
M.I.T. Media Laboratory Perceptual Computing Technical Report No. 255, Nov. 1993Appeared: SPIE Storage and Retrieval Image and Video Databases II, No. 2185, Feb 6-10, 1994, San JosePhotobook: Content-Based Manipulation of Image DatabasesA. Pentland, R. W. Picard, S. Sclaro�Perceptual Computing Section, The Media LaboratoryMassachusetts Institute of Technologyfsandy,picard,stang@media.mit.eduJanuary 12, 1995AbstractWe describe the Photobook system, which is a set of interactive tools for browsing and searching imagesand image sequences. These query tools di�er from those used in standard image databases in that theymake direct use of the image content rather than relying on text annotations. Direct search on imagecontent is made possible by use of semantics-preserving image compression, which reduces images to a smallset of perceptually-signi�cant coe�cients. We describe three types of Photobook descriptions in detail: onethat allows search based on appearance, one that uses 2-D shape, and a third that allows search basedon textural properties. These image content descriptions can be combined with each other and with text-based descriptions to provide a sophisticated browsing and search capability. In this paper we demonstratePhotobook on databases containing images of people, video keyframes, hand tools, �sh, texture swatches,and 3-D medical data.1 Introduction: The ProblemDigital imagery, whether single frames or extended sequences, is becoming an important component ofcomputer and telecommunication usage. However the increasing use of imagery is causing severe problems,because the technology for organizing and searching images based on their content is still in its infancy. Thisis especially clear in the development of multimedia applications, where the cost and di�culty of searchingand editing image data is often the single largest cost factor.Currently the standard approach to searching image and video is to create text annotations that describe1



the content of the image, and then enter these textual annotations into a standard database. The imagesthemselves are not really part of the database; they are only referenced by text strings or pointers.The problem with this approach is that the old saying \a picture is worth 1000 words" is an understate-ment. In most images there are literally hundreds of objects that could be referenced, and each imagedobject has a long list of attributes. Even worse, spatial relationships are important in understanding imagecontent, so that complete annotation of an image with n objects each with m attributes requires O(n2m2)database entries. And if we must also consider relations among images, then the problem quickly becomesintractable.In today's image database systems these annotations must be entered by hand with great tedium andprohibitive cost. The result is that users enter only the minimumnumber of annotations required to accom-plish their current task. Consequently, the resulting labelings are not rich enough or consistent enough fordi�erent sorts of queries, so that image databases are typically re-annotated for each problem.1.1 Semantic Indexing of Image ContentThe problem is that to make a user- and purpose-independent image database we must annotate everythingin the images and all the relations between them. Text databases avoid this problem by using strings ofcharacters (e.g., words) that are a consistent encoding of the database's semantic content. Thus questionsabout the database's semantic content can be answered by simply comparing sets of text strings. Becausethis search is e�cient, users can search for their answers at query time rather than having to pre-annotateeverything.To accomplish the same thing for image databases, we must be able to e�ciently compare the imagesthemselves, to see if they have the same (or more generally, similar) semantic content. There is, of course,a tradeo� between how much work you do at input time and how much you do at query time. For instance,one could try to precompute the answers to all possible queries, so that no search would be required.Alternatively, one could search the raw images themselves, repeating all of the low-level image processingtasks for each query.For image databases there is a compelling argument for employing a pre-purposive \iconic" level of rep-resentation. It does not make sense to try to precompute a \general purpose," completely symbolic repre-sentation of image content, because the number of possibly-interesting geometric relations is combinatoriallyexplosive. Consequently, the output of our precomputation must be image-like data structures where thegeometric relationships remain implicit. On the other hand, it does make sense to precompute as much asis possible, because low-level image operations are so expensive.These precomputed image primitives must play a role similar to that of letters and words in a databasequery sentence. The user can use them to describe \interesting" or \signi�cant" visual events, and then letthe computer search for instances of similar events. For instance, the user should be able to select a video2



clip of a lush waterfall, and be able to ask for other video sequences in which more of the same \stu�"occurs. The computer would then examine the pre-computed decomposition of the waterfall sequence, andcharacterize it in terms of texture-like primitives such as spatial and temporal energy. It could then searchthe precomputed decomposition of other video clips to �nd places where there is a similar distribution ofprimitives.Alternatively, the user might circle a \thing" like a person's face, and ask the computer to track thatperson within the video clip, or ask the computer to �nd other images where the same person appears. Inthis case the computer would characterize the person's 2-D image appearance in terms of primitives suchas edge geometry and the distribution of normalized intensity, and then either track this con�guration offeatures over time or search other images for similarly-arranged conjunctions of the same features.These two types of semantic indexing | using texture-like descriptions of \stu�" and using object-likedescriptions of \things" | constitute the two basic types of search operation in our system. These twotypes of description seem to be fundamentally di�erent in human vision [1], and correspond roughly to thedistinction between mass nouns and count nouns in language. Note that both types of image query canoperate on the same image primitives (e.g., the energy in di�erent band-pass �lters) but they di�er in howthey group these primitives for comparison. The \stu�" comparison method pools the primitives withoutregard to detailed local geometry, while the \things" method preserves local geometry.2 Semantics-Preserving Image CompressionThe ability to search at query-time for instances of the same (or similar) image events depends on twoconditions:� There must be a similarity metric for comparing objects or image properties (e.g., shape, texture,color, object relationships, etc.) that matches human judgments of similarity. This is not to say thatthe computation must somehow mimic the human visual system; but rather that computer and humanjudgments of similarity must be generally correlated. Without this, the images the computer �ndswill not be those desired by the human user.� The search must be e�cient enough to be interactive. A search that requires minutes per image issimply not useful in a database with millions of images. Furthermore, interactive search speed makesit possible for users to recursively re�ne a search by selecting examples from the currently retrievedimages and using these to initiate a new select-sort-display cycle. Thus users can iterate a search toquickly \zero in on" what they are looking for.Consequently, we believe that the key to solving the image database problem is semantics-preserving imagecompression: compact representations that preserve essential image similarities. This concept is related to3



(a) (b) (c)Fig. 1. Images reconstructed from coe�cients used for database search: (a) 30 appearance coe�cients, (b) 100 shapecoe�cients, (c) 60 texture coe�cientssome of the \semantic bandwidth compression" ideas put forth in the context of image compression [30][31] [46] [40]. Image coding has utilized semantics primarily through e�orts to compute a compact imagerepresentation by exploiting knowledge about the content of the image. A simple example of semanticbandwidth compression is coding the people in a scene using a model specialized for people, and then usinga di�erent model to code the background.In the image database application, compression is no longer the singular goal. Instead, it is importantthat the coding representation 1) be \perceptually complete" and 2) be \semantically meaningful." The �rstcriterion will typically require a measure of perceptual similarity. Measures of similarity on the coe�cientsof the coded representation should correlate with human judgments of similarity on the original images.The de�nition of \semantically meaningful" is that the representation gives the user direct access to theparts of the image content that are important for their application. That is, it should be easy to map thecoe�cients that represent the image to \control knobs" that the user �nds important. For instance, if theuser wishes to search among faces, it should be easy to provide control knobs that allow selection of facialexpressions or selection of features such as moustaches or glasses. If the user wishes to search among textures,then it should be easy to select features such as periodicity, orientation, or roughness.Having a semantics-preserving image compression method allows you to quickly search through a largenumber of images because the representations are compact. It also allows you to �nd those images that haveperceptually similar content by simply comparing the coe�cients of the compressed image code. Thus in ourview the image database problem requires development of semantics-preserving image compression methods.2.1 Comparison with Other ApproachesIn recent years there has been a growing interest in the image database problem [2, 25]. The �rst proposedsolutions were intended for engineering drawings, and typically assumed that hand preprocessing had fully4



\predigested" them into meaningful parts and functional features [8, 9, 28, 29]. We feel that this requirementis acceptable for things like CAD drawings, but not for general imagery.More recently, researchers have proposed a variety of image indexing methods, based on shape [10, 23, 24,26, 27, 33], color [4, 50, 22], or combinations of such indices [35, 13]. The general approach is to calculatesome approximately invariant statistic, like a color histogram or invariants of shape moments, and use thatto stratify or partition the image database. Such partitioning allows users to limit the search space whenlooking for a particular image, and has proven to be quite useful for small image databases [35, 13].The di�erence between these methods and ours is that they emphasize computing a discriminant that canreject many false matches, whereas ours can encode the image data to the accuracy required to retain\all"of its perceptually salient aspects. Generally speaking, the coe�cients these earlier e�orts have producedare not su�ciently meaningful to reconstruct the perceptually salient features of the image. For instance,one cannot reconstruct an image region from its moment invariants or its color histogram. In contrast, themodels we present use coe�cients which allow reconstruction. Figure 1 shows three reconstructions usingappearance, shape, and texture descriptions of image content.In our view the problem with using invariants or discriminants is that signi�cant semantic information isirretrievably lost. For instance, do we really want our database to think that apples, Ferrarris, and tonguesare \the same" just because they have the same color histogram? Discriminants give a way to limit searchspace, but do not answer \looks like" questions except within constrained data sets. In contrast, whenthe coe�cients provide a perceptually complete representation of the image information, then things thedatabase thinks are \the same" actually look the same.Another important consequence of representational completeness is that we can ask a wide range ofquestions about the image, rather than being limited to only a few prede�ned questions. For instance, itrequires only a few matrix multiplies per image to calculate indices such as color histograms or momentinvariants from our coe�cients. The point is that if you start with a relatively complete representation, thenyou are not limited in the types of questions you can ask; whereas if you start by calculating discriminants,then you are limited to queries about those particular measures only.2.2 Semantics-preserving image compressionHow can we design \semantics-preserving image compression" algorithms? Our general idea is to �rsttransform portions of the image into a canonical coordinate system that preserves perceptual similarities,and then to use a lossy compression method to extract and code the most important parts of that represen-tation. By careful choice of transform and coding methods this approach can produce an optimally-compact,semantics-preserving code suitable for image database operations.Note that because di�erent parts of the image have di�erent characteristics, we must use a variety ofrepresentations, each tuned for a speci�c type of image content. This is the same requirement as for semantic5



bandwidth compression. In the examples below we will describe representations for faces, textures, handtools, �sh, video keyframes and human brain ventricles.The necessity for multiple content-speci�c representations means that we must also have an e�cient,automatic method for developing \basis functions" speci�c to object or texture classes. For representingobject classes, which require preservation of detailed geometric relations, we use an approach derived from theKarhunen-Lo�eve transform. The Karhunen-Lo�eve transform is known to provide an optimally-compact linearbasis (with respect to RMS error) for a given class of signal. For characterization of texture classes, we use anapproach based on the Wold decomposition. This transform separates \structured" and \random" texturecomponents, allowing extremely e�cient encoding of textured regions while preserving their perceptualqualities.2.3 Finding instances of modelsTo employ the strategy of semantics-preserving image compression for image database search, we must beable to determine which image data belongs to each of our di�erent content-classes as we are preprocessing thedata for entry into the database. While this remains a di�cult problem in general, and must often be solvedusing heuristic methods, we have developed two useful solutions that appear to be fairly general-purpose.The �rst solution is to use motion and color to pull out foreground objects. We have found that thissort of �gure-ground segmentation can be done reliably and e�ciently by use of clustering in conjunctionwith optical 
ow [11, 55] and/or color di�erence information [12]. This provides us with good \cut-outs" offoreground objects, as is illustrated in Figure 2. We can then analyze the shape, appearance, motion, andtexture of these foreground objects, inserting their descriptions into our database. Similarly, we can analyzethe appearance, motion, and texture of the background, and insert this information into our database.The computation of foreground/background motion can also be used to provide a qualitative character-ization of camera and object motion within a video clip, e.g, pan left, zoom in, or move stage right. Thisallows us to select keyframes from video clips. Keyframes are images that are \characteristic" or \typical"of the video clip's content. For instance, good keyframes typically occur at the beginning and end of clips, inthe middle of no-motion segments, or in the middle of segments where the camera is tracking a foregroundobject. That is, good keyframes can be found at zero-crossings and extrema of camera and object motion.By using camera and foreground/background motion to automatically select keyframes, we can reducethe problem of searching video data to the much less costly processing of a few individual images. Editorsand artists have long known that the semantic content of video can be accurately summarized by a seriesof appropriately-selected keyframes that have been assembled into a storyboard. Keyframe extraction,therefore, is an important example of semantics-preserving video compression.Our second method for �nding instances of models is to recast the problem as one of detection rather thansegmentation. The basic idea is to represent speci�c classes of interest by using prototype(s) and a small set6



(a) (b)Fig. 2. Using motion and color information, we can separate foreground objects from background. This �gure showsa system that extracts the outlines of people in view; a geometric analysis of the outline is then used to label positionof head, hands, and feet. This system runs at 20 frames/second without special hardware, and has been tested onmore than 2,000 people [12].of parametric variations or deformations. Such a representation can be made to be narrowly \tuned" for itstarget; it can very e�ciently describe the signals it was trained for, but will be very bad at describing othersignals. Thus if a particular content-speci�c representation accurately describes some portion of an image,then it is very likely to be an appropriate representation of that image data.This allows us to detect instances of models by asking how well they can describe each part of the image.Although not a real-time process on current workstations, this computation is su�ciently e�cient to beincorporated in the image preprocessing step. We �rst used this approach for �nding faces [53], and havenow applied it to �nding a wide variety of \things" (including eyes, cars, roads, etc. [34]). Multiple modelscan also compete in interactive-time to �nd \stu�" (including sky, trees, buildings, etc. [44]).Finally, it should be remarked that this framework for searching images is based on 2-D matching ofappearance, rather than matching of 3-D properties. There are two reasons for adopting this approach. The�rst is that a 2-D matching approach can be trained directly from image data; it does not require a 3-Dmodel. The second reason is that the 2-D approach has lower computational complexity than 3-D methods.Breuel [6], for instance, has proven that only O(��2) 2-D aspects are needed to cover the entire 3-D viewingsphere with a 2-D matching error bounded by � radians (0 < � < 1). For instance, a 2-D, template-basedobject recognition algorithm may require only thirty templates to cover all possible viewing directions. Thislower computational complexity is an important consideration for image database applications.3 PhotobookPhotobook is a computer system that allows the user to browse large image databases quickly and e�-ciently, using both text annotation information in an AI database and by having the computer search the7



images directly based on their content [38, 16, 42]. This allows people to search in a 
exible and intuitivemanner, using semantic categories and analogies, e.g., \show me images with text annotations similar tothose of this image but shot in Boston," or visual similarities, e.g., \show me images that have the samegeneral appearance as this one."Interactive image browsing is accomplished using a Motif interface. This interface allows the user to �rstselect the category of images they wish to examine; e.g., pictures of white males over 40 years of age, orimages of mechanic's tools, or cloth samples for curtains. This subset selection is accomplished by searchingtext annotations using an object-oriented, memory-based AI database called Framer [18, 19]. Photobookthen presents the user with the �rst screenful of these images (see Figure 3); the rest of the images can beviewed by \paging" through them one screen at a time.Users most frequently employ Photobook by selecting one (or several) of the currently-displayed images,and asking Photobook to sort the entire set of images in terms of their similarity to the selected image (orset of images). 1 Photobook then re-presents the images to the user, now sorted by similarity to the selectedimages. The select-sort-redisplay cycle typically takes less than one second. When searching for a particularitem, users quickly scan the newly-displayed images, and initiate a new select-sort-redisplay cycle every twoor three seconds.Photobook can have many di�erent types of image descriptions available to it. In this paper we willdiscuss appearance-speci�c descriptions (\Appearance Photobook") applied to face and keyframe databases,texture descriptions (\Texture Photobook") applied to texture-swatch and keyframe databases, and shapedescriptions (\Shape Photobook") applied to hand-tool and �sh databases. Each of these descriptions canbe made rotation and scale invariant, although for many applications this is not desirable.Photobook can also handle combinations of these descriptors, e.g., shape and appearance, which we willillustrate using 3-D data of human brain ventricles. It can also handle complex functions of text annotations,via functionality of the Framer knowledge representation language [18, 19].Obvious applications for \Appearance Photobook" as applied to face databases include customs, security,and criminal investigation. A di�erent application would be a dating service where individuals could browsea database of prospective partners based on their looks as well as biographical data.Applications of \Shape Photobook" include searching catalogs of consumer goods such as hand tools.Another economically important application is searching inventories of mechanical parts, or botanical and1By selecting several example images the user is providing information about the distribution of visual parame-ters that constitute the class of interest. Photobook uses multiple examples to make an improved estimate of theparameter's probability distribution function (PDF). We have experimented with allowing the user to provide bothpositive and negative examples, and with characterization of arbitrary PDFs [34, 44], although the current interfaceonly supports updating the parameter's mean from multiple positive examples.8



biological catalogs.Similarly, a natural application of \Texture Photobook" as applied to texture patches is in the design anddecorating industries, where the buyer/designer can browse a large database of fabrics, tiles, wallcoverings,and other textiles, while incorporating factors such as material composition and manufacturing costs in thesearch.4 Appearance PhotobookTo e�ciently measure similarity in appearance within an object class we must �rst determine which fea-tures are most e�ective at describing the images of those objects. The standard linear method for extractingsuch information about a set of images is known as the Karhunen-Lo�eve transform (KLT). This transformuses the eigenvectors of the covariance matrix of the set of image features, i.e., it uses the principal com-ponents of the distribution of image features. These eigenvectors can be thought of as a set of parametricvariations from the mean or prototypical appearance. These eigenvectors together characterize all of thevariations between images of the object and the object's prototypical appearance. Normally only a feweigenvectors with the largest eigenvalues are employed, as these will account for the vast majority of thevariance between object images.In this paper we will illustrate this technique using databases of face images and video keyframes. We willalso illustrate how the technique can be combined with shape descriptions to search and sort 3-D medicaldata.4.1 Eigenimage representationsThe general approach taken to produce an appearance description is as follows. Input images are �rstpreprocessed to normalize them for position, scale, orientation and similar nonlinear e�ects. Eigenvectorsof the normalized image covariance are then calculated for a set of training images and subregions of thetraining images, resulting in eigenimage representations both for the whole object and its subfeatures (e.g.,the whole face as well as eyes, nose, and mouth).Note that the input data may be grey-level or color images (as in the following examples), or they maybe images of extracted edges or extracted texture measurements. Voxel and 1-D data have also been used.Regardless of the type of dimensionality of the input data, Appearance Photobook represents the input datain terms of its principal variations from the mean or prototypical appearance of the input classIn the case were we do not know the class of the imaged object (e.g., is it a forward view of a face, a sideview of face, or a car), we can automatically determine which appearance model is most appropriate for anew image by measuring how well each model describes the image data. This is accomplished by determiningwhich set of eigenimages provides the best encoding of the image; the same approach is also used to detectoccurrences of these models in the image. The details of this procedure are described in references [39, 34]and discussed in Section 7.2. 9



Fig. 3. The face at the upper left was selected randomly; the remainder of the faces are the 20 most-similar facesfrom among the entire 7; 562 images. Similarity decreases left to right, top to bottom. Note ability to match peopledespite wide variations in expression, etc. 10



Note that because this approach is view-based, we must have separate models if we want to describeappearance from di�erent points of view. For instance, to represent facial appearance as a function of out-of-plane rotation, we separately train eigenimage representations at rotations of �90, �45 and 0 degrees.4.1.1 Building EigenrepresentationsLet an image region I(x; y) be a two-dimensional N by N array of intensity values, or a vector of dimensionN2. An ensemble of such regions, then, maps to a collection of points in a space of size N2. Images ofcompact objects and features (e.g., faces, cars, eyes) for a given viewing geometry will not be randomlydistributed in this huge image space and thus can be described by a relatively low-dimensional subspace.This subspace can be approximated by use of the Karhunen-Lo�eve expansion, e.g., the eigenvectors of theautocorrelation matrix. For face imagery we refer to this subspace as \face space" and the eigenvectors as\eigenfaces" or \eigenfeatures" [53, 39].Let the training set of images be �1;�2;�3; :::�M. The average of the set is de�ned by 	 = 1M PMn=1 �n.Each training image di�ers from the average by the vector �i = �i � 	. This set of large vectors is thensubject to the Karhunen-Lo�eve expansion, to produce the unique set of M orthonormal vectors un and theirassociated eigenvalues �k that optimally describe the distribution of the data in an RMS error sense. Thevectors uk and scalars �k are the eigenvectors and eigenvalues, respectively, of the covariance matrixC = 1M PMn=1�n�Tn= 1MAAT (1)where the matrix A = [ �1 �2 ::: �M ]. The mean and �rst few eigenvectors for human faces are shown inFigure 4; linear combinations of these eigenimages span the space of human face images at coarse resolutionand with �xed position, orientation, and scale. Note that the �rst three eigenvectors primarily describevariations due to illumination and surface albedo.Note that the matrix C is N2 by N2, so directly determining the N2 eigenvectors and eigenvalues isdi�cult for typical image sizes. We need a computationally feasible method to �nd these eigenvectors.Fortunately we can determine the eigenvectors by �rst solving a much smallerM by M matrix problem, andtaking linear combinations of the resulting vectors [46, 53].Code for this calculation, together with technical reports providing additional detail, is available byanonymous FTP from whitechapel.media.mit.edu.A new image region (�) is transformed into its eigenimage representation (e.g., projected into \face space")by a simple operation, !k = uTk (�� 	) for k = 1; : : : ;M 0 < M . The vector 
T = [!1 !2 : : : !M 0 ] describesthe input image in terms of the orthogonal eigenfeature basis set; thus, the vector 
T is an encoding ofthe image in terms of the eigenimage basis. An example encoding of a face is shown in Figure 1(a). The11



mean1. 2. 3.4. 5. 6.Fig. 4. The mean and �rst few eigenvectors computed from a large database of faces of men, women, and children ofall races. Note that illumination e�ects appear primarily in the subspace spanned by eigenvectors one through three.similarity between two images i and j is computed by comparing their within-eigenimage-subspace distance�2ij = k(
i � 
j)k2.4.2 Database experimentsMost image database applications require comparison with a large number of possible images. Thisis particularly true for face images; for instance, dating services, casting agencies, and police stations allcommonly have collections of more than 1,000 images.Our �rst test of Appearance Photobook, therefore, was on the Media Laboratory database of 7; 562 imagesof approximately 3; 000 people. The images were collected in a small booth at a Boston photography show,and include men, women, and children ranging between (approximately) 4 to 75 years of age. A widerange of ethnic and racial types were included in a proportion similar to that of the general Boston areapopulation. Head position was controlled by asking people to take their own picture when they were linedup with the camera. Two LEDs placed at the bottom of holes adjacent to the camera allowed them to judgetheir alignment; when they could see both LEDs then they were correctly aligned. Each image was thenannotated (by hand) as to sex, race, approximate age, facial expression, and other salient features. Whetheror not two images were of the same person was also annotated by hand. Almost every person has at leasttwo images in the database; several people have many images with varying expression, headwear, facial hair,12



etc.Figure 3(a) shows a typical result of a similarity search on this database. The face at the upper left wasselected by the user; the remainder of the faces are the next most-similar faces from among the entire 7; 562Media Laboratory database. Similarity decreases left to right, top to bottom. As can be seen, the imagemost similar to the selected image is another image of the same person. Note that at the lower right isstill another image of this same person...but wearing sunglasses. Photobook's performance on this databasewas evaluated on a random sample of 200 images, and recognition accuracy was found to be 95%, whileveri�cation accuracy was above 99% [39].Figure 3(b) illustrates Photobook's performance on a second face database, assembled by the ArmyResearch Laboratory at Ft. Belvoir, which contains substantial variations in scale, position, and head orien-tation. The face at the upper left was selected by the user; the remainder of the faces are the most-similarfaces from the 575 frontal views in this database. Note that the �rst four images (in the top row) are all ofthe same person. On this database Photobook achieved a recognition accuracy of 99.4%, and a veri�cationaccuracy of 100%. Section 7 describes in more detail how the problems of scale, position, and orientationwere addressed.In both cases the entire searching and sorting operation takes less than one second on a standard SunSparcstation, because each face is described using only a very small number of eigenvector coe�cients. Ofparticular interest is Appearance Photobook's ability to �nd the same person despite wide variations inexpression, hairstyle, image size, and eyewear.5 Shape PhotobookTo compare the shape similarities between two objects, we must be able to describe the deformations(di�erences) that relate them. Sometimes di�erences between objects of the same type are due to changes inviewing geometry, e.g., foreshortening or distance change. Other times they are due to physical deformation:one object is a [stretched, bent, tapered, dented, ...] version of the other. For instance, most biologicalobjects are 
exible and articulated.To describe these deformations, therefore, it is reasonable to qualitatively model the physics by which realobjects deform, and then to use that information to guide the matching process. So rather than using imagecorrelations as the basis for a semantics-preserving code, we model the physical \interconnectededness" ofthe shape. In other words, we build a shape model made of a virtual material that �lls the space betweennearby features, e.g., edges, corners, or high-curvature points. In engineering, this interconnectededness isstandardly computed by use of the �nite element method (FEM). This method produces a positive de�nitesymmetric matrix, called the sti�ness matrix, which describes how each point on the object is connected toevery other point. This sti�ness matrix plays the same role in Shape Photobook that the covariance matrixdid in Appearance Photobook. 13



Consequently, we derive our semantics-preserving code for shape in a manner similar to that used forappearance: we calculate the eigenvectors of the sti�ness matrix, and use these to encode deformationsrelative to some base or average shape. Once the eigenvector shape description has been computed, we cancompare shapes simply by looking at the amplitudes of the eigenvectors, as was done in the AppearancePhotobook example described above. Perhaps the major di�erence in how the shape and appearance codesare used in Photobook is the preprocessing to align the shapes. This preprocessing is developed in detail inreferences [47, 48] and discussed in Section 7.2.5.1 Eigenmode RepresentationsIn Shape Photobook an object's shape representation is based on the eigenvectors of its physical model. Inphysical systems these eigenvectors are called the modes of the system; they describe the intrinsic symmetriesof the object in a unique and canonical manner.Before obtaining these eigenvectors, we �rst build a physical model for the shape using the �nite elementmethod. Interpolation functions are developed that allow continuous material properties, such as mass andsti�ness, to be integrated across the region of interest. In [47] we introduced a new �nite element formulationthat uses Gaussian basis functions as FEM interpolants; this allows us to use the data itself to de�ne thedeformable object, by building sti�ness and mass matrices that use the positions of image feature points asthe �nite element nodes. For an in-depth description of this formulation, readers are directed to [37, 47, 48].To compare two FEM shape representations, we deform one elastic shape model to align it with the other.This requires solving the dynamic equilibrium equation:M�U+KU = R; (2)where R is the load vector whose entries are the spring forces pulling the �rst shape into alignment with thesecond, and where M and K are the element mass and sti�ness matrices, respectively.This system of equations can be decoupled by posing the equations in a basis de�ned by the M-orthogonalized eigenvectors of K. These eigenvectors and values are the solution (�i; !2i ) to the followinggeneralized eigenvalue problem: K�i = !2iM�i: (3)The vector �i is called the ith eigenmode shape vector and !i is the corresponding frequency of vibration.The ith shape vector describes how each node is displaced by the ith eigenmode.The shape vectors �i are M-orthonormal, this means that�TK� = 
2 and �TM� = I: (4)where the �i are columns in the transform �, and !2i are the elements of the diagonal matrix 
2.14



The generalized coordinate transform � is then used to transform between nodal point displacements Uand decoupled eigenmode displacements ~U, where U = �~U. We can now rewrite Eq. 2 in terms of thesegeneralized or eigenmode displacements, obtaining a decoupled system of equations:�~U+
2 ~U = �TR; (5)allowing for closed-form solution to equilibrium problems such as shape �tting [37].Code for these operations (for the case of simple 3-D objects only), together with technical reportsproviding additional detail, is available by anonymous FTP from whitechapel.media.mit.edu.Whenever a new object is entered into Shape Photobook, the �rst step is to compute its M, K, and� matrices. To obtain an eigenmode description of an object relative to some base or average object, wemust determine correspondence between the features of the two objects. Normally this is done once when anew object is entered into Shape Photobook, and the correspondences stored. This process is called modalmatching, and is discussed in references [47, 48]. Given these correspondences, we can then recover theeigenmode deformations ~U that deform the matched points on one object to their corresponding positionson a prototype object.This is done by noting that the nodal displacements U that align corresponding features on both shapescan be written: ui = x1;i � x2;i; (6)where x1;i is the ith node on the �rst shape and x2;i is its matching node on the second shape. These nodaldisplacements can then be transformed into eigenmode amplitudes by the relation ~U = �TU.Such a set of eigenmode amplitudes provides a robust, canonical description of shape in terms of defor-mations applied to the original elastic body. This allows them to be used directly for object recognition andcomparison [37], exactly as the eigenimage amplitudes were used in Appearance Photobook. As in that casewe need use only a few coe�cients to obtain an accurate encoding of the shape; discarding high-frequencyeigenmodes also tends to make our comparisons robust to noise and local shape variations.Alternatively | since the underlying model is a physical one | we can compute and compare the amountof deformation energy needed to align an object, and use this as a similarity measure. If the modal dis-placements or strain energy required to align two feature sets is relatively small, then the objects are verysimilar.Strain energy is the amount of deformation needed to warp one shape into another; thus strain energy isa useful measure of object similarity. The strain associated with the ith eigenmode is simply:Emodei = 12 ~u2i!i2: (7)Since each eigenmode's strain energy is scaled by its frequency of vibration, there is an inherent penaltyfor deformations that occur in the higher-frequency eigenmodes. In our experiments, we have used strain15



energy for most of our object comparisons, since it has a convenient physical meaning. Strain energy alsohas the advantage that it places greater weight on the low-frequency eigenmodes, reducing the in
uence ofthe noise-susceptible higher-frequency eigenmodes.Finally, we note that the �rst three eigenmodes will be translation and rotation, and the next few modeswhole-body shear, compression, etc. Thus if it is desirable to make object comparisons rotation, position,and/or scale independent, we can accomplish this by ignoring displacements in the low-order or rigid bodyeigenmodes.Instead of looking at the strain energy needed to align the two shapes, it may be desirable to directlycompare mode amplitudes needed to align a third, prototype object C with each of the two objects. Inthis case, we �rst compute two modal descriptions ~Ua and ~Ub that align the prototype with each candidateobject. We then utilize our strain-energy distance metric to order the objects based on their similarity tothat prototype.As will be demonstrated in the next section, we can use distance to prototypes to de�ne a low-dimensionalspace for e�cient shape comparison. In such a scenario, a few prototypes are selected to span the variationof shape in each category. Then, during a precomputation phase, every shape in the database is thenaligned with each of the prototypes using modal matching, and the resulting modal strain energy is storedas an n-tuple, where n is the number of prototypes. Each shape in the database now has a coordinate inthis \strain-energy-from-prototypes" space; shapes can be e�ciently compared in terms of their Euclideandistance in this space.5.2 Database experimentsThe �rst experiment is with a database of 60 images of 12 objects and non-rigid deformations of thoseobjects, and includes variations in perspective, scale, and lighting. Silhouettes were �rst extracted andthinned from each tool image, and then the strongest corresponding contour points were found. Eigenmodeamplitudes for the �rst 22 modes were recovered and used to compare each prototype to all the other toolsusing the strain energy similarity measure.Figure 5 illustrates two typical searches using Shape Photobook on this database; the user selected theimage at the upper left, and Photobook returned the other images sorted by similarity from left to right,top to bottom. The similarity statistic appears below each match. Search accuracy over this database is100%, that is, if there were n hammers in the database and the user searched using a hammer shape as theprototype, then the n most-similar objects found were all hammers. Note that the matching is orientationand scale invariant modulo limits imposed by pixel resolution.The fact that the similarity measure produced by the system corresponds to functionally-similar shapes isimportant. It allows us to recognize the most similar wrench or hammer from among a group of tools, evenif there is no tool that is an exact match. Moreover, if for some reason the most-similar tool can not be used,16



we can then �nd the next-most-similar tool, and the next, and so on. We can �nd (in order of similarity)all the tools that are likely to be from the same category.The second example shows two similarity searches using a database of 74 tropical �sh images. Again, theuser selected the image at the upper left, and Photobook returned the most similar images sorted left toright, top to bottom. Euclidean distance in strain-space was again used as the similarity metric. Matchingis orientation and scale invariant modulo limits imposed by pixel resolution.In Figure 6(a), a search was initiated to �nd �sh shapes similar to the banded butter
y�sh that appearsat the upper left. As can be seen, the system correctly retrieved the �sh shapes that were closest to thebanded butter
y�sh shape (e.g., all the other butter
y�sh). In Figure 6(b), a search was initiated to �nd�sh shapes similar to the trumpet�sh that appears at the upper left. Again, the system correctly retrievedthe �sh shapes that were closest to the trumpet�sh.As with the hand-tool database, we again see that the system's measure of shape similarity allows us to�nd objectively-similar objects. It allows us to recognize that two objects are similar even if there is noexact match. This has in turn allowed us to �nd all the �sh that are likely to be from the same taxonomiccategory.6 Texture PhotobookThe Appearance Photobook and Shape Photobook employ similarity metrics that are related to RMS dif-ferences, either in the normalized image appearance (as illustrated by the face databases) or in the geometryof image features (as illustrated by the hand tools and �sh databases). While RMS error seems to providea useful metric for perceptual similarity based on shape or appearance, it is inappropriate for measuringtexture similarity. We require a texture model whose parameters are close when two images are perceptu-ally close, and which are not close otherwise. The model is successful if distances between its parameterscorrespond to ordering images by their perceptual similarity. It is also desirable that the model parameterscorrespond to semantic attributes of patterns, such as periodicity or randomness.Picard and Liu [43] have therefore developed a new model based on the Wold decomposition for regularstationary stochastic processes in 2-D images [15]. If an image is assumed to be a homogeneous 2-D discreterandom �eld, then the 2-D Wold-like decomposition is a sum of three mutually orthogonal components: aharmonic �eld, a generalized-evanescent �eld, and a purely-indeterministic �eld. These three componentsare illustrated in Figure 7 by three textures, each of which is dominated by one of these components.Qualitatively, these components appear as periodicity, directionality, and randomness, respectively.The motivation for choosing a Wold-based model, in addition to its signi�cance in random �eld theory, isits interesting relationship to independent psychophysical �ndings of perceptual similarity. Noteworthy is arecent study by Rao and Lohse where humans grouped patterns according to perceived similarity [45]. Thethree orthogonal dimensions identi�ed were repetitiveness, directionality, and complexity. These dimensions17



(a)
(b)Fig. 5. In these two examples the user selected the image at the upper left, and Photobook returned the remainingimages sorted by shape similarity. Images were preprocessed by extracting silhouettes from each tool image and�nding corresponding contour points. The eigenmode strain energy was then used to measure similarity between thedi�erent hand tools; this statistic is shown below each image.18



(a) (b)Fig. 6. Ordering �sh shapes in terms of shape similarity to a user-selected �sh image. In these two examples the userselected the image at the upper left; Photobook returned the remaining images sorted by similarity from left to right,top to bottom. As can be seen, the system correctly retrieved �sh shapes that appear to be in the same taxonomicclass.
19



Fig. 7. The Wold decomposition transforms textures into three orthogonal components: harmonic, evanescent, andrandom. The upper three textures illustrate these components; below each texture is shown its DFT magnitude.might be considered the perceptual equivalents of the harmonic, evanescent, and indeterministic components,respectively, in the Wold decomposition.The Wold decomposition produces compact texture descriptions that preserve most of a texture's percep-tual attributes [49]. The result of a reconstruction from Wold components is shown in Figure 1(c).6.1 Wold-based representationsThe Wold decomposition is based on a 1938 theorem by H. Wold for 1-D random processes. This theoremstates that any random process can be written as the sum of two processes, one that can be predicted bya linear �lter with zero mean-squared error (deterministic), and one which is regular [52] (indeterministic).Moreover, these two processes will be mutually orthogonal. In terms of the 1-D spectrum, these two processescorrespond to the discrete part of the spectrum and the continuous part of the spectrum, respectively.In two dimensions, it is possible to have discontinuity in both dimensions, continuity in one dimensionwith discontinuity in the other, or continuity in both dimensions. Corresponding essentially to these threecases, the Wold theorem for a 2-D random �eld, fy(m;n)g, (m;n) 2 Z2 yields a decomposition into threeprocesses [20]. This decomposition can be formulated as a linear prediction problem. Let ŷ(m;n) be theprojection of y(m;n) on the Hilbert space spanned by all the samples in the \past" of (m;n) where theimplied spatial ordering is with respect to the non-symmetric half-plane (NSHP) neighborhood [15]. If theinnovation �eld fu(m;n) = y(m;n)� ŷ(m;n)g vanishes, then fy(m;n)g is deterministic; else, it is regular. Iffy(m;n)g is regular and spans the same Hilbert space as its innovation �eld then it is purely-indeterministic.20



(a)
(b)Fig. 8. Comparison of ordering over the 1008 images in the Brodatz texture database via parameters of Wold model.In each display, the images are ordered by their distances from the image in the upper left. The coe�cients in (a)employ the random and directional components. In (b) only the harmonic components are used, with invarianceapplied for di�erent rotations. 21



However, it may be regular and still not be purely-indeterministic.In 2-D, a family of NSHP neighborhoods can be de�ned whose boundary lines are of rational slopes.With respect to each neighborhood in the family, there may exist in the corresponding deterministic �eld,an evanescent sub�eld due to the presence of nonzero row-to-row innovations within that deterministic�eld. The linear combination of all these evanescent �elds is called a generalized evanescent �eld. When adeterministic �eld has no such innovations, then it is half-plane deterministic.For any regular homogeneous random �eld fy(m;n)g, the 2-D Wold decomposition can be uniquelyrepresented by: y(m;n) = p(m;n) + g(m;n) +w(m;n); (8)where �eld fp(m;n)g is half-plane deterministic, �eld fg(m;n)g is generalized evanescent, and �eld fw(m;n)gis purely-indeterministic, Fields fp(m;n)g, fg(m;n)g, and fw(m;n)g are mutually orthogonal. Field fw(m;n)ghas a moving average representation, which we will exploit in the Wold-based model for Photobook:w(m;n) = X(0;0)�(k;l)a(k; l)u(m� k; n� l); (9)where P(0;0)�(k;l) a2(k; l) <1 and a(0; 0) = 1. The innovation �eld fu(m;n)g is white.In estimating the Wold features, we also exploit the dual relationship between the 2-DWold decompositionand the decomposition of the spectral distribution function of a regular homogeneous random �eld. Let usde�ne all spectral functions on the rectangular region �� 12 ; 12 � � �� 12 ; 12 � : Let Fy(�; �) be the spectraldistribution function of a regular homogeneous random �eld fy(m;n)g, and let F sy (�; �) denote the singularpart of Fy(�; �). Let Fp(�; �), Fg(�; �), and Fw(�; �) be the spectral distribution functions of the half-planedeterministic, the generalized evanescent, and the purely indeterministic components of fy(m;n)g. Thenfunction Fy(�; �) can be uniquely represented asFy(�; �) = Fp(�; �) + Fg(�; �) + Fw(�; �): (10)where function Fp(�; �) + Fg(�; �) = F sy (�; �) is singular with respect to the Lebesgue measure and functionFw(�; �) is absolutely continuous.Thus the decomposition of the deterministic and the purely-indeterministic components of a regular homo-geneous random �eld can be achieved by separating the singular and the absolutely continuous componentsof the spectral distribution of the random �eld. This is known as Lebesgue decomposition. The orthogonalityof the two components allows them to be treated separately.The model implementation used in Photobook consists of three stages. The �rst stage determines ifthere is strong periodic (or nearly periodic) structure. Although highly structured textures may contain allthree Wold components, their harmonic components are usually prominent and provide good features for22



comparison. Not only are harmonics more salient than the other components (agreeing with Rao and Lohse'sordering of the three texture dimensions) but they are also the quickest to compute.The second stage of processing occurs for periodic images on the peaks of their Fourier transform magni-tudes. An algorithm is implemented to �rst estimate the location of large local maxima and then extract thefundamental frequencies of all harmonic peaks. The direction of the harmonic frequency that is closest to theorigin is regarded as the main orientation angle of the texture. Rotations and other transformations may beapplied to the peaks to align them into a sort of \generic view" image before further comparison. Applyingthe transformations to the peaks incurs markedly less computation than applying them to the entire image.The third stage of processing is applied when an image is not highly structural. This stage approximatesthe �nding of the two less salient dimensions identi�ed in the study of Rao and Lohse, the directional andcomplexity components. The number of dominant orientations is estimated via steerable �ltering and adecision process based on thresholding orientation histograms, as described in [41]. Only the textures whichpossess the same number of main orientations are subsequently compared by examining the Wold complexitycomponent. The complexity component is modeled by use of a multiscale simultaneous autoregressive (SAR)model, whose parameters are estimated using the process of Mao and Jain [32]. The SAR parameters ofdi�erent textures are compared using the Mahalanobis distance measure. These �nal stages of processing arethe most computationally costly part of the procedure, and can be omitted to result in substantial savingsif the previous stage indicates that the harmonic information is su�cient for a given task.Computer code implementing this proceedure, together with technical reports providing additional detail,is available by anonymous FTP from whitechapel.media.mit.edu.6.2 Database experimentsThe illustrations here are from experiments run on the Brodatz database, which consists of 1008 non-overlapping texture patches cropped from all 112 images of the Brodatz Album [7]. Each Brodatz textureprovides nine 128�128 subimages in 8-bit gray levels. This collection of natural textures exhibits large variety,including many inhomogeneous patterns not usually included in texture studies formed from small subsetsof the Brodatz collection. The database therefore provides a new challenge to traditionally homogeneousimage models.Figure 8 shows results of some experiments with the new Wold-based model. Figure 8 (a) illustrates asearch on a brick pattern, with the result that Photobook �nds all nine of the brick patterns in a databaseof 1008 image regions taken from the Brodatz textures. Note that the next most similar images are similarlystructured, with two predominant orientations. This result is typical; for this texture database the \mostsimilar" texture found was another subimage of the same Brodatz image 83% of the time, and 90% of thetime the \most similar" texture was of the same semantic category (e.g., both lace, although not from thesame Brodatz texture image). In (b) Photobook again �lls the �rst row with reptile-skin patterns, and the23



next most similar images have perceptually similar structure, despite rotations.7 Other Issues7.1 Combining and Developing ModelsWe have described three methods for compactly describing and searching image content. Two, appearanceand shape, are intended for comparing \things" (e.g., faces, cars, �sh, hand tools); the third, texture, isintended for comparing \stu�" (e.g., trees, clouds, cloth, grass). The examples presented above have beenselected to demonstrate both the possibility and the e�ectiveness of developing semantics-preserving imagecompression methods for image database search.However, we do not mean to suggest that these examples cover the range of possibilities. Rather, wesuggest that these tools be thought of as three general methods for developing compact, class-speci�c repre-sentations suitable for image database search. For any particular semantic class (e.g., cars, clouds, or crowds)we can train each of these three types of description (appearance, shape, and texture). This is accomplishedby collecting a set of training examples, and characterizing the mean and range of appearance, shape, ortexture parameters.For instance, we have built appearance models for 2-D images of eyes, hands, cars, 1-D sound signals,and 3-D MRI data. We have also built shape models for 2-D images of rabbits, hands, heads, heart X-rays,1-D sound signals, 3-D voxel data, and 3-D range data. We have built texture models of 2-D images such aspaintings, grass, clouds, city buildings and 1-D sound signals such as copier noise or applause.Nor do we mean to suggest that these techniques must be applied only to simple grey-level images. Forinstance, we have also applied each of these techniques to color images and edge images. The simplestmethod (illustrated below) is to consider the color and edge images as additional image data appendedto the grey-level data; for instance, to consider an n x n 24-bit color image as 3n x n 8-bit image data.This wider image is then subjected to correlation analysis, spectral decomposition, or shape analysis of theadditional regions.For instance, Figure 9 shows using an appearance description on color video keyframes. In this examplen x n 24-bit color video keyframes were extracted, and the eigenvectors of the correlation matrix of the 3n xn 8-bit data were obtained. These eigenimages therefore describe the general spatial and color layout of thekeyframe. In Figure 9 we see the results of a search among 365 keyframes for those similar to the one at theupper left; the appearance description Photobook used to conduct this search might be loosely translatedinto English as \�nd keyframes with a pink and red blob on the left with a beige background". Figure10 shows another color keyframe search; however, this time the keyframes are compared using the periodictexture components of the red, green, and blue channels. The texture description used for this search mightbe (very) loosely translated into English as \�nd keyframes with strong repeated verticals and horizontalsin all the color channels". 24



Fig. 9. An example of using appearance to sort keyframes from a video database; the sort is by general layout andcolor distribution.
Fig. 10. An examples of using texture to sort keyframes from a video database; sorting is by similarity of the periodiccomponents of texture in each of the RGB channels. 25



Fig. 11. Combining shape and appearance descriptions to search NMR data, from reference [36].Finally, we also do not mean to suggest that these techniques should be used in isolation, as in theprevious examples. All three methods can be used for any particular image, either separately, in a widerange of combinations, or in conjunction with text annotations.For instance, Figure 11 shows an example where 3-D voxel data of human ventricles was analyzed inPhotobook by combining an eigenmode shape description with an eigenimage appearance description. Inthis example the shape description was �rst used to normalize for the e�ects of overall head shape, and thenthe appearance description was used to compare ventricle shape. Using this shape-and-appearance approachallowed us to more accurately characterize subtle shape di�erences such as occur between Alzheimer's diseaseand normal pressure hydrocephalus disease [36].7.2 Detection and PreprocessingNo matter how well one can describe appearance, shape, and texture, there is still the question of �ndingthe things (or stu�) to be described. That is, where exactly is the face to be described? The bunch of trees?The �sh? In many real-world applications, these are the most di�cult issues of all.26



Fortunately in image and video database applications it is often acceptable to accomplish this step eitherby hand, or heuristically. For instance, for the tool and �sh databases, the background was su�ciently simplethat grey-level thresholding yielded a good outline of the shape. The point-to-point correspondences weredetermined automatically, as described in references [47, 48].We are also fortunate that, at least in the case of video, it is relatively easy to use motion and colorchanges to help �nd things and stu� of interest. This was illustrated by Figure 2, and is discussed more fullyin references [11, 55, 12].However, we can also draw on our framework of semantics-preserving compression to address this problem.Recall that our basic approach for representing speci�c classes of interest is to use a prototype(s) andthe smallest possible set of parametric variations or deformations. Such a representation is very good atdescribing the signals it was trained on, but is quite bad at describing other signals. This fact allows usto recast the problem of �nding instances of models as one of detection, that is, if a model can accuratelydescribe some portion of an image, then it is very likely to be an appropriate representation of that imagedata.This concept is easiest to illustrate in the case of appearance descriptions. For an appearance description,we use example images to calculate a mean image 	 and eigenimages uk. These de�ne a small parametricspace which contains most of the variation among the training images. Each image is described by a fewcoe�cients !k, which are the image's projection onto the eigenimages. The range of possible appearancesthat exist within the training images is e�ciently and accurately characterized by the distribution of the !k,together with the mean and eigenimages.Thus if an image has most of its energy within the subspace spanned by the eigenimages, and its projectioncoe�cients are typical of the training images, then it is visually similar to the training images. This allowsus to detect instances of models by searching for parts of the image that can be e�ciently encoded by themodel. The search process can be made surprisingly e�cient by appropriately arranging the order in whichwe calculate the !k. We have used this approach both for �nding a wide variety of \things" (including eyes,cars, roads, etc. [34]) and \stu�" (including sky, trees, buildings, etc. [44]). For further detail see references[34, 44]. These and related references are available by anonymous FTP from whitechapel.media.mit.edu.7.3 Labels, Knowledge Representation, and ContextSo what does all this have to do with semantics? It seems clear that detecting \a face that looks like John"or �nding \a patch of burlap-like texture" has some semantic content, especially if humans agree that theimage really does look like John or burlap. However, this still seems very di�erent from the image contentthat a photographer or a knowledge representation researcher would talk about.The di�erence stems from our choice to avoid addressing the unsolved problems of meaning and context.We instead are working to derive word-like primitives from images, rather than whole sentences. We make27



this choice because we have observed that people are nonlinear time-varying systems whose behavior dependson unknown internal states.For instance, a human labeling a scene may label the same scene di�erently at di�erent times, and expectdi�erent regions to be recognized as similar when his or her goals change. Human judgment of imagesimilarity can be perceptual or semantic, and can be in
uenced by culture, context, and personal preference.Given these in
uences, it seems to us premature to look for some universal measure of similarity withinpictures. In restricted applications, e.g. inspection for a mark of a particular size and shape, similaritymatches can be made quite precisely. But in general picture retrieval, at least for the immediate future,there are important reasons to keep the human in the system, i.e., to make semi-automated tools.We therefore assume that there is neither one model that will be optimal for recognizing and annotatingpictures, nor is there a unique non-overlapping arrangement of labels that users will want to use to annotatea picture. This departs from the traditional computer vision viewpoint of using one model to segment animage into non-overlapping regions before assigning labels to the regions. Instead, we assume that a usermight assign multiple labels to possibly overlapping regions.This �ts nicely with the detection paradigm for �nding instances of models. When we �nd an imageregion that looks like clouds, we annotate it as such. But it might also be shaped like a �sh, or a subregionof it might look like a face. There is nothing wrong with multiple labels in our framework. To be useful inthe real world, we must be able to capture such varied notions of similarity.So rather than attempting to automatically parse the full semantic structure of a signal, we instead rely oninteractions with the user to de�ne the semantic scope and interrelations of image primitives. We provide theuser with primitives such as model-speci�c detection and perceptual similarity, and use relevance feedbackto learn what relations are valid in this particular context [44].8 ConclusionThe Photobook system is a set of interactive tools for browsing and searching images and image sequences.The key idea behind this suite of tools is semantics-preserving image compression, which reduces images toa small set of perceptually-signi�cant coe�cients.We have developed three fairly general approaches to constructing semantics-preserving representations.When searching for \things," we can use variations on the Karhunen-Lo�eve transform to derive optimally-compact representations for either appearance or shape. When searching for \stu�" we have shown the utilityof the Wold transform for decomposing signals into compact, perceptually salient textural descriptions. Bycombining these representational methods with text annotations in an interactive framework, Photobookprovides users with a sophisticated and e�cient utility for database search based on image content.Acknowledgment: The work described here was funded by BT (British Telecom). We also wish to thankFang Liu for her work in developing the Wold implementation, Baback Moghaddam, Thad Starner, and28
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