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Abstract

This paper establishes the equivalence of four de�nitions of two vector valued functions

being rearrangements, and gives a characterisation of the set of rearrangements of a prescri-

bed function. The theory of monotone rearrangement of a vector valued function is used to

show the existence and uniqueness of the minimiser of an energy functional arising from a

model for atmospheric and oceanic ow. At each �xed time solutions are shown to be equal

to the gradient of a convex function, verifying the conjecture of Cullen, Norbury and Purser.
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1 Introduction

This paper studies properties of rearrangements of vector valued functions, and gives an appli-

cation to atmospheric and oceanic ow. We say that two vector valued functions f; g 2 L
p(
 �

Rn
; �;Rd), where 1 � p <1 and 
 is bounded, are rearrangements if

�

�
f
�1(B)

�
= �

�
g
�1(B)

�

for each Borel subset B of Rd. (We restrict our de�nition of rearrangement to functions de�ned

on measure spaces (
; �) with certain properties, see section 2.1.) This is equivalent to the

de�nition of rearrangement for scalar valued functions when d = 1. Rearrangement can be

viewed as an equivalence relation on the space of Lp functions, therefore we can de�ne the set

of rearrangements (or equivalence class) of a given vector valued function. For a prescribed f0

we write R(f0) to denote the set of rearrangements of f0.

Di�erent de�nitions have been given for two vector valued functions being rearrangements.

Brenier [2] de�ned vector valued functions f and g (belonging to L
p(
 � Rn

; �;Rd)) to be

rearrangements if
R

 F (f) =

R

 F (g) for each F in a subclass of continuous functions from Rd

to R. In contrast, Cullen, Norbury and Purser [5] made a direct extension of the de�nition of

scalar valued rearrangement, requiring that �fx : f(x) � cg = �fx : g(x) � cg for each c 2 Rd,

where the inequalities are calculated component by component. Section 2 uni�es these concepts,

establishing that both are equivalent to the de�nition in the opening paragraph. We establish

a fourth equivalent property which yields a characterisation for the set of rearrangements of a
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prescribed vector valued function. This is a vector valued extension of the real valued charac-

terisation of Eydeland, Spruck and Turkington [6]. These results are stated in Theorem 1. The

proofs require a technical lemma from the theory of analytic sets.

Section 3 studies a variational problem arising from a model for atmospheric and oceanic

ow. The equations are the three dimensional Boussinesq equations of semigeostrophic ow, a

standard model for slowly varying ows constrained by rotation and strati�cation. (They are

recalled in section 3.2.) Cullen, Norbury and Purser [5] interpreted solutions as a sequence of

minimum energy states: at each time t, the particles arrange themselves so that geostrophic

energy is minimised. The state of the uid is known on particles, therefore we minimise geo-

strophic energy over the set of rearrangements of a possible state of the uid at time t, a vector

valued function. Cullen, Norbury and Purser conjectured the existence of a unique minimiser,

equal to the gradient of a convex function, which is the actual state of the uid. We make the

physically reasonable assumption that the uid con�guration belongs to L
p, so that we may

use the theory of monotone rearrangement of vector valued functions, which was developed by

Brenier [2]. If the uid con�guration satis�es a non{degeneracy condition, (see section 3.3,)

the Cullen{Norbury{Purser conjecture follows easily by the results of Brenier [2]. However the

non{degeneracy condition is severe, as it does not allow the function to have level sets of positive

measure. Our main result is a proof of the Cullen{Norbury{Purser conjecture in Theorem 2: we

make no restriction on the uid con�guration. We approximate functions which fail the non{

degeneracy condition by a sequence of functions which satisfy it, and take appropriate limits.

Uniqueness of the energy minimiser is recovered by properties of the monotone rearrangement.

The theory of rearrangements of vector valued functions is a new research area: recent

advances have been made by Brenier [2]. In comparison the theory of rearrangements of scalar

valued functions is well developed: for example see Burton [3] and Alvino, Trombetti and Lions

[1]. Some results for scalar valued rearrangements do not have vector valued equivalents. For

example the monotone rearrangement of a vector valued function does not satisfy some of the

inequalities which hold for the increasing rearrangement of a real valued function. (See Brenier

[2] for details.)

We consider the relationship between vector valued functions which are rearrangements, and

vector valued functions for which corresponding components are rearrangements in the scalar

valued sense. Let f; g be as in the opening paragraph. De�ne, for i = 1; :::; d, �i : R
d ! R

to be the projection of the ith component of an element of Rd. Write f = (f1; :::; fd) and

g = (g1; :::; gd) where fi = �i � f , gi = �i � g for i = 1; :::; d. The de�nition of vector valued

rearrangement yields that if f 2 R(g) we have fi 2 R(gi) for each i = 1; :::; d in the scalar valued

sense. However the converse is false in general. Let f : [0; 1]2 ! R2 be de�ned by

f(x) =

(
(1; 1) if x 2 [1=2; 1] � [1=2; 1];

(0; 0) if x 62 [1=2; 1] � [1=2; 1]:

Then

f1(x) = f2(x) =

(
1 if x 2 [1=2; 1] � [1=2; 1];

0 if x 62 [1=2; 1] � [1=2; 1]:

De�ne

g(x) =

8><
>:

(1; 0) if x 2 [1=2; 1] � [1=2; 1];

(0; 1) if x 2 [0; 1=2] � [1=2; 1];

(0; 0) otherwise:

Then g1 = f1 and

g2(x) =

(
1 if x 2 [0; 1=2] � [1=2; 1];

0 if x 62 [0; 1=2] � [1=2; 1]:

It is easily seen that fi 2 R(gi) for i = 1; 2, but f 62 R(g). Consequently in general we cannot
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apply scalar valued rearrangement theorems to components of vector valued functions and hope

to obtain results pertaining to vector valued rearrangements.
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2 Equivalent de�nitions of rearrangement of vector valued func-

tions

2.1 Introduction

In this section we establish four equivalent de�nitions of rearrangement for vector valued func-

tions, and give a characterisation of the set of rearrangements of a prescribed vector valued

function. We de�ne rearrangement for vector valued functions on �nite measure spaces (U; �)

which are isomorphic to (0; �(U)) endowed with Lebesgue measure �. By isomorphic, we mean

there exists a measure preserving transformation T : U ! (0; �(U)). We recall the de�nition of

measure preserving transformation in the next section. The restriction to �nite measure spaces

(U; �) isomorphic to (0; �(U)) with Lebesgue measure is not severe: Royden [12] yields that any

separable complete metric space U , equipped with a Borel measure � such that �(U) <1 and

�(fxg) = 0 for each x 2 U , is isomorphic to ((0; �(U)); �).

De�nition Let (U; �) be a measure space which is isomorphic to ((0; �(U)); �). Let f; g 2

L
p(U; �;Rd), for 1 � p <1. Then f is a rearrangement of g if

�

�
f
�1(B)

�
= �

�
g
�1(B)

�

for every Borel subset B of Rd.

We prove the following theorem.

Theorem 1 Let (U; �) be as above. Let f; g 2 L
p(U; �;Rd), for 1 � p <1. Then the following

are equivalent.

(i) f is a rearrangement of g.

(ii) For each F 2 C(Rd) such that jF (�)j � K(1 + j�j
p

2) (where j:j2 denotes Euclidean distance

on Rd, and K is a constant), the following equation is satis�ed:

Z
U

F (f(x))d�(x) =

Z
U

F (g(x))d�(x):

(iii) �(f�1(C)) = �(g�1(C)) for each set C 2 f
Q
d

i=1[�i;1) : �i 2 R for each i = 1; :::; dg
S

f;;Rdg.

(iv) For each � 2 Rd, � > 0,Z
U

(jg � �j1 � �)+d� =

Z
U

(jf � �j1 � �)+d�

where j:j1 denotes the in�nity norm on Rd, and the + subscript denotes the positive part of the

function.

Brenier [2] used property (ii) to de�ne rearrangement of vector valued functions, whilst

Cullen, Norbury and Purser used property (iii). This theorem shows that their de�nitions

are equivalent. Property (iv) is a vector valued extension of the characterisation of the set of

rearrangements of a given real valued function by Eydeland, Spruck and Turkington [6]: for

non{negative f0 2 L
p(U; �),

R(f0) = fw measurable; w � 0 :

Z
U

(w � �)+ =

Z
U

(f0 � �)+;8� > 0g:
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It follows from (iv) that for f0 2 L
p(U; �;Rd), where 1 � p <1 and (U; �) is as in Theorem 1

R(f0) = f w �{measurable :

Z
U

(jw � �j1 � �)+ d�

=

Z
U

(jf0 � �j1 � �)+ d�;8� 2 R
d
;8� > 0g:

It may be shown that R(f0) is closed, and using the characterisation above, that for w 2 R(f0),

jjwjjp = jjf0jjp, where

jjwjjp =

�Z
U

jwj
p

1
d�

� 1

p

:

We omit the proofs, which are elementary.

2.2 Measure preserving mappings and transformations

We recall the concept of a measure preserving mapping.

De�nition A measure preserving mapping from a �nite measure space (U; �) to a measure space

(V; �) with �(U) = �(V ) is a mapping s : U ! V such that for each �{measurable set A � V ,

�(s�1(A)) = �(A).

Halmos [7, Theorem 2, page 163] yields that this is equivalent to requiring that for every

�{integrable function f , f � s is �{integrable andZ
U

f � sd� =

Z
V

fd�:

Measure preserving mappings are surjective (up to sets of measure zero), but not necessarily

injective. If a measure preserving mapping s is injective, and s maps �{measurable sets to

�{measurable sets, then s
�1 exists and is a measure preserving mapping. Such an s is called a

measure preserving transformation.

2.3 Analytic set theory

We proceed with the proof of Theorem 1 in stages. We require a result from the theory of

analytic sets. As a preliminary, we establish some notation. Let H be a family of subsets of a

given set X. De�ne

H�� = f countable disjoint unions of elements of Hg

HC = f complements (relative to X) of elements of Hg

Bcd(H) will denote the smallest family H�, with H � H
�, such that H�

C
= H

�

��
= H

�.

Kechris [9, page 65, Theorem 10.1 (iii)] yields the following result.

Theorem Let H be a family of subsets of X such that (i) X 2 H (ii) H1

T
H2 2 H whenever

H1;H2 2 H. Then Bcd(H) is a �{algebra.

Lemma 1 Let f; g be as in Theorem 1. De�ne

M = fA � Rd : �(f�1(A)) = �(g�1(A))g

H = f

dY
i=1

[ai; bi] : ai; bi 2 R; ai � bi; for i = 1; :::; dg
[
f;;Rd

g

Suppose H �M. Then M contains the Borel sets of Rd.
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Proof H is closed under �nite intersection, therefore the above theorem yields that Bcd(H) is

a �{algebra. H generates the Borel sets, therefore it follows that the Borel sets are contained

in Bcd(H). M is closed under countable disjoint union and complementation (relative to Rd).

Given that H � M we have Bcd(H) � Bcd(M) = M, so M contains the Borel sets. This

completes the proof.

2.4 Proof of Theorem 1

We begin by showing that (i) implies (ii). Let F 2 C(Rd) satisfy jF (�)j � Kf1 + j�j
p

2g for each

� 2 Rd, where K is some constant. We assume that F is non{negative. (If not we work with the

positive and negative parts of F .) F is measurable, therefore the fundamental approximation

lemma yields the existence of a sequence of simple functions ('n) such that

(i) 0 � 'n(�) � 'n+1(�) for each � 2 Rd.

(ii) 'n(�)! F (�) for each � 2 Rd.

We demonstrate that Z
U

'n(f(x))d�(x) =

Z
U

'n(g(x))d�(x): (1)

A simple function is a �nite linear combination of indicator (characteristic) functions of measu-

rable sets, therefore it is su�cient to showZ
U

1A(f(x))d�(x) = �(f�1(A)) = �(g�1(A)) =

Z
U

1A(g(x))d�(x); (2)

for each Lebesgue measurable set A � Rd, where 1A denotes the indicator function of A. Noting

that a Lebesgue set is the disjoint union of a Borel set and a Lebesgue negligible set, we need

only show (2) for Borel sets. This is immediate from (i). Thus we have veri�ed (1).

We have that 'n � f(x) ! F � f(x) for each x 2 U , and that j'n � f(x)j � Kf1 + jf(x)j
p

2g

for each x 2 U and n 2N, and analogous statements hold if we replace f with g. Applying the

Dominated Convergence theorem we obtainZ
U

F (f(x))d�(x) = lim
n!1

Z
U

'n(f(x))d�(x)

= lim
n!1

Z
U

'n(g(x))d�(x)

=

Z
U

F (g(x))d�(x):

This veri�es (ii).

We show that (ii) implies (i). Let families of sets H andM be as in Lemma 1. Let H1 2 H.

There exists a sequence ('n) � C(Rd) such that j'n(y)j � 1 + jyj
p

2 for each y 2 Rd and n 2 N,

with 'n(y)! 1H1
(y) for each y 2 Rd. It follows that 'n �f(x)! 1H1

�f(x) for each x 2 U and

j'n � f(x)j � 1 + jf(x)j
p

2 for each x 2 U and n 2 N, with analogous statements holding if we

replace f by g. Noting that (ii) holds, we apply the Dominated Convergence theorem to obtain

�(f�1(H1)) =

Z
U

1H1
� f(x)d�(x)

= lim
n!1

Z
U

'n � f(x)d�(x)

= lim
n!1

Z
U

'n � g(x)d�(x)

=

Z
U

1H1
� g(x)d�(x) = �(g�1(H1)):
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Thus H1 2M. It follows that H �M. Lemma 1 yields that M contains the Borel sets of Rd,

therefore f and g are rearrangements.

All elements of the family f
Q
d

i=1[�i;1) : �i 2 R for each i = 1; :::; dg are Borel sets of Rd,

therefore (i) implies (iii). To see the converse, we show that H � M, given that (iii) holds.

We proceed by induction. Let P(k) be the proposition that all sets of the form
Q
k

i=1[ai; bi] �Q
d

i=k+1[ai;1) 2M, where ai; bi 2 R. We demonstrate P(1). Now

[a1; b1]�
dY
i=2

[ai;1) =
dY
i=1

[ai;1)\

 
1[
n=1

 
[b1 + 1=n;1)�

dY
i=2

[ai;1)

!!
;

and noting that M is closed under countable increasing union, and di�erences of two ordered

elements (with respect to the partial order �), we obtain that [a1; b1]�
Q
d

i=2[ai;1) 2M. This

shows P(1). We demonstrate that P(k + 1) is true given that P(k) holds. We have that

k+1Y
i=1

[ai; bi]�
dY

i=k+2

[ai;1) =
kY
i=1

[ai; bi]�
dY

i=k+1

[ai;1)

\

0
@ 1[
n=1

0
@ kY
i=1

[ai; bi]� [bk+1 + 1=n;1)�
dY

i=k+2

[ai;1)

1
A
1
A :

We are given that P(k) holds, therefore
Q
k

i=1[ai; bi] �
Q
d

i=k+1[ai;1) 2 M, and
Q
k

i=1[ai; bi] �

[bk+1 + 1=n;1) �
Q
d

i=k+2[ai;1) 2 M for each n 2 N. Noting that M is closed under

countable increasing union and di�erences of ordered elements, we obtain that
Q
k+1
i=1 [ai; bi] �Q

d

i=k+2[ai;1) 2M. This veri�es P(k+1). By induction P(d) holds, that is all sets of the formQ
d

i=1[ai; bi] 2 M for ai; bi 2 R, i = 1; :::; d. It is immediate that ;;Rd 2 M, therefore H �M.

Lemma 1 yields that M contains the Borel sets of Rd. This shows (i).

Let (iv) hold. The characterisation of the set of rearrangements of a scalar valued function

by Eydeland, Spruck and Turkington [6] yields that jg��j1 2 R(jf ��j1) in the scalar valued

sense for each � 2 Rd. Therefore we have

�fx : jg(x)� �j1 � �g = �fx : jf(x)� �j1 � �g

for each positive � 2 R or equivalently,

�fx : jg(x) � �j1 < �g = �fx : jf(x)� �j1 < �g:

Therefore we have �(g�1(C�(�))) = �(f�1(C�(�))), where C�(�) denotes the open cube of side

2� about � 2 Rd. Let K denote the set of all d{dimensional open cubes. We have shown that

K � M. We now demonstrate that this implies that all open subsets of Rd belong to M.

Recall that M is closed under countable decreasing intersections, increasing countable unions,

and di�erences of ordered elements of M. For j = 0; :::; d every j{dimensional closed cube

is a countable decreasing intersection of j{dimensional open cubes. Further, for j = 1; ::; d

every j{dimensional open cube with one (j�1){dimensional open face attached is an increasing

countable union of j{ dimensional closed cubes. Now, for j = 1; :::; d, every (j � 1){dimensional

open cube is the di�erence of a set of the type described in the preceding sentence, and a j

dimensional open cube contained in it. It follows by induction that open and closed cubes of

dimensions 0; :::; d belong to M. Every open subset of Rd is a countable disjoint union of open

cubes of dimensions 0; :::; d, therefore such sets belong toM. The methods of Lemma 1, (noting

that the intersection of two open sets is open,) yield that M contains the Borel sets. Thus (iv)

implies (i). The converse follows because (i) implies that �(g�1(C�(�))) = �(f�1(C�(�))) for

each positive � 2 R, � 2 Rd. This completes the proof.
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3 Energy minimising solutions of atmospheric and oceanic ow

3.1 Introduction

This section studies a variational problem over the set of rearrangements of a prescribed vector

valued function, which arises from an energy minimising principle. We study the semigeostrophic

equations, (recalled in the next section,) a standard model for slowly varying ows constrained

by rotation and strati�cation, using the methods of Cullen, Norbury and Purser [5]. At any

given time, X, which describes the state of the uid, is known on particles. The Cullen{Norbury{

Purser principle states that for a solution, the particles are arranged to minimise geostrophic

energy. This yields a variational problem, minimise energy over the set of rearrangements of

a prescribed uid con�guration. We verify the conjecture of Cullen, Norbury and Purser [5,

Section 5] that the energy minimum is uniquely attained, and that the minimiser is equal to the

gradient of a convex function. We prove the following theorem.

Theorem 2 Let 
 be a bounded connected closed subset of R3, with smooth boundary. De�ne,

for X = (X;Y;Z) 2 L
p(
; �;R3), where 2 � p � 1 and � denotes 3{dimensional Lebesgue

measure,

E(X) =
1

2

Z


X

2 + x
2 + Y

2 + y
2
d�(x)�

Z


X:xd�(x)

where x = (x; y; z) 2 
. Suppose X0 2 L
p(
; �;R3), for p as above. Then there exists X0

�
2

R(X0) such that

(i) E(X0
�) < E(X) for each X 2 R(X0)\fX0

�
g.

(ii) X0
� = r	 for some convex function 	 2W

1;p(
).

(iii) X0
� is a cyclically monotone function.

The functional E represents the Geostrophic energy of the uid. We de�ne E and X in the

next section. The unique energy minimiser is the monotone rearrangement of the prescribed

function: this concept was introduced by Brenier [2], and is recalled in section 3.3. The proof

uses an approximation argument, with the strict inequality following by the uniqueness of the

monotone rearrangement.

3.2 The semigeostrophic equations, and the Cullen{Norbury{Purser prin-

ciple

We state the three dimensional Boussinesq equations of semigeostrophic theory on an f plane.

These are a standard model for slowly varying ows constrained by rotation and strati�cation,

and are used to study front formation in meteorology. We state the equations in the form used

by Hoskins [8].
Dug

Dt
� fvag = 0;

Dvg

Dt
+ fuag = 0; (3)

D�

Dt
= 0; (4)

r:u = 0;

r� =

�
fvg;�fug;

g�

�0

�
(5)
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where

u � (u; v; w) � ug + uag;

ug � (ug; vg; 0);

D

Dt
�

@

@t
+ u:r

f is the Coriolis parameter, assumed constant, g denotes the acceleration due to gravity, �0 is

a reference value of the potential temperature �, and � is a pressure variable. Subscripts g and

ag denote geostrophic and ageostrophic velocity (or wind) components respectively, where the

geostrophic velocity is de�ned to be the horizontal component of velocity in balance with the

pressure gradient. This de�nition is included in equation (5), as is the statement of hydrostatic

balance. We solve the equations (for the velocity u) in a closed bounded connected set 
 � R3,

with normal velocity u:n given on @
. For x = (x; y; z) 2 
, by making the the substitution

X � (X;Y;Z) � (x+ vg=f; y � ug=f; (g=f
2
�0)�);

it is shown in Purser and Cullen [11] that we may replace (3) and (4) by

DX

Dt
= ug:

We think of X as a function of the physical space co{ordinates x. Rewriting in terms of X and

x, we have

DX

Dt
= f(y � Y ) (6)

DY

Dt
= f(X � x) (7)

DZ

Dt
= 0: (8)

The geostrophic energy E is de�ned as

E =

Z



1

2
u
2
g
+
1

2
v
2
g
�
g�z

�0
d�(x)

= f
2 1

2

Z


X

2 + x
2 + Y

2 + y
2
d�(x)� f

2

Z


x:Xd�(x)

Henceforth we ignore the constant f2. At any time t, X is found on particles by predicting

(X;Y;Z) on particles using the equations (6), (7) and (8). The Cullen{Norbury{Purser principle

states that for a solution, the particles are arranged to minimise geostrophic energy. Suppose

one possible state of the uid is described by values X0 = (X0; Y0; Z0) which are known on

particles. The Cullen{Norbury{Purser principle yields the energy minimisation problem

inf
X2R(X0)

E(X);

where the energy minimiser (if it exists and is unique) gives the actual state of the uid. In this

way, solutions can be viewed as a sequence of minimum energy states.

We make some (physically reasonable) assumptions to enable us to use vector valued rear-

rangement theory. Let 
 be a closed, bounded, connected subset of R3, with smooth boundary.

Suppose the possible uid con�guration X0 2 L
p(
; �;R3), for 2 � p < 1, where � denotes

3{dimensional Lebesgue measure. (Choosing p � 2 ensures �nite geostrophic energy.)
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3.3 Monotone rearrangement of vector valued functions

We recall the concept of the monotone rearrangement of a vector valued function: essentially,

this is the vector valued analogue of the increasing rearrangement of a real valued function. Let


 and � be as in the last paragraph of the previous section. The following theorem is due to

Brenier [2, section 1.2, theorem 1.1].

Theorem 1.1 For each u 2 L
p(
; �;R3), where 1 � p < 1, there is a unique u� 2 R(u) such

that

u
�
2 fr	 : 	 2W

1;p(
; �);	 convexg;

and the mapping u! u
� is continuous.

When 
 is not convex, 	 is understood to be the restriction to 
 of a convex function de�ned

on R3. We call u� the monotone rearrangement of u. The name comes from the fact that u� is

a cyclically monotone function. We note that McCann [10] has generalised the �rst part of this

result (concerning the existence of an essentially unique rearrangement equal to the gradient of

a convex function) to more general measures than Lebesgue measure.

De�nition A function u 2 L
p(
; �;R3) is non{degenerate if �(u�1(E)) = 0 for each set E �

R3 with Lebesgue measure zero. We say that a function which fails to be non{degenerate is

degenerate.

Brenier established further properties of the monotone rearrangement of a non{degenerate

function in the following theorem [2, section 1.2, theorem 1.2]

Theorem 1.2 For each non{degenerate u 2 L
p(
; �;R3) there exists a unique pair (u�; s), where

u
� is the monotone rearrangement of u, and s is a measure preserving mapping from (
; �) to

(
; �), such that

(i) u = u
� � s.

(ii) s is the unique measure preserving mapping that maximises
R

 u(x):s(x)d�(x). Note that

Theorem 1.2 is not true if u is degenerate: the measure preserving mapping is not unique, nor

do we have uniqueness in property (ii). The author is not aware of any corresponding result for

degenerate functions.

3.4 Existence and uniqueness of energy minimiser

Recall that we are studying the energy minimisation problem

inf
X2R(X0)

Z


x
2 +X

2 + y
2 + Y

2
d�(x)�

Z


x:Xd�(x);

where X0 2 L
p(
; �;R3) for 2 � p <1, and X = (X;Y;Z). We show that the �rst integral is

conserved under rearrangements.

Lemma 2 Let X0 be as in Theorem 2. Let X1 2 R(X0). ThenZ


x
2 +X

2
1 + y

2 + Y
2
1 d�(x) =

Z


x
2 +X

2
0 + y

2 + Y
2
0 d�(x)

where X0 = (X0; Y0; Z0) and X1 = (X1; Y1; Z1).

Proof X1 2 R(X0) implies that X1 2 R(X0). It follows thatZ


X

2
1d�(x) =

Z


X

2
0d�(x):
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A similar result holds for Y0 and Y1. The result follows.

To show that there is a unique energy minimiser, it remains to show that

sup
X2R(X0)

Z


x:Xd�(x)

is uniquely attained. If X0 is non{degenerate, the result follows easily using Theorem 1.2.

Our method of proof is to approximate degenerate functions with a sequence of non{degenerate

functions. This shows that the monotone rearrangement is an energy minimiser. We demonstrate

that an energy minimiser is the gradient of a convex function: the monotone rearrangement is

the unique such amongst the set of rearrangements, therefore the result follows.

Lemma 3 Let X 2 L
p(
; �;R3) (where 
, � and p are as in section 3.2). Then there exists a

sequence of non{degenerate functions (Xn) such that Xn ! X in L
p(
; �;R3).

Proof For each n 2 N, choose a simple function 'n such that jjX � 'njjp � 1=n. Now

for each n 2 N, de�ne Xn by Xn(x) = 'n(x) + (1=n)x for x 2 
. It is immediate that

Xn ! X in L
p(
; �;R3). It remains to show that Xn is non{degenerate for each n 2 N. Fix

n 2 N. 'n is a simple function, therefore it takes �nitely many values which we enumerate

fb1;b2; :::;bmg. De�ne Ai = 'n
�1(bi) for each i = 1; :::;m. Write Xn

i for XnjAi
. For a given

i, Xn
i = bi + (1=n)x. Let E be a Lebesgue negligible subset of R3. Then

�

�
(Xn

i)�1(E)
�

= �

�
Ai

\
(nE � nbi)

�
� �(nE � nbi)

= �(nE) = 0: (9)

By way of explanation, we have used translation invariance of Lebesgue measure to obtain the

�rst equality in (9), and properties of Lebesgue measure to obtain the second. This demonstrates

that Xn
i is non{degenerate (as an element in Lp(Ai; �;R

3)), for each i = 1; :::;m.

Let E be a Lebesgue negligible subset of R3. Then

�

�
Xn

�1(E)
�

= �

 
m[
i=1

(Xn
i)�1(E)

!

=
mX
i=1

�

�
(Xn

i)�1(E)
�
= 0: (10)

To obtain (10) we have used the countable additivity of �, and the fact that Xn
i is non{

degenerate for each i = 1; :::;m. This shows that Xn is non{degenerate, and completes the

proof.

Lemma 4 Let X0 be as in Theorem 2. ThenZ


X0

�(x):xd�(x) �

Z


X(x):s(x)d�(x)

for each X 2 R(X0) and each s : 
! 
 a measure preserving mapping.

Proof Let X 2 R(X0) and let s : 
 ! 
 be a measure preserving mapping. From the

previous lemma we may choose a sequence (Xn) of non{degenerate functions such that Xn ! X

in L
p(
; �;R3). For each n 2 N, Theorem 1.2 (i) yields the existence of a unique measure
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preserving mapping sn : 
 ! 
 such that Xn = Xn
�
� sn. Applying Theorem 1.1 we have

Xn
�
! X� = X0

�. NowZ


X0

�(x):xd�(x) = lim
n!1

Z


Xn

�(x):xd�(x)

= lim
n!1

Z


Xn

�
� sn(x):sn(x)d�(x) (11)

= lim
n!1

Z


Xn(x):sn(x)d�(x)

� lim
n!1

Z


Xn(x):s(x)d�(x) (12)

=

Z


X(x):s(x)d�(x)

as required. By way of explanation, (11) holds because sn is a measure preserving map, and

(12) follows because Theorem 1.2(ii) yields that

Z


Xn(x):sn(x)d�(x) �

Z


Xn(x):s(x)d�(x)

for each measure preserving mapping s : 
! 
, and for each n 2 N. This completes the proof.

Lemma 5 Let X0 be as in Theorem 2. ThenZ


X0

�(x):xd�(x) >

Z


X(x):xd�(x)

for each X 2 R(X0)\fX0
�
g.

Proof Applying the previous lemma for the identity mapping, we haveZ


X0

�(x):xd�(x) �

Z


X(x):xd�(x)

for each X 2 R(X0)\fX0
�
g. It remains to show strict inequality. Suppose there exists X1 2

R(X0) such that
R

X1:xd� =

R

X0

�
:xd�. Applying the previous lemma to X1 2 R(X0) we

obtain Z


X1(x):xd�(x) =

Z


X0

�(x):xd�(x)

�

Z


X1(x):s(x)d�(x)

for each measure preserving mapping s : 
 ! 
. Brenier [2, Proposition 2.1] yields that

X1 2 fr	 : 	 2 W
1;2(
);	 convexg. However Theorem 1.1 states that X0

� is the unique

member of R(X0) belonging to fr	 : 	 2 W
1;2(
);	 convexg, therefore X1 = X0

�. This

completes the proof.

Proof of Theorem 2

Follows from Lemmas 2 and 5.
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