conversation participants.

However, not all the context information may be current and useful if last message from some

participant was not received in recent past. In particular, causality interval implies that a

message M received earlier at S

1

provides no context for M

1

if M was received at time less

than T �� if T is the time at which M

1

is sent by S

1

. Thus, the amount of context preserved

with a message is also bounded by the causality interval �.

4. When a receiver R

1

at another site receives messageM

1

, it checks to see whether or not it has

already received all the messages speci�ed in the context of M

1

. If not, it bu�ers M

1

waiting

for the missing messages to be delivered and notes the timestamp T

m1

for M

1

. It may have

to bu�er additional messages in M

1

's context if they also arrive out of order. However, if the

missing messages are not received within the interval � after T

m1

, the conversation provider

delivers M

1

to its application and deallocates bu�ers.

5. As R

1

receives messages in a conversation from di�erent sites, the context information in each

of those messages de�nes a �-causal order among some or all of those messages in terms of

in what order should they be delivered to the application. In fact, R

1

constructs a directed

graph whose nodes are messages and an edge fromM

1

toM

2

speci�es thatM

1

must \precede"

M

2

. However, structure of the graph and edges in it are deleted as the clock ticks and some

context becomes irrelevant.

Moreover, the context graphs constructed at two di�erent sites R

1

and R

2

involving the same

set of messages and conversation can be di�erent depending on when and in what order each

of those messages actually gets delivered.

Given De�nition 3 and the algorithm stated above for message delivery, it is easy to see the

following result.

11

�

1

= maxf�

i

; i = 1; : : :ng �

2

= minf�

i

; i = 1; : : :ng

Considering
ows over di�erent media including voice, video, image, and text, we �nd that �

2

is

usually larger than �

1

by a factor of at least two.

Based on these two constraints, we de�ne the causality interval � for each conversation. � is

computed as:

�

1

< � < �

2

and de�nes a window of causality for each message sent in a conversation. For example, if a message

M

4

is sent by a participant after receiving messages M

1

through M

3

over some constituent
ows,

M

4

must normally be received by applications at all other sites in the correct causal order (i.e.,

after M

1

through M

3

are received). However, �-causality speci�es that a conversation provider at

each receiving site maintain such causal relationship between M

4

and each of its predecessors only

if messages related to M

4

are received within interval �.

It must be noted that our notion of real-time assumes large-grain clock synchronization among

the participants. This is not an unrealistic assumption as fault-tolerant clock synchronization al-

gorithms exist that achieve such synchronization [Lam84]. In TCP/IP Internet, Network Time

Protocol (NTP) achieves global clock synchronization across the country within a few millisec-

onds [Mil90, Mil89]. Thus a small upper bound � (typically 2 or 3 milliseconds) on di�erence

between clocks at any two participants can be assumed.

The value of � is chosen based on the following pragmatic considerations. First, � must at

least be equal to �

1

+ �. Second, to allow some
exibility in the presence of
uctuations in network

conditions and delays, MCP provider may choose value of � to be higher than �

1

+ � without

compromising individual
ow semantics as long as � remains much below the upper bound �

2

.

The interval � is used as follows:

1. Each conversation is assigned a network-wide unique conversation identi�er conv_id; each

message in a conversation is timestamped and is assigned a conversation-wide unique mesg_id

1

.

2. Whenever a participant at a site S

1

sends a message M

1

over one of the constituent
ows of

a conversation, the conversation provider at that site includes some context for that message.

1

A conversation-wide unique message identi�er is easily constructed by appending a local sequence number to the

address of the participating site.

10

establish a voice connection among all the users. It will also establish a reliable data
ow among

the users that will transfer all mouse and keyboard events. It will then create a conversation and

add the two
ows to the conversation to achieve the desired semantics of \free-for-all" coordina-

tion. However, if it decides to enforce a stronger level of coordination as in the \
oor-control"

coordination, it need only restrict the possession of tokens to a single participant at any time.

The composition of a conversation is not �xed at the time of its creation;
ows may be added

to and removed from a conversation at any time. Thus, an application can exert dynamic control

over the degree of synchronization needed by simply excluding certain
ows from the conversation

whenever necessary. For example, consider a user in a collaborative, software engineering environ-

ment annotating parts of a text when another user is simply commenting on or discussing a design

document. In such a scenario, not all the
ows involved need to be part of the same conversation

all the time.

3.3 Delta-Causality

In the following, we describe the notion of Delta-Causality in detail.

We assume that each
ow has performance characteristics associated with it that are speci�ed

when a
ow is established. Apart from the bandwidth and error rate parameters [CY89, DKK90],

there are two delay constraints associated with each
ow F

i

:

Desired delay �

i

is the maximum end-to-end delay that the
ow F

i

can tolerate before quality

of service deteriorates. Example of such a constraint is 100 milliseconds (ms) delay bound in

packet voice.

Loss delay �

i

is an upper limit on end-to-end delay for
ow tra�c beyond which the delivered

tra�c delivery is useless. For example, packet voice or video have better-never-than-late

delivery semantics and specify such a constraint. Packet voice tra�c with desired delay

constraint of 100 ms has a loss delay constraint in the range of 200 to 300 ms. Among voice,

video, and image tra�c, packet voice has probably the most stringent loss delay limit. For

other
ows, loss delay constraint is typically a larger multiple of desired delay constraint.

Consider a conversation C consisting of
ows F

1

: : :F

i

: : :F

n

with respective delay constraints

�

i

's and �

i

's. We compute two conversation-wide desired delay and loss delay constraints:

9

2. m

2

is sent over some
ow f

i

by sender S

1

after receiving m

1

over some
ow f

j

, and both

f

i

; f

j

2 F

Thus, De�nition 2 de�nes a partial, causal order among all the messages exchanged over a

conversation. However, enforcement of such a causal order among messages sent over a conversation

has performance penalties (including delaying message delivery for a long time) associated with

it and such penalties are not acceptable to real-time
ows involving voice or video that have

better-never-than-late semantics. For instance, real-time voice
ows must deliver tra�c within 100

milliseconds before quality of service degrades and tra�c delivered after about 300 milliseconds is

useless for voice interaction.

In fact, delivery of certain messages might be meaningless if delayed beyond the delay constraint

of the
ow involved. Therefore, we have decided to discard strictly causal ordering in favor of a

notion of causality called �-causality that takes into account the delay constraints associated with

constituent
ows.

Informally, �-causality works as follows. Given a set of
ows and a set of participants in a

conversation, message delivery to an application at a recipient site is causally ordered provided an

upper bound � on end-to-end delay is not violated for any of the related messages. For instance,

in the example described above, the receiver S

3

will see the proper causal order provided M

1

and

M

2

were generated and sent in such a way that their arrival at S

3

is not delayed beyond an upper

bound �. � is a function of individual delay constraints for
ows Flow

1

and Flow

2

.

To take delay constraints into account, we de�ne a �-Causal order as:

De�nition 3. m

1

�

! m

2

if :

1. m

1

! m

2

and

2. m

1

is sent at most � time units before m

2

We defer details on relationship between delay constraints of individual
ows and parameter �

until next section. We �nd the weaker notion of delta-causality su�cient because applications that

need to enforce a stronger causal relationship among messages from multiple senders can achieve

that e�ect using the token-based control across all the
ows in a conversation.

Thus, a multi-user, shared window based collaborative application will create a voice
ow to

8

or more (two-party or multipoint)
ows. An application will typically �rst create individual
ows

with appropriate performance requirements [Fer90]. It will then create a conversation that includes

one or more related
ows to achieve the necessary temporal synchronization.

If a conversation C (see Figure 1) consists of two
ows, Flow

1

and Flow

2

, and if a sender S

1

sends a message (some data) over Flow

2

and then sends another message (some data) over Flow

1

,

all the participants should receive those messages in the same sequence.

Formally, let F denote the set of
ows in a conversation C and let M denote the set of messages

sent over the constituent
ows in F .

De�nition 1. We de�ne � (\precedes") to be a transitive relation on M, such that m

1

� m

2

if and only if the following conditions hold:

1. both m

1

and m

2

are sent by the same sender, and

2. both m

1

and m

2

are sent over
ows f

i

and f

j

(both f

i

; f

j

2 F), and

3. the message m

1

is sent before m

2

is sent.

Ideally, each participant in a conversation must receive messages in the partial order de�ned by the

relation �.

This notion of causality is limited and does not necessarily provide causally ordered delivery of

messages originating from multiple senders. For example, if a sender S

1

sends a message M

1

over

a constituent
ow Flow

1

and a sender S

2

sends a message M

2

over another constituent
ow Flow

2

after receiving M

1

, some other participant (say, a receiver at site S

3

) may not receive messages in

the causal sequence (M

1

followed by M

2

).

Stricter notions of causality enforced in transaction-based systems such as an atomic broad-

cast [CM84, CASD84, SGS84] or a causal broadcast [Lam78, BJ87, PBS89] achieve a global ordering

of messages necessary for this purpose.

Following [Lam78], we de�ne a causal dependency relation \!" among messages in a conversa-

tion as: :

De�nition 2. m

1

! m

2

if and only if one the following two conditions hold:

1. m

1

� m

2

, or

7

Conversation C
Flow2

Flow1

S3

S2

S1

Figure 1: Conversation C consists of two
ows Flow

1

and Flow

2

that span three participants S

1

,

S

2

, and S

3

.

environment interact in two phases. In the �rst phase, a speaker addresses a group of listeners

with no interruptions. The application may switch to the second phase any time. In the

second phase, a group of questioners may address questions to the speaker.

The token-based method can accommodate both types of interaction. Only the speaker may

hold the token during the �rst phase, whereas the token may be replicated and distributed

to the questioners during the second phase. Replicated tokens will be destroyed at the end

of the second phase.

Discussion Groups Some environments such as real-time conferencing systems [CF89, SG85]

envisage a session breaking up into smaller discussion groups and thus holding multiple,

concurrent conversations. In such a system, initially only a single token would be created and

passed on from one speaker to another to achieve strict \
oor-based" control. However, the

token can be replicated and transferred to each discussion group, and each group may then

use the token independently as it sees �t.

3.2 Multi-
ow Conversations

To allow temporal synchronization among tra�c over multiple
ows, we introduce a communication

abstraction called a multi-
ow conversation. A conversation is a logical entity and consists of one

6

3 Communication Abstractions

To facilitate coordination among participants of a multipoint
ow and to achieve temporal synchro-

nization among tra�c over multiple
ows, we propose two methods of coordination: token-based

control and an abstraction called multi-
ow conversation. Together, these two methods yield a

exible and adaptable coordination mechanism as discussed below.

3.1 Token-based Concurrency Control

When a multipoint
ow is created, a token is assigned to that
ow that acts as an authorization

for data transmission. A sender must hold a token to be able to send tra�c over a
ow. However,

token management primitives are provided so that other participants can obtain transmission priv-

ileges. Thus, applications are free to transfer, replicate, and delete tokens to govern the degree of

concurrency control needed.

This type of concurrency control is entirely di�erent from the token-based synchronization

provided by some session-layer protocols [Tan88, Sun90]. The latter method of synchronization

allows session participants to insert resynchronization points (or checkpoints) in the data stream

to allow rollback and to reduce the amount of retransmitted data in case of a transmission error.

We use the token mechanism to allow several levels of concurrency control. The following control

hierarchy is derived based on schemes proposed in the literature [SFB

+

87, AEHL88, FKLC88,

EGR89, CF89, SG85, Lan86, Lan90, Swi88, Str87].

Floor Control As described earlier, real-time teleconferencing systems employ such a strict con-

currency control. A single token enforces such control over a multipoint connection. The

token will be passed on from one speaker to another whenever the
oor is transferred. To

obtain control of the
oor, a participant must explicitly request transfer of the token by

invoking a token management primitive.

Brainstorming This form of coordination is common in shared window systems [SFB

+

87, AEHL88,

FKLC88] where there is no concurrency control for simultaneous actions by multiple users.

For such applications, the token is replicated and distributed to all the participants.

Chalkboard Interaction Applications based on the \chalkboard" metaphor in a cooperative

5

2.1 Degree Of Coordination

The amount of coordination needed varies in both inter- and intra-
ow cases depending on the

application.

In the case of a shared window package [SFB

+

87, AEHL88, FKLC88], a single window is dis-

played on the display screens of multiple users, and each user gets an identical image of the window.

Shared window systems provide no concurrency control for simultaneous actions by multiple users.

Instead, they allow users to constantly see the actions of other users who are responsible for man-

ually ensuring that there are no con
icts.

At the other extreme lie teleconferencing systems where interference is avoided by strict control

based on the notion of a \
oor", where only the current \speaker" that has the
oor is allowed to

\speak" (or transmit data) at any time.

Strict coordination is also necessary among separate
ows when a group of users are pointing

at a shared text window and discussing parts of text over a voice channel.

Both the extremes have their limitations. On one hand, lack of any concurrency control puts

additional responsibility on application designers to resolve con
icts. On the other hand, strict

oor-based control does not allow applications to exploit inherent concurrency and may sometimes

unnecessarily increase latency due to the waiting involved. In addition, there is a continuum

between these two extremes where varying degree of coordination may be necessary or desirable

for present and future applications.

For instance, users in a conferencing system may sometimes decide to enter smaller discussion

groups that may hold multiple, concurrent conversations [SFB

+

87]. A \brainstorming" session

based on the \chalkboard" metaphor [SFB

+

87] in a cooperative environment is another example

where less stringent coordination is appropriate. In the case of a multimedia-based group editor,

strict coordination is not necessary when a user is browsing through a part of text while another

is annotating a di�erent part of the text.

Thus, the degree of coordination needed varies from time to time within an application and

across di�erent applications.

4

an application to specify event-triggered actions to facilitate fast processing of periodic data and

changes to the status of multipoint connections.

The remainder of this paper describes design and implementation of MCP and its associated

abstractions. Section 2 discusses the need for coordination and temporal synchronization. Section 3

describes token-based control, conversation abstraction, and the notion of �-causality. Section 4 de-

scribes the Multi-
ow Conversation Protocol and its ongoing prototype implementation. Section 5

discusses the related work in this area and Section 6 provides a summary of our work.

2 Coordination and Temporal Synchronization Problem

In the following, we describe the problem of coordination and temporal synchronization.

Hereafter, we will refer to a single or a multipoint connection as a
ow. We assume that the

network layer provides a
ow abstraction [CY89] that may have performance guarantees associated

with it to provide predictable performance needed by real-time voice or video channels [Fer90].

The question of how to satisfy the real-time performance requirements of a
ow is not the focus of

discussion here; that question has been addressed by many researchers [FV90, Zha89, Tur86, Yav89].

Instead, the focus here is on research issues in using and combining such
ows to build multimedia,

collaborative, distributed applications. For the design of multimedia systems such as PolySchmues,

one must address two aspects of coordination, namely, what sort of coordination is necessary and

how much control must be exercised at the communication substrate. In our view, two kinds of

coordination are necessary:

Intra-Flow Coordination Given a
ow spanning a group of users, one must consider the problem

of concurrency control when more than one user may be transmitting data at the same time. A

common example of such coordination is avoiding interruptions and crosstalk in a multipoint

voice channel. Such coordination is also necessary when communication involves a shared

text document or an image.

Inter-Flow Coordination A multimedia application may need to synchronize tra�c over mul-

tiple
ows, each carrying tra�c from a di�erent medium (text, voice, video, or image). A

collaborative, software development group e�ort described earlier is an example of such an

interaction.

3

synchronization among related data streams. We are currently investigating such abstractions in

our research and are using them in building PolySchmues, a distributed interactive environment

for collaboration using multiple media.

We have designed a new transport protocol calledMulti-Flow Conversation Protocol (MCP) [Yav90]

that provides two communication abstractions:

First, MCP includes a token-based mechanism for concurrency control among participants of

a multipoint connection. A token serves as an authorization for transmission in a multipoint

connection. However, applications are free to exchange, replicate, and delete tokens to exercise

exible governance over the amount of concurrency control desired. The degree of concurrency

control may vary from a strict \
oor-based" control (useful in conventional teleconferencing) at

one extreme to no control (as in existing shared window systems [SFB

+

87, AEHL88, FKLC88]) at

the other extreme.

Second, MCP provides a communication abstraction called a multi-
ow conversation to allow

temporal synchronization among tra�c over multiple, independent streams. A conversation is a

logical unit of interaction and may consist of one or more (two-party or multipoint) connections.

We enforce temporal synchronization in delivery of messages sent over participant connections.

For instance, consider a conversation consisting of a multipoint voice connection V

1

and a data

(text) connection T

2

. If a sender S

1

sends a message over T

2

followed by a message over V

1

, all the

conversation participants will receive those messages in the same sequence.

In addition, a conversation provides limited causal ordering among messages sent by two or

more sources. For instance, if S

2

sends a message over a constituent connection after \hearing"

from S

1

, all other participants must \see" messages from S

1

and S

2

in the proper causal order.

Unlike the total global ordering of events de�ned by Lamport [Lam78], causal ordering in

a conversation is restricted based on a notion of delay-constrained or �-causality as explained

later. Because tra�c delivery over constituent connections (such as voice or video) may have delay

constraints, causal ordering is guaranteed only over an interval � determined by delay constraints

of constituent connections.

Additional features of MCP include an out-of-band signaling channel for exchanging control

information and an asynchronous interface to applications. Out-of-band signaling facilitates real-

time protocol processing and simpli�es processing of user data. The asynchronous interface allows

2

FKLC88]. In such an environment, a group of designers located at di�erent sites collaborate on a

design document (or a program) using interactive tools to edit and test parts of the design under

development. Interaction may involve a group editor (based on shared windows), an image display

(that displays resulting design), and a voice channel that allows them to view, discuss, and edit the

suggestions made by each other.

We concentrate on the issues of coordination and synchronization of tra�c over related data

streams. These issues arise in following forms:

� A single multipoint communication involving multiple users on multiple, remote sites requires

causal synchronization so that all participants \see" all the communication events in the same

or \correct" order. For instance, a voice conference channel that spans multiple participants

requires such a synchronization.

Apart from voice/video interactions, both communication and application-level software must

also enforce some degree of concurrency control when a group of users may simultaneously

view and update shared text or image data to maintain consistency.

� The communication software must allow an application to coordinate multiple information

channels that carry tra�c from multiple media such as text, voice, video (or image). The

collaborative, software development group e�ort described earlier is an example of such an

interaction. For such an application, the communication software must allow related streams

to be grouped together and recognize the order and sequencing of tra�c sent over them. For

example, when a participant scrolls through an image browser (or a shared editor window)

and says, \look at the middle of the display", the statement should be heard at the same

time (or just after) the scrolling is completed. Such temporal relationships must be captured

in the delivery of tra�c over related streams. Another example of such a synchronization is

\lip-synching" when voice and video are transmitted over separate connections in a digital

network.

Existing transport and/or session layer protocols lack communication abstractions that provide

the necessary semantics for coordination and temporal synchronization in multimedia applications.

Our aim is to identify appropriate communication abstractions that must be designed and sup-

ported so that an application can specify and achieve necessary concurrency control and temporal

1

MCP: A Protocol For Coordination and Temporal Synchronization

in Multimedia Collaborative Applications

�

Raj Yavatkar

Department of Computer Science

University of Kentucky, Lexington, KY 40506-0027

November 11, 1991

Abstract

With the advent of high-speed networks, it is possible to build multimedia distributed appli-

cations that involve a geographically dispersed group of users. Development of such applications

requires support for coordination and temporal synchronization of tra�c over related streams.

For instance, one must consider the problem of coordination in a multipoint communication

where more than one sender may transmit data at the same time. Also, a multimedia application

may need to synchronize tra�c over multiple connections, each carrying tra�c from a di�erent

medium. When a participant scrolls through an image browser (or a shared editor window)

and says, \look at the middle of the display", the statement should be heard at the same time

(or just after) the scrolling is completed. Such temporal relationships must be captured in the

delivery of tra�c over related
ows.

Existing transport and/or session layer protocols do not explicitly include communication

abstractions that provide the necessary semantics for coordination and temporal synchroniza-

tion. We present a new transport protocol calledMulti-Flow Conversation Protocol (MCP) that

provides two communication abstractions. First, MCP provides a token-based mechanism for

concurrency control among participants of a multipoint connection. Second, MCP includes a

novel communication abstraction called a multi-
ow conversation to allow temporal synchro-

nization among tra�c over multiple, independent streams. A conversation may consist of one

or more (two-party or multipoint) connections, and MCP enforces temporal synchronization in

delivery of tra�c over participant connections. Delivery of tra�c in a conversation is based on a

notion of causality called �-causality that takes into account the delay constraints associated

with real-time tra�c.

We describe MCP and its associated abstractions in detail and describe an implementation

of MCP based on the eXpress Transfer Protocol (XTP).

1 Introduction

With the advent of high-speed networks [DKK90, Lud89], it is now possible to build multimedia

distributed applications that involve a geographically dispersed group of users. An example of such

an application is a collaborative, software engineering environment [EGR89, SFB

+

87, AEHL88,

�

This research was supported in part by the National Science Foundation and by the Center for Advanced Man-

ufacturing and Industrial Automation of the University of Kentucky.

