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Abstract
Learning domain-invariant features is of vital
importance to unsupervised domain adapta-
tion, where classi�ers trained on the source
domain need to be adapted to a di�erent tar-
get domain for which no labeled examples are
available. In this paper, we propose a novel
approach for learning such features. The cen-
tral idea is to exploit the existence of land-
marks, which are a subsetof labeled data in-
stances in the source domain that are dis-
tributed most similarly to the target domain.
Our approach automatically discovers the
landmarks and use them to bridge the source
to the target by constructing provably easier
auxiliary domain adaptation tasks. The so-
lutions of those auxiliary tasks form the basis
to compose invariant features for the original
task. We show how this composition can be
optimized discriminatively without requiring
labels from the target domain. We validate
the method on standard benchmark datasets
for visual object recognition and sentiment
analysis of text. Empirical results show the
proposed method outperforms the state-of-
the-art signi�cantly.

1. Introduction

Learning algorithms often rely heavily on the assump-
tion that data used for training and testing are drawn
from the same distribution. However, the validity of
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this assumption is frequently challenged in real-world
applications. For example, in computer vision, recent
studies have shown that object classi�ers optimized on
one benchmark dataset often exhibit signi�cant degra-
dation in recognition accuracy when evaluated on an-
other one (Torralba & Efros , 2011; Perronnin et al.,
2010). The culprit is clear: the visual appearance of
even the same object varies signi�cantly across dif-
ferent datasets as a result of many factors, including
imaging devices, photographers' preferences, or illumi-
nation. These idiosyncrasies often cause a substantial
mismatch between the training and the testing distri-
butions. Similarly, in text analysis, we might want to
train a document classi�er on one corpus (e.g., product
reviews on kitchen appliances) and apply to another
one such as reviews on books (Blitzer et al. , 2007).
The two corpora thus have mismatched distributions
of words and their usages, such that the trained clas-
si�er would not perform well.

How can we build classi�ers that are robust to mis-
matched distributions? This is the domain adaptation
problem, where the training data comes from asource
domain and the testing data comes from a di�erent
target domain (Shimodaira, 2000; Daum�e & Marcu ,
2006; Pan & Yang, 2010; Gretton et al. , 2009). When
some labeled data from the target is accessible,
the problem is similar to semi-supervised learning
and is referred to assemi-supervised domain adapta-
tion (Daum�e et al. , 2010; Bergamo & Torresani, 2010;
Saenko et al., 2010). In contrast, when there is no
labeled data from the target domain to help learn-
ing, the problem is called unsupervised domain adap-
tation (Blitzer et al. , 2007; 2006; Gopalan et al., 2011;
Gong et al., 2012; Chen et al., 2011).

Unsupervised domain adaptation is of great impor-
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tance to real-world applications. For instance, sup-
pose we want to allow mobile phone users to take
pictures and recognize objects in environments spe-
ci�c to their lifestyles. While both the camera phones
and the users' environments introduce idiosyncrasies
in the images, it would be highly desirable if users
did not have to label any captured image data; the
recognition system ought to adapt automatically from
existing labeled vision datasets, such as LabelMe or
ImageNet (Russell et al., 2008; Deng et al., 2009).

While appealing, unsupervised domain adaptation is
especially challenging. For example, the common prac-
tice of discriminative training is generally not appli-
cable. Without labels, it is not even clear how to de-
�ne the right discriminative loss on the target domain!
Similarly, it is also di�cult to perform model selection
(e.g., tuning regularization coe�cients).

Thus, to enable domain adaptation, we need to de-
termine how domains are related (Pan & Yang, 2010;
Quionero-Candela et al., 2009). One extensively stud-
ied paradigm is to assume that there is a domain-
invariant feature space (Blitzer et al. , 2007; 2006;
Gopalan et al., 2011; Blitzer et al. , 2011; Chen et al.,
2011; Ben-David et al., 2007; 2010; Pan et al., 2009).
In this space, the source and target domains have the
same (or similar) marginal distributions, and the pos-
terior distributions of the labels are the same across
domains too. Hence, a classi�er trained on the la-
beled source would likely perform well on the tar-
get. Several ways of measuring distribution simi-
larities have been explored and theoretical analysis
shows that the performance of the classi�er on the tar-
get is indeed positively correlated with those similari-
ties (Ben-David et al., 2010; Mansour et al., 2009a;b).

Despite such progress, existing approaches so far have
only been limited to macroscopically examining the
distribution similarity by tuning to statistical prop-
erties of the samples as a whole | when comparing
distributions, all the samples are used. This notion
is stringent, as it requires all discrepancies to be ac-
counted for and forces learning ine�ciently (or even
erroneously) from \hard" cases that might be just out-
liers to the target domains.

In contrast, we will leverage the key insight that not
all instances are created equally in terms of
adaptability . Thus, we will examine distribution sim-
ilarity microscopically at the instance level; our ap-
proach plucks out and exploits the most desirable in-
stances to facilitate adaptation. Identifying those in-
stances requires comparing all possible subsets from
the source domain to the target. We show how this
can be addressed with tractable optimization. In what
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Figure 1. Sketch of the main idea of our approach (best
viewed in color). (a) The original domain adaptation (DA)
problem where instances in red are from the target and in
blue from the source. (b) Landmarks , shown inside the
green circles, are data instances from the source that can be
regarded as samples from the target (section2.1). (c) Mul-
tiple auxiliary tasks are created by augmenting the origina l
target with landmarks, which switches their color (domain
association) from blue to red (section 2.2). Each task gives
rise to a new feature representation. These representations
are combined discriminatively to form domain-invariant
features for the original DA problem (section 2.3).

follows, we summarize the main idea behind our ap-
proach. After describing it in detail in section 2, we
contrast it to related work in section 4.

Main idea Our approach centers around the notion
of landmarks . Landmarks are de�ned as a subset
of labeled instances from the source domain. These
instances are distributed similarly to the target do-
main. Thus, they are expected to function as a con-
duit connecting the source and target domains to fa-
cilitate adaptation. As an intuitive example, suppose
we want to recognize objects placed in two types of
environments: homes (as the source) and o�ces (as
the target). Conceivably, only certain images from the
source | such as those taken in home o�ces | could
also be regarded as samples from the target domain.
Such landmark images thus might have properties that
are shared by both domains. These properties in turn
can guide learning algorithms to search for invariant
features. Fig. 2 displays several discovered landmark
images for the vision datasets we use in this work.

Leveraging the existence of landmarks and their prop-
erties, we create a cohort of auxiliary tasks where land-
marks explicitly bridge the source and target domains.
Speci�cally, in those auxiliary tasks, the original tar-
get domain is augmented with landmarks, blurring the
distinction across domains. Thus, those tasks areeas-
ier to solve than the original problem. We show this
is indeed true both theoretically and empirically.

The auxiliary tasks o�er multiple views of the orig-
inal problem. In particular, each task di�ers by how
its landmarks are selected, which in turn is determined
by how the similarity among instances is measured. In
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this work, we measure similarities at multiple scales (of
distances). Thus, each view provides a di�erent per-
spective on the adaptation problem by being robust to
idiosyncrasies in the domains at di�erent granularities.

The solutions of the auxiliary tasks give rise to multi-
ple domain-invariant feature spaces that can be char-
acterized by linear positive semide�nite kernel func-
tions. We parameterize invariant features for the orig-
inal adaptation problem with those auxiliary kernels.
We show how the corresponding learning problem is
equivalent to multiple kernel learning. We learn the
kernel discriminatively to minimize classi�cation er-
rors on the landmark data instances, which serve as
a proxy to discriminative loss on the target domain.
Fig. 1 schematically illustrates the overall approach.

Contributions We contribute to domain adapta-
tion by proposing a novel landmark-based approach.
The key insight is to use landmarks to create auxil-
iary tasks that inform the original problem. We show
i) how to automatically identify landmarks; ii) how
to construct easier auxiliary domain adaptation tasks;
iii) how to combine the solutions of auxiliary tasks dis-
criminatively to solve the original domain adaptation
problem (cf. section 2.3); iv) strong empirical results
on standard benchmark datasets for object recognition
and sentiment analysis, outperforming state-of-the-art
algorithms by a signi�cant margin (cf. section 3).

2. Proposed Approach

The key insight of our approach is that not all in-
stances are equally amenable to adaptation. In par-
ticular, only certain instances bridge the source and
target domains, owing to their statistical properties.
We aim to identify and exploit them for adaptation.

To this end, we propose a landmark-based approach
that consists of three steps that will be described in
turn: i) identifying and selecting the landmark in-
stances; ii) constructing multiple auxiliary tasks using
landmarks and inferring the corresponding domain-
invariant feature spaces, one for each auxiliary task;
iii) discriminatively learning the �nal domain-invariant
feature space that is optimized for the target domain.

2.1. Landmarks

Landmarks are data points from the source domain;
however, given how they are distributed, they look like
they could be samples from the target domain too (cf.
Fig. 1 for a schematic illustration, and Fig. 2 in sec-
tion 3 for exemplar images of visual objects identi�ed
as landmarks in vision datasets). The intuition behind
our approach is to use these landmarks to bridge the

source and the target domains.

How can we identify those landmarks? At the �rst
glance, it seems that we need to compare all possible
subsets of training instances in the source domain to
the target. We will show in the following this seem-
ingly intractable problem can be relaxed and solved
with tractable convex optimization.

Let DS = f (x m ; ym )gM
m =1 denote M data points and

their labels from the source domain. Likewise, we use
DT = f x n gN

n =1 for the target domain.

Landmark selection To identify landmarks, we use
M indicator variables � = f � m 2 f 0; 1gg, one for each
data point in the source domain. If � m = 1, then
x m is regarded as a landmark. Our goal is to choose
among all possible con�gurations of � = f � m g such
that the distribution of the selected data instances
are maximally similar to that of the target domain.

To determine whether the two distributions are sim-
ilar, we use a non-parametric two-sample test (other
approaches are also possible, including building den-
sity estimators when the dimensionality is not high).
Speci�cally, we use a nonlinear feature mapping
function � (�) to map x to a Reproducing Kernel
Hilbert Space and compare the di�erence in sample
means (Gretton et al. , 2006). We choose� such that
the di�erence is minimized, namely,

min
�
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Furthermore, we impose the constraint that labels be
balancedin the selected landmarks. Concretely,

1
P

m � m

X

m

� m ymc =
1
M

X

m

ymc ; (2)

where ymc is an indicator variable for ym = c. The
right-hand-side of the constraint is simply the prior
probability of the class c, estimated from the source.

We stress that the above criterion is de�ned on land-
marks, which are a subset of the source domain, as
the sample mean is computedonly on the selected in-
stances (cf. the denominator

P
m � m in eq. (1) ). This

is very di�erent from other approaches that have used
similar nonparametric techniques for comparing distri-
butions (Pan et al., 2009; Gretton et al. , 2009). There
they make stronger assumptions that all data points in
the source domain need to be collectively distributed
similarly to the target domain. Furthermore, they do
not impose the balance constraint of eq. (2). Our re-
sults will show that these di�erences are crucial to the
success of our approach.
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Eq. (1) is intractable due to the binary constraints
on � m . We relax and solve it e�ciently with con-
vex optimization. We de�ne new variables � m as
� m (

P
m � m )� 1. We relax them to live on the sim-

plex � = f � : 0 � � m � 1;
P

m � m = 1 g. Substituting
f � m g into eq. (1) and its constraints, we arrive at the
following quadratic programming problem:

min � 2 � � T A� � 2=N � T B 1
s:t :

P
m � m ymc = 1 =M

P
m ymc ; 8 c;

(3)

whereA 2 RM� M denotes the kernel matrix computed
over the source domain, andB 2 RM� N denotes the
kernel matrix computed between the source domain
points and target domain points. The optimization is
convex, as the kernel matrixA is positive semide�nite.

We recover the binary solution for � m by �nding the
support of � m , ie, � m = threshold (� m ). In practice,
we often obtain sparsesolutions, supporting our mod-
eling intuition that only a subset of instances in the
source domain is needed to match the target domain.

Multiscale analysis The selection of landmarks de-
pends on the kernel mapping� (x ) and its parame-
ter(s). For theoretical reasons, we use Gaussian RBF
kernels, de�ned as follows:

K (x i ; x j ) = exp f� (x i � x j )T M (x i � x j )=� 2g; (4)

where the metric M is positive semide�nite. We ex-
perimented with several choices | details in section 3.

The bandwidth � is a scaling factor for measuring dis-
tances and similarities between data points. Since we
regard landmarks as likely samples from the target do-
main, � determines how much the source and the tar-
get are similar to each other at di�erent granularities.
A small � will attenuate distances rapidly and regard
even close points as being dissimilar. Thus, it is likely
to select a large number of points as landmarks in or-
der to match distributions. A large � will have the
opposite e�ect. Fig. 2 illustrates the e�ect of � .

Instead of choosing one� in the hope that one scale
�ts all, we devise a multiscale approach. We use a set
f � q 2 [� min ; � max ]gQ

q=1 . For each � q, we compute
the kernel according to eq. (4) and solve eq. (3) to
obtain the corresponding landmarksL q = f (x m ; ym ) :
� m = 1 g. Using multiple scales adds the exibility of
modeling data where similarities cannot be measured
in one homogeneous scale. For example, the category
of grizzly bear is conceivably much closer togrey
bear than to polar bear , and so similarities among
all three are better modeled at two scales.

Each set of landmarks (one set per scale) gives rise to
a di�erent perspective on the adaptation problem by

suggesting which instances to explore to connect the
source and the target. We achieve this connection by
creating auxiliary tasks, as we describe next.

2.2. Auxiliary tasks

Constructing auxiliary tasks Imagine we create
a new source domainDq

S = DS n Lq and a new target
domain Dq

T = DT
S

L q, where the L q is removed from
and added to the source and target domains, respec-
tively. We do not use L q's labels at this stage yet.

Our auxiliary tasks are de�ned as Q domain adapta-
tion problems, Dq

S ! D q
T . The auxiliary tasks di�er

from the original problem DS ! D T in an impor-
tant aspect: the new tasks should be \easier", as the
existence of landmark points ought to aid the adap-
tation. This is illustrated by the following theorem,
stating that the discrepancy between the new domains
is smaller than the original.

Theorem 1 Let PS (X ) and PT (X ) denote the distri-
butions of the original source and the target domains,
respectively. For the auxiliary task, assume the new
target distribution is modeled as a mixture distribution
QT (X ) = (1 � � )PT (X ) + �P S (X ) where � 2 [0; 1).
In other words, the landmarks increase the component
of PS (X ) in the target domain. Thus,

KL (PS (X )kQT (X )) � (1 � � )KL (PS (X )kPT (X ))

� KL (PS(X )kPT (X )) ; (5)

where KL (�k�) stands for the Kullback-Leibler diver-
gence. In words, the new target distribution is closer
to the source distribution.

The proof appeals to KL-divergence's convexity in its
arguments. Details are in the Supplementary Material.

With the reduced discrepancy betweenPS (X ) and
QT (X ), we can apply the analysis in (Mansour et al.,
2009b) (Lemma 1) to show that classi�ers applied to
QT (X ) attain a smaller generalization error bound
than those applied to PT (X ). Intuitively, the in-
creased similarity between the new domains is also
closely related to the increased di�culty of distin-
guishing which domain a data point is sampled from.
More formally, if we were to build a binary classi�er
to classify a data point into one of the two categories
source versustarget , we would expect the accuracy
to drop when we compare the original to the auxiliary
tasks. The accuracy | also named as A-distance |
is closely related to how e�ective domain adaptions
can be (Blitzer et al. , 2007). A high accuracy is in-
dicative of a highly contrasting pair of domains, and
thus is possibly due to many domain-speci�c features
capturing each domain's individual characteristics.
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These insights motivate our design of auxiliary tasks:
they conceivably have low accuracy for binary classi-
�cation as the landmarks blend the two domains, dis-
couraging the use of domain-speci�c features. We de-
scribe next how to extract domain-invariant ones using
the solutions of those easy problems as abasis.

Learning basis from auxiliary tasks For every
pair of auxiliary domains, we use the geodesic ow ker-
nel (GFK), a state-of-the-art algorithm for unsuper-
vised domain adaptation (Gong et al., 2012), to com-
pute domain-invariant features. The GFK is partic-
ularly adept at measuring domain-invariant distances
among data points, as exempli�ed by its superior per-
formance in nearest-neighbor classi�ers. Thus, it is
especially suitable for the �nal stage of our approach
when we use Gaussain RBF kernels to compose com-
plex domain-invariant features (cf. 2.3).

We give a brief description of that method in the fol-
lowing. (We omit the index q for brevity in notation.)

The GFK technique models the domain shift by mod-
eling each domain with a d-dimensional linear sub-
space and embedding them onto a Grassmann man-
ifold. Speci�cally, let PS ; PT 2 RD� d denote the basis
of the PCA subspaces for each of the two domains,
respectively. The Grassmann manifoldG(d; D) is the
collection of all d-dimensional subspaces of the feature
vector spaceRD . We infer the optimal d with the au-
tomatic procedure in (Gong et al., 2012).

The geodesic ow f � (t) : t 2 [0; 1]g betweenPS and
PT on the manifold parameterizes a path connecting
the two subspaces. Every point on the ow is a basis
of a d-dimensional subspace. In the beginning of the
path, the subspace is similar to PS = � (0) and in
the end of the ow, the subspace is similar toPT =
� (1). We project the original feature x into these
subspaces and view the ow as a collection of in�nitely
many features varying gradually from the source to the
target domain: z1 = f � (t)T x : t 2 [0; 1]g.

Using the new feature representation for learning will
force the classi�ers to be less sensitive to domain dif-
ferences and to use domain-invariant features. Partic-
ularly, the inner products of the new features give rise
to a positive semide�nite kernel:

G(x i ; x j ) = hz1
i ; z1

j i (6)

= x T
i

Z 1

0
� (t)� (t)T dt x j = x T

i Gx j :

The matrix G can be computed e�ciently using sin-
gular value decomposition (Gong et al., 2012). Note
that computing G does not require any labeled data.

The domain-invariant feature space is extracted as the

mapping � q(x ) =
p

Gqx . In the following, we de-
scribe how to integrate the spaces | one for each aux-
iliary task | discriminatively so that the �nal feature
space is optimal for the target.

2.3. Discriminative learning

In this �nal step, we reveal the second use of landmarks
beyond constructing auxiliary tasks. We will use their
labels to learn discriminative domain-invariant fea-
tures for the target domain. Concretely, we compose
the features for the original adaptation problem with
the auxiliary tasks' features as a basis.

We scale and concatenate those features
f
p

wq� q(x )gQ
q=1 into a super-feature vector f .

Learning f wqg is cast as learning a convex com-
bination of all kernels Gq (Lanckriet et al. , 2004),

F =
X

q

wqGq; s:t : wq � 0 and
X

q

wq = 1 : (7)

We use the kernelF in training a SVM classi�er and
the labels of the landmarksfL qg, i.e., Dtrain =

P
q L q

to optimize f wqg discriminatively. We use Ddev =
DS nDtrain be a validation dataset for model selection.
SinceDtrain consists of landmarks that are distributed
similarly to the target, we expect the classi�cation er-
ror on Dtrain to be a good proxy to that of the target.

2.4. Summary

To recap our approach: i) at each granularity � q, we
automatically select landmarks | individual instances
that are distributed most similarly to the target; ii) we
then construct auxiliary tasks and use their solutions
as a basis for composing domain-invariant features; iii)
we learn featuresdiscriminatively , using classi�cation
loss on the landmarks as a proxy to the discriminative
loss on the target.

3. Experimental Results

We evaluate the proposed method on benchmark
datasets extensively used for domain adaptation in the
contexts of object recognition (Gopalan et al., 2011;
Gong et al., 2012; Saenko et al., 2010; Kulis et al. ,
2011) and sentiment analysis (Blitzer et al. , 2007). We
compare the proposed method to several competitive
ones. Empirical results show that our method outper-
forms all prior techniques in almost all cases.

3.1. Object recognition

We use 4 datasets of object images: cal-
tech (Gri�n et al. , 2007), amazon , webcam , and
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Table 1. Recognition accuracies on 9 pairs of source/target domainsare reported. C: caltech , A: amazon , W: webcam ,
D: dslr . The proposed method (landmark ) performs the best on 8 out of 9 pairs, among all unsupervised methods.

% A! C A! D A! W C! A C! D C! W W! A W! C W! D

no adaptation 41.7 41.4 34.2 51.8 54.1 46.8 31.1 31.5 70.7
tca (Pan et al., 2009) 35.0 36.3 27.8 41.4 45.2 32.5 24.2 22.5 80.2

gfs (Gopalan et al., 2011) 39.2 36.3 33.6 43.6 40.8 36.3 33.5 30.9 75.7
gfk (Gong et al., 2012) 42.2 42.7 40.7 44.5 43.3 44.7 31.8 30.8 75.6
scl (Blitzer et al. , 2006) 42.3 36.9 34.9 49.3 42.0 39.3 34.7 32.5 83.4
kmm (Huang et al., 2007) 42.2 42.7 42.4 48.3 53.5 45.8 31.9 29.0 72.0

metric (Saenko et al., 2010) 42.4 42.9 49.8 46.6 47.6 42.8 38.6 33.0 87.1

landmark (ours ) 45.5 47.1 46.1 56.7 57.3 49.5 40.2 35.4 75.2

dslr (Saenko et al., 2010). Each dataset is treated as
a separate domain: images inamazon came from on-
line catalogs, images indslr and webcam were cap-
tured by a digital SLR camera and a webcam with high
and low resolutions, respectively. 10 object classes are
common to all 4 datasets. The number of images per
class ranges from 15 (indslr ) to 30 (webcam ), and
to 100 (caltech and amazon ). Due to its small size,
dslr is not used as a source domain. We experiment
extensively on the remaining 9 possible domain pairs.

We follow the previously reported protocols for prepar-
ing features (Saenko et al., 2010). SURF features are
quantized into an 800-bin histogram with codebooks
computed via K-means on a subset of images from
amazon . The histograms are standardized such that
each dimension is zero-mean and unit-standard devia-
tion within each domain, and are publicly available.1

We compare to several leading approaches and vari-
ants of our own approach. We follow the standard
procedures for selecting models and tuning hyperpa-
rameters. Whenever other approaches do not state
clearly the tuning process, we give them the bene�t of
the doubt by reporting their best results by revealing
the target domain labels to those algorithms. (Our
method does not use those labels to tune its models.)

The bandwidth parameters � q for the Gaussian RBF
kernels used for selecting landmarks (cf. section2.1)
are chosen as� q = 2 q� 0, whereq 2 f� 6; � 5; � � � ; 5; 6g.
The � 0 is the median distance computed over all pair-
wise data points, cf. eq (4). The metric M for com-
puting the distances is chosen to be the kernel from the
GFK method ( Gong et al., 2012) using all instances.

Recognition accuracies Table 1 reports object
recognition accuracies on thetarget under 9 pairs
of source and target domains. We contrast the
proposed approach (landmark ) to the methods of
transfer component analysis (tca ) (Pan et al., 2009),

1http://www-scf.usc.edu/ � boqinggo/da.html

geodesic ow sampling (gfs ) (Gopalan et al., 2011),
the GFK ( gfk ) (Gong et al., 2012), structural cor-
respondence learning (scl ) (Blitzer et al. , 2006), ker-
nel mean matching (kmm) (Huang et al., 2007), and
a metric learning method (metric ) (Saenko et al.,
2010) for semi-supervised domain adaptation, while
label information (1 instance per category) from the
target domains is used. We also report the baseline
results of no adaptation , where we use source-only
data and the original features to train classi�ers.

Our approach landmark clearly performs the best on
almost all pairs, even the metric method which has
access to labels from the target domains. The only
signi�cant exception is on the pair webcam ! dslr .
Error analysis reveals that the two domains are very
similar, containing images of the same object instance
with di�erent imaging resolutions. As such, many data
points in webcam have been selected as landmarks,
leaving very few instances for model selection during
the discriminative training. Addressing this issue is
left for future work.

Detailed analysis on landmarks The notion of
landmarks is central to our approach. In what follows,
we further examine its utility in domain adaptation.
We �rst study whether automatically selected land-
marks coincide with our modeling intuition, ie, that
they look like samples from the target domain.

Fig. 2 con�rms our intuition. It displays several land-
marks selected from the source domainamazon when
the target domain is webcam . The top-left panels dis-
play representative images from theheadphone and
mug categories fromwebcam , and the remaining pan-
els display images fromamazon , including both land-
marks and non-landmarks.

When the scale� is large, the selected landmarks are
very similar in visual appearance to the representative
images. As the scale decreases, landmarks with greater
variance start to show. This is particularly pronounced
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headphone from webcam Landmarks at scale� = 2 6� 0 Landmarks at scale� = 2 3� 0

Landmarks at scale� = 2 0� 0 Landmarks at scale� = 2 � 3� 0 Examples of non-landmarks

mug from webcam Landmarks at scale� = 2 6� 0 Landmarks at scale� = 2 3� 0

Landmarks at scale� = 2 0� 0 Landmarks at scale� = 2 � 3� 0 Examples of non-landmarks

Figure 2. Landmarks selected from the source domainamazon for the target domain webcam , as well as non-landmarks
(best viewed in color). As the scale decreases, images with greater variance in appearance are selected, as expected.

Table 2. Contrasting landmark to several variants, illustrating the importance of our lan dmark selection algorithm.

% A! C A! D A! W C! A C! D C! W W! A W! C W! D
landmark (ours ) 45.5 47.1 46.1 56.7 57.3 49.5 40.2 35.4 75.2

Rand. Sel. 44.5 44.5 41.9 53.8 49.9 49.5 39.8 34.1 74.2
Swap 41.3 47.8 37.6 46.2 42.0 46.1 38.2 32.2 70.1

unbalanced 37.0 36.9 38.3 55.3 49.0 50.1 39.4 34.9 73.9
Euc. Sel. 44.5 44.0 41.0 50.2 40.1 45.1 39.1 34.5 67.5

at 2� 3� 0. Nonetheless, they still look far more likely
to be from the target webcam domain than non-
landmark images (see bottom-right panels). Note that
the non-landmark images for theheadphone category
contain images such as earphones, or headphones in
packaging boxes. Similarly, non-landmark images in
the mug category are more unusually shaped ones.

In Table 2, we contrast our method to some of its vari-
ants, illustrating quantitatively the novelty and signif-
icance of using landmarks to facilitate adaptation.

First, we study the adverse e�ect of selecting incorrect
images as landmarks. The row ofrand. sel. displays
results of randomly selecting landmarks, as opposed
to using the algorithm proposed in section2.1. (The
number of random landmarks is the average number
of \true" landmarks chosen in landmark .) The aver-
aged accuracies over 10 rounds are reported (Standard
errors are reported in the Suppl). landmark outper-
forms the random strategy, often by a signi�cant mar-
gin, validating the automatic selection algorithm.

The swap row in Table 2 gives yet another strong in-
dication of how landmarks could be viewed as samples
from the target. Recall that landmarks are used as
training data in the �nal stage of our learning algo-
rithm to infer the domain-invariant feature space (cf.
section2.3). Other instances, ie, non-landmarks in the
source, are used for model selection. This setup follows

the intuition that as landmarks are mostly similar to
the target, they are a better proxy than non-landmarks
for optimizing discriminative loss for the target.

When we swap the setup, the accuracies drop signi�-
cantly, except on the pair A ! D (compare the rows
swap and landmark ). This once again establishes
the unique and extremely valuable role of landmarks.

We also study the usefulness of the class balancing
constraint in eq. (2), which enforces that the selected
landmarks obey the class prior distribution. Without
it, some classes dominate and would result in poor clas-
si�cation results on the target domain. This is clearly
evidenced in the row ofunbalanced where accuracies
drop signi�cantly after we remove the constraint.

Finally, we study the e�ect of using GFK to measure
distribution similarity, as in eq. ( 4). The row of euc.
sel. reports the results of using the conventional Eu-
clidean distance, illustrating the striking bene�t of us-
ing GFK (in the row of landmark ). While using
nonparametric two-sample tests to measure distribu-
tion similarity has been previously used for domain
adaptation (e.g., kernel mean matching, cf. the row of
kmm in Table 1), selecting a proper kernel has received
little attention, despite its vital importance. Our com-
parison to euc. sel. indicates that measuring distri-
bution similarity across domains is greatly enhanced
with a kernel revealing domain-invariant features.
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Table 3. Sentiment classi�cation accuracies on target do-
mains. K: kitchen , D: dvd , B: books , E: electronics

% K! D D! B B! E E! K
no adaptation 72.7 73.4 73.0 81.4

tca 60.4 61.4 61.3 68.7
gfs 67.9 68.6 66.9 75.1
gfk 69.0 71.3 68.4 78.2
scl 72.8 76.2 75.0 82.9

kmm 72.2 78.6 76.9 83.5
metric 70.6 72.0 72.2 77.1

landmark (ours ) 75.1 79.0 78.5 83.4

3.2. Sentiment analysis

Next, we report experimental results on the task of
cross-domain sentiment analysis of text. We use the
Amazon dataset described in (Blitzer et al. , 2007).
The dataset consists of product reviews on kitchen
appliances, DVDs, books, and electronics. There are
1000 positive and 1000 negative reviews on each prod-
uct type, each of which serves as a domain. We reduce
the dimensionality to use the top 400 words which have
the largest mutual information with the labels. We
have found this preprocessing does not reduce perfor-
mance signi�cantly, while being computationally ad-
vantageous. We use bag-of-words as features.

In Table 3, we compare our landmark method to
leading methods for domain adaptation, including
tca (Pan et al., 2009), gfs (Gopalan et al., 2011),
gfk (Gong et al., 2012), scl (Blitzer et al. , 2006),
kmm (Huang et al., 2007), metric (Saenko et al.,
2010), as well as the baselineno adaptation .

Note that while scl and kmm improve over the base-
line, the other three methods underperform. Nonethe-
less, our method outperforms almost all other meth-
ods. Most interestingly, our method improvesgfk sig-
ni�cantly. We attribute its advantages to two factors:
using multiple scales to analyze distribution similarity
while gfk uses the \default" scale, and using land-
marks to discriminatively learn invariant features.

3.3. Summary of supplementary material

We provide more detailed results including standard
errors and comparison to other methods. We also
study the bene�ts of having multiple auxiliary tasks.
We show that while individual auxiliary tasks can
lead to improved performance in adaptation, combin-
ing multiple of them with the multiple kernel learning
framework (cf section 2.3) improves further. Namely,
constructing auxiliary tasks using multiple scales to re-
ect similarities at di�erent granularities yields di�er-
ent views of the adaptation problem, and the learning
framework successfully exploits them.

4. Related Work

Learning domain-invariant feature representa-
tions has been extensively studied in the litera-
ture (Ben-David et al., 2007; Blitzer et al. , 2006;
2007; Daum�e, 2007; Chen et al., 2011; Pan et al.,
2009). However, identifying and using instances that
are distributed similarly to the target to bridge the
two domains has never been explored before.

Our approach is also very di�erent from
transductive-style domain adaptation meth-
ods (Bergamo & Torresani, 2010; Chen et al., 2011).
We partition the source domain into two disjoint
subsets, only once for each auxiliary task. In those
methods, however, the target and the source domains
are merged iteratively.

Kernel mean matching has previously been used to
weigh samples from the source (Huang et al., 2007;
Pan et al., 2009; Gretton et al. , 2009) to correct the
mismatch between the two domains. Weselect sam-
ples as our landmarks. Those prior works typically do
not yield sparse solutions (of the weights), and thus
do not perform selection. Additionally, the inclusion of
the balancing constraint in our formulation of eq. (3) is
crucial, as evidenced in our comparison to those meth-
ods in experimental studies (cf. Table1 and Table 3).
Without it, some classes could be underrepresented in
selected landmarks, leading to poor performance.

5. Conclusion

Distribution similarity is central to learning invariant
features across domains. While existing approaches fo-
cus on treating all samples as a whole block, we have
proposed an instance-based approach. At the core is
the idea of exploiting landmarks, which are data in-
stances from the source that are distributed similarly
to the target. The landmarks enable analyzing distri-
bution similarity on multiple scales, hypothesizing a
basis for invariant features, and discriminatively learn-
ing features. On benchmark tasks in both vision and
text processing, our method consistently outperforms
others, often by large margins. Thus, our approach
has broad application potential to other tasks and do-
mains. For future work, we plan to advance in this
direction further, for example, proposing other mech-
anisms to identify and select landmarks.
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