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1 Introduction
Figure 1: An instance of the unweighted network design problem and itssolution. Solid edges correspond to unit-cost links; dotted edges connectsite pairs.Consider the following scenario. Client industries of a telephone companyhave requested commercial telephone connections between pairs of their of-�ces in di�erent cities. The telephone company must then install a networkof �ber-optic telephone links that accommodates all the clients' require-ments. That is, the network must contain a path using these links betweenevery pair of cities speci�ed by the clients. Given the cost of installing linksbetween di�erent cities, the company must now decide which links to installso as to minimize its cost.We formalize the problem as follows. Let G be a graph with nonneg-ative edge-costs, and let R be a set of node-pairs (si; ti). We call thesepairs site-pairs, and we say the nodes si; ti are sites. We call a subgraphH of G a requirement join if H contains a path between si and ti for everyrequirement (si; ti). We call the node-pairs requirements because they repre-sent connectivity constraints that must be satis�ed by the output subgraph.We abbreviate requirement join by R-join when we want to emphasize the2



set R of requirements. The problem we consider in this paper is to �nd aminimum-cost R-join.The problem faced by the telephone company can be directly formulatedas a minimum-cost R-join problem. In this formulation, it is assumed thata link can be used simultaneously by many clients. This assumption isreasonable in light of the very high bandwidth of �ber-optic links.Consider the special case of this problem in which there is a set T ofterminals, and every pair of nodes in T needs to be connected. This specialcase is known in the literature as the Steiner tree problem in networks. Thisproblem was one of the �rst seven problems shown NP-complete by Karp[19]. Given the range of its applications, it is not surprising that this problemhas been well-studied. Many enumeration algorithms, heuristics [33, 44, 18],and approximation algorithms [6, 38, 25, 11, 31, 37, 29, 45] are known forthe problem. Polynomial-time solutions for restricted classes of graphs arealso known (see [42]).However, none of the algorithms addresses the more general case in whicheach client can specify an arbitrary pair of cities. Note that in this generalcase the solution network need not be connected. Moreover, a minimum-cost Steiner tree solution can be arbitrarily costlier than a minimum-costsolution to this more general problem.In this paper, we give the �rst approximation algorithm for the minimum-cost R-join problem.Theorem 1.1 There is a polynomial-time algorithm to �nd an R-join ofcost at most 2� 2=k times minimum, where k is the number of sites.1.1 The Generalized Steiner Problem in NetworksThe algorithm of Theorem 1.1 is useful when the network to be constructedneed not be connected. However, the algorithm is also useful, as a subrou-tine, even in designing connected networks. Namely, we consider a gener-alization of the minimum-cost R-join problem involving certain redundancyrequirements.Consider the scenario described above but where each client can specifythat her pair of cities must be connected by some number of edge-disjointpaths, in order that the connection be less vulnerable to link failure. Thegoal is to design a network satisfying these speci�cations. The network isallowed to contain multiple links between the same pair of nodes; all suchlinks have the same cost. 3



To model this situation, we allow more general requirements. The setR of requirements consists of triples (si; ti; ri), where ri, the requirementvalue, is a positive integer. An R-multijoin is a multiset of the edges ofG that contains ri edge-disjoint paths from si to ti, for every requirement(si; ti; ri). The cost of an R-multijoin is the sum of the costs of the edges inthe multiset, counting multiplicities. Using our approximation algorithm forminimum-cost R-join, we obtain an approximation algorithm for minimum-cost R-multijoin.Theorem 1.2 There is a polynomial-time algorithm to �nd an R-multijoinof cost at most (2� 2=k)dlog2(rmax+1)e times minimum, where rmax is thelargest requirement value and k is the number of sites.This problem is called multiterminal network synthesis by Chien [7] andGomory and Hu [13]. Gomory and Hu and later Sridhar and Chandrasekaran[35] address the synthesis problem for the special case where the input graphis the complete graph with all costs identical.The problem is also essentially identical to the generalized Steiner prob-lem as formulated by Krarup ([26], as cited in [41]). The problem is referredto as the design of minimum-cost survivable networks in the work of Steiglitz,Weiner, and Kleitman [36]. These researchers pose the problem of �nding asubgraph of minimum cost satisfying given connectivity requirements. Theproblem we address di�ers in that we allow the solution to contain multiplecopies of links appearing only once in the input graph G.In this paper we will use the term R-multijoin whenever the requirementsR include requirement values exceeding one, and will reserve the term R-join for the case when the requirement values are all one. The former case isaddressed only in Subsection 3.3, where we show how to reduce the problemto the latter case. The remainder of the paper addresses only the latter case.1.2 Packing cuts, with application to network reliabilityOur results also have application to evaluating network reliability. Sup-pose the telephone company has an existing network and the same list ofclients, each specifying a pair of cities. The company needs to determinehow likely it is that random failure of communication links renders someof its clients' requirements unsatis�able.2 Assuming link failures are inde-2A related problem|�nding the minimum number of communication links that wouldneed to fail for all requirements to be unsatis�able|can be solved approximately, usingtechniques we have presented in an earlier paper [22].4



pendent, determining the probability that the surviving links can serve allclients' requirements is a generalization of the #P-complete problem [39]called Network Reliability. No approximation algorithms are known.However, one powerful and useful heuristic for estimating two-terminaland k-terminal reliability [8, 9] can be directly generalized to handle thecase of arbitrary pairs. The (generalized) heuristic consists in �nding a largecollection of edge-disjoint cuts in the network such that each cut separatesat least one client's pair of cities. For a surviving network to be able to serveall clients' requirements, at least one edge in each cut must survive; thussuch a cut-packing can be used to obtain a lower bound on the probabilityof catastrophic failure. Experience [9] with this heuristic in the cases oftwo-terminal and k-terminal reliability indicates that it is one of the bestavailable.One of the results of this paper is an algorithm for �nding a nearlymaximum collection of such cuts in an auxiliary network whose reliability isthe same as that of the original network. We give more details in Section 3.1.3 The combinatorial basis for our algorithms: a new ap-proximate min-max equalityAt the heart of our proofs of near-optimality is a combinatorial theorem thatrelates the R-join problem to the cut-packing problem in the case of unitedge-weights.Theorem 1.3 The minimum size of an R-join is approximately equal toone-half the maximum size of a collection of cuts, where each cut separatessome site-pair, and no edge is in more than two cuts. By \approximately,"we mean within a factor of 2� 2=k, where k is the number of sites.The proof of Theorem 1.3 is algorithmic, and is given in Section 5. Wecan formulate the two combinatorial quantities as the values of integer linearprograms that are dual to one another. It follows from Theorem 1.3 thatthe fractional relaxations of these programs provide good approximations toboth combinatorial quantities. Moreover, the factor of 2�2=k is existentiallytight, as shown by the example of a k-cycle given by Goemans and Bertsimas[14]. 5



2 Related work2.1 The Steiner tree problem in networksThere have been volumes of work done on the Steiner tree problem in net-works, including proposed solution methods, computational experiments,heuristics, probabilistic and worst-case analyses, and algorithms for specialclasses of graphs. Winter [41] and more recently Hwang and Richards [17]surveyed this body of work.Karp [19] showed that the problem is NP-complete. Takahashi and Mat-suyama [38], Kou, Markowsky and Berman [25], El-Arbi [11], Rayward-Smith [33], Aneja [2], and Wong [44] are among those who proposed heuris-tics. Among these, the heuristics that have been analyzed have a worst-caseperformance ratio of 2� 2=k, where k is the number of terminals that needto be connected (called Z-vertices in [41]). One algorithm, proposed byPlesnik [31] and by Sullivan [37], performs somewhat better. Recently Ze-likovsky gave an approximation algorithm with a performance ratio of 11=6[45]. Berman and Ramaiyer [6] have improved this to 16=9.In computational experiments, these heuristics generally perform con-siderably better than the worst-case bounds. Jain [18] proposed an integer-program formulation of the Steiner tree problem in networks, and showedthat for two random distributions of costs, the value of this integer programdi�ered drastically from the value of its fractional relaxation.2.2 The generalized Steiner problem in networksThe generalized Steiner problem in networks, as originally formulated byKrarup (see [42]), is as follows. The input consists of a graph with edge-costs, a subset Z of the vertices, and, for each pair of vertices i; j 2 Z,a required edge-connectivity rij . The goal is to output a minimum-costsubnetwork satisfying the connectivity requirements. When the rij 's areallowed to be zero, we can clearly assume without loss of generality that Zconsists of all the vertices of the graph.Previous to our work, no approximation algorithms for the generalizedSteiner problem were known. There have been papers on �nding exactsolutions and on algorithms for special classes of graphs [41, 42].In the work of Goemans and Bertsimas, described below, and in ourwork, the edge-connectivity requirement is allowed to be satis�ed in part byduplicating edges of the input graph. This corresponds to \buying" multiplecommunication links of the same cost and with the same endpoints.6



2.3 Survivable networksIn recent work, Goemans and Bertsimas [14] considered a special case of thegeneralized Steiner problem in networks. Instead of arbitrary requirementvalues, the input includes an assignment of integers ri to nodes. The goalis to �nd a minimum-cost network satisfying requirements rij = min(ri; rj).They propose a simple but powerful approach which involves solving a seriesof ordinary Steiner tree problems using a standard heuristic. They show thatthis approach yields solutions that are within a factor of 2min(logR; p) ofoptimal, where R is the maximum ri and p is the number of distinct nonzerovalues ri in the input. Moreover, they show that their analysis is tight inthe worst case.Goemans and Bertsimas restricted their attention to edge-connectivityrequirements of the special form rij = min(ri; rj) in order that each sub-problem have essentially the form of an (ungeneralized) Steiner tree prob-lem. That enabled them to solve each subproblem approximately, using oneof the known approximation algorithms for Steiner tree. By providing anapproximation algorithm for the case of rij 2 f0; 1g, we make it possible tohandle requirements rij not of that special form.2.4 Subsequent workBuilding on our result, Goemans and Williamson [16] simpli�ed and gener-alized our algorithm. They describe a framework in which to formulate and�nd approximately optimal solutions for many constrained forest problems,of which the minimum-cost R-join problem is an example. Their approxi-mation algorithm uses an approach similar to ours, and achieves the sameperformance guarantee. Goemans and Williamson describe an implemen-tation of their algorithm that runs in O(n2 log n) time on graphs with nnodes.In work building on that of Goemans and Williamson, we showed [32]how to obtain approximately optimal solutions to 2-edge-connected versionsof the problems addressed in [16]. In these problems, one needs to achieve2-connectivity without duplicating links. Finally, several subsequent pa-pers [15, 23, 40] extended these methods to give approximation algorithmsfor the generalized Steiner problem without link duplication.7



3 BackgroundAn instance of the generalized Steiner problem consists of a graph G withedge-costs c, together with a collection fR1; : : : ; Rbg of requirements: eachrequirement Ri consists of a site pair fsi; tig, a pair of nodes of G, and arequirement value ri, a positive integer. A feasible network is a multiset Nconsisting of edges of G, such that for every requirement Ri = (fsi; tig; ri),there are at least ri edge-disjoint paths between si to ti in the multigraphwith edges N .3.1 The unweighted caseTo prove performance guarantees for our algorithm, we exploit an approx-imate duality between feasible networks and packings of cuts. Fix someinstance of the generalized Steiner problem, where all costs and requirementvalues are 1. Thus the instance consists of a graph G and a collection ofsite pairs fsi; tig. Let k denote the cardinality of the set of sites, i.e. theset of nodes appearing in site pairs. Note that the number of sites may besigni�cantly smaller than the total number of nodes. A feasible network isa subgraph in which, for every site pair fsi; tig, there is a path between siand ti.Let N be any feasible solution for this instance. Observe that if N isminimal, then it is just a forest. Let S be any subset of nodes of G such thatfor some site pair fsi; tig, one of the sites is in S and one is not. In this case,the set of edges A with exactly one endpoint in S is called a requirementcut. There must be a path between si and ti in N , so N intersects A in atleast one edge. Thus we haveLemma 3.1 Every feasible network and every requirement cut have at leastone edge in common.Suppose A1; : : : ; A� are (not necessarily distinct) requirement cuts such thateach edge of G occurs in at most two cuts. We call such a collection of cutsa 2-packing. Then we have the following easy lower bound on the minimumsize of a network design.Lemma 3.2 The minimum size of a feasible network is at least one-half themaximum size of a 2-packing of requirement cuts.8



Proof: Let N be a feasible network and let A1; : : : ; A� be a 2-packingconsisting of � requirement cuts. We havejN j � Xe2N 12 jfi : e 2 Aigj = 12 �Xi=1 jAi \N j � 12� (1)because each jAi \N j is at least one. 2For comparison, Edmonds and Johnson [10] show that T -joins and T -cuts satisfy an analogous inequality, and, more importantly, they satisfy itwith equality.Instead of showing equality, we show approximate equality, to within afactor of 2(1� 1=k). This is the content of Theorem 1.3.Our proof of Theorem 1.3 is algorithmic. We give an algorithm thatconstructs a feasible network and a 2-packing, such that the �rst has sizeat most (1 � 1=k) times the second. It follows that the feasible network isapproximately minimum and the 2-packing is approximately maximum, towithin a factor of 2(1� 1=k).The �rst step is to transform the original graph G0 into a bipartite graphG by replacing each edge uv of G0 with two edges ux and xv in series, wherex is a new node. The resulting graph G has the following properties:� Any minimal feasible network in G corresponds to a feasible networkin G0 of half the size.� Any packing of edge-disjoint requirement cuts in G corresponds to a2-packing of requirement cuts in G0 of the same size.Consequently, in order to prove Theorem 1.3 for G0, it is su�cient to showthe following for G:We can �nd a feasible network N and a packing ofedge-disjoint requirement cuts A1; : : : ; A� such thatN � 2(1 � 1=k)�, where k is the total number ofsites. (2)We show (2) in Sections 4 and 5.3.2 The weighted caseNow we consider the case in which the costs of edges may vary, but therequirement values are still all one. It turns out that, like Edmonds and9



Johnson's theorem, Lemma 3.2 and Theorem 1.3 are self-re�ning. For non-negative integer edge-costs c, we simply replace each edge e by a path oflength c(e). We say a collection of requirement cuts is a 2c-packing if eachedge e appears at most 2c(e) times. Using this transformation, we obtainthe following theorem from Theorem 1.3.Theorem 3.3 The minimum-cost of a feasible network is at least one-halfthe size of a 2c-packing of requirement cuts, and at most (1 � 1=k) timesthis size.To actually compute an approximately minimum feasible network, weuse a more direct approach, which we describe in Subsection 4.2.1.3.3 Arbitrary integral requirementsSo far we have dealt with the case in which each site pair need only beconnected in the �nal feasible network. As discussed in the introductionand Section 2, a client may also require that there be at least rij edge-disjoint paths between her pair of sites.3 Thus the case dealt with up tonow requires each rij to be either 0 or 1.In order to obtain an approximation algorithm for this generalized prob-lem from our algorithm for the case of 0{1 requirements, we make use ofa heuristic technique due to Goemans and Bertsimas [14]. They propose atechnique they call the tree heuristic, which consists essentially of decom-posing a problem with many di�erent requirement values into a series ofsimpler problems in which only two requirement values appear. As we men-tioned in Section 2, they use the technique for solving only a special caseof the generalized Steiner problem. In conjunction with our new algorithmsfor the 0{1 case, however, the technique can be easily adapted to apply tothe general case.Let the di�erent values of rij be 0 = p0 < p1 < p2 < � � � < ps. For each0 < d � s, consider the transformed problemrdij = ( pd � pd�1 if rij � pd0 otherwisewhich is essentially pd�pd�1 copies of a 0{1 problem. Use a standard heuris-tic to �nd an approximately optimal solution, and combine the solutions to3In this case, the feasbile network is allowed to use multiple copies of edges of the inputgraph; each copy of a given edge costs the same.10



the s transformed problems to get a solution to the original problem. Theresulting performance guarantee is �(s).4 By using a similar approach, ifeach ri is an integer b bits long, then the original problem can be decom-posed into b problems, and the resulting performance bound is 2(1� 1=k)b.This is how we get the performance bound stated in Theorem 1.2.The obvious question is whether one can do better than this. Goemansand Bertsimas can show that their analysis is tight, so another approach isneeded, one that can deal simultaneously with widely varying requirementvalues.3.4 Reliability estimationIn the introduction, we described a heuristic for estimation of network reli-ability in a probabilistic network. In order to use this heuristic e�ectively,we want to �nd a maximum collection of edge-disjoint requirement cuts.This problem is NP-complete for general graphs. Moreover, an approxima-tion algorithm for this cut-packing problem would yield an approximationalgorithm for maximum independent set [9], an unlikely outcome in view ofrecent results [3, 4, 12]. We instead show how to make use of a cut-packingin bipartite graphs. We apply the transformation described in Subsection3.1 to turn an arbitrary graph into a bipartite graph with all sites on oneside of the bipartition: replace an edge having failure probability 1� p withtwo series edges each having failure probability 1� pp. We do not changethe probability of reliability in carrying out this transformation, and we canapply the algorithm of Section 4 to �nd an approximately maximum set ofedge-disjoint cuts in the resulting graph.Thus we propose a four-step recipe for estimating network reliability.Transform the network into a bipartite network, �nd an approximately max-imum cut-packing, compute for each cut the probability that at least oneedge survives, and multiply these probabilities to get an upper bound onthe probability that all clients can continue to communicate.4 The algorithmIn this section, we describe an algorithm for �nding a cut-packing and an R-join. In Subsection 4.2, we describe how to �nd a cut-packing in the case of4More speci�cally, Goemans and Bertsimas show the performance bound is 2(1 �1=k)(Psd=1(pd � pd�1)=pd). 11



unit edge-weights. In Subsection 4.2.1 we describe the modi�cation neededto handle arbitrary edge-weights. The algorithm for �nding an R-join is thesame in the two cases.4.1 OverviewWe start by providing an overview of the algorithm for the case of unit edge-weights. The algorithm grows breadth-�rst search trees from the sites, accu-mulating cuts as it proceeds. The algorithm employs a notion of timesteps.At each timestep, each of the breadth-�rst trees grows by an additionallevel. Each tree grows until all the sites it contains have found their mates.When trees collide, they are merged. As the algorithm grows trees, it buildsnetworks spanning the sites in each of these trees. Using a charging scheme,we show that the size of each network in a tree is about twice the numberof cuts accumulated while growing the tree.4.2 Finding a cut-packingAssume the input graph has unit edge-weights; we briey address the moregeneral case at the end of this subsection. Let G be a bipartite graph with allsites on the same side of the bipartition. (We can obtain such a graph froman arbitrary graph as described in Subsection 3.1. All subsequent referencesto the \original graph" refer to G.) We are given a collection of site pairsfs1; t1g; fs2; t2g; : : : ; fsb; tbg. We refer to the nodes si; ti as sites. We saythat two sites in the same site pair are mates of each other.The algorithm for constructing the cut-packing is quite intuitive. (Asummary is given at the end of this subsection.) We grow disjoint breadth-�rst search trees from all sites s simultaneously. We call the edges connectingone level to the next in a breadth-�rst search tree a level cut. Each levelcut in a breadth-�rst search tree rooted at s is a requirement cut becauseits edges separate s from its mate. Thus at each timestep, we accumulateone additional requirement cut for each tree being grown.When multiple trees collide, we merge them into a single tree and con-tinue growing from its boundary. Thus in general a tree may contain manysites. As soon as every site in a tree has its mate in the same tree, we canno longer guarantee that subsequent level cuts of the tree are requirementcuts, so we call the tree inactive, and we contract all its nodes into a singlesupernode. A tree that is still in the process of being grown is said to beactive. The algorithm terminates when there are no active trees. At this12



point, every site pair's two nodes are contained in the same tree. More pre-cisely, since each tree has become inactive, and has hence been contractedto a supernode, there are no sites remaining in the graph.Because of contractions, the graph on which we are working evolvesduring the course of the algorithm. We use Gt to denote the graph after ttimesteps. When we refer to a graph, unless we explicitly call it the \originalgraph," we will mean the contracted graph Gt at a certain point t in thealgorithm.It is important to the analysis that all active trees grow at the samerate. The algorithm takes place over a series of timesteps. In each timestep,each active tree grows by one level. Thus after t timesteps, active trees thathave not participated in any collisions all have radius t (as measured in thecontracted graph Gt). More generally, let the boundary of a tree be the set ofnodes at the most recent level of the tree. We have the following propositionPropostion 4.1 After t timesteps, each node in the boundary of an activetree is distance t from some site internal to the tree.In the initial bipartite graph, all the sites are on the same side of thebipartition. We show that this property continues to hold throughout thealgorithm.Lemma 4.2 After t timesteps, the graph is still bipartite, with all sites onthe same side of the bipartition.Proof: By induction on t. The basis t = 0 is trivial. We must show thatthe bipartition property described in the lemma is preserved by contractions.Suppose that Gt�1 obeys the property, and that after t timesteps, some treeT has just become inactive and is about to be contracted. By Proposition4.1, all the nodes in the boundary of T have distance t from some site. Hencethey all belong in the same side of Gt�1's bipartition. It follows that afterthe nodes of T are contracted to a single node, the bipartition property stillholds. 2We can use Lemma 4.2 to show that all the cuts found by the algorithmare edge-disjoint.Corollary 4.3 No edge belongs to a level cut of more than one tree.Proof: By Proposition 4.1 and Lemma 4.2, all the nodes in boundaries ofall active trees are in the same side of the bipartition of the graph. Henceno edge is incident to two active trees. 213



Thus trees collide by reaching the same node in a given step. Below wesummarize the cut-packing algorithm. In anticipation of the analysis of thealgorithm, we \assign" cuts found to particular trees.1 Initialize each site to be an active tree. Repeat the following stepsuntil every tree is inactive.2 Grow each tree by one level. Assign the corresponding level cut tothe tree.3 Contract each tree that has just become inactive.4 Repeat5 Take two distinct trees sharing a boundary node, and merge theminto a single tree. (For the cut-packing algorithm, merging treesconsists merely of taking the union of their nodes and of the cutsassigned to them.)6 Until no more trees can be merged.Because trees are merged immediately after they collide, we can claim thefollowing: Just before the trees are grown, they are node-disjoint. Just afterthe trees are grown, they are internally node-disjoint: only their boundariescan share nodes. We make use of this property in the next subsection.4.2.1 The cut-packing algorithm for weighted edgesThe cut-packing algorithm in the case of weighted edges is only slightlymore elaborate. We describe it in this subsection. The algorithm to �nda feasible network based on the cut-packing, described in the next section,remains unchanged.The key is to carry out many timesteps in a single iteration. It is useful toimagine that in each iteration, the growing trees continuously \consume" alltheir incident edges at the same rate until some edge is completely consumed,at which time things must be updated. We assume for simplicity that theedge-weights are integral. For each edge, we maintain a variable indicatinghow much of that edge remains to be consumed. To determine the amount� by which to grow active trees in an iteration, we compute two minima:�1 = mine amount of e yet to be consumed (3)where the min is over edges e that have one endpoint in an active tree, and�2 = mine amount of e yet to be consumed (4)14



where the min is over edges e that have both endpoints in distinct activetree.Finally, we let � = minf�1; 12�2g.To grow the trees by �, we update the variables associated with edges:each edge having one endpoint in an active tree has its variable decreasedby �, and each edge having its endpoints in distinct active trees has itsvariable decreased by 2� (because each such edge is being consumed fromboth sides). Then we execute steps 3 through 6 of the unweighted algorithm.It follows by de�nition of � that at least one edge is wholly consumed in aniteration, hence at least one tree grows by at least one node. For a tree T ,let tT be the number of nodes in T . It follows that the potential functionPT tT � (number of trees) goes up by at least one in each iteration, andhence that the number of iterations is at most the number of nodes in thegraph. Thus the cut-packing algorithm requires only polynomial time.54.3 The network-design algorithmThe basic approach to building a feasible network is also quite intuitive. Foreach tree, we maintain a connected network connecting together all sites inthe tree. This is easy: start with each site being a network in itself, and,whenever trees merge, use simple paths to join up their two networks.It is possible to show that for each tree, the size of a network for thattree is no more than twice the number of cuts assigned to the tree. Suchan analysis, however, is insu�cient: the networks formed in this way arenot connected in the original graph, because of the contractions we haveperformed along the way. A path that contains a supernode is not in generala path in the original graph. Therefore, we must be more careful in joiningnetworks, and must not forget to include edges between nodes within inactivetrees. Note that such edges do not even appear in the contracted graph Gt.We introduce some terminology to help us relate various contractedgraphs to each other and to the original graph. We call a node a real nodeif it appears in the original graph, in order to distinguish such nodes fromsupernodes. If the tree T was contracted to form the supernode v, we sayT corresponds to v, and vice versa. We say v immediately encloses v0 if v isa supernode corresponding to a tree T containing v0. Note that each nodeis immediately enclosed by at most one node. A node enclosed by another5Using a heap to organize the edges incident to each tree, one can implement the algo-rithm to run in O(n2 log n) time [1]. Using a more sophisticated two-level heap structure,one can implement it in O(npm log n) time [21].15
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is free if it is not contained in any network NT .Each network NT corresponds in a natural way to a subgraph N�T of theoriginal graph. Namely, to get N�T from NT , replace each supernode v inNT with the subgraph Nv, and recurse on the supernodes in Nv.We want each network NT to correspond to a connected subgraph in theoriginal graph. We therefore maintain the following connectivity invari-ant. Each subgraph N�T is connected.At any stage in the algorithm, the networksNT induce a subgraph of theoriginal graph, namely the subgraph induced by the edges in ST NT wherethe union is over all trees active and inactive. Let us call this subgraph N .Note that each induced subgraph N�T is a subgraph of N .We now observe that when the algorithm terminates, the invariants im-ply that N is indeed a feasible network|for each site pair fs1; s2g, there isa path in N between s1 and s2. Let T be the tree containing s1. Once thealgorithm terminates, T must be inactive, and hence contains s1's mate s2 aswell. By the site-inclusion invariant, s1 and s2 are nodes of NT . Since theyare original nodes, they are also nodes of the induced subgraph N�T , whichis a subgraph of N . Finally, by the connectivity invariant, N�T is connected,so the required path exists.Now we give the algorithm for network design. We run the cut-packingalgorithm of the last subsection and, whenever a \merge" of trees occurs,we update the NT 's in order to maintain the invariants. Initially, whenevery active tree T consists of a single site, NT consists also of this site. Foreach tree T not yet formed, NT is empty. Thus trivially the invariants holdinitially.In step 5 of the cut-packing algorithm, we merge a pair of distinct trees T1and T2 sharing a common boundary node v. By simply taking the union oftheir networksNTi , we get a network that obeys the site-inclusion invariant.However, this network does not obey the connectivity invariant. We musttherefore connect up these networks. To do this, we add paths from thecommon node v to each of the networks NTi . This involves some care whenv is a supernode. However, in this description of the algorithm, we postponediscussion of this case until Subsection 4.4. Assume therefore that v is a realnode. We call a procedure connectToNetwork(v; Ti) for i = 1; 2.The goal of connectToNetwork(v; T ) is to augment various networksNT 0 until v is connected to N�T . To do this, the procedure �rst �nds a short-est path P0 in T from v to a site in T , identi�es the shortest initial subpath17



P of P0 that ends on a node of NT , and adds the edges of P to NT . We arenot yet done; P does not necessarily correspond to a connected subgraph ofthe original graph because it may contain supernodes. Moreover, we havejust added such supernodes u to NT , so the networks Nu correspondingto these supernodes belong to N�T . In order to maintain the connectivityinvariant, therefore, we must connect the networks Nu to N�T . We makethese connections recursively using a procedure expandPath(u; P ). Thisprocedure expands P into a real path (i.e. a path in the original graph) byreplacing each supernode u in the path with a subpath within Tu that con-nects a boundary node of Tu to u's network, goes through that network, andcomes out again to the boundary of Tu. For technical reasons, expandPathdoes not replace the last node of P , so if this last node is a supernode, weuse a recursive call to connectToNetwork to make this part of the pathreal. Making a path real using expandPath and connectToNetwork isillustrated in Figure 3.Nowwe give the procedure for connectToNetwork(v; T ). Once again,the basic idea is to �nd a short path P in T from v to the network NT , thenintroduce additional edges to make P correspond to a real path, i.e. a pathamong the real nodes.connectToNetwork(v; T )Assumption: The node v is a real node enclosed by some node v0 in theboundary of T .C1 Let v0 be the node in T that encloses v.C2 Let P0 be a shortest path in T from v0 to a site s. Let vr be the �rstnode of P0 belonging to NT , and let P be the subpath of P0 from v0to vr.C3 Add P to NT .C4 Call expandPath(v; P ) to make a real path out of P , except possiblyfor the last connection.C5 If the last node vr in P is a real node, then stop.C6 Else,C7 Let T 0 be the (inactive) tree corresponding to the supernode vr.C8 Let v0 be the real node by which the last edge of P is incident to vr.C9 Recursively call connectToNetwork(v0; T 0).18
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E7 Call connectToNetwork(v; T ).E8 Call connectToNetwork(v0; T ).E9 Comment: Now there is a real path from v to T 's network to v0.E10 Let v be the real node by which ei is incident to vi+1.To prove that by using these procedures in the merge, we maintain theconnectivity invariant, we would use induction to show the following twostatements: The call connectToNetwork(v; T ) introduces edges in N�Tto connect the real node v to N�T . The call expandPath(v; P ) introducesedges in the networks Nvi (for each supernode vi 2 P except the last) sothat the edges of P are connected up in N .4.4 Merging trees whose common node is a supernodeTo complete the description of the algorithm, we consider the case in whichthe node at which trees collide is a supernode, rather than a real node. Letv be a supernode, and suppose trees T1; : : : ; Tk collide at v at time t. Wedescribe how to merge these trees.To initialize, let T = T1. For i = 2 to k, we merge Ti into T as follows.Since v is on the boundary of Ti, Proposition 4.1 ensures a path of length tfrom v to a site of Ti. Let e be the �rst edge on this path, and let vi be the realnode by which e is incident to v. We then call connectToNetwork(vi; T )and connectToNetwork(vi; Ti). These calls establish a path going throughvi between the network of T and the network of Ti. We then let T be theresulting merged tree, i.e. T := T [ Ti. This completes the merge of Ti intoT . The second invocation, connectToNetwork(vi; Ti), needs some elab-oration. As we shall see in the next section, the analysis of the algorithmrequires that steps E7 and E8 of expandPath be executed at most once fora given tree T during the course of the algorithm. The �rst invocation ofconnectToNetwork(vi; T ) executes these two steps for the tree Tv cor-responding to the supernode v. We must therefore avoid executing thesesteps in subsequent invocations of connectToNetwork. Fortunately, thechoice of vi enables us to avoid executing these steps, as we now explain.Step C2 of connectToNetwork selects a path P0 from the supernodev to a site in Ti. By choice of vi, we can select the path P0 so that its�rst edge is incident to the real node vi in G. P is an initial subpath ofP0. Therefore, when we call expandPath(vi; P ) in step C4, we omit theiteration i = 0 in expandPath in which P 's connection to vi is made areal connection. This omission avoids re-execution of steps E7 and E8 of20



expandPath on the tree Tv.5 Proving the performance guarantee of the R-join algorithmTo prove (2) of Subsection 3.1, we shall show that the cost of the feasiblenetwork produced by the algorithm is small relative to the number of cutsproduced.At any point in the execution of the algorithm, the age of a tree is thenumber of timesteps the tree grew. Thus the age of an active tree is thecurrent number of elapsed timesteps, while the age of an inactive tree is thenumber of timesteps that had elapsed when the tree became inactive. Wedenote the age of a tree T by age(T ). We de�ne the connect-cost of a call tothe subroutine connectToNetwork as the number of edges added to thenetwork by the routine not including any calls to the routine expandPath.That is, the cost for a call is the number of edges added in step C3, plus thecost of the recursive call in C9. We recursively de�ne the height of a nodeto be 0 if it is a real node and one more than the maximum height of anynode it encloses if it is a supernode.Lemma 5.1 Steps E7 and E8 of expandPath are executed at most oncefor a given tree T through the course of the algorithm.Proof: Suppose we are about to begin the merging process for a giventimestep. Through a series of calls to connectToNetwork, we buildpaths P that connect up some trees' networks. The key observation is thatfor every such path P , constructed in step C2 of connectToNetwork,every node of P except the last was previously free. (Recall that a free nodeis one that is not contained in any network NT .) Moreover, since the edgesof P are added to the network in step C3, such nodes are subsequently notfree. Consequently, each node appears as a non-�nal node of a path P atmost once during the course of the algorithm.To complete the proof of the lemma, we need only add that a tree T forwhich Steps E7 and E8 of expandPath(v; P ) are executed corresponds toa non-�nal node vi of the path P . 2Lemma 5.2 The connect-cost of a tree T is at most age(T ).21
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which is jP j + c, is at most age(T )� t + age(T 0), which in turn is at mostage(T ). 2De�ne the expand-cost of a tree T as the cost of the two calls connectToNetwork(v; T )and connectToNetwork(v0; T ) in steps steps E7 and E8. By Lemmas5.1 and 5.2, the expand-cost of T is at most 2 � age(T ). Moreover, by theproof of Lemma 5.1, if the node v corresponding to T remains forever free,then these calls are never made, so the expand-cost of T is zero. We useExpandCost(T ) to denote the expand-cost of T .When trees T1; : : : ; Tr merge, the network NT for the resulting tree T isconstructed by taking the union the networks for the Ti's, and then makingsome calls to connectToNetwork. We recursively de�ne the cost of Tas the sum of the costs of the trees merged to form T , plus the costs of thecalls to connectToNetwork. Thus the cost of a tree T is the number ofedges added to create N�T , not including edges added in steps E7 and E8 ofexpandPath. We denote the cost of T by Cost(T ).We will charge the cost of a tree against the number of cuts assigned tothe tree. Recall from the cut-packing algorithm that in each timestep wegrow each tree, and assign the corresponding level cut to the tree. Moreover,when trees are merged, their cuts are assigned to the resulting tree. Wedenote the number of cuts assigned to a tree by CP (T ).Lemma 5.3 After t timesteps have elapsed, the cost of a tree T is at most2 � CP (T )� 2 � age(T ).Proof: We shall prove this statement by induction on the number t ofelapsed timesteps. When t is 0, the lemma holds trivially. Assume that thestatement holds for t. During the t + 1st timestep, each active tree T , isgrown by one level, so CP (T ) goes up by one, while its age also increasesby one. So far, so good. Next, trees are merged. The additional costincurred in merging T1; : : : ; Tr to form a tree T is the cost of 2(r�1) calls toconnectToNetwork, each at cost at most age(T ) by Lemma 5.2. Hencethe total cost of T is 2(r� 1)age(T ) + rXi=1 Cost(Ti)which, by the inductive hypothesis, is at at most 2(CP (T )� age(T )). 2Now we can bound the size of the feasible network output by our algo-rithm. The size is the sum, over all inactive trees T of the cost of T plus theexpand-cost of T . For any tree T whose node remains free, the expand-cost23



is zero. Let us call a tree free if its corresponding supernode is free. Thuswe have size of feasible network� XT Cost(T ) +ExpandCost(T )� Xfree T Cost(T ) + Xunfree T(Cost(T ) +ExpandCost(T ))� 2(XT CP (T )� Xfree T age(T )) (5)where the last inequality follows from Lemma 5.3 and our remarks aboutexpand-cost.Since PT CP (T ) is the total number of cuts assigned by the cut-packingalgorithm, we have proved a version of (2) with a factor of 2 instead of2(1� 1=k). To get the smaller factor, we prove a lower bound on the secondsum in (5).For a tree T , let kT denote the number of sites that are nodes of T .De�ne k�T = PfkT 0 : T encloses T 0g. Similarly, let CP �(T ) = PfCP (T 0) :T encloses T 0g.Lemma 5.4 For any tree T , age(T ) is at least CP �(T )=k�T .Proof: The key observation is that for any tree T 0, CP (T 0) is at most kT 0times age(T 0), since each of the k(T 0) sites is assigned a maximum of one cutper timestep until age(T 0) timesteps. If T 0 is enclosed by T , then age(T 0) isat most age(T ), so we haveCP �(T ) = XfCP (T 0) : T encloses T 0g� XfkT 0 : T encloses T 0gage(T ) = k�Tage(T )2 We use Lemma 5.4 to get our lower bound on Pfage(T ) : T freeg. Letk� = maxfk�T : T freeg. Then by Lemma 5.4, for each free tree T , age(T ) �CP �(T )=k�. Since each tree is enclosed by some free tree, PfCP �(T ) :T freeg is the total number CP of cuts assigned. HenceXfage(T ) : T freeg � CP=k� (6)Substituting into (5) and replacing k� by k, the total number of sites, gives(2) and completes the proof of Theorem 1.3.24
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