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Abstract. This study proposes RBF Network hybrid learning with Particle Swarm 
Optimization (PSO) for better convergence, error rates and classification results. 
In conventional RBF Network structure, different layers perform different tasks. 
Hence, it is useful to split the optimization process of hidden layer and output 
layer of the network accordingly. RBF Network hybrid learning involves two 
phases. The first phase is a structure identification, in which unsupervised learning 
is exploited to determine the RBF centers and widths. This is done by executing 
different algorithms such as k-mean clustering and standard derivation respec-
tively. The second phase is parameters estimation, in which supervised learning is 
implemented to establish the connections weights between the hidden layer and 
the output layer. This is done by performing different algorithms such as Least 
Mean Squares (LMS) and gradient based methods. The incorporation of PSO in 
RBF Network hybrid learning is accomplished by optimizing the centers, the 
widths and the weights of RBF Network. The results for training, testing and vali-
dation of five datasets (XOR, Balloon, Cancer, Iris and Ionosphere) illustrates the 
effectiveness of PSO in enhancing RBF Network learning compared to conven-
tional Backpropogation.  

Keywords: Hybrid learning, Radial basis function network, K-means, Least mean 
squares, Backpropogation, Particle swarm optimization, Unsupervised and super-
vised learning. 

1   Introduction 

Radial Basis Function (RBF) Networks form a class of Artificial Neural Networks 
(ANNs), which has certain advantages over other types of ANNs, such as better 
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approximation capabilities, simpler network structures and faster learning algo-
rithms. The RBF Network is a three layer feed forward fully connected network, 
which uses RBFs as the only nonlinearity in the hidden layer neurons. The output 
layer has no nonlinearity and the connections of the output layer are only 
weighted, the connections from the input to the hidden layer are not weighted [1].  

Due to their better approximation capabilities, simpler network structures and 
faster learning algorithms, RBF Networks have been widely applied in many sci-
ence and engineering fields. It is three layers feedback network, where each hid-
den unit implements a radial activation function and each output unit implements a 
weighted sum of hidden units' outputs. Its training procedure is usually divided 
into two stages. The first stage includes determination of centers and widths of the 
hidden layer which are obtained from clustering algorithms such as K-means, 
vector quantization, decision trees, and self-organizing feature maps. The second 
stage involves weights establishment by connecting the hidden layer with the 
output layer. This is determined by Singular Value Decomposition (SVD) or Least 
Mean Squares (LMS) algorithms [2]. Clustering algorithms have been success-
fully used in training RBF Networks such as Optimal Partition Algorithm (OPA) 
to determine the centers and widths of RBFs.  In most traditional algorithms, such 
as the K-means, the number of cluster centers need to be predetermined, which 
restricts the real applications of the algorithms. In addition, Genetic Algorithm 
(GA), Particle Swarm Optimization (PSO) and Self-Organizing Maps (SOM) are 
also been considered in clustering process [4].  

In this study, PSO is explored to enhance RBF learning mechanism. The paper 
is structured as follows. Section 2, related work about RBF Network training is 
introduced. Section 3 presents RBF Network model and parameter selection prob-
lem. In section 4 describes PSO algorithm. BP-RBF Network model is given in 
Section 5. Section 6 describes our proposed approach. Sections 7 and 8 give the 
experiments setup, results and validation results of the proposed model on datasets 
respectively. The comparison between PSO-RBF Network and BP-RBF Network 
is presented in section 9 and finally, the paper is concluded in Section 10. 

2   Related Work 

Although there are many studies in RBF Network training, but research on training 
of RBF Network with PSO is still fresh. This section presents some existing work of 
training RBF Network based on Evolutionary Algorithms (EAs) such as PSO espe-
cially based on unsupervised learning only (Clustering). 

In [11], they have proposed a PSO learning algorithm to automate the design of 
RBF Networks, to solve pattern classification problems. Thus, PSO-RBF finds the 
size of the network and the parameters that configure each neuron: center and width 
of its basis function. Supervised mean subtractive clustering algorithm has been 
proposed [13] to evolve RBF Networks and the evolved RBF acts as fitness evalua-
tion function of PSO algorithm for feature selection. The method performs feature 
selection and RBF training simultaneously. PSO algorithm has been introduced [12] 
to train RBF Network related to automatic configuration of network architecture 
related to centers of RBF. Two training algorithm were compared. One was PSO 
algorithm. The other was newrb routine that was included in Matlab neural networks 
toolbox as standard training algorithm for RBF network.  
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A hybrid PSO (HPSO) was proposed [15] with simulated annealing and Chaos 
search technique to train RBF Network. The HPSO algorithm combined the strong 
ability of PSO, SA, and Chaos. An innovative Hybrid Recursive Particle Swarm 
Optimization (HRPSO) learning algorithm with normalized fuzzy c-mean 
(NFCM) clustering, PSO and Recursive Least Squares (RLS) has been presented 
[16] to generate RBF networks  modeling system with small numbers of descrip-
tive RBFs for fast approximating two complex and nonlinear functions. On other 
hand, a newly evolutionary search technique called Quantum-Behaved Particle 
Swarm Optimization, in training RBF Network has been used [17]. The proposed 
QPSO-Trained RBF Network was test on nonlinear system identification problem. 

Unlike previous studies, this research shares consideration of parameters of RBF 
(unsupervised learning) which are centers and length of width or spread of RBFs 
with different algorithms such as K-means and K-nearest neighbors or standard 
deviations algorithms respectively. However, training of RBF Network need to 
enhance with PSO to optimize the centers and widths values which are obtained 
from the clustering algorithms and PSO also used to optimize the weights which 
connect between hidden layer and output layer (supervised learning). Also this paper 
has been presented to train, test and validate the PSO-RBF Network on the datasets. 

3   Architecture of RBF Network 

RBF Network is structured by embedding radial basis function a two-layer feed- 
forward neural network. Such a network is characterized by a set of inputs and a 
set of outputs. It is used in function approximation, time series prediction, and 
control, and the network architecture is constructed with three layers: input layer, 
hidden layer, and output layer. The input layer is made up of source nodes that 
connect the network to its environment. The second layer, the only hidden layer of 
the network, applies a non-linear transformation from the input space to a hidden 
space. The nodes in the hidden layer are associated with centers that determine the 
behavior structure of network. The response from the hidden unit is activated 
through RBF using Gaussian function or other functions. The output layer pro-
vides the response of the network to the activation pattern of the input layer that 
serves as a summation unit.  

In a RBF model, the layer from input nodes to hidden neurons is unsupervised 
and the layer from hidden neurons to output nodes is supervised. The model is 

given by the following equation for the thj  output y ( )j i :  
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Where K is the number of RBFs used, and kc ∈ mR , kσ ∈ mR , are the center 

value vector and the width value vector of RBF, respectively. These vectors are 
defined as: 
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Where, { jkw | k = 1, 2,…, K} are the weights of RBFs connected with the thj  

Output.  Fig. 1 shows the structure of RBF Network. 

 

Fig. 1 Structure of RBF network 

RBF Network can be implemented in a two-layered network. For a given set of 
centers, the first layer performs a fixed nonlinear transformation which maps the 

input space onto a new space. Each term kΦ (.) forms the activation function in a 

unit of the hidden layer. The output layer then implements a linear combination of 
this new space. 
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Moreover, the most popular choice for (.)ϕ  is the Gaussian form defined as 
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In equation (5), kσ  indicates the width of the kth Gaussian RBF functions. One 

of the kσ  selection methods is shown as follows: 
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Where kθ is the kth cluster of training set and M k is the number of sample data 

in the kth cluster.  
The neuron number of the hidden layer, i.e., the cluster number of training set, 

must be determined before the parameter selection of RBF Network. If the neuron 
numbers of hidden layer has been decided, the performance of RBF depends on 
the selection of the network parameters. There are three types of parameters in 
RBF model with Gaussian basis functions: RBF centers (hidden layer neurons); 
Widths of RBFs (standard deviations in the case of a Gaussian RBF); and Output 
layer weights. There are two categories of training algorithms in RBF models: 
supervised and unsupervised learning. 

4   Particle Swarm Optimization  

Particle Swarm Optimization (PSO) algorithm, originally introduced by Kennedy 
and Eberhart in 1995 [5], simulates the knowledge evolvement of a social organ-
ism, in which each individual is treated as an infinitesimal particle in the n-
dimensional space, with the position vector and velocity vector of particle i being 
represented as Xi(t) = (Xi1(t), Xi2(t),…., Xin(t)) and Vi(t) = (Vi1(t), Vi2(t),…., Vin(t)). 
The particles move according to the following equations: 

))()((22))()((11)()1( × tX idtP gdrctX idtPidrctV idWtV id −+−+=+  (7)

)1()()1( ++=+ tV idtX idtX id  

i = 1,2,…,M ; d = 1,2,…,n 
(8)

Where c1 and c2 are the acceleration coefficients, Vector Pi = (Pi1, Pi2,…, Pin) is the 
best previous position (the position giving the best fitness value) of particle i 
known as the personal best position (pbest); Vector Pg = (Pg1, Pg2,…, Pgn) is the 
position of the best particle among all the particles in the population and is known 
as the global best position (gbest). The parameters r1 and r2 are two random num-
bers distributed uniformly in (0, 1). Generally, the value of Vid is restricted in the 
interval [-Vmax, Vmax]. Inertia weight w was first introduced by Shi and Eberhart in 
order to accelerate the convergence speed of the algorithm [6]. 

5   BP-RBF Network   

In our paper, the standard BP is selected as the simplest and most widely used 
algorithm to train feed-forward RBF Networks and considered for the full-training 
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paradigm; customizing it for half-training is straightforward and can be done sim-
ply by eliminating gradient calculations and weight-updating corresponding to the 
appropriate parameters. 

The following is the procedure of BP- RBF Network algorithm: 
1. Initialize network.  
2. Forward pass: Insert the input and the desired output; compute the network 

outputs by proceeding forward through the network, layer by layer. 
3. Backward pass: Calculate the error gradients versus the parameters, layer by 

layer, starting from the output layer and proceeding backwards: 
2/,/,/ σ∂∂∂∂∂∂ EcEwE . 

4. Update parameters: (weight, center and width of the RBF Network respec-
tively) 

a. )1()()1( +Δ+=+ tkjwtkjwtkjw  (9) 
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Where )(twkj  is the weight from node k to node j at time t, kjwΔ  is the weight 

adjustment, η
3

 is the learning rate, kδ  is error at node k, jO  is the actual net-

work output at node j, kO  is the actual network output at node k and kt  is the 

target output value at node k. 
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Where )(tc ji  is the centre from node j to node i at time t, jicΔ  is the center 

adjustment, η
2

 is the learning rate, kδ  is error at node k, jO  is the actual net-

work output at node j, jσ  is the width at node j, kjw  is the weight connected 

between node j and k and jix  is the input node j to node i. 
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Where )(tjσ  is the width of node j at time t, jσΔ  is the width adjustment, η
1

 

is the learning rate, kδ  is error at node k, jO  is the actual network output at node 

j, jσ  is the width at node j, kjw  is the weight connected between node j and k, 

jix  is the input at node i and η
3

,η
2

,η
1

 are learning rate factors in the range 

[0; 1]. 
5. Repeat the algorithm for all training inputs. If one epoch of training is fin-

ished, repeat the training for another epoch. 

BP-RBF Network doesn’t need the momentum term as it is common for the 
MLP. It does not help in training of the RBF Network [14].  

6   PSO-RBF Network 

PSO has been applied to improve RBF Network in various aspects such as net-
work connections (centers, weights), network architecture and learning algorithm. 
The main process in this study is to employ PSO-based training algorithm on 
center, width and weight of RBF network, and investigate the efficiency of PSO in 
enhancing RBF training. Every single solution of PSO called (a particle) flies over 
the solution space in search for the optimal solution. The particles are evaluated 

 
For each particle do 
      initialize particle position and velocity 
End for 
 
While stopping criteria are not fulfilled do 
          For each particle do 
                Calculate fitness value (MSE in RBF Network)  
             If fitness value is better than best fitness value pBest in particle  

        history    then 
       Set current position as pBest 
    End if 

         End for 
          Choose as gBest the particle with best fitness value among all particles 

in 
          current iteration 
         For each particle do 
               Calculate particle velocity based on eq. (7) 
               Update particle position(center, width and weight) based on eq. (8) 
        End for 
End while 

Fig. 2 PSO-RBF Network Algorithm 
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using a fitness function to seek the optimal solution. Particles (center, width) val-
ues are then initialized with values which are obtained from the k-means algorithm 
while particles (weight, bias) values are initialized randomly or from LMS algo-
rithm. The particles are updated accordingly using the equation eq. (7) and eq. (8). 

The procedure for implementing PSO global version (gbest) is shown in Figure 
2. Optimization of RBF network parameters (the center and width of RBF and the 
weight, the bias) with PSO, the fitness value of each particle (member) is the value 
of the error function evaluated at the current position of the particle and position 
vector of the particle corresponds to the (center, width, weight and bias) matrix of 
the network. The pseudo code of the procedure is as follows: 

7   Experiments  

7.1   Experimental Setup 

The experiments of this work included the standard PSO and BP for RBF Network 
training. For evaluating all of these algorithms we used five benchmark classifica-
tion problems obtained from the machine learning repository [10].   

Table 1 Execution parameters for PSO 

Parameter Value 
Population Size  20 

Iterations  10000 
W [0.9,0.4] 
C1 2.0 
C2 2.0 

The parameters of the PSO algorithm were set as: weight w decreasing linearly 
between 0.9 and 0.4, learning rate c1 = c2 = 2 for all cases. The population size 
used by PSO was constant. The algorithm stopped when a predefined number of 
iterations have been reached. Values selected for parameters are shown in table 1. 

Table 2 Parameters of the experiments 

Dataset Parameter 
XOR Balloon Cancer Iris Ionosphere 

Train data 5 12 349 120 251 
Test data 3 4 175 30 100 

Validation data 8 16 175 150 351 
Input dimension 3 4 9 4 34 
Output neuron 1 1 1 3 1 

Network Structure 3-2-1 4-2-1 9-2-1 4-3-3 34-2-1 
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The XOR data set (3 features and 8 examples) is a logical operation on three 
operands that results in a logical value of true if and only if one of the operands 
but not both have a value of true. The Balloon data set (4 features and 16 exam-
ples) is used in cognitive psychology experiment. There are four data sets 
representing different conditions of an experiment. All have the same attributes. 
The cancer dataset (9 features and 699 examples) is related to the diagnosis of 
breast cancer in benign or malignant. The Iris dataset (4 features and 150 exam-
ples) is used for classifying all the information into three classes. Finally, the Io-
nosphere dataset (34 features and 351 examples) is radar data was collected by a 
system in Goose Bay; Labrador is used for classifying all the information into 
“Good” or “Bad” results.  

The number of maximum iterations is set differently to bound the number of 
forward propagations to 4 × 104 and for comparison purposed. The maximum 
iterations in BP-RBFN is set to 2 × 104 (number of forward propagations = 2 × 
maximum number of iterations), while the maximum number of iterations in PSO-
RBFN is set to 10000 (number of forward propagations = swarm size × maximum 
number of iterations) [9]. The stopping criteria are the maximum number of itera-
tions that the algorithm has been reached or the minimum error.  

The architecture of the RBF Network was fixed in one hidden layer (number of 
inputs of the problem - 2 hidden units - 1 output units) in XOR, Balloon, Cancer, 
Ionosphere and (number of inputs of the problem - 3 hidden units - 3 output units) 
in Iris dataset. The parameters of the experiments are described in Table 2. 

7.2   Experimental Results 

This section presents the results of the study on PSO-trained RBF Network and BP- 
trained RBF Network. The experiments are conducted by using five datasets: XOR, 
Balloon, Cancer, Iris and Ionosphere.  The results for each dataset are compared and 
analysed based on the convergence, error and classification performance.  

7.2.1   XOR Dataset 

A connective in logic known as the "exclusive or" or exclusive disjunction is a 
logical operation on three operands. Two algorithms used to train and test of RBF 
Network. The stopping conditions of PSO-RBFN are set as minimum error of 
0.005 or maximum iteration of 10000.  On the other hand, the stopping conditions 
for BP-RBFN are set as the minimum error of 0.005 or the iterations have reached 
to 20000. The results for PSO-based RBFN and BP-based RBFN are illustrated in 
Table 3 and Figure 3. From Table 3, PSO-RBFN converges at 93 iterations com-
pared to BP-RBFN with 5250 iterations for the whole learning process. Both algo-
rithms are converged with given minimum error. For the classification, it shows 
that BP-RBFN is better than PSO-RBFN with 93.88% compared to 93.51%. How-
ever, PSO-RBFN converges faster compared to BP-RBFN. The classification rate 
for testing of XOR problem is not good due to smaller amount of data to be 
learned by the network.  
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Table 3 Result of BP-RBFN and PSO-RBFN on XOR dataset 

BP-RBFN PSO-RBFN  

Train Test Train Test 
Learning Iteration 5250 1 93 1 
Error Convergence 0.00500 0.32972 0.004998 0.28693 
Classification (%) 93.88 64.72 93.51 64.03 

Figure 3 illustrates that PSO-RBFN significantly reduces the error with mini-
mum iterations compared to BP-RBFN.  

 

Fig. 3 Convergence rate of XOR dataset 

7.2.2   Balloon Dataset 

This data is used in cognitive psychology experiment. There are four data sets repre-
senting different conditions of an experiment. All have the same attributes. 

It contains 4 attributes and 16 instances. The stopping conditions of PSO-RBFN 
are set to a minimum error of 0.005 or maximum iteration of 10000. Conversely, the 
stopping conditions for BP-RBFN are set to the minimum error of 0.005 or the itera-
tions have reached to 20000. From Table 4, we conclude that PSO-RBFN converges 
faster compared to BP-RBFN for the whole learning process. However, both algo-
rithms have converged to the given minimum error. For the classification, it shows 
that PSO-RBFN is better than BP-RBFN with 95.05% compared to 91.27%. 

Figure 4 illustrates the learning process for both algorithms. In PSO-RBFN, 20 
particles work together to find the lowest error (gbest) at each iteration and consis-
tently reducing the error. While in BP-RBFN, it seems that the error is decreasing 
at each iteration, and the learning is discontinued at a specified condition. 
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Table 4 Result of BP-RBFN and PSO-RBFN on Balloon dataset 

BP-RBFN PSO-RBFN  

Train Test Train Test 
Learning Iteration 20000 1 3161 1 
Error Convergence 0.01212 0.23767 0.0049934 0.16599 
Classification (%) 91.27 75.41 95.05 78.95 

 

Fig. 4 Convergence of Balloon dataset 

7.2.3   Cancer Dataset 

The purpose of the breast cancer data set is to classify a tumour as either benign or 
malignant based on cell descriptions gathered by microscopic examination. It 
contains 9 attributes and 699 examples of which 485 are benign examples and 241 
are malignant examples. The first 349 examples of the whole data set were used 
for training, the following 175 examples for validation, and the final 175 examples 
for testing [8]. The ending conditions of PSO-RBFN are set to minimum error of 
0.005 or maximum iteration of 10000. Alternatively, the stopping conditions for 
BP-RBFN are set to a minimum error of 0.005 or maximum iteration of 20000 has 
been achieved.   

Table 5 Result of BP-RBFN and PSO-RBFN on Cancer dataset 

BP-RBFN PSO-RBFN  

Train Test Train Test 
Learning Iteration 20000 1 10000 1 
Error Convergence 0.03417 0.27333 0.0181167 0.27464 
Classification (%) 92.80 70.37 97.65 71.77 
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Fig. 5 Convergence of Cancer dataset 

In Cancer learning process, from Table 5 shows PSO-RBFN takes 10000 itera-
tions compared to 20000 iterations in BP-RBFN to converge. In this experiment, 
PSO-RBFN is managed to converge at iteration 10000, while BP-RBFN con-
verges at a maximum iteration of 20000.  Table 5 illustrates that PSO-RBFN is 
better than BP-RBFN with an accuracy of 97.65% and 92.80%. Figure 5 shows 
PSO-RBFN significantly reduce the error with small number of iterations com-
pared to BP-RBFN. 

7.2.4   Iris Dataset 

The Iris dataset is used for classifying all the information into three classes which 
are iris setosa, iris versicolor, and iris virginica. The classification is based on its 
four input patterns which are sepal length, sepal width, petal length and petal 
width. Each class refers to type of iris plant contain 50 instances. For Iris dataset, 
the minimum error of PSO-RBFN is set to 0.05 or maximum iteration of 10000.  
While, the minimum error for BP-RBFN is set to 0.05 or the network has reached 
maximum iteration of 20000. Table 6 shows that BP-RBFN is better than PSO-
RBFN with an accuracy of 95.66% compared to 95.48%. However, PSO-RBFN 
converges faster at 3774 iterations compared to 10162 iterations in BP-RBFN. 

For Iris learning, both algorithms converge using the maximum number of pre-
specified iteration. PSO-RBFN takes 3774 iterations to converge at a minimum 
error of 0.0499949 while minimum error for BP-RBFN is 0.05000 with 10162 
 

Table 6 Result of BP-RBFN and PSO-RBFN on Iris dataset 

BP-RBFN PSO-RBFN  

Train Test Train Test 
Learning Iteration 10162 1 3774 1 
Error Convergence 0.05000 0.04205 0.0499949 0.03999 
Classification (%) 95.66 95.78 95.48 95.64 
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Fig. 6 Convergence of Iris dataset 

iterations. Figure 6 shows that PSO-RBFN reduces the error with minimum itera-
tions compared to BP-RBFN. 

7.2.5   Ionosphere Dataset 

This radar data was collected by a system in Goose Bay, Labrador. This system 
consists of a phased array of 16 high-frequency antennas with a total transmitted 
power on the order of 6.4 kilowatts. The targets were free electrons in the iono-
sphere. "Good" radar returns are those showing evidence of some type of structure 
in the ionosphere.  “Bad” returns are those that do not; their signals pass through 
the ionosphere. For Ionosphere problems, the stopping conditions for BP-RBFN is 
minimum error of 0.05 or maximum iteration of 20000. The minimum error of 
PSO-RBFN is 0.05 or maximum iteration of 10000.  The experimental results for 
PSO-based RBFN and BP-based RBFN are shown in Table 7 and Figure 7. 

Table 7 Result of BP-RBFN and PSO-RBFN on Ionosphere dataset 

BP-RBFN PSO-RBFN  

Train Test Train Test 
Learning Iteration 20000 1 5888 1 
Error Convergence 0.18884 0.23633 0.0499999 0.01592 
Classification (%) 62.27 62.71 87.24 90.70 

In Ionosphere learning process, Table 7 shows PSO-RBFN takes 5888 itera-
tions compared to 20000 iterations in BP-RBFN to converge. In this experiment, 
PSO-RBFN is managed to converge using minimum error at iteration of 5888, 
while BP-RBFN trapped at the local minima and converges at a maximum itera-
tion of 20000. For the correct classification percentage, it shows that PSO-RBFN 
result is better than BP-RBFN with 87.24% compared to 62.27%. Figure 7 shows 
PSO-RBFN significantly reduce the error with small number of iterations com-
pared to BP-RBFN. The results for this data are not promising for BP-RBFN since  
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Fig. 7 Convergence of Ionosphere dataset 

it depends on the data and repeatedly traps in local minima. The local minima 
problem in BP-RBFN algorithm is usually caused by disharmony adjustments 
between centers and weights of RBF Network. To solve this problem, the error 
function has been modified as suggested [17]. 

8   Validation Results 

In artificial neural network methodology, data samples are divided into three sets; 
training, validation and testing in order to obtain a network which is capable of 
generalizing and performing well with new cases. There is no precise rule on the 
optimum size of the three sets of data, although authors agree that the training set 
must be the largest. Validations are motivated by two fundamental problems either 
in model selection or in performance estimation.  

Table 8 Validation Result of BP-RBFN and PSO-RBFN on all dataset 

BP-RBFN PSO-RBFN 
Dataset Train Test Train Test 
XOR 0.11332 0.32864 0.00494071 0.47354 

Balloon 0.06004 0.33155 0.00499450 0.27348 
Cancer 0.03046 0.04233 0.00541208 0.02733 

Iris 0.05000 0.06227 0.0499760 0.05792 
Ionosphere 0.20743 0.22588 0.0499953 0.06325 

To create a N-fold partition of the dataset we simplifies that for each of N ex-
periments, use N-1 folds for training and the remaining one for testing and the true 
error is estimated as the average error rate. The results demonstrate the evaluation 
of our algorithms with respect to the convergence rate on the training and testing 
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dataset.  These results for BP-RBFN and PSO-RBFN on all dataset are shown in 
Table 8. 

On the whole data, the experiments showed that PSO gives high performance 
for RBF Network training. PSO-RBFN reduces the error with minimum iterations 
compared to BP-RBFN. 

9   Comparison between PSO-RBF Network and BP-RBF 
Network  

This analysis is carried out to compare the results between PSO-RBFN and BP-
RBFN. The learning patterns for both algorithms in both experiments are com-
pared using a five datasets. The classification results for all datasets are shown in 
Figure 8. 

For Balloon, Cancer and Ionosphere dataset, the results show that PSO-RBFN 
is better in terms of convergence rate and correct classification. PSO-RBFN con-
verges in a short time with high classification rates. For XOR and Iris dataset, both 
algorithms converge to the solution within specified minimum error; it shows that 
at this time, BP-RBFN classifications are better than PSO-RBFN. But in terms of 
convergence rate, it shows that PSO-RBFN is better than BP-RBFN, and PSO-
RBFN significantly reduces the error with minimum iterations.  

For overall performance, the experiments show that PSO-RBFN produces fea-
sible results in terms of convergence rate and classification accuracy. 

 

Fig. 8 Comparison of Classification Accuracy of PSO-RBFN and BP-RBFN 

10   Conclusion 

This paper proposes PSO based Hybrid Learning of RBF Network to optimize  
the centers, widths and weights of network. Based on the results, it is clear that 
PSO-RBFN is better than BP-RBFN in term of convergence and error rate and 
PSO-RBFN reached optimum because it reduces the error with minimum iteration 



396 S. Noman et al.
 

and obtains the optimal parameters of RBF Network. In PSO-RBFN, network 
architecture and selection of network parameters for the dataset influence the 
convergence and the performance of network learning. 

In this paper, both the algorithms need to be used the same network architec-
ture. Choosing PSO-RBFN parameters also depend on the problem and dataset to 
be optimized. These parameters can be adjusted accordingly to achieve better 
optimization. However, to have better comparison, the same parameters for all 
five datasets have been used. For BP-RBFN, the learning rate which is critical for 
standard BP network is provided with a set of weight. This is to ensure the con-
vergence time is faster with better results. Although Standard BP learning be-
comes faster based on those parameters, the overall process including parameters 
selection in BP-RBFN takes lengthy time compared to the process in PSO-RBFN.  
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