

Surface Fitting with Hierarchical Splines

David R. Forsey

Richard H. Bartels

Computer Graphics Laboratory

Computer Science Department

University of Waterloo

Waterloo, Ontario

Canada N2L 3G1

January 1, 1995

Abstract

We consider the fitting of tensor product parametric spline surfaces
to gridded data. The continuity of the surface is provided by the ba-
sis chosen. When tensor product splines are used with gridded data,
the surface fitting problem decomposes into a sequence of curve fitting
processes, making the computations particularly efficient. The use of
a hierarchical representation for the surface adds further efficiency by
adaptively decomposing the fitting process into subproblems involv-
ing only a portion of the data. Hierarchy also provides a means of
storing the resulting surface in a compressed format. Our approach is
compared to multiresolution analysis and the use of wavelets.

1 Introduction

In [9] an adaptive process was presented for fitting surface data with a ge-
ometrically continuous collection of rectangular Bézier patches. The adap-
tivity resulted from fitting a portion of the data with a patch, testing the
fit for satisfaction within a given tolerance, and subdividing the patch if the
tolerance was not met. Geometric continuity was provided by using con-
strained least squares as the fitting process, with the constraints imposing
the continuity conditions of tensor product β-splines.

The data used in [9] was organized in a rectangular array; that is, it was
gridded. This is the output format typical of systematic measuring devices

1

such as laser rangers, CAT imagery systems, and optical scanners. Advan-
tage can be taken of this format by reducing the surface fitting problem into
a sequence of much smaller curve fitting problems [1, 3].

Bézier patches require that a significant number of constraints be im-
posed on the control vertices to piece patches together in a continuous
composite surface. The broader class of multi-patch tensor product spline
surfaces; e.g. B-splines, β-splines, or their rational counterparts, provide
continuity without the imposition of constraints in the least squares fitting
process.

The hierarchical representation of [4] allows an adaptive approach to the
fitting process. When areas of large scale data have been fit within a spec-
ified tolerance by a surface having a certain level of refinement, there may
remain isolated areas of data that exceed tolerance. Smaller least squares
problems involving more refined overlay surfaces can be generated to fit the
data still out of tolerance. The overlay fitting problems must be constrained,
but the constraints are of such a simple nature that they only serve to sim-
plify the least squares process by decreasing the size of the fitting problem.
The hierarchical representation makes a further contribution by enabling a
certain economy of representation for the final composite surface.

2 Data Fitting

We are interested in fitting tensor product spline surfaces

m
∑

i=0

n
∑

j=0

Vi,jBi(u)Cj(v) (1)

to given data points. The basis functions Bi and Cj will be left open through-
out the discussion but are required to permit refinement by knot insertion.
This is a property common to B-splines, β-splines, and rational splines de-
rived from either of these kinds of bases.

The generation of equations for the data fitting problems proceeds as
follows. For each data point Pλ we must associate a domain point (u, v) =
δλ. This is not a trivial problem, but a number of practical techniques exist
[11].

After an association has been made, we form the equations

m
∑

i=0

n
∑

j=0

Vi,jBi(u)Cj(v)

∣

∣

∣

∣

∣

∣

(u,v)=δλ

= Pλ (2)

2

Data is gridded if
u ∈ {u0, · · · , uM}

v ∈ {v0, · · · , vN}

and if the δ’s consist of all points in {u0, · · · , uM} × {v0, · · · , vN}. In the
gridded case the data fitting equations become

m
∑

i=0

n
∑

j=0

Vi,jBi(ur)Cj(vs) = Pr,s (3)

for r = 0, · · · ,M and s = 0, · · · , N .
This gridded set of equations can be looked at in either of two ways, from

a compact (tensor product) point of view and from an exploded (Kronecker
product) point of view. The tensor product view is

B0(u0) B1(u0) · · · Bm(u0)
B0(u1) B1(u1) · · · Bm(u1)

...
...

...
...

B0(uM) B1(uM) · · · Bm(uM)

×

V0,0 V0,1 · · · V0,n

V1,0 V1,1 · · · V1,n
...

...
...

...
Vm,0 Vm,1 · · · Vm,n

×

C0(v0) C0(v1) · · · C0(vN)
C1(v0) C1(v1) · · · C1(vN)

...
...

...
...

Cn(v0) C(v1) · · · C(vN)

=

P0,0 P0,1 · · · P0,N

P1,0 P1,1 · · · P1,N
...

...
...

...
PM,0 PM,1 · · · PM,N

(4)

or, briefly,
BVCT = P (5)

Matrices B and C are those associated with the curve fitting problems for
parametric curves in u (and respectively v) using the columns (respectively
the rows) of the matrix of control vertices V as unknowns and using the
columns (respectively the rows) of the matrix P as right hand sides.

The exploded point of view derives from taking the columns of the ma-
trices V and P and stacking them above each other to produce the vectors

vec(V) =

V0,0
...

Vm,0

V0,1
...

Vm,1
...

Vm,n

, vec(P) =

P0,0
...

PM,0

P0,1
...

PM,1
...

PM,N

(6)

3

In terms of these vectors, the curve fitting problem becomes

A vec(V) = vec(P) (7)

where the matrix A is made of m by M blocks, arranged in N rows and n

columns, each block being a copy of B multiplied by an element of C:

C0(v0)B C1(v0)B · · ·

C0(v1)B
. . .

...
... · · · Cn(vN)B

3 Kronecker Products

A useful notation [6] is that of the Kronecker product. If

F =

f0,0 f0,1 · · · f0,β

f1,0 f1,1 · · · f1,β
...

... · · ·
...

fα,0 fα,1 · · · fα,β

(8)

is any matrix and G is any other matrix, then

F ⊗ G =

f0,0G f0,1G · · ·

f1,0G f1,1G
...

... · · · fα,βG

(9)

In this notation the exploded view of the curve fitting equations is

(C ⊗ B) vec(V) = vec(P) (10)

The exploded view and the compact view represented by (5) can be con-
nected by an extension of the “vec” operator:

vec
(

BVCT
)

= (C ⊗ B) vec(V) (11)

More generally, if matrices F, G, and H have compatible dimensions so that
the product FGH is defined, then

vec(FGH) =
(

HT ⊗ F
)

vec(G) (12)

We obtain (7) with A given by (10) by applying the vec operator to both
sides of (5).

4

Useful properties in addition to (12) are given in [6], and we list those
of interest to us below. The inverses are assumed to exist, a stands for any
real number, and dimensions are assumed compatible wherever needed to
make the matrix sums and products exist.

F ⊗ (aG) = (aF) ⊗ G = a(F ⊗ G) (13)

(F0 + F1) ⊗ G = (F0 ⊗ G) + (F1 ⊗ G) (14)

F ⊗ (G0 + G1) = (F ⊗ G0) + (F ⊗ G1) (15)

(F ⊗ G) ⊗ H = F ⊗ (G ⊗ H) (16)

(F ⊗ G)T = FT ⊗ GT (17)

(F0 ⊗ G0) (F1 ⊗ G1) = (F0F1) ⊗ (G0G1) (18)

(F ⊗ G)−1 = F−1 ⊗ G−1 (19)

4 Interpolation and Least Squares

We can use the properties of the Kronecker product to interpolate tensor
product arrangements efficiently. If (3) is a square, nonsingular system, then

vec(V) = (C ⊗ B)−1vec(P)

=
(

C−1 ⊗ B−1
)

vec(P) (20)

= vec
(

B−1PC−T
)

implying that
V = B−1PC−T (21)

Equation (21) could, of course, be obtained directly from (5). The Kronecker
product will be more useful below when we establish approaches to least
squares and constrained least squares problems.

As has already been remarked, (21) constitutes a sequence of curve in-
terpolation problems

coℓj(V) = B−1coℓj(H) j = 0, · · · , n (22)

where the data, H, is found from

rowi(H) = rowi(P)C−T i = 0, · · · ,M (23)

which constitutes a prior sequence of curve interpolation problems. The
efficiency of this approach derives from the small size of the curve interpo-
lation problems relative to the surface interpolation problem, and from the

5

fact that only two matrix factorizations are required, one each of B and C.
From (19), C ⊗ B is nonsingular if and only if both B and C are nonsin-
gular. In turn, each of these matrices separately will be nonsingular if and
only if the data parameters are sufficiently evenly spaced among the knots;
i.e., tr ≤ ur ≤ tr+k, where the t’s are the knots for the parameter u, and k

is the order of the basis splines B in that parameter (and similarly for C)
[1].

If (3) is an overdetermined system; that is, if the amount of data exceeds
the number of control vertices, and a spline surface is sought that will ap-
proximate the data, then (7) with A given by (10) would be replaced by the
normal equations for the least squares solution [3]

(C ⊗ B)T (C ⊗ B) vec(V) = (C ⊗ B)Tvec(P) (24)

which can be rewritten by (17) and (18) as
[(

CTC
)

⊗
(

BTB
)]

vec(V) =
(

CT ⊗ BT
)

vec(P) (25)

or, using the vec operator,

vec
[(

BTB
)

V
(

CTC
)]

= vec
(

BTPC
)

(26)

which implies

V =
(

BTB
)−1

BTPC
(

CTC
)−1

(27)

This is the least squares system corresponding to (21) for the interpolation
problem, and it leads to successive, least squares, curve problems corre-
sponding to (22),

coℓj(V) =
(

BTB
)−1

BT coℓj(H) j = 0, · · · , n (28)

and to (23)

rowi(H) = rowi(P)C
(

CTC
)−1

i = 0, · · · ,M (29)

5 Constraints

The efficiencies carry over to least squares with linear constraints, provided
that the constraints retain a Kronecker structure. Constraints with this
restriction are still interesting, as we shall see. The constrained setting is

(C ⊗ B) vec(V) ≈ P
subject to (L ⊗ K) vec(V) = vec(D)

(30)

6

The symbol ≈ denotes the equations from the data fitting part of the prob-
lem and suggests that these equations can be satisfied, at best, only in
an approximate sense. The constraint equations are expected to be fewer in
number than the control vertices, otherwise they cannot usually be satisfied,
or if satisfiable, they will so constrain the control vertices that no degrees
of freedom remain to use in the least squares part of (30). The numerical
analyst’s approach [5] to solving (30) is a projective one. Letting G stand
for the matrix L⊗K, and v and d stand for the two respective vectors, the
solution v to the constraint equations

Gv = d (31)

can be written in terms of two components, vW and vZ , which are the
components of v projected respectively onto the range space of G and onto
its orthogonal complement space. The precise expression of this fact is
through the equations

vW = GT f, GvZ = 0, and v = vW + vZ (32)

for some vector f. From this we have

Gv = GvW + GvZ = GGT f = d (33)

Making the reasonable assumption that the constraints are linearly indepen-
dent so that GGT is nonsingular,

f =
(

GGT

)−1
d (34)

This equation system can be solved in a fashion similar to the one used
for solving the least squares part of the problem. Returning to Kronecker
product notation and using vec(F) as f, we have

(L ⊗ K) vec(V) = (L ⊗ K) (L ⊗ K)Tvec(F) = vec(D) (35)

or
[(

LLT
)

⊗
(

KKT
)]

vec(F) = vec(D) (36)

which implies that

F =
(

KKT
)−1

D
(

LLT
)−1

(37)

and
VW = KTFL (38)

7

in tensor product format. Since VW is known, the least squares part of the
equation system (30) can now be written

(C ⊗ B) VZ ≈ P − (C ⊗ B) VW (39)

that is
BVZCT ≈ P − BVWCT (40)

where
VW = vec(VW), VZ = vec(VZ), and P = vec(P) (41)

This is a problem of exactly the format we considered in Section 4, merely
with a right hand side reduced by subtracting off the degrees of freedom
fixed by the constraints. As a computational note, the inverses involving B,
C, K, and L are not to be computed explicitly. For (21) a triangular matrix
decomposition is generally used, and for (27) and (37) an orthogonal matrix
decomposition is used [5, 7].

For the purposes of hierarchical fitting, the constraints of interest to us
are those that fix the values the surface around its perimeter. Equivalently,
these are constraints that fix the values of Vi,j for 0 ≤ i ≤ ℓeft, right ≤
i ≤ m, 0 ≤ j ≤ bottom, and top ≤ j ≤ n, where ℓeft, right, bottom, and
top depend upon the order and knot structure of the basis functions Bi and
Cj . For uniform bicubic B-spline surfaces, for example, ℓeft and bottom will
each equal 3, as will m− right and n− top. In this case, the problem given
by (30) and the solution system (40) have a special structure that are worth
exploiting.

When individual control vertices Vi,j are constrained in value, we may
write V = Vf + Vv, where Vf represents the fixed control vertices and
Vv represents the control vertices that are still free to vary. The equation
system (5) becomes,

B (Vf + Vv)C
T = P (42)

and the least squares problem to be solved is given by a simple version of
(40),

BVvC
T = P − BVfC

T (43)

This problem involves a modified right hand side. Its left hand side is a
reduced version of that in (5). To see this, we look into the structure of the
matrix product on the left hand side:
The clear areas of Vv represent the values of zero corresponding to the
components of Vf . The entries of B in the lightly shaded area multiply
those zeros, as do the lightly shaded entries of C. An equivalent matrix

8

product is formed by trimming away the zero rows and columns of Vv, as
well as the lightly shaded columns of B and the lightly shaded rows of CT

(columns of C). After this trimming, the left hand side of (4) becomes

Bbottom+1(u0) Bbottom+2(u0) · · · Btop−1(u0)
Bbottom+1(u1) Bbottom+2(u1) · · · Btop−1(u1)

...
...

...
...

Bbottom+1(uM) Bbottom+2(uM) · · · Btop−1(uM)

×

Vbottom+1,ℓeft+1 Vbottom+1,ℓeft+2 · · · Vbottom+1,right−1

Vbottom+2,ℓeft+1 Vbottom+2,ℓeft+2 · · · Vbottom+2,right−1
...

...
...

...
Vtop−1,ℓeft+1 Vtop−1,ℓeft+2 · · · Vtop−1,right−1

×

Cℓeft+1(v0) Cℓleft+1(v1) · · · Cℓeft+1(vN)
Cℓeft+2(v0) Cℓeft+2(v1) · · · Cℓeft+2(vN)

...
...

...
...

Cright−1(v0) Cright−1(v1) · · · Cright−1(vN)

Such trimmed systems allow the imposition of a hierarchy upon the fitting
process, with the potential of gaining substantial efficiency, as we shall show
in Section 6.

6 Hierarchical Representation

In [4] a compact means of representing spline surfaces derived from succes-
sive refinement was described. There were three essential features of this
representation. One was that only the modified portions of a hierarchical
surface need to be stored in a data structure; the second was that each level
of refinement, or overlay, was represented as an offset from reference position

9

derived from a level of lower refinement, and third was that editing oper-
ates on points selected directly from the composite surface itself rather than
through control vertices. The last feature is not relevant to surface fitting,
which is concerned with the static approximation of given data. The other
two features, however, lend themselves to a compact and efficient means of
fitting surfaces to data.

The approach taken utilizes least squares to fit a template spline surface
to the data; e.g. a spline approximation to a plane, sphere, cylinder, or
torus. The template is chosen to model the main topology of the data
appropriately. The fitting operates on each coordinate separately

(C ⊗ B)T (C ⊗ B)vec(Vc) = (C ⊗ B)TPc (44)

where c stands for each of x, y, and z, and the purpose served by choosing
the proper template is ensuring that the data in each coordinate separately is
single valued; that is, that it represents a height field. The residual between
the surface and the data

∑

i

∑

j

Vi,jBi(ur)Cj(vs) − Pr,s (45)

is computed for all r. Out-of-tolerance points are those points (ur, vs) of the
domain for which the data lies further than a selected tolerance from the
surface. If no points are out of tolerance, the data has been fit sufficiently
well by the surface. The response to the existence of any out-of-tolerance
points will be to refine the surface and repeat the fitting process.

The situation of most interest arises after the surface has been sufficiently
refined to provide regions that fit within tolerance, separating regions that
are out of tolerance (Figure 1).
An out-of-tolerance region contained within a sufficient number of patches
can be treated as an overlay forming a separate fitting problem, constrained
around its perimeter as in the discussion of Section 5. Figure 2 shows a
suitable refinement of the domain in Figure 1 for the out-of-tolerance region
at the upper left. This region is treated as an overlay, assuming uniform,
bicubic, B-spline patches. For such splines, at least four patches in either
parametric direction are needed so that there exists any control vertex free to
move after three control vertices around each margin have been constrained.
Constraining the margins is necessary in order for the overlay to maintain
its integrity with the surface on which it rests.
The process of finding such separable regions enclosed in rectangular arrays
of patches can be treated as the construction of bounding boxes around con-
nected regions in a raster display. Standard fill algorithms can be employed.

10

Figure 1: Areas of the surface domain corresponding to data outside of
tolerance.

Figure 2: Refinement of the domain sufficient to enclose an area as a separate
fitting region.

11

The fitting process can be summarized algorithmically. For the sake of
uniformity, the initial stages of the fitting process can be regarded as working
with overlays consisting of the entire surface supplied with an extra band of
constrained control vertices around the perimeter. We begin with the initial
template surface as a single overlay, compute residuals and test against the
given tolerance, and designate the level of refinement to be k = 0.

while (points out of tolerance remain) }

for (each separate out of tolerance region in level k) {

solve the least squares problem on the overlay;

calculate the resulting residuals;

determine any separable out of tolerance regions and

add each to the list of regions for level k + 1;

}

k = k + 1;

}

Economical storage is possible throughout the levels of the fitting pro-
cess. To fit an overlay surface at level k+1 of refinement, the overlay is first
generated as referenced to the surface of level k from which it is derived. The
fitting process is viewed as modifying the offset information of the overlay
[4]. Thus the least squares equations become

B(R + O)CT = P (46)

rather than (5), and the variables of the fitting process can be regarded as
the offsets Oi,j . This replaces the least squares problem by

BOCT = P − BRCT (47)

It is a result of the convex hull property of the basis functions that we are
considering that any offset whose value is less than the fitting tolerance
can be regarded as zero without perturbing the resulting overlay by more
than the tolerance. Zero offsets often result from the local support of the
spline basis being used. If portions of the surface at refinement level k

are fit within tolerance, a number of offsets at level k + 1 are likely to be
smaller in magnitude than the given tolerance. This can be true even if the
regions of good fit cannot be conveniently enclosed in bounding boxes of
the kind shown in Figure 2. Zero offsets do not have to be recorded in the
data structure of a hierarchical spline surface, yielding a certain economy of
storage as compared with a full tensor-product spline representation.

12

7 Comparison with Multiresolution Analysis

In preparing this paper and presenting its material to various groups, the
question has come up about its possible relationship to wavelets techniques.
We believe that, while there is a theoretical association, there are a number
of distinctions that currently make the association of little pragmatic value.
Briefly, (1) wavelet techniques currently gain their computational advantages
only in a setting in which refinements are known and fixed in advance, (2)
wavelet techniques have chiefly been developed for continuous inner prod-
ucts, and our data fitting context requires a discrete inner product, and (3)
our fitting process is intended to be useful in a parametric setting, while
wavelet techniques have been most fully developed in a functional setting.
This section will sketch out a bit more background on these matters.

Since the two variables and basis functions of tensor product splines are
independent of each other, it is sufficient (and more convenient) to carry out
the discussion of this section in terms of the single variable u.

We begin with the simplest case of the fitting process, that for which the
basis functions Bi(u) are restricted to be the canonical B-splines; that is,
B-splines of order ω with knots of single multiplicity placed at the integer
positions. The only refinement permitted for such splines is to allow the
insertion of exactly one knot at the midpoint between every two existing
knots. In this restricted setting, the fitting process takes place in the setting
usually encountered for multiresolution analysis [2]. Letting B0,i(u) = Bi(u)
stand for the canonical B-splines, we note that B0,i(u) = B0,0(u+ i), where
B0,0(u) is the canonical B-spline with support on the interval [0, ω] (knots
0, 1, . . . , ω) and i = 0,±1,±2, The B-splines encountered at step j of
the refinement process will be given by Bj,i(u) = B0,0(2

ju + i). The index
j can be regarded as giving the frequency octave of the B-splines and the
index i gives the shift.

Let Sω
j consist of all splines of the form

sj(u) =
+∞
∑

i=−∞

cj,iBj,i(u)

which are L2 integrable

∫ +∞

−∞

|sj(u)|2 dt < ∞

let V ω
j consist of all L2 functions vj(u) that can be the L2 limits of sequences

13

of such sj(u)

lim
k→∞

∫ +∞

−∞

∣

∣

∣skj (u) − vj(u)
∣

∣

∣

2
du = 0

that is, V ω
j consist of all L2 functions that can be approximated arbitrar-

ily closely by splines composed from the basis Bj,i(u). The following are
established in [2]:

Multiresolution Analysis Setting

1. · · · ⊂ V ω
−1 ⊂ V ω

0 ⊂ V ω
1 · · ·

2. Any v ∈ L2 can be approximated arbitrarily closely in
⋃

j V
ω
j

3.
⋂

j V
ω
j = ∅

4. v(t) ∈ V ω
j ⇔ v(2t) ∈ V ω

j+1

5. V ω
j+1 = V ω

j ⊕Wω
j

The space Wω
j is the orthogonal complement of V ω

j in V ω
j+1. Given any

L2 function f(u),

f(u) = · · · + gj−1(u) + gj(u) + gj+1(u) + · · ·

= fj(u) + gj(u) + gj+1(u) + · · ·

where fj(u) ∈ V ω
j and gj(u) ∈ Wω

j . The term fj(u) represents an approxi-
mation to f(u) up to the frequency or level of resolution given by all shifts
of Bµ,0(u), µ < j. The term gj(u) provides the extra level of resolution for
frequency j.

For any given tolerance, f(u) can be approximated within that tolerance
by truncating the series, discarding all terms above some j = J :

f(u) ≈ fJ(u) = · · · + gJ−2(u) + gJ−1(u)

Moreover, since the B-splines have compact support, if we wished to approx-
imate f(u) on a compact set, fJ(u) would reduce to

∑

i c
J
i BJ,i(u) for i on

a finite set of integers. A classical approach for determining coefficients cJi
would be to solve the least squares problem via normal equations, which in-
volves the Gram matrix having (α, β) entry as the value of the inner product
〈BJ,β , BJ,α〉 where

〈BJ,β , BJ,α〉 =

∫ +∞

−∞

BJ,β(u)BJ,α(u)du

14

(the overbar indicates complex conjugation) for continuous least squares
fitting and

〈BJ,β , BJ,α〉 =
∑

i

BJ,β(ui)BJ,α(ui)

for least squares fitting based on discretely sampled data. Similarly the
transformed right-hand side has α entry 〈f(u)BJ,α(u)〉.

In multiresolution analysis this classical approach is not taken. Instead,
special properties of the functions Bj,i, and of the gj resulting from the
Multiresolution Analysis Setting above, permit finding the approximation
fJ(u) very efficiently. (However, only the continuous least squares fitting
case is treated in the literature.)

As a preliminary remark, we note that frequencies below a certain level
usually contribute little to f , so that gJ−L + · · ·+ gJ−1 could be used as an
approximation to f in place of fJ ; that is,

fJ(u) = fJ−1(u) + gJ−1(u)

= gJ−1(u) + · · · + gJ−L(u) + fJ−L(u)

and fJ−L(u) is discarded.
Functions ψj,i(u), called the B-wavelets, are a convenient basis for Wω

j :

gj(u) =
∑

i

d
j
iψj,i(u)

The coefficients d
j
i are, in theory, obtainable as

〈

f(u)ψ̃j,i(u)
〉

, where the

functions ψ̃j,i(u) are the B-wavelet duals. In practice, the d
j
i and coefficients

c
j
i in the expansion

fj(u) =
∑

i

c
j
iBj,i(u)

can be computed very efficiently together in an interlaced bootstrapping
fashion that involves only finite moving averages.

The result is an approximation satisfying

|〈f(u) − gJ−1(u) − · · · − gJ−L(u), f(u) − gJ−1(u) − · · · − gJ−L(u)〉| < ǫ20

for a given tolerance ǫ (using the coefficients d), or an equally useful approx-
imation

|〈f(u) − fJ(u), f(u) − fJ(u)〉| < ǫ21

(using the coefficients c).

15

In [8] the Multiresolution Analysis Setting has been extended fully to
B-splines. The nested spaces V ω

j consist of any that can be composed by
arbitrary knot insertions. Algorithms are given for computing the minimally
supported B-wavelets in this setting.

A further construction method for computing spline wavelets that ex-
tends to discrete inner products; i.e.,

∑

i f(ui)g(ui) instead of
∫+∞

−∞
f(u)g(u)du

is given in [10]. This is the setting that corresponds to the surface fitting ap-
proach we are using. However, three obstacles stand in our way of obtaining
our surface fits via B-wavelets:

• In our setting we wish to determine the position at which knots will
be inserted dynamically. This means that the B-wavelet construction
could not be carried out in advance, which destroys the efficiency with
which the coefficients (control vertices) for the fitting surface can be
produced via wavelets. The gains provided by a wavelet approach
depend fundamentally on the ability to precompute the wavelet basis.

• The hierarchical representation [4] that we wish to obtain involves ge-
ometric information not contained in a wavelet representation. Specif-
ically, each refinement surface produced during the fitting process has
control vertices represented in coordinate frames sited upon the parent
surface from which it was obtained. This geometric information is a
representational option made possible by the fact that we are fitting
parametric splines rather than functional splines, and there has, as yet,
been no significant investigations toward applying wavelet techniques
to the parametric setting.

• While it is possible to use a discrete inner product to define the or-
thogonality between the spaces V and W of the multiresolution setting,
neither practical nor theoretical studies have been carried out to de-
termine the effectiveness of this in the functional setting, much less in
the parametric setting.

8 Examples

All examples in this section were generated using uniform, bicubic, B-spline
surfaces.

Plate 1 shows laser range data from a section of a simple machined
part. The data has been filtered to remove noise and discontinuities. It is
displayed in this plate as an array of tiny, shaded rectangles, each rectangle

16

being composed from four data points in the obvious way. There are 29200
points in the data, so each rectangle is too small to be seen.

Plates 2 through 16 show various aspects of a simple refinement process:
midpoint subdivision. The template surface used to begin the fit consisted
of a single bicubic patch. The different levels of subdivision are shown in the
even-numbered plates 2 through 14. Each odd-numbered plate 3 through
15 displays the original data colored according to the residuals between the
data and the approximating spline surface of the previous, even-numbered
plate; that is, Plate 2 shows the single, bicubic patch fit and Plate 3 displays
the corresponding residuals. The green/white colors indicate areas in which
the difference between the spline patches and the data are less than a preset
tolerance, with white indicating a closer fit than green. The yellow/orange
colors indicate areas in which the difference is larger than the tolerance,
with orange indicating a larger difference than yellow. Along with this in-
formation about residuals, some information about the approximating spline
can be seen. The patch structure is visible in the red patch-boundary lines
shown in the odd-numbered plates. The fitting surface is colored according
according to its level of subdivision in the even-numbered plates.

Plate 10 shows the fourth level of subdivision, which produces a fitting
surface of 256 patches. At this level the fitting process required the factoring
of two matrices, each of size 172 × 16 with 172 backsolves required for each
matrix. The residual display in Plate 11 clearly shows two groups of isolated
areas, each group located near the corners to the left and right, on which
the residuals are still beyond tolerance. These areas were separated by the
algorithm into two separate hierarchical problems for the next level of fitting.

Plate 12 shows the result of this hierarchical fit. The fitting surface
consists of the surface of Plate 10 corrected by two hierarchical overlays, one
consisting of 10 × 20 = 200 patches and the other consisting of 14 × 32 =
448 patches. The residual display of Plate 13 shows two smaller groups of
residuals, which generate the next level of hierarchical corrective fits.

Plate 14 shows the last fit in the sequence, consisting of the hierarchical
surface of Plate 12 with two further hierarchical corrections, one consisting
of 12× 18 = 216 patches and the other consisting of 18× 18 = 324 patches.
Plate 15 shows the corresponding residuals, all of which are within tolerance.
The final surface has 1177 bicubic patches, which, counting patch adjacency,
the sharing of control vertices, and econimizations for zero offsets [4], results
in a significant reduction in storage from the original data.

Plate 16 shows the patch boundaries and the edit points of [4] for the
surface of Plate 14. The surface produced can be modified using the methods
of [4], and the editor of that reference was used as the means of rendering

17

the successive fits.
Plate 17 shows data, kindly provided by Demitri Terzopoulos, that was

used in [9]. As in Plate 1, the rendering is performed using rectangles from
successions of data points and shading the resulting polygonal surface. Plate
18 shows a succession of spline surfaces produced from midpoint refinements,
and Plate 19 shows an enlarged view of the final fit in Plate 18.

Plate 20 shows, in wire frame, a set of data used for adaptive, non-
midpoint refinement [12]. The surface to be fit is flat save for a spike in
the center. Plate 21 shows the patch structure of the resulting fit, Plate 22
shows normal vectors for the resulting fit, and Plate 23 shows the fit surface
colored according to its maximum curvature component.

PLATES REMOVED TO CONSERVE SPACE

References

[1] de Boor, Carl. A Practical Guide to Splines. Springer-Verlag
(1978).

[2] Chui, Charles. An Introduction to Wavelets. Academic Press
(1992).

[3] Dierckx, Paul. An Algorithm for Least-Squares Fitting of Cubic Spline
Surfaces to Functions on a Rectilinear Mesh over a Rectangle. Journal
of Computational and Applied Mathematics 3, 2 (month, 1977), 113-
129.

[4] Forsey, David, and Bartels, Richard. Hierarchical B-Spline Refinement.
Proceeding of SIGGRAPH ’88 (Atlanta, Georgia, August 1-5). In Com-
puter Graphics 22, 4 (August, 1988), 205-212.

[5] Golub, Gene, and van Loan, Charles. Matrix Computations. The
Johns Hopkins University Press (1983).

[6] Graham, Alexander. Kronecker Products and Matrix Calculus
with Applications. Halsted Press (1981).

[7] Lawson, Charles, and Hansen, Richard. Solving Least Squares
Problems. Prentice-Hall (1974).

[8] Lyche, Tom, and Mørken, Knut. Spline-Wavelets of Minimal Support.
Preprint 1992-4, Institutt for Informatikk, Universitetet i Oslo, Post-
boks 1080 Blindern, N-0316 Oslo 3, Norway (1992).

18

[9] Schmitt, Francis, Barsky, Brian, and Du, Wen-Hui. An Adaptive Sub-
division Method for Surface-Fitting from Sampled Data. Proceedings
of SIGGRAPH ’86 (Dallas, Texas, August 18-22, 1986). In Computer
Graphics 20, 4 (August, 1986), 179-188.

[10] Sivalingam, Subendran, and Bartels, Richard. Matrix-nullspace
Wavelet Construction. in Mathematical Methods in CAGD III, M.
Dæhlen, T. Lyche, and L. L. Schumaker (eds.), Academic Press [to
appear].

[11] Späth, H. Eindimensionale Spline-Interpolations-Algorithmen.
R. Oldenbourg (1990).

[12] Srećković, Milan. Adaptive Hierarchical Fitting of Curves and Surfaces.
Master’s Thesis, Department of Computer Science, University of Wa-
terloo, Waterloo, Ontario, Canada N2L 3G1 (1992).

19

