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ABSTRACT 
Increasingly severe I/O bottlenecks on High-End Computing 
machines are prompting scientists to process output data during 
simulation time, "in-situ", and before placing data on disks. This 
paper argues for flexibility in the implementation of such in-situ 
data analytics, using measurements and a performance model that 
demonstrate the potential advantages and limitations of  
performing analytics at different levels of the I/O hierarchy, 
including on a machine's compute nodes vs. on separate "staging" 
nodes dedicated to analysis tasks. Model and measurement results 
are guided by realistic large-scale applications running on 
leadership class machines, and I/O and analytics actions are 
described as computational dataflow graphs - termed I/O graphs - 
that combine data movement with 'in transit' operations on data as 
it is being moved across the I/O hierarchy. Results demonstrate 
the importance of flexibility in analytics placement and 
characterize the attributes of analytics operations that lead to 
different placement decisions.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Performance attributes.  

General Terms 
Performance, Experimentation, Measurement. 

Keywords 
I/O, In-Situ Processing, Staging, Placement, Analytics. 

1. INTRODUCTION 
The need for in-situ processing to cope with the extreme 

volumes of output data generated by scientific simulations (and 
beyond) has become an almost inevitable fact for current 
petascale and next generation high end machines. Tasks 

performed by enhanced output pipelines include data reduction 
and filtering prior to data movement, data reorganization for 
improved storage access or to enable useful analysis, and data 
processing and analysis to better understand simulation progress 
or status and to provide end users with rapid insight into scientific 
outcomes produced by simulations. 

Work on in-situ I/O processing has been motivated by the 
increasingly severe I/O bottlenecks faced by large-scale scientific 
simulations and associated data analyses and visualizations. This 
is because high end simulations are generating ever larger data 
volumes to be analyzed/visualized in order to gain scientific 
insights, while there is an increasingly large disparity between the 
I/O and computational capabilities on most High-End Computing 
(HEC) machines[23]. Factors such as contention on shared 
resources[21] and complicated I/O patterns[19] further exacerbate 
the attainable I/O performance on those platforms. The combined 
effect results in suboptimal situations where a substantial portion 
of the simulation runtime is spent in writing data to the storage 
system[23]. Furthermore, scientifically important analysis and 
visualization on the output data incurs considerable I/O overhead 
(e.g., it has been reported that data read times from storage can 
consume up to 98% of the total runtime for large-scale 
visualizations[9]). Another important issue is the undue power 
consumption of large and/or repeated data movements into and 
out of storage[26]. 

In-situ techniques for I/O processing have shown promise in 
addressing I/O bottlenecks on high end machines. Below, we 
summarize representative techniques developed over the last few 
years, using a classification derived from [32]. 
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Figure 1. Different In-Situ I/O Processing Techniques. 
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Inline Processing: Analysis/visualization routines are 
synchronously performed by the simulation. ParaView's co-
processing library[12], VisIt's remote visualization[31] and other 
in-situ visualization work[32] fall into this category.  

Helper cores: some cores on the compute nodes where 
simulation runs are dedicated to perform select analysis actions. 
Examples include Functional Partitioning[18] and Software 
Accelerator[27].  

Staging Area Processing: on its way from computation to 
storage, data is routed via an additional set of compute nodes on 
which it can be temporarily buffered, analyzed, and visualized. 
Our previous work in PreDatA[34] and Data Services[2], as well 
as DataSpaces[11], GLEAN[16], and HDF5/DSM[6], follows this 
approach. 

Active Storage: certain computational routines are deployed in 
I/O nodes and triggered to operate on data written and/or read by 
the simulation[25][28]. 

Offline Processing: data written to storage is read back for 
additional or long term analysis or visualization[14], typically 
assisted by workflow tools[22]. 

The key factor distinguishing the above data processing 
techniques is "where" analytics computations are placed along the 
I/O path. Such placements determine which resource is allocated 
to which computations and how/when data is moved. 
Consequently, computation placement along the I/O path has 
significant impact on both the performance (e.g., runtime) and the 
cost (e.g., CPU hours) of the resulting coupled simulation and 
analysis codes. Further and as quantitatively demonstrated below, 
there are trade-offs among different placement strategies in terms 
of performance and cost, and these trade-offs vary across different 
analytics codes, data volumes, and scales. Therefore, flexibility in 
analytics placement is a key requirement for in-situ I/O 
processing.  

The main technical contribution described in this paper is a 
quantitative formulation of the performance/cost trade-offs seen 
for different placement strategies. We also present useful metrics 
that capture and measure trade-offs. This is useful for scientific 
end users choosing placements for specific applications and 
analytics, provides insights to system/tool developers, and 
constitutes a first step toward developing automated functionality 
for future in-situ I/O processing systems. The work is novel in 
that it generalizes from specific measurements and costs reported 
in prior work and permits quantitative comparisons between 
different approaches and technique. This supplements other 
efforts[8] focused on the different usage models and software 
engineering implications associated with various in-situ 
processing methods. 

The remainder of the paper is organized as follows. Section II 
defines performance and cost metrics and formulates performance 
models to characterize the trade-offs in in-situ I/O processing. 
Section III presents our middleware system's support for flexible 
placement. Section IV reports performance results on constructing 
and accelerating I/O processing for a large-scale scientific 
application on Oak Ridge National Laboratory's Cray XT5 
platform, which demonstrates the benefits of flexible placement 
and empirically verifies the proposed performance model. Section 
V concludes the paper and discusses future work. 

2. MODELING IN-SITU I/O PROCESSING 
In order to quantitatively evaluate various in-situ I/O 

processing approaches, we define a set of performance and cost 
metrics. We then derive simple performance models to compare 
the Inline vs. Staging approaches, both of which have been 
actively developed and successfully applied in practice.  

2.1 Performance and Cost Metrics 
    Total Execution Time: the time from the start of simulation 
and analysis to the completion of both, also termed "Time to 
Insight" in our prior work[1]. This performance metric measures 
how long it takes to finish both the simulation and analysis, the 
idea being that it is the scientific insights derived from data 
analysis that drive science end users[5].  

    Total CPU hours: the total nodes used multiplied by the total 
execution time (in units of hours). This metric measures the cost 
of a run, as supercomputing centers commonly charge end users 
with the total number of CPU hours consumed by their jobs. 
Another useful cost metric is a run's total power consumption[13], 
which we will consider in our future work. 

2.2 Comparison between Inline and Staging 
Approaches 

For modeling purpose, we consider the simple but common 
usage scenario of in-situ I/O processing (shown in Figure 2). In 
this case, the simulation periodically generates output data and 
passes the data to an analysis component, which then immediately 
performs certain processing actions. The term “analysis” is used 
to denote actions ranging from simply writing data to storage, to 
data analytics such as feature extraction, indexing, compression, 
to the processing needed for coupling scientific codes[33], to data 
conversions for storage, and data visualization. We assume a 
processing model in which such actions are arranged as 
computational dataflow graphs, where each such directed graph 
describes the inputs/outputs of individual, indivisible analysis 
actions and the data movements between them. The formulation 
shown below may be applied to any bi-section cut across this 
graph to evaluate the placement of all computations before and/or 
after the cut. 

Table 1. Major notations used in model 

Psim Total number of nodes on which simulation is run 

Pa Total number of nodes in staging area (if present) 

Tsim(P) 
Simulation’s wall-clock time between two 
consecutive I/O actions when running on P nodes 

Ta(P) 
Analysis’ wall-clock time for processing one 
simulation output step when running on P nodes 

 K Total number of I/O dumps 

α α=Pa/Psim 

β β= Ta(Psim)/Tsim(Psim) 

Tsend Simulation-side visible data movement time 

Trecv Staging node-side visible data movement time 

s Slowdown factor of simulation 

We denote the Total Execution Time using Inline and Staging 
approaches as Tinline and Tstaging, respectively. Figure 2(b) and 



2(c) separately show the timeline of simulation and analysis with 
the Inline and Staging approaches. Omitting the initialization and 
finalization phases of long running simulation, Tinline and 
Tstaging can be calculated as follows: 

)]()([ PsimTaPsimTsimKTinline +×=  

)}(,)(max{ PaTaTrecvTsendsPsimTsimKTstaging ++××=
 Define the performance speedup of using Staging over Inline: 

Tstaging
TinlineSpeedup =  

    And let PsimPa /=α (size of staging area as percentage of 
total simulation nodes), and )(/)( PsimTsimPsimTa=β . This 
results in: 

)}(,)(max{
)1)((

α
β

×++×
+

=
PsimTaTrecvTsendsPsimTsim

PsimTsimSpeedup

    An upper bound on Speedup can be derived as: 

sSpeedup /)1( β+<  
In the formula above,  β denotes analysis time as percentage of 

simulation time at the scale of Psim nodes, and s is the slowdown 
factor of simulation time due to staging (s≥1) (e.g., slowdown due 
to network contention caused by additional data movements 
needed for staging[3], if any). 

Since the Staging approach uses additional Pa nodes to offload 
analysis and may improve the total execution time through 
pipelining effect, it is interesting to understand the conditions 
under which Staging can achieve the maximum speedup with 
some associated cost. Figure 3 shows three different possible 
relationships between staging area size (α) and Speedup. In each 
figure, there are three regions: inefficient region (or sub-linear 
speedup region, colored yellow), efficient region (or super-linear 
speedup region, colored blue), and over-provisioned region 
(where no more speedup could be gained by increasing size of 
staging area, colored purple). 

    Figure 3(a) shows a case where Staging can outperform the 
Inline approach in both performance (Speedup>1) and Cost 
(Parallel Efficiency>1). The conditions are: (i) no slowdown, i.e., 
slowdown factor s=1; (ii) no additional delay due to data 
movement to staging: Tsend=0; (iii) simulation time between 
successive output steps is larger than the time required to receive 

and analyze data: Tsim(Psim)>Trecv+Ta(Pa); and (iv) Ta(P) 
scales sub-linearly with P. Note that if analysis is sub-linear, then 
when scaling it down to run on some smaller number of nodes, 
the cost (Ta(P)×P) is reduced. This may create a "sweet-spot" 
region, shown as [β0, (1+β)/s-1]in Figure 3(a), where α% of 
additional nodes as staging area can speedup the total execution 
time by more than α%! 

Figure 3(b) shows a case for linear-scalable analysis. As can be 
seen, if analysis scales linearly, i.e., can be performed locally on 
compute nodes with no communication, then there is no savings 
in CPU hours by offloading it to a staging area (since the product 
Ta×Pa is constant), but offloading will only introduce additional 
costs for data movement.  

Figure 3(c) demonstrates a case where the minimum size of the 
staging area (α0), determined by the memory requirement to 
accommodate simulation output data plus the analysis code/data, 
is larger than (1+β)/s-1. In this case, the Staging approach with 
any staging area size α>α0 will always falls into the inefficient 
region.  

2.3 Summary of Performance Modeling 
We use the performance model to review previous work in In-

situ I/O processing by our group and others and draw the 
following conclusions. 

Firstly, the staging approach can benefit non-scalable analysis 
actions. An interesting property of staging is that the performance 
improvement is more evident with less scalable analysis. Our 
work with GTC and Chimera applications[34][2] evaluated the 
feasibility of offloading various operations to a separate staging 
area (e.g., file writing, format conversion, array layout re-
organization, histogram calculation, indexing, and sorting),  and 
achieved the "sweet-spot" region shown in Figure 3(a) for both 
applications at large scale. Section V will provide results with 
Pixie3D application, which also benefits from placing non-
scalable analysis into the staging area. 

Secondly, placing linear-scalable analysis in the staging area is 
less cost-effective than placing it inline, since there will be 
additional costs for data movement but no reductions in total CPU 
usage. Data filtering[24], sampling[1], in-situ compression[17] 

Figure 2. Timeline for Inline and Staging Approaches. 
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and visualization (such as slicing, isosurface, and PCA)[12] fall 
into this category. Those operations can scale to large core counts, 
extract subsets or features of raw data and hence reduce data 
volume, and sometimes share large amount of input and/or 
metadata with simulation, all of which makes it beneficial to place 
them inline with the simulation. 

    Thirdly, it is important for the Staging approach to move data 
in a way such that (i) simulation-side visible data movement 
latency (Tsend) is minimized; (ii) the slowdown factor (s) is 
minimized; (iii) receiver-side data movement latency (Trecv) is 
reduced to leave sufficient time for analysis to complete before 
the next I/O action. It is feasible to meet those conditions in 
practice: (i) by using middleware that provides specializable data 
copying and marshalling mechanisms to achieve very low 
simulation-side visible data movement latency (Tsend)[1]; (ii) by 
using contention-aware scheduling for asynchronous data 
movement to mitigate the slowdown factor (s)[3]; (iii) by 
leveraging a chunk-based processing model to overlap receiver-
side data movement latency (Trecv) with analysis computation 
and reduce the memory requirements of the staging area (α0)[34]. 

    Fourthly, the applicability of staging is constrained by memory 
availability. At simulation side, extra memory space is needed for 
asynchronous data movement; the staging area should contain 
sufficient nodes (α0) to accommodate the simulation output and 
all other data and code to run analysis functions. We therefore, 
promote a chunk-based stream processing model[2]. It is useful 
for many types of scientific data analytics [15][30], but is limited 
by the memory constraint to preclude certain time-based analyses 
that require large data sets across many simulation time steps.  

It should be noted that our model assumes a simulation-driven, 
per-timestep analysis scenario. There are other cases where in-situ 
I/O processing may also be applied (e.g., computational steering 
and visual debugging). Supporting those other usage cases at large 
scale is an active R&D topic, and we are planning to refine our 
metrics definition and model to cover them in future work. 

3. PREDATA MIDDLEWARE 
    Our previous work on the PreDatA[34] middleware has been 
extended with support for dynamically deploying computational 
functions into the simulation and the staging area, as shown in [1]. 
Although we initially adopted a streaming map-reduce processing 
model for PreDatA, we have generalized the approach to the 
"Computational I/O Graph" model. In this more general dataflow 
model, the computation units, which can be either sequential or 
parallel programs, communicate through the ADIOS I/O API[20]. 
Utilizing the componentization of the ADIOS framework, 
PreDatA allows the data movement to use either direct memory to 
memory transport[3] or the ADIOS/BP file(s) as the 
communication channel. The Computational I/O Graph model 
naturally fits the workflow structure of in-situ I/O processing, 
eases integrating simulation and analysis codes through use of 
their common I/O interfaces, and enables data and pipeline 
parallel execution and parallel data movement.   

The PreDatA middleware includes a meta-data service that 
understand the structure and composition of I/O graphs, provides 
membership services for connection establishment and teardown, 
and offers a publish/subscribe mechanism for interacting 
computation units for exchanging the metadata necessary for 
MxN parallel data re-distribution [4]. 

Placement flexibility is supported at both compile/link time and 
runtime. For analysis which is known apiori, users can link 
analysis code either within the simulation program or within the 
staging area code, or both. Runtime computation placement 
flexibility is enabled through migratable codelets implemented in 
C-o-D. As detailed in [1], such codelets can be compiled and 
deployed into a program's address space at runtime in an efficient 
and secure manner. This feature is particularly useful for runtime 
flexible placement. Two common usage scenarios are: (i) 
offloading non-scalable analytics to downstream staging area, and 
(ii) uploading filters to upstream simulation nodes. 

4. APPLICATION CASE STUDY 
Experimental results concerning in-situ I/O processing are 

obtained for the Pixie3D[7] application. Pixie3D is a 3-
Dimensional extended MHD code which solves the extended 
MHD equations in 3D arbitrary geometries using fully implicit 
Newton-Krylov algorithms. As illustrated in Figure 4, Pixie3D 
I/O processing uses a computational I/O graph structured as a 
three-stage pipeline. The first stage is the Pixie3D simulation, 
generating output data that consists of eight 3D arrays that 
represent mass density, linear momentum components, vector 
potential components, and temperature, respectively. The second 
stage is an analysis code called "Pixplot", which performs various 
diagnostic routines on Pixie3D output data to generate derived 
quantities, such as curl, gradient, flux, and divergence. The third 
stage uses the Paraview visualization tool to read the derived 
quantities generated by Pixplot for visual data exploration.  

    We run Pixie3D and Pixplot on ORNL’s Jaguar Cray XT5 and 
use the performance model in Section II to reason about the best 
placement strategy for Pixie3D I/O processing pipeline. We first 
find that the Inline approach will perform poorly for the Pixie3D 
case at large scale. Figure 5 shows the weak scaling of time for 
Pixie3D simulation (Tsim) and Pixplot analysis (Ta). The time to 
write the output of Pixplot from simulation nodes is also shown in 
the figure. As seen, both Pixplot and I/O have worse scalability 
than Pixie3D. If Pixplot analysis is performed inline, the time 
portion spent in Pixplot analysis will increase from 0.06% of 
Pixie3D simulation time on 512 cores, to 35.6% on 8192 cores. 
Also, the time to write analysis results increases from 0.39% of 
Pixie3D simulation time on 512 cores to 3.8% on 8192 cores. The 
insufficient scalability of Pixplot is due to its intensive use of MPI 
collective communications and "aggregating-to-one-process” 
style computation which is not uncommon in analysis codes.  

We then run Pixie3D simulation on 8192 cores with Pixplot 
placed in a staging area of 64 cores. Data movement between 
Pixie3D and Pixplot is via DataTap, a RDMA-based contention-
aware transport[3]. The detailed timing in Figure 6 shows that 
placing Pixplot in staging area can effectively overlap analysis 
and writing (Ta/compute and Ta/write, respectively) with 
simulation (Tsim). The simulation-side visible send time (Tsend) 
is 1.3% of Tsim, and the slowdown factor s of Tsim due to staging 
is 1.008. The staging area side data movement time (Trecv) is less 

Pixie3D
Simulation

Pixplot
Analysis

Paraview
server

8192 procs 64 procs 16 procs

370KB/proc 276MB/proc

remote client

Figure 4. Pixie3D In-Situ I/O Processing. 



than 0.5 seconds. Overall, with a staging area which is of 0.78% 
the simulation nodes (α=Pa/Psim=0.78%), the measured speedup 
of Staging over Inline is 1.333, which is within 96% of the upper 
bound ((1+β)/s=(1+35.6%+3.8%)/1.008=1.383) given by the 
performance model. When running Pixie3D on 8192 cores, the 
minimal size of staging area (α0), determined by the minimal 
memory space required to run Pixplot, is 64 cores (meaning 
α0=0.78%). Figure 6 shows that even when staging area is of the 
minimal feasible size (α0), the staging area still spends 25% of 
time waiting for output data from simulation, indicating that 
staging area is already over-provisioned. Also note that scaling 
down Pixplot from 8192 to 64 cores actually reduces its runtime 
by half. This is due to the communication-bound nature of Pixplot 
and improved locality when data are aggregated onto a smaller 
number of cores. 

    When compared to the Offline approach, by which Pixie3D 
writes output into a BP file using MPI-IO and Pixplot reads data 
from the file for analysis, the Staging approach hides file write 
latencies almost completely and improves Pixie3D’s total 
execution time by 2.3% to 16.5% among 5 test runs at scale of 
8192 cores. This validates the applicability of in-situ I/O 
processing to mitigate the I/O bottleneck on high end machines. 

5. CONCLUSIONS AND FUTURE WORK 
    This paper discusses the significance of flexible placement for 
in-situ I/O processing. A simple performance model is used to 
quantitatively describe the trade-offs in placement. Based on the 
model, we compare two different placement strategies for in-situ 
processing and reveal their relative strengths and limitations. 
Performance results with a large-scale scientific application 
empirically verify our performance model and the argument for 
flexible placement.  

    Our future work is twofold: (1) we are working on runtime 
resource management and pipeline balancing for I/O graphs and 
(2) we are investigating automatic placement of analysis 
computations based on runtime performance monitoring[29]. 
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