
In-Situ I/O Processing: A Case for Location Flexibility

Fang Zheng, Hasan Abbasi, Jianting Cao, Jai Dayal, Karsten Schwan,
Matthew Wolf, Scott Klasky*, Norbert Podhorszki*

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
{fzheng, habbasi, jcao32, jdayal3, schwan, mwolf}@cc.gatech.edu

*National Center for Computational Sciences
Oak Ridge National Laboratory

Oak Ridge, TN 37831
{klasky, pnorbert}@ornl.gov

ABSTRACT
Increasingly severe I/O bottlenecks on High-End Computing
machines are prompting scientists to process output data during
simulation time, "in-situ", and before placing data on disks. This
paper argues for flexibility in the implementation of such in-situ
data analytics, using measurements and a performance model that
demonstrate the potential advantages and limitations of
performing analytics at different levels of the I/O hierarchy,
including on a machine's compute nodes vs. on separate "staging"
nodes dedicated to analysis tasks. Model and measurement results
are guided by realistic large-scale applications running on
leadership class machines, and I/O and analytics actions are
described as computational dataflow graphs - termed I/O graphs -
that combine data movement with 'in transit' operations on data as
it is being moved across the I/O hierarchy. Results demonstrate
the importance of flexibility in analytics placement and
characterize the attributes of analytics operations that lead to
different placement decisions.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes.

General Terms
Performance, Experimentation, Measurement.

Keywords
I/O, In-Situ Processing, Staging, Placement, Analytics.

1. INTRODUCTION
The need for in-situ processing to cope with the extreme

volumes of output data generated by scientific simulations (and
beyond) has become an almost inevitable fact for current
petascale and next generation high end machines. Tasks

performed by enhanced output pipelines include data reduction
and filtering prior to data movement, data reorganization for
improved storage access or to enable useful analysis, and data
processing and analysis to better understand simulation progress
or status and to provide end users with rapid insight into scientific
outcomes produced by simulations.

Work on in-situ I/O processing has been motivated by the
increasingly severe I/O bottlenecks faced by large-scale scientific
simulations and associated data analyses and visualizations. This
is because high end simulations are generating ever larger data
volumes to be analyzed/visualized in order to gain scientific
insights, while there is an increasingly large disparity between the
I/O and computational capabilities on most High-End Computing
(HEC) machines[23]. Factors such as contention on shared
resources[21] and complicated I/O patterns[19] further exacerbate
the attainable I/O performance on those platforms. The combined
effect results in suboptimal situations where a substantial portion
of the simulation runtime is spent in writing data to the storage
system[23]. Furthermore, scientifically important analysis and
visualization on the output data incurs considerable I/O overhead
(e.g., it has been reported that data read times from storage can
consume up to 98% of the total runtime for large-scale
visualizations[9]). Another important issue is the undue power
consumption of large and/or repeated data movements into and
out of storage[26].

In-situ techniques for I/O processing have shown promise in
addressing I/O bottlenecks on high end machines. Below, we
summarize representative techniques developed over the last few
years, using a classification derived from [32].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PDSW’11, November 13, 2011, Seattle, Washington, USA.

Copyright 2011 ACM 978-1-4503-1103-8/11/11...$10.00.

Figure 1. Different In-Situ I/O Processing Techniques.

PFSSimulation core

Helper core

Staging core

Offline core

Inline Processing: Analysis/visualization routines are
synchronously performed by the simulation. ParaView's co-
processing library[12], VisIt's remote visualization[31] and other
in-situ visualization work[32] fall into this category.

Helper cores: some cores on the compute nodes where
simulation runs are dedicated to perform select analysis actions.
Examples include Functional Partitioning[18] and Software
Accelerator[27].

Staging Area Processing: on its way from computation to
storage, data is routed via an additional set of compute nodes on
which it can be temporarily buffered, analyzed, and visualized.
Our previous work in PreDatA[34] and Data Services[2], as well
as DataSpaces[11], GLEAN[16], and HDF5/DSM[6], follows this
approach.

Active Storage: certain computational routines are deployed in
I/O nodes and triggered to operate on data written and/or read by
the simulation[25][28].

Offline Processing: data written to storage is read back for
additional or long term analysis or visualization[14], typically
assisted by workflow tools[22].

The key factor distinguishing the above data processing
techniques is "where" analytics computations are placed along the
I/O path. Such placements determine which resource is allocated
to which computations and how/when data is moved.
Consequently, computation placement along the I/O path has
significant impact on both the performance (e.g., runtime) and the
cost (e.g., CPU hours) of the resulting coupled simulation and
analysis codes. Further and as quantitatively demonstrated below,
there are trade-offs among different placement strategies in terms
of performance and cost, and these trade-offs vary across different
analytics codes, data volumes, and scales. Therefore, flexibility in
analytics placement is a key requirement for in-situ I/O
processing.

The main technical contribution described in this paper is a
quantitative formulation of the performance/cost trade-offs seen
for different placement strategies. We also present useful metrics
that capture and measure trade-offs. This is useful for scientific
end users choosing placements for specific applications and
analytics, provides insights to system/tool developers, and
constitutes a first step toward developing automated functionality
for future in-situ I/O processing systems. The work is novel in
that it generalizes from specific measurements and costs reported
in prior work and permits quantitative comparisons between
different approaches and technique. This supplements other
efforts[8] focused on the different usage models and software
engineering implications associated with various in-situ
processing methods.

The remainder of the paper is organized as follows. Section II
defines performance and cost metrics and formulates performance
models to characterize the trade-offs in in-situ I/O processing.
Section III presents our middleware system's support for flexible
placement. Section IV reports performance results on constructing
and accelerating I/O processing for a large-scale scientific
application on Oak Ridge National Laboratory's Cray XT5
platform, which demonstrates the benefits of flexible placement
and empirically verifies the proposed performance model. Section
V concludes the paper and discusses future work.

2. MODELING IN-SITU I/O PROCESSING
In order to quantitatively evaluate various in-situ I/O

processing approaches, we define a set of performance and cost
metrics. We then derive simple performance models to compare
the Inline vs. Staging approaches, both of which have been
actively developed and successfully applied in practice.

2.1 Performance and Cost Metrics
 Total Execution Time: the time from the start of simulation
and analysis to the completion of both, also termed "Time to
Insight" in our prior work[1]. This performance metric measures
how long it takes to finish both the simulation and analysis, the
idea being that it is the scientific insights derived from data
analysis that drive science end users[5].

 Total CPU hours: the total nodes used multiplied by the total
execution time (in units of hours). This metric measures the cost
of a run, as supercomputing centers commonly charge end users
with the total number of CPU hours consumed by their jobs.
Another useful cost metric is a run's total power consumption[13],
which we will consider in our future work.

2.2 Comparison between Inline and Staging
Approaches

For modeling purpose, we consider the simple but common
usage scenario of in-situ I/O processing (shown in Figure 2). In
this case, the simulation periodically generates output data and
passes the data to an analysis component, which then immediately
performs certain processing actions. The term “analysis” is used
to denote actions ranging from simply writing data to storage, to
data analytics such as feature extraction, indexing, compression,
to the processing needed for coupling scientific codes[33], to data
conversions for storage, and data visualization. We assume a
processing model in which such actions are arranged as
computational dataflow graphs, where each such directed graph
describes the inputs/outputs of individual, indivisible analysis
actions and the data movements between them. The formulation
shown below may be applied to any bi-section cut across this
graph to evaluate the placement of all computations before and/or
after the cut.

Table 1. Major notations used in model

Psim Total number of nodes on which simulation is run

Pa Total number of nodes in staging area (if present)

Tsim(P)
Simulation’s wall-clock time between two
consecutive I/O actions when running on P nodes

Ta(P)
Analysis’ wall-clock time for processing one
simulation output step when running on P nodes

 K Total number of I/O dumps

α α=Pa/Psim

β β= Ta(Psim)/Tsim(Psim)

Tsend Simulation-side visible data movement time

Trecv Staging node-side visible data movement time

s Slowdown factor of simulation

We denote the Total Execution Time using Inline and Staging
approaches as Tinline and Tstaging, respectively. Figure 2(b) and

2(c) separately show the timeline of simulation and analysis with
the Inline and Staging approaches. Omitting the initialization and
finalization phases of long running simulation, Tinline and
Tstaging can be calculated as follows:

)]()([PsimTaPsimTsimKTinline +×=

)}(,)(max{ PaTaTrecvTsendsPsimTsimKTstaging ++××=
 Define the performance speedup of using Staging over Inline:

Tstaging
TinlineSpeedup =

 And let PsimPa /=α (size of staging area as percentage of
total simulation nodes), and)(/)(PsimTsimPsimTa=β . This
results in:

)}(,)(max{
)1)((

α
β

×++×
+

=
PsimTaTrecvTsendsPsimTsim

PsimTsimSpeedup

 An upper bound on Speedup can be derived as:

sSpeedup /)1(β+<
In the formula above, β denotes analysis time as percentage of

simulation time at the scale of Psim nodes, and s is the slowdown
factor of simulation time due to staging (s≥1) (e.g., slowdown due
to network contention caused by additional data movements
needed for staging[3], if any).

Since the Staging approach uses additional Pa nodes to offload
analysis and may improve the total execution time through
pipelining effect, it is interesting to understand the conditions
under which Staging can achieve the maximum speedup with
some associated cost. Figure 3 shows three different possible
relationships between staging area size (α) and Speedup. In each
figure, there are three regions: inefficient region (or sub-linear
speedup region, colored yellow), efficient region (or super-linear
speedup region, colored blue), and over-provisioned region
(where no more speedup could be gained by increasing size of
staging area, colored purple).

 Figure 3(a) shows a case where Staging can outperform the
Inline approach in both performance (Speedup>1) and Cost
(Parallel Efficiency>1). The conditions are: (i) no slowdown, i.e.,
slowdown factor s=1; (ii) no additional delay due to data
movement to staging: Tsend=0; (iii) simulation time between
successive output steps is larger than the time required to receive

and analyze data: Tsim(Psim)>Trecv+Ta(Pa); and (iv) Ta(P)
scales sub-linearly with P. Note that if analysis is sub-linear, then
when scaling it down to run on some smaller number of nodes,
the cost (Ta(P)×P) is reduced. This may create a "sweet-spot"
region, shown as [β0, (1+β)/s-1]in Figure 3(a), where α% of
additional nodes as staging area can speedup the total execution
time by more than α%!

Figure 3(b) shows a case for linear-scalable analysis. As can be
seen, if analysis scales linearly, i.e., can be performed locally on
compute nodes with no communication, then there is no savings
in CPU hours by offloading it to a staging area (since the product
Ta×Pa is constant), but offloading will only introduce additional
costs for data movement.

Figure 3(c) demonstrates a case where the minimum size of the
staging area (α0), determined by the memory requirement to
accommodate simulation output data plus the analysis code/data,
is larger than (1+β)/s-1. In this case, the Staging approach with
any staging area size α>α0 will always falls into the inefficient
region.

2.3 Summary of Performance Modeling
We use the performance model to review previous work in In-

situ I/O processing by our group and others and draw the
following conclusions.

Firstly, the staging approach can benefit non-scalable analysis
actions. An interesting property of staging is that the performance
improvement is more evident with less scalable analysis. Our
work with GTC and Chimera applications[34][2] evaluated the
feasibility of offloading various operations to a separate staging
area (e.g., file writing, format conversion, array layout re-
organization, histogram calculation, indexing, and sorting), and
achieved the "sweet-spot" region shown in Figure 3(a) for both
applications at large scale. Section V will provide results with
Pixie3D application, which also benefits from placing non-
scalable analysis into the staging area.

Secondly, placing linear-scalable analysis in the staging area is
less cost-effective than placing it inline, since there will be
additional costs for data movement but no reductions in total CPU
usage. Data filtering[24], sampling[1], in-situ compression[17]

Figure 2. Timeline for Inline and Staging Approaches.

Tsim TsimTs

Tr

Ts Tsim

wait

Ts

wait

Time

Simulation

Staging Area Tinit

Tinit

waitTa Tr Ta Tr Ta

Tsim Ta

Time

Simulation Tinit Tsim Ta Tsim Ta

(b) Timeline with Inline Approach

(c) Timeline with Staging Approach

simulation analysis

(a) Modeled Scenario

…

…

α

speedup

(1+β)/s

1(1+β)/s-1α0

1α

speedup

(1+β)/s

1(1+β)/s-1α0 β0

1

α

speedup

(1+β)/s

1(1+β)/s-1 α0

1

(a) (b)

(c)

0 0

0

Figure 3. Speedup of Staging vs. Inline.

and visualization (such as slicing, isosurface, and PCA)[12] fall
into this category. Those operations can scale to large core counts,
extract subsets or features of raw data and hence reduce data
volume, and sometimes share large amount of input and/or
metadata with simulation, all of which makes it beneficial to place
them inline with the simulation.

 Thirdly, it is important for the Staging approach to move data
in a way such that (i) simulation-side visible data movement
latency (Tsend) is minimized; (ii) the slowdown factor (s) is
minimized; (iii) receiver-side data movement latency (Trecv) is
reduced to leave sufficient time for analysis to complete before
the next I/O action. It is feasible to meet those conditions in
practice: (i) by using middleware that provides specializable data
copying and marshalling mechanisms to achieve very low
simulation-side visible data movement latency (Tsend)[1]; (ii) by
using contention-aware scheduling for asynchronous data
movement to mitigate the slowdown factor (s)[3]; (iii) by
leveraging a chunk-based processing model to overlap receiver-
side data movement latency (Trecv) with analysis computation
and reduce the memory requirements of the staging area (α0)[34].

 Fourthly, the applicability of staging is constrained by memory
availability. At simulation side, extra memory space is needed for
asynchronous data movement; the staging area should contain
sufficient nodes (α0) to accommodate the simulation output and
all other data and code to run analysis functions. We therefore,
promote a chunk-based stream processing model[2]. It is useful
for many types of scientific data analytics [15][30], but is limited
by the memory constraint to preclude certain time-based analyses
that require large data sets across many simulation time steps.

It should be noted that our model assumes a simulation-driven,
per-timestep analysis scenario. There are other cases where in-situ
I/O processing may also be applied (e.g., computational steering
and visual debugging). Supporting those other usage cases at large
scale is an active R&D topic, and we are planning to refine our
metrics definition and model to cover them in future work.

3. PREDATA MIDDLEWARE
 Our previous work on the PreDatA[34] middleware has been
extended with support for dynamically deploying computational
functions into the simulation and the staging area, as shown in [1].
Although we initially adopted a streaming map-reduce processing
model for PreDatA, we have generalized the approach to the
"Computational I/O Graph" model. In this more general dataflow
model, the computation units, which can be either sequential or
parallel programs, communicate through the ADIOS I/O API[20].
Utilizing the componentization of the ADIOS framework,
PreDatA allows the data movement to use either direct memory to
memory transport[3] or the ADIOS/BP file(s) as the
communication channel. The Computational I/O Graph model
naturally fits the workflow structure of in-situ I/O processing,
eases integrating simulation and analysis codes through use of
their common I/O interfaces, and enables data and pipeline
parallel execution and parallel data movement.

The PreDatA middleware includes a meta-data service that
understand the structure and composition of I/O graphs, provides
membership services for connection establishment and teardown,
and offers a publish/subscribe mechanism for interacting
computation units for exchanging the metadata necessary for
MxN parallel data re-distribution [4].

Placement flexibility is supported at both compile/link time and
runtime. For analysis which is known apiori, users can link
analysis code either within the simulation program or within the
staging area code, or both. Runtime computation placement
flexibility is enabled through migratable codelets implemented in
C-o-D. As detailed in [1], such codelets can be compiled and
deployed into a program's address space at runtime in an efficient
and secure manner. This feature is particularly useful for runtime
flexible placement. Two common usage scenarios are: (i)
offloading non-scalable analytics to downstream staging area, and
(ii) uploading filters to upstream simulation nodes.

4. APPLICATION CASE STUDY
Experimental results concerning in-situ I/O processing are

obtained for the Pixie3D[7] application. Pixie3D is a 3-
Dimensional extended MHD code which solves the extended
MHD equations in 3D arbitrary geometries using fully implicit
Newton-Krylov algorithms. As illustrated in Figure 4, Pixie3D
I/O processing uses a computational I/O graph structured as a
three-stage pipeline. The first stage is the Pixie3D simulation,
generating output data that consists of eight 3D arrays that
represent mass density, linear momentum components, vector
potential components, and temperature, respectively. The second
stage is an analysis code called "Pixplot", which performs various
diagnostic routines on Pixie3D output data to generate derived
quantities, such as curl, gradient, flux, and divergence. The third
stage uses the Paraview visualization tool to read the derived
quantities generated by Pixplot for visual data exploration.

 We run Pixie3D and Pixplot on ORNL’s Jaguar Cray XT5 and
use the performance model in Section II to reason about the best
placement strategy for Pixie3D I/O processing pipeline. We first
find that the Inline approach will perform poorly for the Pixie3D
case at large scale. Figure 5 shows the weak scaling of time for
Pixie3D simulation (Tsim) and Pixplot analysis (Ta). The time to
write the output of Pixplot from simulation nodes is also shown in
the figure. As seen, both Pixplot and I/O have worse scalability
than Pixie3D. If Pixplot analysis is performed inline, the time
portion spent in Pixplot analysis will increase from 0.06% of
Pixie3D simulation time on 512 cores, to 35.6% on 8192 cores.
Also, the time to write analysis results increases from 0.39% of
Pixie3D simulation time on 512 cores to 3.8% on 8192 cores. The
insufficient scalability of Pixplot is due to its intensive use of MPI
collective communications and "aggregating-to-one-process”
style computation which is not uncommon in analysis codes.

We then run Pixie3D simulation on 8192 cores with Pixplot
placed in a staging area of 64 cores. Data movement between
Pixie3D and Pixplot is via DataTap, a RDMA-based contention-
aware transport[3]. The detailed timing in Figure 6 shows that
placing Pixplot in staging area can effectively overlap analysis
and writing (Ta/compute and Ta/write, respectively) with
simulation (Tsim). The simulation-side visible send time (Tsend)
is 1.3% of Tsim, and the slowdown factor s of Tsim due to staging
is 1.008. The staging area side data movement time (Trecv) is less

Pixie3D
Simulation

Pixplot
Analysis

Paraview
server

8192 procs 64 procs 16 procs

370KB/proc 276MB/proc

remote client

Figure 4. Pixie3D In-Situ I/O Processing.

than 0.5 seconds. Overall, with a staging area which is of 0.78%
the simulation nodes (α=Pa/Psim=0.78%), the measured speedup
of Staging over Inline is 1.333, which is within 96% of the upper
bound ((1+β)/s=(1+35.6%+3.8%)/1.008=1.383) given by the
performance model. When running Pixie3D on 8192 cores, the
minimal size of staging area (α0), determined by the minimal
memory space required to run Pixplot, is 64 cores (meaning
α0=0.78%). Figure 6 shows that even when staging area is of the
minimal feasible size (α0), the staging area still spends 25% of
time waiting for output data from simulation, indicating that
staging area is already over-provisioned. Also note that scaling
down Pixplot from 8192 to 64 cores actually reduces its runtime
by half. This is due to the communication-bound nature of Pixplot
and improved locality when data are aggregated onto a smaller
number of cores.

 When compared to the Offline approach, by which Pixie3D
writes output into a BP file using MPI-IO and Pixplot reads data
from the file for analysis, the Staging approach hides file write
latencies almost completely and improves Pixie3D’s total
execution time by 2.3% to 16.5% among 5 test runs at scale of
8192 cores. This validates the applicability of in-situ I/O
processing to mitigate the I/O bottleneck on high end machines.

5. CONCLUSIONS AND FUTURE WORK
 This paper discusses the significance of flexible placement for
in-situ I/O processing. A simple performance model is used to
quantitatively describe the trade-offs in placement. Based on the
model, we compare two different placement strategies for in-situ
processing and reveal their relative strengths and limitations.
Performance results with a large-scale scientific application
empirically verify our performance model and the argument for
flexible placement.

 Our future work is twofold: (1) we are working on runtime
resource management and pipeline balancing for I/O graphs and
(2) we are investigating automatic placement of analysis
computations based on runtime performance monitoring[29].

6. ACKNOWLEDGMENTS
 The authors thank Berk Geveci, Sebastien Jourdain, and Pat
Marion from Kitware Inc. and Kenneth Moreland from Sandia
National Laboratory for integrating ADIOS with ParaView and
aid in implementing Pixie3D I/O processing pipeline. This work
was funded in part by Sandia National Laboratories under
contract DE-AC04-94AL85000, by the DOE Office of Science,
Advanced Scientific Computing Research, under award number
DE-SC0005505, program manager Lucy Nowell, and by the
Department of Energy under Contract No. DEAC05- 00OR22725
at Oak Ridge National Laboratory. Additional support came from

the resources of the National Center for Computational Sciences
at Oak Ridge National Laboratory, a grant from NSF as part of
the HECURA program, a grant from the Department of Defense,
a grant from the Office of Science through the SciDAC program,
and the SDM center in the ASCR office.

7. REFERENCES
[1] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S.

Klasky. Just in time: adding value to the io pipelines of high
performance applications with jitstaging. in HPDC, 2011.

[2] H. Abbasi, J. Lofstead, F. Zheng, K. Schwan, M. Wolf, S.
Klasky. Extending I/O through high performance data
services. In Proc. of Cluster 2009.

[3] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan.
And F. Zheng. DataStager: Scalable Data Staging Services
for Petascale Applications. in Proceedings of HPDC 2009.

[4] H. Abbasi, M. Wolf, K. Schwan, G. Eisenhauer, and A.
Hilton. Xchange: coupling parallel applications in a dynamic
environment. in CLUSTER, 2004, pp. 471-480.

[5] A. Ailamaki, V. Kantere, and D. Dash. Managing scientific
data. Commun. ACM, 2010.

[6] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G.
Piccinali. Parallel computational steering and analysis for
hpc applications using a paraview interface and the hdf5 dsm
virtual file driver. in EGPGV, 2011, pp. 91-100.

[7] L. Chacόn. A non-staggered, conservative, →β= 0, finite-
volume scheme for 3D implicit extended
magnetohydrodynamics in curvilinear geometries. Computer
Physics Communications, 163:143.171, Nov. 2004.

[8] H. Childs. Architectural challenges and solutions for
petascale postprocessing. J. Phys.: Conf. Ser., vol. 78, 2007.

[9] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison,
Prabhat, G. H. Weber, and E. W. Bethel. Extreme scaling of
production visualization software on diverse architectures.
IEEE Computer Graphics and Applications, vol. 30, no. 3,
pp. 22-31, 2010.

[10] C. Docan, M. Parashar, J. Cummings, and S. Klasky.
Moving the code to the data - dynamic code deployment
using activespaces. in IPDPS, 2011, pp. 758-769.

[11] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an
interaction and coordination framework for coupled
simulation workflows. in HPDC 2010.

[12] N. Fabian, K. Moreland, D. Thompson, A. Bauer, et. al. The
ParaView Coprocessing Library: A scalable, general purpose
in situ visualization library. in LDAV 2011.

Figure 6. Timeline of Inline and Staging approaches,
shown in upper and lower charts, respectively. In both

cases Pixie3D runs on 8192 cores. Figure 5. Pixie3D In-Situ I/O Processing.

0.1

1

10

100

512 1024 2048 4096 8192

Ti
m
e
(S
ec
on

ds
)

Number of cores

Pixie3D Simulation
Pixplot Analysis
File Write

[13] W.-C. Feng and T. Scogland. The Green500 List: Year One.
in 5th IEEE Workshop on High-Performance, Power-Aware
Computing (in conjunction with IPDPS 2009), May 2009.

[14] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, and C.
Bischof. Viracocha: An efficient parallelization framework
for large-scale cfd post-processing in virtual environments.
SC 2004.

[15] C. Herath and B. Plale. Streamflow -Programming Model for
Data Streaming in Scientific Workflows. in CCGrid 2010.

[16] M. Hereld, M. E. Papka, V. Vishwanath. Toward
Simulation-Time Data Analysis and I/O Acceleration on
Leadership-Class Systems. Preprint ANL/MCS-P1929-0911,
September 2011.

[17] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R.
Latham, R. Ross, and N. F. Samatova. Compressing the
incompressible with isabela: In-situ reduction of spatio-
temporal data. in Euro-Par, 2011, pp. 366-379.

[18] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,
C. Engelmann, and G. Shipman. Functional partitioning to
optimize end-to-end performance on many-core
architectures. SC10.

[19] J. F. Lofstead, M. Polte, G. A. Gibson, S. Klasky, K.
Schwan, R. Oldfield, M. Wolf, and Q. Liu. Six degrees of
scientific data: reading patterns for extreme scale science io.
in HPDC2011.

[20] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable,
metadata rich io methods for portable high performance io.
In Proceedings of IPDPS’09, May 25-29, Rome, Italy, 2009.

[21] J. F. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T.
Kordenbrock, K. Schwan, and M. Wolf. Managing
variability in the io performance of petascale storage
systems. in SC 2010.

[22] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, et. al.
Scientific workflow management and the kepler system.
CCPE, vol. 18, no. 10, pp. 1039-1065, 2006.

[23] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R.
Varela, R. Riesen, and P. C. Roth. Modeling the impact of
checkpoints on next-generation systems. in MSST ‘2007.

[24] R. Oldfield, D. Kotz. Armada: a parallel I/O framework for
computational grids. Future Generation Comp. Syst. 18(4):
501-523, 2002.

[25] J. Piernas, J. Nieplocha, and E. J. Felix. Evaluation of active
storage strategies for the lustre parallel file system. in
SC2007.

[26] J. Shalf, S. S. Dosanjh, and J. Morrison. Exascale computing
technology challenges. in VECPAR, 2010, pp. 1-25.

[27] A. Singh, P. Balaji, and W.-c. Feng. Gepsea: A general-
purpose software acceleration framework for lightweight
task offloading. in Proc. of ICPP’09, 2009, pp. 261-268.

[28] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B.
Ozisikyilmaz, P. Kumar, W.-K. Liao, and A. Choudhary.
Enabling active storage on parallel i/o software stacks. in
MSST’10.

[29] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, et. al. A
flexible architecture integrating monitoring and analytics for
managing large-scale data centers. in Proceedings of ICAC
2011.

[30] K. R. Wheeler, M. Allan, C. Curry. Lessons Learned From
Developing A Streaming Data Framework for Scientific
Analysis. http://ti.arc.nasa.gov, Septermber 2011.

[31] B. Whitlock, J. Favre, J.S. Meredith. Parallel In Situ
Coupling of a Simulation with a Fully Featured Visualization
System. Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV) in association with Eurographics,
2011.

[32] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma. In
situ visualization for large-scale combustion simulations,
IEEE Computer Graphics and Applications, 2010.

[33] F. Zhang, C. Docan, M. Parashar, and S. Klasky. Enabling
multiphysics coupled simulations within the pgas
programming framework. in CCGRID, 2011, pp. 84-93.

[34] F. Zheng, H. Abbasi, C. Docan, J. F. Lofstead, et. al. Predata
-preparatory data analytics on peta-scale machines. in IPDPS
2010.

