
Catching the Boat with Strudel:Experiences with a Web-Site Management SystemMary Fern�andezAT&T Labsm�@research.att.com Daniela Florescu�Inria Roquencourtdana@rodin.inria.fr Jaewoo KangSavera Systemskang@savera.com Alon LevyUniv. of Washingtonalon@cs.washington.comDan SuciuAT&T Labssuciu@research.att.comAbstractThe Strudel system applies concepts from database manage-ment systems to the process of building Web sites. Strudel'skey idea is separating the management of the site's data, thecreation and management of the site's structure, and the vi-sual presentation of the site's pages. First, the site buildercreates a uniform model of all data available at the site. Sec-ond, the builder uses this model to declaratively de�ne theWeb site's structure by applying a \site-de�nition query" tothe underlying data. The result of evaluating this query isa \site graph", which represents both the site's content andstructure. Third, the builder speci�es the visual presenta-tion of pages in Strudel's HTML-template language. Thedata model underlying Strudel is a semi-structured modelof labeled directed graphs.We describe Strudel's key characteristics, report on our ex-periences using Strudel, and present the technical problemsthat arose from our experience. We describe our experienceconstructing several Web sites with Strudel and discuss theimpact of potential users' requirements on Strudel's design.We address two main questions: (1) when does a declara-tive speci�cation of site structure provide signi�cant bene-�ts, and (2) what are the main advantages provided by thesemi-structured data model.1 IntroductionThe World-Wide Web (WWW) has become a prime vehiclefor disseminating information. As a result, the number oflarge Web sites with complex structure and that serve in-formation derived from multiple data sources is increasing.Managing the content and the structure of such Web sitespresents a novel data management problem.To understand the problem, consider a Web-site builder'stasks: (1) choosing and accessing the data that will be dis-played at the site, (2) designing the site's structure, i.e.,specifying the data contained within each page and the linksbetween pages, and (3) designing the visual presentation of�Research done while authors Florescu, Kang, and Levy were atAT&T Labs.

pages. In existing Web-site management tools, these tasksare, for the most part, interdependent. Without any site-creation tools, a site builder writes HTML �les by hand orwrites programs to produce them and must focus simulta-neously on a page's content, its relationship to other pages,and its visual presentation. As a result, several importanttasks, such as automatically updating a site, restructuring asite, or enforcing integrity constraints on a site's structure,are tedious to perform. To support these tasks naturally, weview the problem from a data management perspective.We have developed the Strudel system [12], which appliesconcepts from database management systems to Web-sitecreation and management. In particular, Strudel supportsdeclarative speci�cation of a Web site's content and struc-ture and automatically generates a browsable Web site froma speci�cation. Strudel's key idea is separating the man-agement of a Web site's data, the management of the site'sstructure, and the visual presentation of the site's pages.Using Strudel, the site builder �rst creates an integratedview of the data that will be available at the site. TheWeb site's raw data resides either in external sources (e.g.,databases, structured �les) or in Strudel's internal datarepository. In Strudel's mediator component, as in all ofits other components, all external and internal data is mod-eled as a labeled directed graph, which is the model com-monly used for semistructured data [1, 6]. A set of source-speci�c wrappers translates the external representation intothe graph model. The integrated view of the data is calledthe data graph. Second, the site builder declaratively speci-�es the Web site's structure using a site-de�nition query inStruQL, Strudel's query language. The result of evalu-ating the site-de�nition query on the data graph is a sitegraph, which models both the site's content and structure.Third, the builder speci�es the visual presentation of pagesin Strudel's HTML-template language. The HTML gen-erator produces HTML text for every node in the site graphfrom a corresponding HTML template; the result is thebrowsable Web site.Strudel is based on a semistructured data model of la-beled, directed graphs. This model was introduced to man-age semistructured data, which is characterized as havingfew type constraints, irregular structure, and rapidly evolv-ing or missing schema [1, 6]. This data model was appeal-ing for Strudel, because Web sites are graphs with irreg-ular structure and non-traditional schemas. Furthermore,semistructured data facilitates integration of data from mul-tiple, non-traditional sources.

Strudel provides several bene�ts. Since a Web site's struc-ture and content are de�ned declaratively by a query, notprocedurally by a program, it is easy to create multiple ver-sions of a site. For example, it is possible to build internaland external views of an organization's site or to build sitestailored to novice or expert users. Currently, creating mul-tiple versions requires writing multiple sets of programs ormanually creating di�erent sets of HTML �les. In Strudel,a site builder produces multiple sites by applying di�erentsite-de�nition queries to the same underlying data or bycreating multiple HTML renderings of the same site graph.Strudel's architecture also supports evolution of a Website's structure. For example, to reorganize pages based onfrequent usage patterns or to extend the site's content, wesimply rewrite the site-de�nition query. Declarative spec-i�cation of Web sites can o�er other advantages. For ex-ample, it becomes possible to express and enforce integrityconstraints on the site and to update a site incrementallywhen changes occur in the underlying data.Strudel clearly separates the three tasks of building Websites and is the �rst system that supports declarative spec-i�cation of a site's content and structure. Other recent re-search prototypes support the separation of the three tasks,but do not support declarative speci�cation of content orstructure [5, 22]. Other research projects support declara-tive speci�cation, but merge the tasks [3, 10]. Commercialtools such as Vignette's StoryServer and those provided bymajor database vendors separate the management of theunderlying data from its visual presentation. Individualpages or sets of related pages are constructed dynamically byevaluating queries that are embedded in HTML templates;query results are merged into HTML templates to producepages. Other products provide graphical user interfaces thatsupport drag-and-drop editing of individual pages (e.g., Mi-crosoft's FrontPage, NetObjects' Fusion) or of the structurebetween individual pages (e.g., Elemental's Drumbeat).This intense activity in research and industry indicates thatWeb-site management is an important problem, and becauseits central issue is management of site content and structure,it should be of interest to the database community. Giventhis, our goal is to gain experience quickly using Strudelso that we may understand which aspects of Web-site man-agement bene�t most from application of database conceptsand identify the critical research issues we should focus onin this area. In this paper, we describe our experience con-structing several Web sites with Strudel and discuss theimpact of users' requirements on Strudel's design. Basedon this experience, our study answers two main questions:� Is separating the three tasks of Web-site creation naturalin practice and under what circumstances does declarativespeci�cation of site structure provide signi�cant bene�ts?� Which characteristics of the semistructured data weremost important in Strudel and what prevented us fromusing a traditional data model?We �rst describe Strudel's architecture and our designchoices and present the data management problems thatarise when building complex Web sites. We also describe twotechnical problems that arose from our experience and thatwe solved in Strudel. First, we observed that in some casesa site's structure can be encoded either in the site graph orin the visual presentation. This led us to develop Strudel'sHTML template language, whose functionality overlaps theStruQL query language. This overlap permits users to en-

RDB

Wrappers

Structured
Files

HTML
Pages

STRUDEL

Repository
Data

Browsable Web Site

HTML Generator

Site Graph

HTML
Templates

StruQL
QueriesProcessor

Query Data Graph

Site Definition

MediatorFigure 1: Strudel Architecturecode their sites in whatever way is natural. Second, StruQLpermits the site builder to construct fragments of a Web siteseparately using multiple queries. To view a site's complete,abstract structure, we generate a site schema from the site'sStruQL queries. A site schema represents a StruQL queryas a labeled directed graph and can be viewed as a schemaof the Web sites that result from evaluating the StruQLquery. Site schemas allow the user to view the site's ab-stract structure during design. More importantly, they arethe basis for an algorithm that veri�es whether a given setof integrity constraints on a Strudel-generated site is guar-anteed to be satis�ed [14] and for an incremental-evaluationalgorithm that converts one site-de�nition query into mul-tiple queries that are evaluated dynamically when a userbrowses the site [15].2 The Strudel SystemStrudel's architecture is depicted in Fig. 1; rectangles de-pict processes and emboldened terms specify the inputs andoutputs of the processes.2.1 System ArchitectureData model In every level of the Strudel system, thedata model is a labeled, directed graph; this model is similarto OEM, which was developed in the TSIMMIS project [9].The labeled graph model has been proposed for managingsemistructured data, which often has few type constraints,a rapidly evolving schema, or missing schema.In this model, the database consists of objects connected bydirected edges labeled with string-valued attribute names.Objects are either nodes, identi�ed by a unique object iden-ti�er (oid), or are atomic values, such as integers, strings,and �les. Strudel supports several atomic types that com-monly appear in Web pages e.g., URLs, and PostScript, text,image, and HTML �les. The atomic types are handled in auniform fashion, and values are coerced dynamically whenthey are compared at run time. Objects are grouped intonamed collections, which are used in queries. Objects maybelong to multiple collections, and objects in the same col-lection may have di�erent representations.Data repository for semistructured data AWeb site'sdata graph and site graph are stored in Strudel's data

repository. The repository's initial data may be obtainedfrom wrappers that convert data in external sources intoan internal format. Data is exchanged between the datarepository and external sources in a common data de�ni-tion language, which in the style of OEM's data de�nitionlanguage [9].Strudel's data repository, unlike those in traditional rela-tional or object-oriented systems, can store data that lackschema information. Traditional systems rely on schema in-formation to physically organize the data on disk, but ourdata repository cannot. Without schema information, wefully index both the schema and the data. For example,one index contains the names of all the collections and at-tributes in the graph; other indexes contain the extensionsfor each collection and attribute. In addition, indexes onatomic values are global to the graph, not built per collec-tion or attribute. Obviously, maintaining these indexes isexpensive, but they provide many bene�ts to our query lan-guage, which can also query the schema.Mediator Strudel's mediator supports data integrationby providing a uniform view of all underlying data, irrespec-tive of where it is stored. When designing the mediator, weaddressed two problems: whether to warehouse data fromexternal sources or to access the external sources on demandat query time (see [20] for a comparison); and how to spec-ify the relationship between the attributes and collections inthe mediated schema and those in the data sources (see [24]for a discussion of possible approaches).In Strudel's prototype, we implemented warehousing; theresult of data integration is stored in Strudel's data repos-itory. This simpli�ed our implementation and su�ced forour applications, which have small databases. Strudel'sarchitecture, however, can accommodate either approach.Recent research addresses the problem of specifying the re-lationship between the mediated view of the data and theexternal data sources. Global as view (GAV) [2, 9, 17, 19, 23]and Local as view (LAV) [11, 18, 21] are two techniques. InGAV, the relationship between the two relations is speci�edby a set of queries. For each relation R in the mediatedschema, a query over the source relations speci�es how toobtain R's tuples from the sources. The LAV approach isthe inverse: for every information source S, a query over therelations in the mediated schema describes how R's tuplescan be found in S. GAV provides �ner control over how tocombine the data from the sources; in contrast, LAV simpli-�es adding and deleting sources and accommodates sourceswith overlapping data [24]. We found the GAV approach wassuitable for Strudel, because it was immediately extensibleto StruQL1 and because the number of data sources we in-tegrated was small and did not change frequently, althoughthe data in the sources may change frequently. Therefore,we did not have to change the mappings between the medi-ated schema and the source relations frequently.Query processor Strudel provides a declarative language,StruQL, for querying and restructuring semistructured data.Since both data graphs and site graphs are represented as la-beled graphs, StruQL queries can be applied to any graph,whether produced by a wrapper, a mediation query, or asite-de�nition query. As in traditional query processing, aquery is �rst translated by the query optimizer into an e�-cient physical-operation tree. In Strudel's �rst implemen-1Extending the LAV approach to our context would require solvingthe problem of rewriting queries using views for the StruQL language.

tation, we built a simple heuristic-based optimizer. Later,we developed a more comprehensive cost-based optimiza-tion algorithm [16]. The new optimizer can enumerate plansthat exploit indexes on the data and the schema in order tochoose the best plan. The optimizer is also well suited foraccessing data in external sources when only limited accesspatterns are supported. Limited access patterns are com-mon for semistructured-data sources, (e.g., they often re-quire that some inputs be given to access the data) and posenovel challenges to query optimization. Strudel's query in-terpreter includes conventional physical operators as well asthose necessary to query the schema (e.g., scan all the at-tribute names in a graph).HTML generator To produce the HTML code for everypage in the Web site, we associate an HTML template withevery node in the site graph. HTML templates can be asso-ciated with collections of objects or with individual objects.Given an object and its HTML template, the HTML gen-erator interprets the HTML template, replacing templateexpressions by the HTML values of the object's attributes.The resulting pages are the browsable HTML Web site.2.2 The StruQL Query LanguageIn Strudel, we need to query graphs and create new graphsat the mediation level, when data from di�erent externalsources is integrated into a data graph, and at the site-de�nition level, when site graphs are constructed from adata graph. We use a common query and transformationlanguage, StruQL (Site TRansformation Und Query Lan-guage) [13], at both levels. A query in StruQL's core frag-ment has the form:where C1; : : : ; Ck;[create N1; : : : ;Nn][link L1; : : : ; Lp][collect G1; : : : ;Gq]A StruQL query has two parts. The query part dependsonly on the where clause and produces all bindings of nodeand arc variables to values in the data graph that satisfyall conditions Ci in the where clause; its result is a relationwith one attribute for each variable. The construction part(the create; link, and collect clauses) constructs a new graphfrom this relation to create nodes, arcs, and collections inthe output graph. The result of the complete StruQL queryis a new graph.For example, the following query returns all PostScript pa-pers directly accessible from home pages:where HomePages(p); p! \Paper"! q; isPostScript(q)collect PostscriptPages(q)HomePages is a collection, \Paper" is an edge label, andisPostScript tests whether node q is a PostScript �le. Thedistinction between collection names and external predicatesis done at a semantic, not syntactic, level. The conditionp ! \Paper" ! q means that there exists an edge labeled\Paper" from p to q. The query constructs a new collection,PostscriptPages, consisting of all answers.In general, each condition C1; : : : ; Ck in a where clause either(1) tests collection membership, e.g., HomePages(p), or (2)is a regular path expression, e.g., p ! \Paper" ! q, or(3) is a built-in or external predicate applied to nodes or

edges, e.g., isPostScript(q). A condition of type (2) has thegeneral form x ! R ! y or x ! L ! y; the former meansthere exists a path from node x to node y that matches theregular path expression R, and the latter means there existsa single edge from node x to node y whose value is bound tothe variable L. Regular path expressions are more generalthan regular expressions, because they permit predicates onedges and nodes. For example \isName�" is a regular pathexpression denoting any sequence of labels such that eachsatis�es the isName predicate. In particular, true denotesany edge label, and true� any path; we abbreviate the latterwith �. Other operators include path concatenation andalternation; the grammar for regular path expressions is:R ::= Pred j (R:R) j (RjR) j R�.The create and link clauses create new graphs from existinggraphs. The following query produces a site graph calledTextOnly, that excludes any nodes that contain image �les:2where Root(p); p! � ! q; q ! l! q0;not(isImageFile(q0))create New(p); New(q); New(q0)link New(q)! l ! New(q0);collect TextOnlyRoot(New(p))New is a Skolem function that creates new object oids; byde�nition, a Skolem function applied to the same inputsproduces the same node oid, so for some constant value ofp, New(p) always produces the same object. The query�rst �nds all nodes q reachable from the root p (includingp itself) and all nodes q0 that are directly accessible fromq by one link labeled l and that are not image �les. Foreach node q and q0, it constructs new nodes New(q) andNew(q0). This query e�ectively copies all nodes accessiblefrom the root once. The query adds a link l between anypair of nodes that were linked in the original graph and addsa new link that points to the new root. Finally, it createsan output collection TextOnlyRoot that contains the newgraph's root.StruQL has an active-domain semantics and can be de-scribed in two stages, which correspond to the query andconstruction parts of a StruQL query. The meaning of thewhere-clause is a relation de�ned by the set of assignmentsfrom variables in the query to oid and label values in thedata graph that satisfy all conditions in the where clause.The meaning of the create; link; collect clauses is as follows.For each row in the relation, �rst construct all new nodeoids, as speci�ed in the create clause. Assuming the latteris create N1; : : : ;Nn, each Ni is a Skolem function appliedto node oids and/or label values. Next, construct the newedges, as described in the link clause. We require that eachnode in link or collect is either mentioned in create or isa node in the data graph. We also require that edges areadded from new nodes to new or existing nodes; existingnodes are immutable and cannot be extended. Strategiesfor e�cient evaluation and optimization of StruQL queriesare described elsewhere [12].2This example is inspired by an inconsistency in the CNNWeb sitehttp://www.cnn.com. The site provides a link to a text-only version,but only for the root page. Surprisingly, the following links point topages with images.

collection Publications fabstract textpostscript psgobject pub1 in Publications ftitle "Specifying Representations..."author "Norman Ramsey"author "Mary Fernandez"year 1997month "May"journal "Transactions on Programming..."pub-type "article"abstract "abstracts/toplas97.txt"postscript "papers/toplas97.ps.gz"volume "19 (3)"category "Architecture Specifications"category "Programming Languages"gobject pub2 in Publications ftitle "Optimizing Regular..."author "Mary Fernandez"author "Dan Suciu"year 1998booktitle "Proc. of ICDE"pub-type "inproceedings"abstract "abstracts/icde98.txt"postscript "papers/icde98.ps.gz"category "Semistructured Data"category "Programming Languages"g Figure 2: Fragment of data graph for example site2.3 Example Web SiteThe following example shows how one author's homepageis generated by Strudel.3 The main source of data forthis homepage is the author's Bibtex bibliography �le. Thehomepage site has four types of pages: the root page con-taining general information, an \abstracts" page containingall paper abstracts, \year" and \category" pages contain-ing summaries of papers published in a particular year orcategory, respectively. We describe the �rst two steps ofthe site-de�nition process: creating the data graph from aBibtex �le and de�ning the site graph in StruQL.Fig. 2 contains a fragment of the site's data graph and wasgenerated by a Bibtex wrapper; the wrapper converts Bibtex�les into a Strudel data graph. Both objects are membersof the Publications collection. Because Strudel supports asemistructured data model, the names, types, and cardinal-ity of attributes need not be identical. For example, pub1 hasa month attribute but pub2 does not; pub2 has a booktitle at-tribute, whereas pub1 has a journal attribute. The collectiondirective speci�es the default types of attribute values thatwould otherwise be interpreted as strings, e.g., abstract is atext �le and postscript is a PostScript �le. These directivesare not constraints and can be overridden in the input �le.The site graph for the example homepage is de�ned by thequery in Fig. 3. The �rst clause creates two new objectscalled RootPage and AbstractsPage and creates a link be-tween them. The second clause (lines 7{8) creates two newobjects, AbstractPage(x) and PaperPresentation(x) for each3We encourage the reader to visit the Strudel-generated sites athttp://www.research.att.com/�fmff,suciug andhttp://www.cs.washington.edu/homes/alon/.

1 INPUT BIBTEX2 // Create Root & Abstracts page and link them3 CREATE RootPage(), AbstractsPage()4 LINK RootPage()->"AbstractsPage"->AbstractsPage()56 // Create a presentation for every publication x7 WHERE Publications(x), x->l->v // Q18 CREATE PaperPresentation(x), AbstractPage(x)9 LINK10 AbstractPage(x) -> l -> v,11 PaperPresentation(x) -> l -> v,12 PaperPresentation(x)->"Abstract"->AbstractPage(x),13 AbstractsPage() ->"Abstract" -> AbstractPage(x)1415 { // Create a page for every year16 WHERE l = "year" // Q217 CREATE YearPage(v)18 LINK19 YearPage(v) -> "Year" -> v20 YearPage(v)->"Paper"->PaperPresentation(x),2122 // Link root page to each year page23 RootPage() -> "YearPage" -> YearPage(v)24 }2526 { // Create a page for every category27 WHERE l = "category" // Q328 CREATE CategoryPage(v)29 LINK30 CategoryPage(v) -> "Name" -> v,31 CategoryPage(v)->"Paper"->PaperPresentation(x),3233 // Link root page to each category page34 RootPage() -> "CategoryPage" -> CategoryPage(v)35 }36 OUTPUT HomePageFigure 3: Site de�nition query for example homepage sitemember x of the Publications collection; these presentationobjects contain the publication's information that will ap-pear in di�erent parts of the site. For example, the expres-sions on lines 10{11 copy all of x's attributes and values intothe new objects. The link clause also encodes inter-pagestructure. On line 13, the general abstracts page is linkedto the abstract page of each publication (AbstractPage(x)).The nested where clause (lines 15{24) creates a page foreach year associated with a publication; the link clause asso-ciates each PaperPresentation object with its correspondingYearPage. Lastly, the root page is linked to each year page.A similar clause creates a page for each publication categoryand links category pages to PaperPresentation objects.Fig. 4 depicts a fragment of the generated site graph; forclarity, it excludes the result of the last nested clause thatproduces category pages. Note that the site graph encodesboth the site's content and its structure. For example, thePaperPresentation objects have links to paper titles and totheir associated abstract pages. All leaf objects contain pagecontent, e.g., the titles of publications. Declarative speci�-cation of the site graph is powerful, because the site buildercan specify its structure in any order he chooses. For exam-ple, he can de�ne the pages \top down" from the root, or�rst de�ne each group of related pages and then link them.

"Abstract"

"Abstract" "Abstract"

"title"

"AbstractsPage"

"Year" "Year"

AbstractsPage()

RootPage()

"YearPage"

"Paper"

YearPage(1996)

"Paper"

YearPage(1995)

"YearPage"

AbstractPage(pub2)

. . .

. . .

"title"

"category"

AbstractPage(pub1)

. . .

"title"

"title"

. . ."category"

PaperPresentation(pub2) PaperPresentation(pub1)

"Abstract"

1998

"Optimizing..." "Semistructured..." "Architecture..." "Specifying..."

1997Figure 4: Fragment of site graph for example homepage site2.4 HTML-Template LanguageOne premise of Strudel's design is that designing and chang-ing the visual presentation of a site is separable from themanagement of the site's content and structure. AlthoughHTML generation is not our central concern, we want Strudelusers to be able to easily produce visually consistent and at-tractive sites. The result is a template language that extendsplain HTML with three simple expressions: a format expres-sion (SFMT), a conditional expression (SIF), and an enumera-tion expression (SFOR), each of which produces plain HTMLtext. This design evolved from our experience of represent-ing sites in a semistructured data model. Fig. 5 contains thelanguage's grammar.The HTML generator takes as input a site graph and aset of HTML templates. For every internal object, thegenerator selects a HTML-template �le for the object: ei-ther (1) an object-speci�c �le, (2) the value of the object'sHTML-template attribute, or (3) the template �le associatedwith the collection to which the object belongs. Given anobject and its HTML template, the HTML generator eval-uates all expressions in the template, concatenates them to-gether, and produces plain HTML text. It either emits theHTML value as a page or embeds the value in pages thatrefer to that object. The resulting pages contain the brows-able Web site. Fig. 6 contains the HTML templates forthe example site. The RootPage, AbstractsPage, YearPage,CategoryPage and AbstractPage are realized as pages.The choice to realize internal objects as pages or as pagecomponents is delayed until HTML generation; our choiceof Skolem function names (e.g., AbstractsPage) hints thatsome objects are realized as pages, but this is not required.For example, when referenced from the PaperPresentationtemplate, an AbstractPage object is realized, by default,as a separate HTML page, but when referenced from theAbstractsPage template, the EMBED directive overrides thisdefault and the AbstractPage object is embedded in the gen-erated HTML page.Associating an HTML template with a collection of objectsallows the user to produce the same \look and feel" for re-lated pages. Our technique for templating is much simplerthan writing CGI programs to produce related pages; ourplain template text is plain HTML with programmatic ex-tensions, not a program that produces HTML text.The template language provides three extensions to plainHTML. The format expression (<SFMT...>) maps an at-tribute expression into an HTML value. An attribute ex-pression is either a single attribute, e.g., Paper, or a boundedsequence of attributes that reference reachable objects, e.g.,

Templ) ��Ext �� Plain HTML Text�	Ext) <SFMT AttrExpr �Format� >j <SFOR ID IN AttrExpr �Order� �Delim� > Templ </SFOR>j <SIF CondExpr > Templ �<SELSE> Templ� </SIF>AttrExpr) �@� ID �. ID	Format) �EMBED �� �LINK �= Tag���Tag) ��STRING �� AttrExpr�	Order) ORDER=�ascend �� descend� �KEY=AttrExpr�
Delim) DELIM=STRINGExpr) �AttrExpr�� Constant�CondExpr) Expr �Op Expr�j CondExpr �AND �� OR� CondExprj NOT CondExprj (CondExpr)Constant) �BOOL �� INT �� FLOAT �� STRING �� NULL�Op) �= �� < �� > �� <= �� >= �� !=�Figure 5: EBNF Grammar for HTML-Template LanguageRootPage template:<html><!-- Raw HTML text omitted --><h2><SFMT AbstractsPage LINK="All Paper Abstracts"></h2><h2> Publications by Year </h2><SFMT YearPage LINK=YearPage.Year ULORDER=ascend KEY=Year>
<h2> Publications by Topic </h2><SFMT CategoryPage LINK=CategoryPage.Name ULORDER=ascend KEY=Name><!-- More raw HTML text omitted --></html>AbstractsPage template:<html><H1>Paper Abstracts</H1><SFMT Abstract EMBED UL></html>YearPage template:<html><h1> Publications from <SFMT Year> </h1><SFMT Paper UL></html>CategoryPage template:<html><h1> Publications on <SFMT Name> </h1><SFMT Paper UL></html>PaperPresentation template:<SFMT postscript LINK=title>.By <SFMT author ENUM DELIM=", ">.<i> <SIF booktitle> <SFMT booktitle><SELSE journal> <SFMT journal></SIF>, <SFMT year>. </i><SFMT Abstract LINK="Abstract">AbstractPage template:<SFMT postscript LINK=title>.By <SFMT author ENUM DELIM=", ">.<i> <SIF booktitle> <SFMT booktitle><SELSE journal> <SFMT journal></SIF>, <SFMT year>.</i>
<SFMT Abstract EMBED>
Figure 6: HTML Templates for example homepage site

Paper.Name. We found that limited traversal of the sitegraph is useful when writing HTML templates even thoughthis feature overlaps with StruQL's regular path expres-sions, which support both bounded and recursive traversal.Without limited traversal, the user is forced to encode allinformation to be displayed about an object in the objectitself, which bloats site-de�nition queries and destroys theirmodularity.Format expressions are concise, because the HTML gen-erator uses type-speci�c rules to determine an attribute'sHTML value. For most atomic values (integers, strings,URLs, HTML and text �les), the attribute's HTML valueis converted to a string and is embedded in the HTMLtemplate. For example, in the YearPage template, <SFMTYear> is replaced by the object's Year attribute, which isan integer. Some values, such as PostScript �les, should notbe realized as strings. For these values, the HTML gener-ator produces an appropriate link to the value. For exam-ple, in the PaperPresentation template, <SFMT postscriptLINK=title> is replaced by a link to the object's postscriptattribute, which is a PostScript �le, and the object's titleattribute is emitted as the link tag. When an attribute ex-pression refers to an internal object, the HTML generatorreplaces the expression with the object's HTML value; if theinternal object is a page, a link to its HTML �le is emitted,otherwise its HTML value is embedded in the current page.Because the semistructured data model permits objects inthe same collection to have di�erent representations, it is of-ten necessary to test for the existence of an object's attributeor test its value in a template. The expression SIF evaluatesa condition and if it is true, evaluates the �rst template ex-pression, otherwise it evaluates the optional second expres-sion. A condition can test whether an attribute expression isnon-null and can apply relational operators to attribute ex-pressions and constants. In the PaperPresentation template,for example, attributes common to all objects in the collec-tion (e.g., author, postscript, year, and Abstract) areemitted directly. The object-speci�c attributes (booktitleand journal) are emitted conditionally.The semistructured data model also permits an object tohave multiple instances of the same attribute, e.g., RootPagehas multiple YearPage attributes. The same attribute canrefer to object values of di�erent types. The iteration expres-sion SFOR iterates over all values of the attribute expression,binds the variable ID to each value, and evaluates the nested

template expression for each binding. The variable may ref-erence an internal object or an atomic value. If it refer-ences an internal object, it may be used in attribute expres-sions. For example, the following expression binds a to everyvalue of the attribute author and embeds each of a's values:<SFOR a IN author DELIM=","><SFMT @a EMBED></SFOR>.Enumerating all values of an object's attribute is common,so we abbreviate common idioms. For example the expres-sion <SFMT author ENUM DELIM=","> in the PaperPresentationtemplate is equivalent to the expression above. Attributesare often emitted in ordered and unordered lists. For ex-ample, <SFMT Abstract EMBED UL> in the AbstractsPagetemplate is shorthand for:<SFOR a IN Abstract><SFMT @a EMBED></SFOR>It is not possible to specify order of attributes in our datamodel; however, we often want to display attributes in a spe-ci�c order. The ORDER directive sorts an attribute's valuesin either lexicographically increasing or decreasing order; ifthe attribute's values are internal objects, the optional KEYvalue speci�es the object's attribute that should be used asthe key. For example, the expression <SFMT YearPage ULORDER=ascend KEY=Year> in the RootPage template sortsall the YearPage values in ascending order, uses their Yearvalues as a key, and emits them in an unordered list.2.5 Site SchemasStruQL permits the site builder to construct fragments of aWeb site separately using multiple queries. To view a site'scomplete, abstract structure, we generate a site schema fromthe site's StruQL queries; site schemas are a re�nement ofgraph schema [7]. Because StruQL's query and construc-tion stages are separate, a simple analysis of the query caninfer the site schema of the site graph. Given a query Q,a site schema is an equivalent reformulation of Q in termsof a graph, which speci�es the possible paths in a Web sitegenerated by Q. Formally, the site schema for a query Q isa labeled graph GQ. GQ has one node NF for every Skolemfunction symbol F in the query, plus one additional spe-cial node, NS, corresponding to non-Skolem nodes in thesite graph. The graph has one edge NF ! NG for ev-ery link expression F (�X)! L! G(�Y) in Q, and one edgeNF ! NS for every link expression F (�X)! L! V , whereV is a variable. Each edge in GQ corresponding to a link ex-pression F (�X)!L!G(�Y) is labeled (Q;L; �X; �Y), where Qis the query in the where-clause associated with that linkexpression; each edge corresponding to a link expressionF (�X)! L! V is labeled (Q;L; �X; [V]).The site schema is equivalent to the original query, i.e., wecan recover the query from the site schema. Fig. 7 depictssite schema that corresponds to the query in Fig. 3; forclarity, edges to the NS node are excluded. The link ex-pression YearPage(v) -> "Paper" -> PaperPresentationcorresponds to the edge YearPage! PaperPresentation la-beled (Q1 ^Q2; \Paper"; [v]; [x]). Note that the query thatgoverns creation of this link is the conjunction of the whereclauses Q1 and Q2.We use site schemas in several ways. Site schemas serve asa visual summary of the site graph, which is valuable dur-ing the iterative de�nition of a Web site's structure and al-lows visual veri�cation of a site's integrity constraints (e.g.,

(Q1,"Abstract",[x],[x])

(Q1,"Abstract",[],[x])

(Q1 Q2, "YearPage", [], [v])

(Q1 Q2, "Paper",[v],[x]) (Q1 Q3,"Paper",[v],[x])

(Q1 Q3,"CategoryPage",[],[v])

RootPage

CategoryPageYearPage

PaperPresentation

AbstractPage

AbstractsPage

(true,"AbstractsPage",[],[])Figure 7: Site schema for query in Fig. 3connectedness, reachability of nodes.) They are also thebasis for an algorithm that enforces integrity constraintson Strudel-generated sites [14] and for an incremental-evaluation algorithm that converts one site-de�nition queryinto multiple queries that are evaluated dynamically whena user browses the site [15]. We briey outline their appli-cation to these problems.Veri�cation of integrity constraints Visual veri�cationis adequate for simple constraints, but verifying arbitraryintegrity constraints requires automation. We often want toenforce constraints that refer to the site graph, e.g., \All pa-per presentation pages are reachable from a category page".We de�ne the veri�cation problem as an entailment problemof a StruQL query and a logical sentence describing the in-tegrity constraint. Integrity constraints are logical sentencesbuilt from expressions of the form C(X) and X ! R !Y using logical connectives and quanti�ers, e.g., the con-straint above is expressed by (8X)PaperPresentation(X)) CategoryPage() ! � ! X. In general, constraint for-mulae can refer to the data and site graphs, but we can onlyreason about formulae that refer to the data graph. Siteschemas allow us translate constraint formulae on the sitegraph into formulae on the data graph.Dynamic computation of site graph In Strudel's pro-totype, StruQL queries are evaluated statically, i.e., com-plete site graphs are computed before users browse them.This approach is feasible for sites whose data changes infre-quently, but it is infeasible for sites that are updated fre-quently. Moreover, completely materializing a site graph isoften impossible, for example, when pages depend on userinput derived from forms. In these cases, some nodes ina site graph must be created dynamically. To dynamicallycreate a site, Strudel must evaluate at \click time" the in-cremental query that computes the data required to displaythe next page. Site schemas specify, for each node in thesite graph, the queries that must be evaluated to computethe node's contents, i.e., its outgoing edges. Naive evalua-tion of these queries is costly, because they often recomputeinformation derived for already browsed pages; consider, forexample, all the edges in Fig. 7 labeled Q1 ^ Q2. For aparticular node, we can optimize its incremental query us-ing contexts derived from the paths that reach the node andalso precompute \lookahead" results for queries of reachablenodes. Site schemas specify the queries for paths that beginand terminate at nodes in a site graph.3 Related SystemsStrudel is one of several systems that support restructur-ing and creation of Web sites. Whereas Strudel's focus is

on integrating data from various types of data sources andon generating new sites, other systems focus on extract-ing structure from existing Web pages and on producinga new view. Both the WebOQL [3] and Araneus [5] sys-tems support querying of existing Web sites and can produceviews of sites as restructured graphs. WebOQL is similar inspirit to Strudel. Like Strudel, WebOQL provides a uni-form, semistructured data model (called a hypertree), andits query language supports regular path expressions, canrestructure graphs, and is compositional; unlike Strudel,its data model supports records and ordering. Also, We-bOQL expresses the HTML rendering of pages in queries.Like WebOQL, Araneus converts existing Web pages intoan abstract data model (ADM), which is a graph of strictlytyped page schemes that specify the content of related pages.Araneus provides a query language (Ulixes) for de�ning arelational view of an ADM graph; multiple data sources areintegrated by relational queries over these relational views.A second query language (Penelope) transforms an inte-grated, relational view back into an ADM graph; a �nal steprenders an ADM graph as a browsable site. Like Strudel,Araneus separates data integration, site de�nition, and vi-sual presentation, but it requires two data models, its pageschemes must be speci�ed explicitly, and its two query lan-guages cannot be composed naturally.The Autoweb [22] system is based on the hypermedia de-sign model (HDM), a design tool for hypermedia applica-tions. Like Strudel and Araneus, Autoweb separates site-management tasks: the \hyperbase schema" describes thesite's content in HDM, which is based on the entity rela-tionship model; the \access schema" speci�es how the hy-perbase is navigated and accessed in a browsable site; andthe \presentation schema" speci�es how objects and pathsin the hyperbase and access schemas are rendered. Althoughthe hyperbase and access schema are distinct, the naviga-tion paths in an access schema are tightly coupled to theentity relationships in a hyperbase schema. Autoweb doesnot support querying or data integration.4 Questions Answered in Our StudyAfter implementing Strudel's �rst prototype, we wantedto evaluate Strudel's methodology and our choice of thesemistructured data model. First, we considered whetherour premise that the three tasks of Web-site creation canand should be separated holds in practice. Speci�cally,� Is there always a clear separation between these tasks? Ifnot, in which cases do their mutual dependencies makeseparating them counter productive?� For what kinds of Web sites is Strudel most e�ective?How useful is the ability to explicitly and declarativelymanage a Web site's structure?Regarding Strudel's data model and StruQL's supportfor querying semistructured data, we asked:� What characteristics of semistructured data were mostimportant in Strudel? Conversely, why could we not ef-fectively implement Strudel in a traditional data model?� Are StruQL's features, e.g., regular path expressions andrestructuring capabilities, necessary for site de�nition?What features are missing from StruQL that might sim-plify site de�nition?

5 Experiences with StrudelWe have had both practical and exploratory experienceswith Strudel. In our practical experience, we used theStrudel prototype to create sites for individual users andfor two organizations and to create a version of the CNNWeb site for demonstration purposes. In our exploratory ex-perience, we described our methodology and demonstratedour prototype to several potential commercial users. We de-scribe this experience, addressing the above questions wher-ever relevant.5.1 Practical experienceOur largest examples to date are the internal and exter-nal Web sites of AT&T Labs{Research. We built versionsof these sites that are identical to those built by our Webmasters 4. This site is typical of an organization's site: it in-cludes home pages of individual members, pages on projects,demos, research areas, and technical publications. The in-ternal site is similar to the external site, but includes orga-nizational and proprietary information. The data sourcesfor this site are small relational databases that contain per-sonnel and organizational data, structured �les that containproject data, and existing HTML �les. The wrappers aresimple AWK programs that map structured �les and rela-tional databases into objects in a data graph. The wrappersfor plain HTML pages are hand written.The internal site generated by Strudel contains the homepages of approximately 400 users and pages for organizationsand projects. The internal site is de�ned by a 115-line queryand 17 HTML templates (380 lines). Strudel's power isrevealed in the de�nition of the external site: no new querieswere written for that site. Both the internal and externalsites share the same site graph and many HTML template�les. Only �ve HTML template �les di�er for the externalsite and these either exclude or reformat information thatcannot be viewed externally.Our own home pages are examples of small sites generatedby Strudel5. The main data sources for these sites are ourbibliographies. A simple wrapper maps Bibtex �les intodata graphs; other information is stored in �les in Strudel'sdata de�nition language. The mff example shows how togenerate internal and external versions of the same home-page. The example contains data from two sources: a Bib-tex �le and a Strudel data �le, which contains personalinformation, such as address, phone, projects, professionalactivities, patents, and is de�ned by a 48-line query and thir-teen HTML templates (202 lines). The HTML templates forthe external version exclude patents, and any publicationsand projects that are proprietary. The suciu example illus-trates how to integrate data from multiple sources. Its sitegraph is built in several successive steps by multiple, com-posed StruQL queries; for example, the last step copies theentire site graph and adds a navigation bar to each page.This example also shows how to de�ne multiple views withStruQL instead of with HTML templates.We are also working on a Strudel-generated version of theINRIA-Rodin Web site, which is similar to the AT&T Re-search site. Its main feature is that the site has two views:one English and one French. The two sites are cross-linked4The o�cial external site is at http://www.research.att.com andis generated using a large set of CGI-BIN scripts.5See http://www.research.att.com/f�mff,�levy,�suciug.

so that each English page is linked to the equivalent page inthe French site and vice versa. One StruQL query de�nesboth views and creates the links between them.Our �rst example was a demonstration version of the CNNWeb site (http://www.cnn.com). On any day, one articlemay appear in various formats on multiple pages in the CNNsite. Because we did not have access to CNN's databases ofarticles, we mapped their HTML pages into a data graphcontaining about 300 articles. Our version of the CNN siteis de�ned by a 44-line query and nine templates. To demon-strate Strudel's ability to generate multiple sites from onedatabase, we also generated a \sports only" site that hasthe same structure as the general site, but contains articleson sports subjects6 . The sports-only query is derived fromthe original query and only di�ers in two extra predicates inone where clause. Both sites use the same templates.5.2 Exploratory experienceWe have described our methodology and demonstrated ourprototype to several potential users, including the Web-sitemanagers for AT&T's internal organizations, the Web-sitemanagement team at CNN, a company that designs andpublishes sites, and a company that creates Web-based in-terfaces and data-integration technologies for business ap-plications. Each group identi�ed bene�ts of using Strudelthat we did not anticipate and problems that must be ad-dressed in an industrial quality implementation.One unanticipated but important bene�t is that Strudelcould be used to generate sites tailored to individual users.CNN currently provides a custom-news site; a user selectsthose news categories that he would like in his personal site,and the server generates pages that contain articles fromthose categories. The user has no control over the gener-ated site's structure. A custom StruQL query would allowthe user to organize his news as he wanted and allow CNNto generate pages that contain advertisements targeted tothat user. Strudel's separation of site management andvisual presentation make this feasible. Another applicationof user-speci�c sites is producing custom interfaces for di�er-ent types of users (e.g., marketing, customer care, analyst)that require access to the same databases, but that want toview the information in di�erent ways.Potential users uniformly agreed that the ability to inte-grate information from multiple sources while building aWeb site is valuable. They also agreed that managing thestructure of Web sites is a problem of growing importance.Both the CNN team and Web-site design �rm indicated,however, that they would need to edit both the structureand content of the generated pages and that these changesshould be propagated automatically back into the HTMLtemplates, site-de�nition query, or underlying data. Sev-eral customers noted that a graphical interface for specify-ing StruQL queries in the spirit of Query By Example [26]would be necessary.6 EvaluationWe describe the lessons we learned from our experience usingStrudel and evaluate its methodology, its query language,and its semistructured data model.6The versions of the CNN general and sports-only sites are athttp://www.research.att.com/�mff/presentation/strudel-demo.html.

6.1 The Strudel MethodologySeparating the management of the underlying data fromother Web-management tasks is the basis for several com-mercial products, e.g., most commercial relational and object-oriented databases provide Web interfaces to their systems.Strudel provides two other important features: the abili-ties to integrate data from multiple sources and to incorpo-rate unstructured sources (e.g., structured �les). The AT&TResearch site, for example, integrated �ve data sources.Isolating the management of a site's structure was also im-portant. For example, CNN's Web-site group is building aspecialized tool for managing site structure. We also foundthat building complex Web sites is an iterative process inwhich the site structure evolves over time. For example, cre-ating the AT&T and Rodin sites required several iterations.Declarative speci�cation of the site's structure enables easychanges to a site. Finally, Strudel is most e�ective whenmultiple versions of a site are built from the same underlyingdata. For instance, once we built AT&T's internal researchsite, building the external version was trivial.Separating management of the site's structure and its visualpresentation is more subtle. This separation simpli�es cre-ating multiple versions of a site especially when the site'sstructure is the same in all versions, but its visual presen-tations di�er. In this case, all versions share one site graph,but each version has its own HTML templates. It is notalways clear, however, which aspects of a site should be en-coded as structure or as visual presentation. For example,the AT&T external site is derived from the internal site byexcluding the attributes of some objects in the generatedpages; in this case, it is easier to create HTML templatesthat omit these attributes than it is to create a new sitegraph that explicitly excludes those attributes. Considerthe order of articles or the placement of images in a pageat the CNN site. Such information could be encoded inthe visual presentation or in the site's structure. For CNN,managing this information is crucial, because they considerthese editorial elements a primary value of their site.To characterize the sites for which Strudel is most use-ful, we consider two criteria: the amount of data they con-tain and their structural complexity (see Fig. 8). Measuringthe amount of data in a site is straightforward. One possi-ble measure of structural complexity is the number of linkclauses in the site-de�nition query. In current practice,an analagous measure of site complexity is the number ofCGI-BIN scripts required to generate a site.We observed that Strudel is most useful for sites that havecomplex structure and whose structure is dependent on theunderlying data. For example, the CNN Web site containsa large number of articles. Although the disposition of anarticle in a site is complex (i.e., it appears in several formatson di�erent pages and is linked to many other pages), thestructure is uniform for all articles in the site. This uni-formity also applies to all people in the AT&T site and allpublications in the example homepage sites.Fig. 8 categorizes the suitability of di�erent Web-creationtools for various kinds of sites. When a site has simplestructure and little data (lower left), WSYWIG tools such asMicrosoft FrontPage or NetObjects Fusion are appropriate.When a site contains large amounts of data, but has simplestructure, then a tool that provides a Web-based interfaceto a database is appropriate. When the data is large andthe site structure is complex, Strudel is most appropriate.

Quantity of Data

High

Low

FrontPage

Fusion

Small Large

STRUDEL

RDBMS +

Web interface

Complexity

of StructureFigure 8: Suitability of Web-site management tools6.2 StruQL Query LanguageWe were surprised by how well StruQL was suited for theapplication. StruQL's most important feature is separa-tion of the query (where) and construction (create; link; andcollect) stages. This separation is natural, because it isclear conceptually to separate extraction of data from ex-ternal sources and site construction. Another bene�t is thatthe query stage is independently extensible; for example,we could extend it to include grouping and aggregation.This separation also simpli�es query optimization, becauseall where clauses can be evaluated by an optimizer at once.It should be noted that other languages (e.g., WebOQL [3],UnQL [8]) do not separate selection and restructuring.StruQL's declarative semantics were also important. A sitebuilder often designs related parts of a site's structure in-dividually then links them together. The ability to specifylink clauses in whatever order is natural makes this pos-sible. More importantly, StruQL's declarative semanticsallow us to perform more complex site-management taskssuch as guaranteeing that integrity constraints are satis�edby Strudel-generated sites and automatically converting acomplete site-de�nition query into multiple queries that canbe evaluated statically or dynamically at \click time".We found that the StruQL queries for sites with complexstructure tend to be long. To simplify writing queries, weintroduced nested queries, and we allowed queries to addnodes and arcs to a graph, instead of creating a new graph inevery query. This allows di�erent queries to create di�erentparts of the same site. Finally, we built a tool to view aquery's site schema, which provides a visual map of the sitebeing speci�ed.Arc variables, which are bound to arc labels in the graphand, hence, to elements of the graph's schema, were an im-portant feature, because they carry over irregularites in thedata to the site graph. In the example in Fig. 3, the expres-sion on line 11 copies every attribute of a Publication objectinto a PaperPresentation object; this set of attributes willdi�er for each Publication object.Because our applications' data sources were mostly struc-tured, the site-de�nition queries rarely used the Kleene starin StruQL's regular path expressions. Regular path ex-pressions are useful when the possible sequences of attributenames in the data are not known in advance. This did notoccur in our examples. Regular path expressions are usefulin other applications of StruQL. For example, they can ex-

press integrity constraints on a site graph, e.g., \all pages arereachable from the site's root" or \every department mem-ber is reachable from a department page", and they may beuseful for querying a Strudel-generated site.6.3 Semistructured DataOur experience indicates that the semistructured model wasthe right choice for Strudel. We describe its most impor-tant features, in particular, the ability to easily evolve theschema and to manage irregular data.The semistructured data model does not require that theschema be de�ned before the data, which simpli�es modify-ing the schema. This was an important feature in Strudel.Creating both the data and site graphs was an iterative pro-cess, so the ability to modify their schema was important.We �rst wrote wrappers for the external data sources andgenerated the integrated data graph; then we wrote a site-de�nition query, applied it to the data graph, and generatedthe site graph. We repeated this process until we discov-ered all the information from the external sources that wewanted displayed in the site. For example, the AT&T datagraph integrated data from several structured and unstruc-tured sources. While writing the wrappers for these sources,the data graph's schema changed frequently, e.g., several at-tributes were added to the schema on-the-y.De�ning a site graph requires even more exibility, becauseits structure is not de�ned explicitly by a schema, but im-plicitly by a StruQL query. Even after the site is con-structed, we often want to change its structure, and there-fore its schema as well. During de�nition of the AT&T site,for example, we discovered similarities between pages thatwere not explicit in the site graph. The information aboutlab and department directors initially was modeled by twodi�erent collections; over time, we discovered that objectsin these collections shared many common attributes, so wemerged the two collections. Because of the dynamic natureof site and data graph schemas, we conclude that traditionalrelational and object-oriented model are not appropriate.In Strudel, we associate sets of objects with collections.A collection is like a class, except that objects need nothave identical representations, i.e., the same attributes orthe same attribute types. This model supports irregularstructure in the data. We encountered several kinds of ir-regularity in our data, such as missing or extra attributes.There are several sources of such irregularities. First, at-tribute values may be missing because they were omittedduring data entry. In the AT&T site, for example, someprojects omitted the \synopsis" attribute. Second, no val-ues may exist for some attributes at a given time. Not allprojects in AT&T are sponsored, and therefore have no valuefor the \sponsor" attribute. Third, some attributes are notmeaningful for certain objects. In the Publications collec-tion, the \journal" attribute is meaningful for journal pa-pers, but not conference papers. Finally, even when objectshave the same attribute, they may not be of the same type.For example, an address may be a string in one object, buta structure with address, city and zipcode �elds in anotherobject. Although we did not encounter this irregularity inour examples, we expect that such irregularity will arise forsites that integrate overlapping data from multiple sources.Modeling irregular data in an object-oriented model wouldrequire either building an arti�cial class hierarchy (whereeach class had exactly the same set of attributes), or con-

structing a maximal schema, where each object has all at-tributes. Furthermore, handling attribute values of di�erenttypes would be cumbersome.A recurrent issue was how much structure should be pro-vided by a semistructured data model. In our initial design,we found that we needed collections, but we did not an-ticipate the need for ordered lists. For example, objectsin the Publications collection have an associated list of au-thors. Maintaining order among authors is necessary whendisplaying the object in a Web page. Supporting lists in thedata model, however, increases the complexity of query eval-uation and optimization. Instead, we developed a solution(associating an integer key with each author) that allows usto preserve order in speci�c, but common, cases.7 Future ResearchOur experience helped us identify research problems of prac-tical and theoretical interest. They address issues of Strudel'sapplicability to dynamically generated sites, its scalability tolarger sites, its usability as an end-user tool, and its inter-operability with existing tools.In Strudel's prototype, we precompute a Web site by com-pletely materializing its site graph. Most Web sites, how-ever, cannot be precomputed, because they depend on userinput that is not available statically or because the underly-ing data sources are too large. Currently, Strudel does notsupport dynamically generated sites. In practice, dynamicgeneration is supported by often large sets of loosely relatedCGI programs. Supporting dynamic evaluation would elim-inate writing such programs by hand.Although we can decompose a site-de�nition query into mul-tiple, dynamic queries, and we have theoretical techniquesfor optimizing these queries, implementing dynamic evalua-tion requires signi�cant systems-design e�ort. For example,our optimization techniques cache query results to reduce\click time" for future queries; these results essentially en-code state required by the Strudel query processor. Anopen problem is how and where this state should be stored:in a client-side browser and/or a server-side query processor.To solve this problem, we expect to use existing systems andtechniques that support stateful Web services [4].Although adequate for a prototype, Strudel's warehous-ing mediator is inadequate for sites whose data sources arelarge or change frequently. To support large-scale sites, weneed to solve the problem of incremental view updates forsemistructured data, which is an open problem. An alterna-tive approach is translating a query on a mediated schemainto a set of queries on the relevant data sources. Althoughthis problem has been addressed for (unions of) conjunc-tive queries and some forms of recursive queries, it has notbeen addressed for languages over semistructured data. Inparticular, arc variables, i.e., querying the schema, and therestructuring operators create and link introduce di�culties.Traditional database systems rely heavily on schema infor-mation to organize data on disk. An important problem isdeveloping analogous techniques for semistructured data inwhich schema information is missing or changes frequently.This problem is related to the problem of dynamic objectreclustering in object-oriented databases. Traditional sys-tems use query patterns to choose indexes to build. InStrudel, however, identifying query patterns is compli-cated by StruQL's features that permit querying schema.

Not surprisingly, many potential users of Strudel askedwhether we can provide a friendly visual interface for spec-ifying queries, instead of having to write StruQL queriesby hand. Clearly, a better interface is needed, probably inthe spirit of Query By Example [26]. One research issue iswhat subset of StruQL can be expressed using a graphi-cal interface. A similar issue has arisen for other graphicalquery languages such as Hy+ [25].Many commercial tools exist for Web-site creation and man-agement. We do not presume that Strudel will replace allof them, therefore an important practical issue is how to in-tegrate Strudel with existing tools. Developing the appro-priate API to Strudel may be the best way to incorporateit into tools that Web-site builders currently use.8 ConclusionsThis work makes several important conceptual and practi-cal contributions. First, we identi�ed Web-site creation andmanagement as data-management problems that can ben-e�t from database technologies, and in particular, bene�tfrom declarative speci�cation of a site's content and struc-ture. We also recognized that separating the management ofa site's data, the management of its structure, and the visualpresentation of its pages, facilitates many site-managementtasks, such as integrating data from multiple sources, gen-erating multiple views of a site, modifying a site's structureover time, and enforcing integrity constraints on sites.Second, we identi�ed Strudel as an ideal application ofthe semistructured data model, because that model sup-ports data integration and can handle data with irregularstructure and rapidly evolving schema. We also provided adetailed description of the characteristics of semistructureddata that were most relevant to our application and explainwhy traditional models proved inadequate.Third, we built a prototype of Strudel that supports thesemistructured data model and provides a query processorfor StruQL, which handles graph querying and restruc-turing. This required us to solve several technical prob-lems, such as designing a data repository for semistructureddata and designing optimization algorithms for queries oversemistructured data. We also developed a simple yet pow-erful HTML-template language that supports HTML pre-sentation of objects in our data model. Our prototype alsoprovides an implementation platform for future research onsemistructured data and query optimization.Finally, our experience using Strudel to build several Websites validated our key assumptions that separation of thethree site-management tasks is natural in practice and thatdeclarative speci�cation of site content and structure e�ec-tively supports the tasks described above. Our experiencealso identi�ed the problems that would have to be solved ina production quality implementation of Strudel and thatrequire additional research. The practical problems includedesigning a graphical user interface to StruQL and integrat-ing Strudel's functionalities with existing Web-managementtools. Other problems, such as computing incremental up-dates of site graphs, decomposing queries to support dy-namic computation of sites, and designing e�cient storagerepresentations for semistructured data, have broader impli-cations in the �eld of semistructured data and pose harderchallenges. We have already begun addressing these prob-lems and plan to investigate practical solutions in futureversions of Strudel.

References[1] S. Abiteboul. Querying semi-structured data. In Pro-ceedings of the ICDT, 1997.[2] S. Adali, K. Candan, Y. Papakonstantinou, and V. Sub-rahmanian. Query caching and optimization in dis-tributed mediator systems. In Proceedings of SIGMOD-96, 1996.[3] G. Arocena and A. Mendelzon. WebOQL: Restructur-ing documents, database and webs. In Proceedings ofInternational Conference on Data Engineering, pages24{33, 1998.[4] D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox,P. Mataga, and K. Rehor. Experience with a domainspeci�c language for form-based services. In Proceedingsof Conference on Domain-Speci�c Languages, pages 37{49, 1998.[5] P. Atzeni, G. Mecca, and P. Merialdo. To weave theweb. In Proceedings of VLDB, pages 206{215, 1997.[6] P. Buneman. Semistructured data. In Proceedingsof the 16th ACM SIGACT-SIGMOD-SIGART Sympo-sium on Principles of Database Systems, Tucson, Ari-zona, pages 117{121, 1997.[7] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.Adding structure to unstructured data. In ICDT, pages336{350, Deplhi, Greece, 1997. Springer Verlag.[8] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.A query language and optimization techniques for un-structured data. In Proceedings of SIGMOD{96, pages505{516, 1996.[9] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,Y. Papakonstantinou, J. Ullman, and J. Widom. TheTSIMMIS project: Integration of heterogenous infor-mation sources. In proceedings of IPSJ, Tokyo, Japan,October 1994.[10] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Yourmediators need data conversion. In To appear in Pro-ceedings of SIGMOD, 1998.[11] O. M. Duschka and M. R. Genesereth. Answeringrecursive queries using views. In Proceedings of the16th ACM SIGACT-SIGMOD-SIGART Symposium onPrinciples of Database Systems, Tucson, Arizona.,1997.[12] M. Fernandez, D. Florescu, J. Kang, A. Levy, andD. Suciu. System demonstration - strudel: A web-sitemanagement system. In ACM SIGMOD Conference onManagement of Data, 1997.[13] M. Fernandez, D. Florescu, A. Levy, and D. Suciu.A query language for a web-site management system.SIGMOD Record, 26(3):4{11, September 1997.[14] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Rea-soning about Web-site structure, 1998. Submitted forpublication.[15] M. Fernandez, D. Florescu, A. Levy, and D. Suciu.Warehousing and incremental evaluation for Web-sitemanagement, 1998. Submitted for publication.

[16] D. Florescu, A. Levy, and D. Suciu. A query opti-mization algorithm for semistructured data. Technicalreport, AT&T Labs, 1997.[17] D. Florescu, L. Raschid, and P. Valduriez. A method-ology for query reformulation in CIS using semanticknowledge. Int. Journal of Intelligent & CooperativeInformation Systems, special issue on Formal Methodsin Cooperative Information Systems, 5(4), 1996.[18] M. Friedman and D. Weld. E�cient execution of in-formation gathering plans. In Proceedings of IJCAI,1997.[19] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Op-timizing queries across diverse data sources. In Pro-ceedings of the 23rd VLDB Conference, Athens, Greece,1997.[20] R. Hull. Managing semantic heterogeneity in databases:A theoretical perspective. In Proceedings of the16th ACM SIGACT-SIGMOD-SIGART Symposium onPrinciples of Database Systems, Tucson, Arizona,pages 51{61, 1997.[21] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Queryingheterogeneous information sources using source descrip-tions. In Proceedings of the 22nd VLDB Conference,Bombay, India., 1996.[22] P. Paolini and P. Fraternali. A conceptual model anda tool environment for developing more scalable, dy-namic, and customizable web applications. In Proceed-ings of EDBT Conference, Valencia, Spain, 1998.[23] A. Tomasic, L. Raschid, and P. Valduriez. A datamodel and query processing techniques for scaling ac-cess to distributed heterogeneous databases in Disco.IEEE Transactions on Computers, special issue on Dis-tributed Computing Systems, 1997.[24] J. D. Ullman. Information integration using logicalviews. In Proceedings of the International Conferenceon Database Theory, 1997.[25] P. T. Wood. Queries on Graphs. PhD thesis, Univer-sity of Toronto, Toronto, Canada, M5S 1A1, December1988. Available as University of Toronto Technical Re-port CSRI-223.[26] M. Zloof. Query-by-Example: a data base language.IBM Systems Journal, 16:4:324{343, 1977.

