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Abstract:

Decision trees are one of the most effective and widely used classification
methods. However, many applications require class probability estimates, and
probability estimation trees (PETSs) have the same attractive features as
classification trees (e.g., comprehensibility, accuracy and efficiency in high
dimensions and on large data sets). Unfortunately, decision trees have been
found to provide poor probability estimates. Several techniques have been
proposed to build more accurate PETSs, but, to our knowledge, there has not
been a systematic experimental analysis of which techniques actually improve
the probability estimates, and by how much. In this paper we first discuss why
the decision-tree representation is not intrinsically inadequate for probability
estimation. Inaccurate probabilities are partially the result of decision-tree
induction algorithms that focus on maximizing classification accuracy and
minimizing tree size (for example via reduced-error pruning). Larger trees can
be better for probability estimation, even if the extra size is superfluous for
accuracy maximization. We then present the results of a comprehensive set of
experiments, testing a variety of different methods for improving PETs. The
results show, somewhat surprisingly, that alternative pruning methods do not
improve the probabilities. In contrast, the experiments show that using a
simple, common smoothing method—the Laplace correction—uniformly
improves probability estimates. In addition, bagging substantially improves
probability estimates, and is even more effective for this purpose than for
improving accuracy. We conclude that PETs, with these simple modifications,

should be considered when class probability estimates are required.
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1 Introduction

Decision-tree learning programs have received a great deal of attention over the past fifteen
years in the fields of machine learning and KDD. Several factors contribute to their popular-
ity. Decision-tree learning programs are fast and effective (Lim, Loh, & Shih, 2000). They
work remarkably well with no tweaking of parameters, which has facilitated their wide use in
the comparison of different learning algorithms. Decision trees also work comparatively well
with very large data sets (Provost & Kolluri, 1999), with large numbers of variables; and
with mixed-type data (continuous, nominal, Boolean, etc.). These qualities result in part
from the simple yet powerful divide-and-conquer algorithm underlying decision-tree learners,
and in part from the high-quality software packages that have been available for learning
decision trees (most notably, CART (Breiman, Friedman, Olshen, & Stone, 1984) and C4.5
(Quinlan, 1993)).

There is another reason why decision-tree learning programs are so popular. In many
situations black-box models, or models where the reasons for decisions are hidden behind
opaque mathematical formulae, are unacceptable to users. This may be true because a system
is going to incorporate the models, and certain managers have responsibility for the system’s
behavior (and therefore must understand its inner workings). Or incomprehensible models
may be unacceptable because the model is built as a stage in a knowledge discovery process,
in which the goal is to induce comprehensible models for human consumption. Decision trees
are easy for people to understand. Furthermore, they can be transformed easily into rule
sets, which are even more comprehensible (Quinlan, 1993; Fiirnkranz, 1999).

As they have been used in most research and applications, decision trees are categorical
classifiers. They are models that map instances described by a vector of independent vari-
ables to one of a set of classes. However, as described below, in many applications categorical
classification is not sufficient; class probabilities are needed. Because of the attractive prop-
erties of decision trees, probability estimation trees (PETs) decision trees that estimate
the probability of class membership are seeing increasing use in such applications. Unfor-
tunately, decision trees have been observed to produce poor estimates of class probabilities
(Breiman, 1998, 2000; Pazzani, Merz, Murphy, Ali, Hume, & Brunk, 1994; Smyth, Gray, &
Fayyad, 1995; Bradley, 1997; Provost, Fawcett, & Kohavi, 1998). Several researchers have
proposed techniques to improve the estimates, yet to our knowledge there has not been a

systematic study of their efficacy.



In this paper, we present such a study. We first discuss prior work using and improving
probability estimation trees. We then explain that the decision tree representation is not
(inherently) doomed to produce poor estimates, and that part of the problem is that mod-
ern decision-tree induction algorithms are biased against building accurate PETs. We use
the results of this analysis and the suggestions of prior work to make a number of simple
modifications to the popular decision-tree learning program C4.5. We apply the first pair
of modifications to some simple synthetic problems, demonstrating the improvement in the
probability estimates. We then report the results of a comprehensive experiment of a variety
of modifications applied to a wide variety of benchmark data sets. The results show conclu-
sively that it indeed is possible to improve substantially the quality of probability estimation

in decision trees.

2 Prior work

PETSs recently have seen increasing use by practitioners and researchers, for example in
speech recognition (Jelinek, 1997), as node models in Bayesian networks (Friedman & Gold-
szmidt, 1996), in the recently introduced dependency-network representation and its applica-
tion to collaborative filtering and other areas (Heckerman, Chickering, Meek, Rounthwaite, &
Kadie, 2000), in network diagnosis (Danyluk & Provost, 2000), and in cost-sensitive learning
research (Domingos, 1999; Provost et al., 1998). As described above, decision-tree learning
has many attractive properties. Under what conditions would it be desirable or necessary
for a learned decision tree to produce class probability estimates?

If misclassification costs or the marginal (prior) class distribution can not be specified
precisely when the classifier is built, it is impossible to specify the appropriate classifica-
tion task. Instead of categorical classifications, models should estimate the probability of
membership in the various classes. Similarly, in some situations rankings are preferred to
categorical classifications. For example, a news-story filter or a web-page recommender may
use the probability that an instance is a member of the class “interesting to user” to rank
previously unseen instances for presentation. Learning and classifying in such situations is
described in detail elsewhere (Provost & Fawcett, 2000).

How are probability estimates typically generated from decision trees? Recall that a

decision tree partitions the data recursively at each node. Each leaf (terminal node) defines



the subset of the data corresponding to the conjunction of the conditions along the path
back to the root. The goal of the decision-tree learning program is to make these subsets
be less “impure”, in terms of the mixture of class labels, than the unpartitioned data set.
For example, consider an unpartitioned population with two equally represented classes
(maximally impure). A leaf node defining a subset of the population of which 90% are one
class would be much less impure, and may facilitate accurate classification (only 10% error
if this subset were classified as the majority class).

The previous example illustrates how probabilities are typically generated from decision
trees. If a leaf node defines a subset of 100 training instances, 90 of which are one class (call
it the “positive” class), then in use, any instance that corresponds to this leaf is assigned a
probability of 0.9 (90/100) that it belongs to the positive class.

Now you might notice a potential problem with this method of probability estimation.
What if a leaf comprises only 5 training instances, all of which are of the positive class? Are
you willing to have your probability estimator give an estimate of 1.0 (5/5) that subsequent
instances matching the leaf’s conditions also will be positive? Perhaps 5 instances is not
enough evidence for such a strong statement? There are two potential direct solutions to this
problem. One is that a statement of confidence in the probability estimation accompany the
estimate itself; then decision making could take the confidence into account (Apte, Grossman,
Pednault, Rosen, Tipu, & White, 1999). The second potential solution is to “smooth” the
probability estimate, replacing it with a less extreme value. We only consider the latter in
this paper, in order to keep the scope of the project narrow and focused on decision trees
that give more accurate probability estimates.

Smoothing of probability estimates from small samples is a well-studied statistical prob-
lem (Simonoff, 1998), and we believe that a thorough study of what are the best methods
(and why) for PETs would be a useful contribution to machine-learning research. In this
paper we focus on the method that has become a de facto standard for practitioners: the
so-called Laplace estimate or Laplace correction. Assume there are p examples of the class
in question at a leaf, /V total examples, and C total classes. The frequency-based estimate

presented above calculates the estimated probability as £. The Laplace estimate calculates

L.
the estimated probability as %-10' Thus, while the frequency estimate yields a probability

of 1.0 from the p = 5, N = 5 leaf, for a two-class problem the Laplace estimate yields a

5+1

probability of 2=

= 0.86. The Laplace correction can be viewed as a form of Bayesian



estimation of the expected parameters of a multinomial distribution using a Dirichlet prior
(Buntine, 1991). It effectively incorporates a prior probability of % for each class—note that
with zero examples the probability of each class is % This may or may not be desirable
for a specific problem; however, practitioners have found the Laplace correction worthwhile.
To our knowledge, the Laplace correction was introduced in machine learning by Niblett
(1987). Clark and Boswell (1991) incorporated it into the CN2 rule learner, and its use is
now widespread. For decision-tree learning the Laplace correction has been used by certain
researchers and practitioners (Pazzani et al., 1994; Bradford, Kunz, Kohavi, Brunk, & Brod-
ley, 1998; Provost et al., 1998; Bauer & Kohavi, 1999; Danyluk & Provost, 2000), but others
still use frequency-based estimates.

To our knowledge, the most detailed treatment of the production of class probability
estimates from decision trees is reported by Smyth, Gray and Fayyad (Smyth et al., 1995).
They do not concentrate on the smaller leaves, as we have in the discussion so far. Instead
they suggest a problem with estimating probabilities from the larger leaves. Specifically,
they note that every example from a particular leaf will receive the same probability esti-
mate. They question whether the coarse granularity of probability estimates may lead to
reduced accuracy. To address this problem, they make a fundamental change to the repre-
sentation. Specifically, at each leaf of the decision tree they place a kernel-based probability
density estimator (just for the subset of the population defined by the leaf). They show that
this method produces substantially better probability estimates than standard decision-tree
programs (CART and C4.5).

This approach seems well founded and quite promising, but from our perspective it is
problematic. First of all, one of the primary advantages of the decision-tree representation
is its simplicity and modularity. In particular, because comprehensibility is so important,
decision trees often are preferable to single density estimators, even when the latter have
slightly better accuracy.! The new model is a complicated combination of many density
estimators (and indeed Smyth et al. note that one way to see the method is that the
decision-tree learner is a feature selector for density estimation). Equally important is a
different problem. This work does not, address the question of whether there is a fundamental
problem with using decision trees for probability estimation. If in fact there is, then showing

that the new method beats the probability estimates of CART and C4.5 is not particularly

!'We have observed this in more than one real-world application of machine learning techniques.



impressive. Therefore it is important to investigate whether standard decision trees can be
made better probability estimators. We note however that if they can, then the method of
Smyth et al. might be improved by grafting the density estimators onto the more accurate
PET.?

Finally, we should note that simply producing a probability estimate may not be enough
for a real-world application. In a recent application of data mining techniques (including
decision trees) to estimate probabilities for discovering insurance risk, Apte et al. (1999)
describe in detail a variety of complications that also must be considered. For this paper,

all we address is the production of accurate probability estimates.

3 Representation versus induction

Viewed as probability estimators, decision trees construct piecewise uniform approximations
within regions defined by axis-parallel boundaries. Intuitively this may not seem as appro-
priate as a numeric method that estimates class probabilities as smoothly varying continuous
outputs. However, decision trees in principle can be fine PETSs. To see this we first must sep-
arate decision trees as a representation from the induction algorithm. Here we will consider
the former. In the next section we will see that problems arise with the latter.

First consider nominal attributes. The decision tree represents the relevant combinations
of features—relevant conditional probabilities. Any conditional probability distribution can
be represented by a PET.

For continuous attributes, a sufficiently large PET can estimate any class probability
function to arbitrary precision. Consider the simple univariate, two-class problem depicted
in Figure 1: each class is distributed normally about a different mean. These overlapping
probability densities define a continuous class-membership probability function over the do-
main of the variable (call it x). This may be just about the worse problem to which to apply
a PET, because piecewise-uniform representations are obviously a poor inductive bias, and
moreover because the problem is rather easy for other sorts of density estimators. However,
for this and for any such problem a PET can estimate the probability of class membership

to arbitrary precision. For this problem, each split in the decision tree partitions the x-axis,

20r, of course, the new PET may improve probability estimates so much that little can be gained by

grafting on the density estimators.
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Figure 1: The test problem: Overlapping Gaussians.

and each leaf is a segment of the x-axis. A PET would estimate the probability by looking
at the class distribution for its segment (which in the figure can be seen by cutting a vertical
slice and looking at the relative heights of the curves of the two classes in the slice). The
key is to note that as the number of leaves increases, the slices become narrower, and the
probability estimates can become more and more precise. In the limit, the decision tree
predicts class probability perfectly.

Of course, learning such PETs is our ultimate interest. In the case of Figure 1, other
methods would learn better using fewer examples. But when the dimensionality of the
problem is even moderately high, and little is known about the form of the underlying
distribution, a piecewise-uniform approximation may well have lower bias and/or variance

than smoother estimators.

4 Why PETs behave badly

So the question remains: why is it observed repeatedly that the decision trees produced by
standard algorithms do not yield good probability estimates?

The answer is in the tree-building algorithm, not in the representation. For a historical
perspective, it is useful to take a higher-level view of the research focus that (in part) drove

much work on building decision trees. Decision trees have been evaluated, for the most part,
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Figure 2: The corresponding class probability function.

by two criteria: classification accuracy and tree size (smaller is better). These have led to a
wide variety of heuristics that have been remarkably successful at building small, accurate
decision trees. However, these very heuristics reduce the quality of the probability estimates!

Why? Consider again our problem of univariate, overlapping Gaussians. What is the
smallest, accuracy-maximizing decision tree? It is the tree with a single split at x = 1. This
separates the classes as well as any decision tree, and among the accuracy-maximizing trees it
has minimal size. So, a good decision-tree building algorithm should return this simple tree
(or a close approximation thereto). But how good are this decision tree’s class probability
estimates? Not very good at all. All data points on one side of the split are assigned the
same probability, e.g., the proportion of the class that fall on the corresponding side of the
split.

Above we say that this behavior (pathological from the PET point of view) is due to
the tree-building algorithm, but we can be more specific. Modern decision-tree building
algorithms first grow a (sometimes very) large tree, and then prune it back. The pruning
stage tries to find a small, high-accuracy tree. Various pruning strategies are used. One such
strategy is reduced-error pruning: remove sub-trees if they seem not to improve resultant
accuracy on a validation set. In our example above, if the first split is correct, no subtree
will improve accuracy. We believe that the details of the growing phase are less critical to

obtaining good PETs than the choice of pruning mechanism. In particular, the commonly



used splitting criteria (e.g., information gain and Gini index) also appear reasonable when
the goal is to obtain good probability estimates. This is reinforced by the observations of
Breiman et al. (1984) and Drummond and Holte (2000) that misclassification costs are

generally insensitive to the choice of splitting criteria.

5 Training well-behaved PET's

Our question is whether we can build trees that yield better class probability estimates. The
foregoing analysis suggests that pruning is the culprit. Looking more closely, we see that
pruning removes two types of distinctions made by the decision tree: (i) false distinctions

those that were found simply because of “overfitting” idiosyncrasies of the training data set,
and (ii) distinctions that indeed generalize (e.g., entropy in fact is reduced), and in fact will

improve class probability estimation, but do not improve accuracy.

5.1 C4.4

To build better PETs we would like not to prune away distinctions of the latter type (we
will return to the former later). The simplest strategy for keeping type-ii distinctions is
simply not to prune at all. We can see on our overlapping-Gaussians problem that this
strategy indeed gives us the desired result. In particular, we modified C4.5 by turning off
pruning, turning off “collapsing” (a little-known pruning strategy that C4.5 performs even
when growing its “unpruned” tree), and calculating class probabilities with the Laplace
correction. We call this version C4.4.

We hypothesized that C4.4 may beat C4.5 at probability estimation. Of course this
went against our better intuition, established by years of reading machine learning papers
touting the virtues of pruning. However, in the literature there are hints of support for such
a hypothesis. For example, as mentioned above, Bradford et al. (Bradford et al., 1998) show
that cost-sensitive decision-tree pruning is no better than simply not pruning at all, as long
as the Laplace correction is used. One possible reason is that unpruned decision trees give
very good probability estimates.?

Figure 2 shows the class probability boundary of the overlapping Gaussians problem

(from Figure 1).

3If a model gives very good probability estimates, it inherently is cost sensitive (Provost & Fawcett, 1998).
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Figure 3: Comparing class probability estimates.

Figure 3 shows the performance of the PETSs learned by C4.5 and C4.4 on the overlapping
Gaussians problem. This was generated from trees built with 100,000 examples. The class
probability estimates given by C4.5 produce a piecewise-constant function, as expected. Note
that C4.5 indeed finds a high-accuracy split, but the probability estimates (the horizontal
segments) do not track the true class probability boundary well at all. C4.4’s PET tracks
the class probability boundary remarkably well.

Of course, one may argue that the boundary still is rather rough,* and that an estimate
with a better bias (e.g., a sigmoid function of the input) would perform better. As we
mentioned earlier, the univariate, overlapping-Gaussians problem is about the worst possible
application for a PET, in part because it is easy to propose a better alternative. However,
consider the class probability function shown in Figure 4. This will be more difficult for
most methods than the problem in Figure 3.

Now, consider the performance of C4.5 versus C4.4 on this problem. Note once again that
for this probability function, the optimal decision tree also is a single cut, this time at a point
in the interval (-1,0). Therefore, the following should be viewed simply as a demonstration
of the potential power of PETSs over decision trees.

C4.5 with pruning was used to build a PET (using the Laplace correction at the leaves),

4Note that C4.5 uses a minimum description length heuristic to reduce spurious splitting on numeric

attributes, and because of this the leaves remain larger than they would without the heuristic.
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Figure 4: A more complex class probability function.

as was C4.4 (no pruning, no collapsing, Laplace correction). The class probability borders
learned by C4.5 and by C4.4 are shown in Figure 5.

As before, and as expected, C4.5 places a single split very near to the point where
error should be minimized. Of course, this gives poor probability estimates for almost all
instances. (C4.4, on the other hand, produces class probability estimates that track the
actual class probability border quite well. As more data are used to build the tree, the class
probability estimates become more precise. Figure 5 shows the result of training the PETs on
10,000 training examples. Figure 6 shows the result of training the PETs on 100,000 training
examples. Notice that as the training sets get larger, both C4.5 and C4.4 do better at their
primary task. C4.5’s single split is closer to the point where accuracy is maximized. C4.4

produces finer-grained probability estimates that track the actual border more precisely.

5.2 So where is the rub?

Of course, training PETs in practice is not that simple. As we mentioned earlier, there are
two types of distinctions removed by pruning. In arguing for C4.4 we highlighted distinctions
of type-ii, which obviously should be retained for probability estimation. However, we ignored
distinctions of type-i: spurious distinctions resulting from overfitting the training set. In the

previous sections C4.4 was applied to plenty of data, given the low dimensionality of the
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Figure 5: Learned probability borders: 10,000 training examples.

problem. What will happen when data is sparse? Will not C4.4 produce false distinctions
that will distort its probability estimates?

It almost certainly will. Do the benefits of C4.4 outweigh the drawbacks? Are the
PETs produced by C4.4 better than those produced by C4.57 We evaluate this empirically
below. A further question is whether there is an effective middle ground. Pruning based on
minimizing accuracy obviously is not the right thing to do. On the other hand, not pruning
at all may be too drastic. It might be useful to prune with the specific goal of preserving
distinctions that are important for probability estimation.

Reduced-error pruning is not the only pruning strategy that has been used in building
decision trees. A strategy that seems better aligned with the goal of retaining distinctions
that are significant from the perspective of probability estimation is chi-square pruning.
With chi-square pruning, leaves of the tree are collapsed to their parent node if a chi-square
test does not indicate that there is a significant difference in the class distributions before and
after the split. Several decision-tree learning algorithms have used variations of chi-square
pruning (Quinlan, 1986; Jensen & Schmill, 1997; Kass, 1980). Perhaps most notably, C4.5’s
predecessor, ID3 (Quinlan, 1986) used chi-square “prepruning”; it stopped growing the tree
when a chi-square test did not show a significant difference in the distributions.

We hypothesized that an augmented C4.4, using chi-square pruning, would yield im-

proved performance over C4.4. Such a procedure would be parameterized by the p-level at
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Figure 6: Learned probability borders: 100,000 training examples.

which pruning would occur, and the question then would arise as to how to set the p-level
appropriately. However, given a sufficient amount of data, cross-validation could be used to

determine empirically what p-level would be appropriate.

5.3 Another alternative for building PETs

In the foregoing, we assumed that the goal was to improve the probability estimates resulting
from a single tree. A different strategy for using decision trees for probability estimation
has received attention recently. Multiple-model classifiers, which learn multiple classification
models and then combine their predictions (e.g., having them vote on a classification), have
recently been shown often to improve classification accuracy when compared to using a single
model. For example, bagging (Breiman, 1996) has been shown to outperform single model
techniques with surprising consistency. Recent results suggest that the improvements from
bagging also apply to the use of decision trees for probability estimation (Provost et al., 1998;
Bauer & Kohavi, 1999). We should note that averaging multiple decision trees to produce
probability estimates is not a novel product of the recent interest in multiple models; Buntine
studied the technique ten years ago (Buntine, 1991). However, our experiments have led us
to the conclusion that bagging and the Bayesian averaging studied by Buntine are in fact
quite different (Domingos, 1997).

12



6 Experiments and Results

The results presented above were obtained from simple synthetic data. We were interested in
whether the improved performance hypothesized for C4.4, and observed above, generalized
to data from real-world problems. We also were interested in verifying or refuting our other

hypothesized improvements, including chi-square pruning and bagging.

6.1 Comparison metric

For this work it is necessary to evaluate and compare different models with respect to their
estimates of class probabilities. In the standard machine-learning evaluation paradigm, the
true class probability distributions are not known. Instead, a set of instances is available,
labeled with the true class. Comparisons are based on estimates of performance from these
data.

The standard method, comparing undifferentiated error rates, is obviously not appro-
priate (Provost et al., 1998). One alternative is to use ROC analysis (Swets, 1988), which
compares visually the classifiers’ performance across the entire range of probabilities. Provost
and Fawcett (Provost & Fawcett, 1997, 1998) describe how precise, objective comparisons
can be made with ROC analysis.

However, for the purpose of this study, we want to evaluate the probabilities generally
rather than under specific conditions or under ranges of conditions. Knowing nothing about
the task for which they will be used, which probabilities are generally better? The Wilcoxon-
Mann-Whitney non-parametric test statistic (the Wilcoxon) (Hand, 1997) is appropriate for
this comparison. The Wilcoxon measures, for a particular classifier, the probability that a
randomly chosen class 0 case will be assigned a higher class 0 probability than a randomly
chosen class 1 case. Therefore higher Wilcoxon score indicates that the probabilities are
generally better (there may be specific conditions under which the classifier with a lower
Wilcoxon score is preferable), if calibration of the probabilities is ignored.” Another metric

for comparing classifiers across a wide range of conditions is the area under the ROC curve

5 An inherently good probability estimator can be skewed systematically, so that although the probabilities
are not accurate, they still rank cases equivalently. This would be the case, for example, if the probabilities
were squared. Such an estimator will receive a high Wilcoxon score. A higher Wilcoxon score indicates that,
with proper recalibration, the probabilities of the estimator will be better. Probabilities can be recalibrated

empirically, for example as described by Soberhart et al. (2000).
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(AUC) (Bradley, 1997); AUC measures the quality of an estimator’s classification perfor-
mance, averaged across all possible probability thresholds. Interestingly, it has been shown
that the AUC is equivalent to the Wilcoxon statistic (Hanley & McNeil, 1982). (It also
is equivalent to the Gini coefficient (Hand, 1997).) Therefore, for this work we will report
the AUC when comparing class probability estimators. (Hand (1997) provides a thorough
treatment of the comparison of class probability estimates both when the true probability
distribution is known and when it is unknown.)

We are interested in whether, by making the modifications we make, the probabilities
generally improve. We make no claims as to whether one algorithm is “better” than another
for the problems from which these data were drawn. The AUC metric(s) judge the relative
quality of the probabilities averaged over all possible output thresholds. It may be the case
that for a particular set of conditions under which the PETs will be used, i.e., where a

particular output threshold is called for, a PET with a lower AUC score in fact is desirable.

6.2 Results

We used the following 25 databases from the UCI repository (Blake & Merz, 2000): audiology,
breast cancer (Ljubljana), chess (king-rook vs. king-pawn), credit (Australian), diabetes,
echocardiogram, glass, heart disease (Cleveland), hepatitis, hypothyroid, iris, LED, liver
disorders, lung cancer, lymphography, mushroom, primary tumor, promoters, solar flare,
sonar, soybean (small), splice junctions, voting records, wine, and zoology. Each database
was randomly divided 20 times into 2/3 of the examples for training and 1/3 for testing. The
results presented are averages of these 20 runs. For data sets with more than two classes we
computed the expected AUC, which is the weighted average of the AUCs obtained taking
each class as the reference class in turn (i.e., making it class 0 and all other classes class
1). The weight of a class’s AUC is the class’s frequency in the data. The results obtained
are shown in Table 1, and summarized in Table 2. “Sign test” is the significance level of
a binomial sign test on the number of wins (with a tie counting as half a win; the normal
approximation to the binomial was used). “Wilcoxon test” is the significance level of a

Wilcoxon signed-ranks test. Our observations are summarized below.
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Table 1: Experimental results: Expected AUC (area under the ROC curve, as percentage
of maximum possible) and its standard deviation for C4.5, C4.5 with the Laplace correction
(C4.5-L), C4.4, C4.4 with chi-square pruning with a 5% significance threshold (C4.4-X),
bagged C4.5 (C4.5-B) and bagged C4.4 (C4.4-B).

Database C4.5 C4.5-L C4.4 C4.4-X C4.5-B C4.4-B

Audiology 89.440.8 91.1£0.9 91.0£0.8 57.3£2.6 94.7£0.5 95.2+0.6
Breast 60.9+1.7 63.1+1.4 60.6+1.2 62.841.4 68.9+1.3 67.44+1.3
Chess 99.740.1  99.7+0.0  99.9+£0.0 99.9£0.0  99.94+0.0  99.940.0
Credit 87.9+0.7 89.9+0.5 87.3+0.4 90.7£0.5 92.6+0.5 92.1+04
Diabetes 74.840.9 76.9+0.8 77.3+0.7 78.7+0.7 83.44+0.5 83.24+0.5
Echocardio | 54.1+1.3  55.9+1.6 57.741.1 58.4+1.1 67.4+1.5 67.8+1.6
Glass 79.240.9 81.3+1.0 81.3+0.8 78.8+1.2 88.94+0.8 88.74+0.8
Heart 76.0+£1.2  81.1£1.1 83.6+0.8 81.3+0.9 88.4+0.6 89.1£0.6
Hepatitis 64.3+2.5 68.44+2.2 76.7£1.5 71.7£1.9 83.2+1.4 84.0+14
Iris 96.0+£0.6  96.94+0.3 97.3+0.4 97.240.4 99.0+0.2  99.240.2
LED 81.4+0.9 81.94+1.0 84.3+1.0 65.3+1.6 90.6+0.8  90.64+0.9
Liver 62.6+1.2 63.7%£1.1 64.841.5 62.3+1.4 74.0£0.7 73.9£0.7
Lung 54.6+3.6  51.1+£3.5 50.5+£3.3  50.0+£0.0 65.3+3.0 62.0+3.4
Lympho 79.7t1.4 83.0+1.5 84.7+0.8 82.8+41.2 91.24+0.8  91.34+0.8
Mushroom | 100.0+0.0 100.0+£0.0 100.040.0 100.0+0.0 100.0+£0.0 100.040.0
Promoters 78.44+1.6 82.9+1.5 81.24+1.5 82.4+1.4 93.0£1.2 93.841.0
Solar 87.5+0.6 88.9+0.5 88.6+0.5 87.0+0.4 89.840.5 89.74+0.5
Sonar 70.5+1.3 762414 76.5+1.4 75.2+1.7 85.2+1.4  84.5+1.3
Soybean 98.2+0.5 97.840.7 97.840.7 82.3+2.1 100.04+0.0 100.0%0.0
Splice 96.44+0.2  97.7£0.1 97.840.1 98.2+0.1 98.7+0.1 98.9+0.1
Thyroid 94.4+0.9 96.2+0.5 97.0+0.4 97.5+0.4 97.5+04  98.6+0.3
Tumor 68.8+40.7 71.7+£0.7 68.5+£0.8 63.1£1.0 77.0£0.7 76.0+0.6
Voting 97.1£0.4  98.240.2 94.6+0.7 97.9+0.2 98.64+0.2  98.94+0.1
Wine 94.3+0.6  94.54+0.7 94.44+0.8 94.3£0.8  99.4+0.1 99.44+0.1
Zoology 96.4+0.5 98.0+0.4 98.44+0.4 93.5£1.4 99.4+0.3 99.6+0.1
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Table 2: Summary of experimental results: AUC comparisons.

Systems Wins-Ties-Losses  Avg. diff. (%) Sign test Wilcoxon test
C4.4 vs. C4.5 18-1-6 2.0 1.0 0.3
C4.4 vs. C4.5-L 13-3-9 0.2 30.0 30.0
C4.5-1. vs. C4.5 21-2-2 1.7 0.1 0.1
C4.4-X vs. C4.4 8§-2-15 —-3.3 5.0 3.0
C4.4-X vs. C4.5-L 9-1-15 —3.1 8.0 6.0
C4.5-B vs. C4.5 24-1-0 7.3 0.1 0.1
C4.4-Bvs. C4.4 23-2-0 9.3 0.1 0.1
C4.4-B vs. C4.5-B 11-5-9 —0.1 45.0 50.0

6.3 Pruning and Laplace correction

C4.4 is a very marked improvement over C4.5. Most of this improvement is due to the use
of the Laplace correction, which, despite its simplicity, is extremely effective in improving
the quality of a tree’s probability estimates. Our results in this respect agree with, but are
stronger than, the results of Bauer and Kohavi (Bauer & Kohavi, 1999), who report that the
use of an “m-estimate Laplace correction” (Kohavi, Becker, & Sommerfield, 1997) reduces
the mean-squared error (MSE) of PET probability estimates from 10.7% to 10.0%, averaged
across fourteen data sets. The present results, using AUC, give a perspective complementary
to those obtained with MSE. In addition, the uniformity of success of the simple Laplace
correction (e.g., 21-2-2 for C4.5) is remarkable.

Not pruning outperforms pruning in more databases than the reverse, but the difference
is not significant. We hypothesize that these inconclusive results are due to two competing
effects: when pruning is disabled, more leaves are produced, which leads to a finer approx-
imation to the true class probability function, but there are fewer data within each leaf,
which increases the variance in the approximation. Which of these two effects will prevail
may depend on the size of the database. The limited range of data-set sizes used in the
experiments and the presence of many confounding factors preclude finding a clear pattern
in our results. We hypothesize that as we move to larger and larger data sets, as seems to
be the trend in KDD, the advantage of C4.4 will become stronger.
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6.4 Chi-square pruning

However, as noted above, simply not pruning is not intuitively satisfying as the best method
for training PETs. It seems that it would be more advantageous to modify the pruning to
address the production of probability estimates directly.

We compared C4.4 with and without chi-square pruning, using the same data sets and
methodology as above. The results were quite surprising. Chi-square pruning generally did
not improve C4.4; more often, it degraded the probability estimates. This result holds across
the entire spectrum of pruning thresholds (chi-square p values); we tried thresholds of 0.1%,
1%, 5%, 10% and 20%, with and without the Laplace correction (only the results for 5%
with the Laplace correction are shown in Table 1). As with the comparison with C4.5, we
believe these results may be due to the small size of the UCI data sets. C4.4 with chi-square
tends to prune a lot, even with a high significance threshold like 20%, because after the first
few levels there is not enough data for it to conclude with any reasonable confidence that
parent and child distributions are significantly different.

We also compared C4.4 with a version of C4.4 that stops growing when the leaves become
too small. Specifically, the C4.5 package provides a parameter m such that C4.5 will not
split a node unless at least two of its children contain more than m (default 2) examples.
A simple method for pruning is to increase m. Perhaps not surprisingly in light of the

chi-square results, all values tried also underperformed C4.4.

6.5 Bagging

Bagging also substantially improves the quality of probability estimates in almost all do-
mains, and the improvements are often very large. This also agrees with the results of Bauer
and Kohavi using mean-squared error (MSE) (Bauer & Kohavi, 1999). They show a de-
crease in the average MSE over fourteen data sets from 10.7% for regular PETs to 7.5% for
bagged PETs. The present results also show, over the twenty-five data sets, not a single
case where bagging degrades the probability estimates, as measured by AUC. This accords
with work done by Provost, Fawcett and Kohavi (1998), who present the ROC curves of six
algorithms evaluated on ten data sets. We observe that the ROC curves of bagged PETSs
(“bagged MC4”) have larger areas in their graphs. In fact, in all but one case, the bagged
PETs completely dominate the curves of individual Laplace-corrected PETs (“MC4”).

It is noteworthy that the improvements in AUC with bagging are on average much larger
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than the improvements in accuracy (7.3% vs. 2.8% for C4.5), indicating that bagging may
be even more effective for improving probability estimators than for improving classifiers.
The improvements in AUC are larger on average for C4.5 than for C4.4, presumably because
there is more room for improvement in C4.5. Once bagging is used, whether or not pruning
and the Laplace correction are used makes little difference. Despite its effectiveness, bagging
has the disadvantage that the comprehensibility of the single tree is lost, and it also carries
greater computational cost. When high-quality estimation is the sole concern, bagging should
clearly be used. When comprehensibility and/or computational cost are also important, a

single C4.4 tree may be preferable.

7 Conclusions and discussion

The poor performance of PETs built by conventional decision-tree learning programs can
be explained by a combination of two factors. First, as shown by the demonstrations on
synthetic data, the heuristics used to build small accurate decision trees are biased strongly
against building accurate PETs. Perhaps counter-intuitively (at first), larger trees can work
better for probability estimation. We are disappointed that our results do not support the
hypothesis that more accurate PETs can be built by using a pruning strategy designed
specifically for improving probability estimation. We hope that future studies can explain
this, perhaps by looking at larger data sets.

The second factor explaining the poor performance of conventional PETSs is that, when
a purely frequency-based (unsmoothed) estimate is used, small leaves give poor probability
estimates. This is the probability-estimation counterpart of the well-known “small disjuncts
problem”: in induced disjunctive class descriptions, small disjuncts are more error-prone
(Holte, Acker, & Porter, 1989). While this is not surprising statistically, the uniformity
and magnitude of the improvement given by the simple, easy-to-use, Laplace correction
nevertheless is remarkable.

These results have interesting connections to other recent work studying the relationship
of model complexity and predictive performance. Oates and Jensen (1998) show that on UCI
databases as the number of examples increases the accuracy of decision trees soon stabilizes,
but decision-tree complexity (number of nodes) continues to increase. Our results present

an important caveat: although larger trees may not be more accurate, that does not mean
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that they are not better models. As shown by the results on the synthetic data, larger trees
often model the problem much better even though they have equivalent accuracy.® Apte et
al. (1999) have also noted recently that when building rule-based and decision-tree-based
probability estimators, the quality of the probability estimates continues to increase as more
and more data are used for training—far beyond the points observed by Oates and Jensen,
and in fact exhausting their 1.4 million data points without reaching a plateau.

Another significant observation is that bagged PETs produce excellent probability esti-
mates. As with accuracy, bagging substantially improves PETs. Moreover, over the twenty-
five data sets we tested, bagging never degrades the probability estimates. Furthermore,
bagging improves probability estimates (as measured by AUC) even more than it improves
classification accuracy. The extent of this is quite remarkable: in 9 of 25 domains bagging
gives an absolute AUC improvement of more than 0.1. We strongly echo the conclusion of
Bauer and Kohavi (Bauer & Kohavi, 1999) that for problems where probability estimation
is required, one should seriously consider using bagged PETs—especially in ill-defined or
high-dimensional domains.

Bagged PETs also have implications for other areas of data mining and machine learning
research. For example, the MetaCost algorithm (Domingos, 1999) uses a bagged PET as a
subprocedure for cost-sensitive learning. The quality of the probability estimates obtained in
this way was an open question; our results validate the procedure used. As another example,
the smoothing obtained by bagging the estimates, along with the increase in their accuracy,
will help with probabilistic ranking (e.g., of interesting documents), for which the coarse

estimates of small trees are particularly problematic.

8 Limitations, extensions and future work

The purpose of this work was to study how the probability estimates obtained by decision
trees could be improved. We believe that the results we have presented have given us
a substantially better understanding. However, what we have not yet studied is how these
PETSs compare with other methods for estimating probabilities. We hypothesize that as long

as there are many examples, PETSs can compete with more traditional methods for building

6This does not contradict the results of Oates and Jensen, who show that conventional decision-tree

inducers build very large trees even from random data (Oates & Jensen, 1998).
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class probability estimators, especially for high-dimensional problems (where decision trees
typically excel, comparatively). We are especially interested in a comparison of bagged
PETs with traditional methods. Their performance is particularly impressive in our study.
However, it may just be that plain-old PETs still do not produce very good probability
estimates. If this is the case, moving to methods for smoothing more sophisticated than the
Laplace estimate may be worthwhile (Simonoff, 1998; Jelinek, 1997).

There are two possibilities that we have not yet tried that may improve the probability
estimates of the bagged PETs even further. Breiman (Breiman, 1998) has noted that the
estimates produced by bagged decision trees may be improved by using the 37% of the data
held out of each bootstrap sample to obtain better estimates at the leaf nodes (because
these data were not used for training). Also, more complex smoothing algorithms (such as
averaging a leaf’s estimates with those of its ancestors in the tree, with appropriate weights
(Jelinek, 1997)) may do significantly better than the simple Laplace correction.

Finally, since we began by listing comprehensibility as one of the attractive features of
decision trees, it is important to note that our strongest conclusion (bagged PETs work
very well) involves an opaque combination of multiple trees. One method for producing a
comprehensible model of a multiple-model classifier is to use it to label examples, and then
learn from these new data (Craven, 1996; Domingos, 1997). For PETs the procedure would
have to be modified slightly, since the learning task would be learning probabilities from
probabilities. Of course, even C4.4-style PETs may be less than comprehensible, given their

large size.
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