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1 IntrodutionDeision-tree learning programs have reeived a great deal of attention over the past �fteenyears in the �elds of mahine learning and KDD. Several fators ontribute to their popular-ity. Deision-tree learning programs are fast and e�etive (Lim, Loh, & Shih, 2000). Theywork remarkably well with no tweaking of parameters, whih has failitated their wide use inthe omparison of di�erent learning algorithms. Deision trees also work omparatively wellwith very large data sets (Provost & Kolluri, 1999), with large numbers of variables, andwith mixed-type data (ontinuous, nominal, Boolean, et.). These qualities result in partfrom the simple yet powerful divide-and-onquer algorithm underlying deision-tree learners,and in part from the high-quality software pakages that have been available for learningdeision trees (most notably, CART (Breiman, Friedman, Olshen, & Stone, 1984) and C4.5(Quinlan, 1993)).There is another reason why deision-tree learning programs are so popular. In manysituations blak-box models, or models where the reasons for deisions are hidden behindopaque mathematial formulae, are unaeptable to users. This may be true beause a systemis going to inorporate the models, and ertain managers have responsibility for the system'sbehavior (and therefore must understand its inner workings). Or inomprehensible modelsmay be unaeptable beause the model is built as a stage in a knowledge disovery proess,in whih the goal is to indue omprehensible models for human onsumption. Deision treesare easy for people to understand. Furthermore, they an be transformed easily into rulesets, whih are even more omprehensible (Quinlan, 1993; F�urnkranz, 1999).As they have been used in most researh and appliations, deision trees are ategoriallassi�ers. They are models that map instanes desribed by a vetor of independent vari-ables to one of a set of lasses. However, as desribed below, in many appliations ategoriallassi�ation is not suÆient; lass probabilities are needed. Beause of the attrative prop-erties of deision trees, probability estimation trees (PETs)|deision trees that estimatethe probability of lass membership|are seeing inreasing use in suh appliations. Unfor-tunately, deision trees have been observed to produe poor estimates of lass probabilities(Breiman, 1998, 2000; Pazzani, Merz, Murphy, Ali, Hume, & Brunk, 1994; Smyth, Gray, &Fayyad, 1995; Bradley, 1997; Provost, Fawett, & Kohavi, 1998). Several researhers haveproposed tehniques to improve the estimates, yet to our knowledge there has not been asystemati study of their eÆay. 1



In this paper, we present suh a study. We �rst disuss prior work using and improvingprobability estimation trees. We then explain that the deision tree representation is not(inherently) doomed to produe poor estimates, and that part of the problem is that mod-ern deision-tree indution algorithms are biased against building aurate PETs. We usethe results of this analysis and the suggestions of prior work to make a number of simplemodi�ations to the popular deision-tree learning program C4.5. We apply the �rst pairof modi�ations to some simple syntheti problems, demonstrating the improvement in theprobability estimates. We then report the results of a omprehensive experiment of a varietyof modi�ations applied to a wide variety of benhmark data sets. The results show onlu-sively that it indeed is possible to improve substantially the quality of probability estimationin deision trees.2 Prior workPETs reently have seen inreasing use by pratitioners and researhers, for example inspeeh reognition (Jelinek, 1997), as node models in Bayesian networks (Friedman & Gold-szmidt, 1996), in the reently introdued dependeny-network representation and its applia-tion to ollaborative �ltering and other areas (Hekerman, Chikering, Meek, Rounthwaite, &Kadie, 2000), in network diagnosis (Danyluk & Provost, 2000), and in ost-sensitive learningresearh (Domingos, 1999; Provost et al., 1998). As desribed above, deision-tree learninghas many attrative properties. Under what onditions would it be desirable or neessaryfor a learned deision tree to produe lass probability estimates?If mislassi�ation osts or the marginal (prior) lass distribution an not be spei�edpreisely when the lassi�er is built, it is impossible to speify the appropriate lassi�a-tion task. Instead of ategorial lassi�ations, models should estimate the probability ofmembership in the various lasses. Similarly, in some situations rankings are preferred toategorial lassi�ations. For example, a news-story �lter or a web-page reommender mayuse the probability that an instane is a member of the lass \interesting to user" to rankpreviously unseen instanes for presentation. Learning and lassifying in suh situations isdesribed in detail elsewhere (Provost & Fawett, 2000).How are probability estimates typially generated from deision trees? Reall that adeision tree partitions the data reursively at eah node. Eah leaf (terminal node) de�nes2



the subset of the data orresponding to the onjuntion of the onditions along the pathbak to the root. The goal of the deision-tree learning program is to make these subsetsbe less \impure", in terms of the mixture of lass labels, than the unpartitioned data set.For example, onsider an unpartitioned population with two equally represented lasses(maximally impure). A leaf node de�ning a subset of the population of whih 90% are onelass would be muh less impure, and may failitate aurate lassi�ation (only 10% errorif this subset were lassi�ed as the majority lass).The previous example illustrates how probabilities are typially generated from deisiontrees. If a leaf node de�nes a subset of 100 training instanes, 90 of whih are one lass (allit the \positive" lass), then in use, any instane that orresponds to this leaf is assigned aprobability of 0.9 (90/100) that it belongs to the positive lass.Now you might notie a potential problem with this method of probability estimation.What if a leaf omprises only 5 training instanes, all of whih are of the positive lass? Areyou willing to have your probability estimator give an estimate of 1.0 (5/5) that subsequentinstanes mathing the leaf's onditions also will be positive? Perhaps 5 instanes is notenough evidene for suh a strong statement? There are two potential diret solutions to thisproblem. One is that a statement of on�dene in the probability estimation aompany theestimate itself; then deision making ould take the on�dene into aount (Apte, Grossman,Pednault, Rosen, Tipu, & White, 1999). The seond potential solution is to \smooth" theprobability estimate, replaing it with a less extreme value. We only onsider the latter inthis paper, in order to keep the sope of the projet narrow and foused on deision treesthat give more aurate probability estimates.Smoothing of probability estimates from small samples is a well-studied statistial prob-lem (Simono�, 1998), and we believe that a thorough study of what are the best methods(and why) for PETs would be a useful ontribution to mahine-learning researh. In thispaper we fous on the method that has beome a de fato standard for pratitioners: theso-alled Laplae estimate or Laplae orretion. Assume there are p examples of the lassin question at a leaf, N total examples, and C total lasses. The frequeny-based estimatepresented above alulates the estimated probability as pN . The Laplae estimate alulatesthe estimated probability as p+1N+C . Thus, while the frequeny estimate yields a probabilityof 1.0 from the p = 5; N = 5 leaf, for a two-lass problem the Laplae estimate yields aprobability of 5+15+2 = 0:86. The Laplae orretion an be viewed as a form of Bayesian3



estimation of the expeted parameters of a multinomial distribution using a Dirihlet prior(Buntine, 1991). It e�etively inorporates a prior probability of 1C for eah lass|note thatwith zero examples the probability of eah lass is 1C . This may or may not be desirablefor a spei� problem; however, pratitioners have found the Laplae orretion worthwhile.To our knowledge, the Laplae orretion was introdued in mahine learning by Niblett(1987). Clark and Boswell (1991) inorporated it into the CN2 rule learner, and its use isnow widespread. For deision-tree learning the Laplae orretion has been used by ertainresearhers and pratitioners (Pazzani et al., 1994; Bradford, Kunz, Kohavi, Brunk, & Brod-ley, 1998; Provost et al., 1998; Bauer & Kohavi, 1999; Danyluk & Provost, 2000), but othersstill use frequeny-based estimates.To our knowledge, the most detailed treatment of the prodution of lass probabilityestimates from deision trees is reported by Smyth, Gray and Fayyad (Smyth et al., 1995).They do not onentrate on the smaller leaves, as we have in the disussion so far. Insteadthey suggest a problem with estimating probabilities from the larger leaves. Spei�ally,they note that every example from a partiular leaf will reeive the same probability esti-mate. They question whether the oarse granularity of probability estimates may lead toredued auray. To address this problem, they make a fundamental hange to the repre-sentation. Spei�ally, at eah leaf of the deision tree they plae a kernel-based probabilitydensity estimator (just for the subset of the population de�ned by the leaf). They show thatthis method produes substantially better probability estimates than standard deision-treeprograms (CART and C4.5).This approah seems well founded and quite promising, but from our perspetive it isproblemati. First of all, one of the primary advantages of the deision-tree representationis its simpliity and modularity. In partiular, beause omprehensibility is so important,deision trees often are preferable to single density estimators, even when the latter haveslightly better auray.1 The new model is a ompliated ombination of many densityestimators (and indeed Smyth et al. note that one way to see the method is that thedeision-tree learner is a feature seletor for density estimation). Equally important is adi�erent problem. This work does not address the question of whether there is a fundamentalproblem with using deision trees for probability estimation. If in fat there is, then showingthat the new method beats the probability estimates of CART and C4.5 is not partiularly1We have observed this in more than one real-world appliation of mahine learning tehniques.4



impressive. Therefore it is important to investigate whether standard deision trees an bemade better probability estimators. We note however that if they an, then the method ofSmyth et al. might be improved by grafting the density estimators onto the more auratePET.2Finally, we should note that simply produing a probability estimate may not be enoughfor a real-world appliation. In a reent appliation of data mining tehniques (inludingdeision trees) to estimate probabilities for disovering insurane risk, Apte et al. (1999)desribe in detail a variety of ompliations that also must be onsidered. For this paper,all we address is the prodution of aurate probability estimates.3 Representation versus indutionViewed as probability estimators, deision trees onstrut pieewise uniform approximationswithin regions de�ned by axis-parallel boundaries. Intuitively this may not seem as appro-priate as a numeri method that estimates lass probabilities as smoothly varying ontinuousoutputs. However, deision trees in priniple an be �ne PETs. To see this we �rst must sep-arate deision trees as a representation from the indution algorithm. Here we will onsiderthe former. In the next setion we will see that problems arise with the latter.First onsider nominal attributes. The deision tree represents the relevant ombinationsof features|relevant onditional probabilities. Any onditional probability distribution anbe represented by a PET.For ontinuous attributes, a suÆiently large PET an estimate any lass probabilityfuntion to arbitrary preision. Consider the simple univariate, two-lass problem depitedin Figure 1: eah lass is distributed normally about a di�erent mean. These overlappingprobability densities de�ne a ontinuous lass-membership probability funtion over the do-main of the variable (all it x). This may be just about the worse problem to whih to applya PET, beause pieewise-uniform representations are obviously a poor indutive bias, andmoreover beause the problem is rather easy for other sorts of density estimators. However,for this and for any suh problem a PET an estimate the probability of lass membershipto arbitrary preision. For this problem, eah split in the deision tree partitions the x-axis,2Or, of ourse, the new PET may improve probability estimates so muh that little an be gained bygrafting on the density estimators. 5
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Figure 1: The test problem: Overlapping Gaussians.and eah leaf is a segment of the x-axis. A PET would estimate the probability by lookingat the lass distribution for its segment (whih in the �gure an be seen by utting a vertialslie and looking at the relative heights of the urves of the two lasses in the slie). Thekey is to note that as the number of leaves inreases, the slies beome narrower, and theprobability estimates an beome more and more preise. In the limit, the deision treepredits lass probability perfetly.Of ourse, learning suh PETs is our ultimate interest. In the ase of Figure 1, othermethods would learn better using fewer examples. But when the dimensionality of theproblem is even moderately high, and little is known about the form of the underlyingdistribution, a pieewise-uniform approximation may well have lower bias and/or varianethan smoother estimators.4 Why PETs behave badlySo the question remains: why is it observed repeatedly that the deision trees produed bystandard algorithms do not yield good probability estimates?The answer is in the tree-building algorithm, not in the representation. For a historialperspetive, it is useful to take a higher-level view of the researh fous that (in part) drovemuh work on building deision trees. Deision trees have been evaluated, for the most part,6
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Figure 2: The orresponding lass probability funtion.by two riteria: lassi�ation auray and tree size (smaller is better). These have led to awide variety of heuristis that have been remarkably suessful at building small, auratedeision trees. However, these very heuristis redue the quality of the probability estimates!Why? Consider again our problem of univariate, overlapping Gaussians. What is thesmallest, auray-maximizing deision tree? It is the tree with a single split at x = 1. Thisseparates the lasses as well as any deision tree, and among the auray-maximizing trees ithas minimal size. So, a good deision-tree building algorithm should return this simple tree(or a lose approximation thereto). But how good are this deision tree's lass probabilityestimates? Not very good at all. All data points on one side of the split are assigned thesame probability, e.g., the proportion of the lass that fall on the orresponding side of thesplit.Above we say that this behavior (pathologial from the PET point of view) is due tothe tree-building algorithm, but we an be more spei�. Modern deision-tree buildingalgorithms �rst grow a (sometimes very) large tree, and then prune it bak. The pruningstage tries to �nd a small, high-auray tree. Various pruning strategies are used. One suhstrategy is redued-error pruning: remove sub-trees if they seem not to improve resultantauray on a validation set. In our example above, if the �rst split is orret, no subtreewill improve auray. We believe that the details of the growing phase are less ritial toobtaining good PETs than the hoie of pruning mehanism. In partiular, the ommonly7



used splitting riteria (e.g., information gain and Gini index) also appear reasonable whenthe goal is to obtain good probability estimates. This is reinfored by the observations ofBreiman et al. (1984) and Drummond and Holte (2000) that mislassi�ation osts aregenerally insensitive to the hoie of splitting riteria.5 Training well-behaved PETsOur question is whether we an build trees that yield better lass probability estimates. Theforegoing analysis suggests that pruning is the ulprit. Looking more losely, we see thatpruning removes two types of distintions made by the deision tree: (i) false distintions|those that were found simply beause of \over�tting" idiosynrasies of the training data set,and (ii) distintions that indeed generalize (e.g., entropy in fat is redued), and in fat willimprove lass probability estimation, but do not improve auray.5.1 C4.4To build better PETs we would like not to prune away distintions of the latter type (wewill return to the former later). The simplest strategy for keeping type-ii distintions issimply not to prune at all. We an see on our overlapping-Gaussians problem that thisstrategy indeed gives us the desired result. In partiular, we modi�ed C4.5 by turning o�pruning, turning o� \ollapsing" (a little-known pruning strategy that C4.5 performs evenwhen growing its \unpruned" tree), and alulating lass probabilities with the Laplaeorretion. We all this version C4.4.We hypothesized that C4.4 may beat C4.5 at probability estimation. Of ourse thiswent against our better intuition, established by years of reading mahine learning paperstouting the virtues of pruning. However, in the literature there are hints of support for suha hypothesis. For example, as mentioned above, Bradford et al. (Bradford et al., 1998) showthat ost-sensitive deision-tree pruning is no better than simply not pruning at all, as longas the Laplae orretion is used. One possible reason is that unpruned deision trees givevery good probability estimates.3Figure 2 shows the lass probability boundary of the overlapping Gaussians problem(from Figure 1).3If a model gives very good probability estimates, it inherently is ost sensitive (Provost & Fawett, 1998).8
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Figure 3: Comparing lass probability estimates.Figure 3 shows the performane of the PETs learned by C4.5 and C4.4 on the overlappingGaussians problem. This was generated from trees built with 100,000 examples. The lassprobability estimates given by C4.5 produe a pieewise-onstant funtion, as expeted. Notethat C4.5 indeed �nds a high-auray split, but the probability estimates (the horizontalsegments) do not trak the true lass probability boundary well at all. C4.4's PET traksthe lass probability boundary remarkably well.Of ourse, one may argue that the boundary still is rather rough,4 and that an estimatewith a better bias (e.g., a sigmoid funtion of the input) would perform better. As wementioned earlier, the univariate, overlapping-Gaussians problem is about the worst possibleappliation for a PET, in part beause it is easy to propose a better alternative. However,onsider the lass probability funtion shown in Figure 4. This will be more diÆult formost methods than the problem in Figure 3.Now, onsider the performane of C4.5 versus C4.4 on this problem. Note one again thatfor this probability funtion, the optimal deision tree also is a single ut, this time at a pointin the interval (-1,0). Therefore, the following should be viewed simply as a demonstrationof the potential power of PETs over deision trees.C4.5 with pruning was used to build a PET (using the Laplae orretion at the leaves),4Note that C4.5 uses a minimum desription length heuristi to redue spurious splitting on numeriattributes, and beause of this the leaves remain larger than they would without the heuristi.9



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-4 -3 -2 -1 0 1 2 3 4

c
l
a
s
s
 
0
 
p
r
o
b
a
b
i
l
i
t
y

x value

Class 0 Probability

Figure 4: A more omplex lass probability funtion.as was C4.4 (no pruning, no ollapsing, Laplae orretion). The lass probability borderslearned by C4.5 and by C4.4 are shown in Figure 5.As before, and as expeted, C4.5 plaes a single split very near to the point whereerror should be minimized. Of ourse, this gives poor probability estimates for almost allinstanes. C4.4, on the other hand, produes lass probability estimates that trak theatual lass probability border quite well. As more data are used to build the tree, the lassprobability estimates beome more preise. Figure 5 shows the result of training the PETs on10,000 training examples. Figure 6 shows the result of training the PETs on 100,000 trainingexamples. Notie that as the training sets get larger, both C4.5 and C4.4 do better at theirprimary task. C4.5's single split is loser to the point where auray is maximized. C4.4produes �ner-grained probability estimates that trak the atual border more preisely.5.2 So where is the rub?Of ourse, training PETs in pratie is not that simple. As we mentioned earlier, there aretwo types of distintions removed by pruning. In arguing for C4.4 we highlighted distintionsof type-ii, whih obviously should be retained for probability estimation. However, we ignoreddistintions of type-i: spurious distintions resulting from over�tting the training set. In theprevious setions C4.4 was applied to plenty of data, given the low dimensionality of the10
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Figure 5: Learned probability borders: 10,000 training examples.problem. What will happen when data is sparse? Will not C4.4 produe false distintionsthat will distort its probability estimates?It almost ertainly will. Do the bene�ts of C4.4 outweigh the drawbaks? Are thePETs produed by C4.4 better than those produed by C4.5? We evaluate this empiriallybelow. A further question is whether there is an e�etive middle ground. Pruning based onminimizing auray obviously is not the right thing to do. On the other hand, not pruningat all may be too drasti. It might be useful to prune with the spei� goal of preservingdistintions that are important for probability estimation.Redued-error pruning is not the only pruning strategy that has been used in buildingdeision trees. A strategy that seems better aligned with the goal of retaining distintionsthat are signi�ant from the perspetive of probability estimation is hi-square pruning.With hi-square pruning, leaves of the tree are ollapsed to their parent node if a hi-squaretest does not indiate that there is a signi�ant di�erene in the lass distributions before andafter the split. Several deision-tree learning algorithms have used variations of hi-squarepruning (Quinlan, 1986; Jensen & Shmill, 1997; Kass, 1980). Perhaps most notably, C4.5'spredeessor, ID3 (Quinlan, 1986) used hi-square \prepruning"; it stopped growing the treewhen a hi-square test did not show a signi�ant di�erene in the distributions.We hypothesized that an augmented C4.4, using hi-square pruning, would yield im-proved performane over C4.4. Suh a proedure would be parameterized by the p-level at11
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Figure 6: Learned probability borders: 100,000 training examples.whih pruning would our, and the question then would arise as to how to set the p-levelappropriately. However, given a suÆient amount of data, ross-validation ould be used todetermine empirially what p-level would be appropriate.5.3 Another alternative for building PETsIn the foregoing, we assumed that the goal was to improve the probability estimates resultingfrom a single tree. A di�erent strategy for using deision trees for probability estimationhas reeived attention reently. Multiple-model lassi�ers, whih learn multiple lassi�ationmodels and then ombine their preditions (e.g., having them vote on a lassi�ation), havereently been shown often to improve lassi�ation auray when ompared to using a singlemodel. For example, bagging (Breiman, 1996) has been shown to outperform single modeltehniques with surprising onsisteny. Reent results suggest that the improvements frombagging also apply to the use of deision trees for probability estimation (Provost et al., 1998;Bauer & Kohavi, 1999). We should note that averaging multiple deision trees to produeprobability estimates is not a novel produt of the reent interest in multiple models; Buntinestudied the tehnique ten years ago (Buntine, 1991). However, our experiments have led usto the onlusion that bagging and the Bayesian averaging studied by Buntine are in fatquite di�erent (Domingos, 1997). 12



6 Experiments and ResultsThe results presented above were obtained from simple syntheti data. We were interested inwhether the improved performane hypothesized for C4.4, and observed above, generalizedto data from real-world problems. We also were interested in verifying or refuting our otherhypothesized improvements, inluding hi-square pruning and bagging.6.1 Comparison metriFor this work it is neessary to evaluate and ompare di�erent models with respet to theirestimates of lass probabilities. In the standard mahine-learning evaluation paradigm, thetrue lass probability distributions are not known. Instead, a set of instanes is available,labeled with the true lass. Comparisons are based on estimates of performane from thesedata.The standard method, omparing undi�erentiated error rates, is obviously not appro-priate (Provost et al., 1998). One alternative is to use ROC analysis (Swets, 1988), whihompares visually the lassi�ers' performane aross the entire range of probabilities. Provostand Fawett (Provost & Fawett, 1997, 1998) desribe how preise, objetive omparisonsan be made with ROC analysis.However, for the purpose of this study, we want to evaluate the probabilities generallyrather than under spei� onditions or under ranges of onditions. Knowing nothing aboutthe task for whih they will be used, whih probabilities are generally better? The Wiloxon-Mann-Whitney non-parametri test statisti (the Wiloxon) (Hand, 1997) is appropriate forthis omparison. The Wiloxon measures, for a partiular lassi�er, the probability that arandomly hosen lass 0 ase will be assigned a higher lass 0 probability than a randomlyhosen lass 1 ase. Therefore higher Wiloxon sore indiates that the probabilities aregenerally better (there may be spei� onditions under whih the lassi�er with a lowerWiloxon sore is preferable), if alibration of the probabilities is ignored.5 Another metrifor omparing lassi�ers aross a wide range of onditions is the area under the ROC urve5An inherently good probability estimator an be skewed systematially, so that although the probabilitiesare not aurate, they still rank ases equivalently. This would be the ase, for example, if the probabilitieswere squared. Suh an estimator will reeive a high Wiloxon sore. A higher Wiloxon sore indiates that,with proper realibration, the probabilities of the estimator will be better. Probabilities an be realibratedempirially, for example as desribed by Soberhart et al. (2000).13



(AUC) (Bradley, 1997); AUC measures the quality of an estimator's lassi�ation perfor-mane, averaged aross all possible probability thresholds. Interestingly, it has been shownthat the AUC is equivalent to the Wiloxon statisti (Hanley & MNeil, 1982). (It alsois equivalent to the Gini oeÆient (Hand, 1997).) Therefore, for this work we will reportthe AUC when omparing lass probability estimators. (Hand (1997) provides a thoroughtreatment of the omparison of lass probability estimates both when the true probabilitydistribution is known and when it is unknown.)We are interested in whether, by making the modi�ations we make, the probabilitiesgenerally improve. We make no laims as to whether one algorithm is \better" than anotherfor the problems from whih these data were drawn. The AUC metri(s) judge the relativequality of the probabilities averaged over all possible output thresholds. It may be the asethat for a partiular set of onditions under whih the PETs will be used, i.e., where apartiular output threshold is alled for, a PET with a lower AUC sore in fat is desirable.6.2 ResultsWe used the following 25 databases from the UCI repository (Blake &Merz, 2000): audiology,breast aner (Ljubljana), hess (king-rook vs. king-pawn), redit (Australian), diabetes,ehoardiogram, glass, heart disease (Cleveland), hepatitis, hypothyroid, iris, LED, liverdisorders, lung aner, lymphography, mushroom, primary tumor, promoters, solar are,sonar, soybean (small), splie juntions, voting reords, wine, and zoology. Eah databasewas randomly divided 20 times into 2/3 of the examples for training and 1/3 for testing. Theresults presented are averages of these 20 runs. For data sets with more than two lasses weomputed the expeted AUC, whih is the weighted average of the AUCs obtained takingeah lass as the referene lass in turn (i.e., making it lass 0 and all other lasses lass1). The weight of a lass's AUC is the lass's frequeny in the data. The results obtainedare shown in Table 1, and summarized in Table 2. \Sign test" is the signi�ane level ofa binomial sign test on the number of wins (with a tie ounting as half a win; the normalapproximation to the binomial was used). \Wiloxon test" is the signi�ane level of aWiloxon signed-ranks test. Our observations are summarized below.
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Table 1: Experimental results: Expeted AUC (area under the ROC urve, as perentageof maximum possible) and its standard deviation for C4.5, C4.5 with the Laplae orretion(C4.5-L), C4.4, C4.4 with hi-square pruning with a 5% signi�ane threshold (C4.4-X),bagged C4.5 (C4.5-B) and bagged C4.4 (C4.4-B).Database C4.5 C4.5-L C4.4 C4.4-X C4.5-B C4.4-BAudiology 89.4�0.8 91.1�0.9 91.0�0.8 57.3�2.6 94.7�0.5 95.2�0.6Breast 60.9�1.7 63.1�1.4 60.6�1.2 62.8�1.4 68.9�1.3 67.4�1.3Chess 99.7�0.1 99.7�0.0 99.9�0.0 99.9�0.0 99.9�0.0 99.9�0.0Credit 87.9�0.7 89.9�0.5 87.3�0.4 90.7�0.5 92.6�0.5 92.1�0.4Diabetes 74.8�0.9 76.9�0.8 77.3�0.7 78.7�0.7 83.4�0.5 83.2�0.5Ehoardio 54.1�1.3 55.9�1.6 57.7�1.1 58.4�1.1 67.4�1.5 67.8�1.6Glass 79.2�0.9 81.3�1.0 81.3�0.8 78.8�1.2 88.9�0.8 88.7�0.8Heart 76.0�1.2 81.1�1.1 83.6�0.8 81.3�0.9 88.4�0.6 89.1�0.6Hepatitis 64.3�2.5 68.4�2.2 76.7�1.5 71.7�1.9 83.2�1.4 84.0�1.4Iris 96.0�0.6 96.9�0.3 97.3�0.4 97.2�0.4 99.0�0.2 99.2�0.2LED 81.4�0.9 81.9�1.0 84.3�1.0 65.3�1.6 90.6�0.8 90.6�0.9Liver 62.6�1.2 63.7�1.1 64.8�1.5 62.3�1.4 74.0�0.7 73.9�0.7Lung 54.6�3.6 51.1�3.5 50.5�3.3 50.0�0.0 65.3�3.0 62.0�3.4Lympho 79.7�1.4 83.0�1.5 84.7�0.8 82.8�1.2 91.2�0.8 91.3�0.8Mushroom 100.0�0.0 100.0�0.0 100.0�0.0 100.0�0.0 100.0�0.0 100.0�0.0Promoters 78.4�1.6 82.9�1.5 81.2�1.5 82.4�1.4 93.0�1.2 93.8�1.0Solar 87.5�0.6 88.9�0.5 88.6�0.5 87.0�0.4 89.8�0.5 89.7�0.5Sonar 70.5�1.3 76.2�1.4 76.5�1.4 75.2�1.7 85.2�1.4 84.5�1.3Soybean 98.2�0.5 97.8�0.7 97.8�0.7 82.3�2.1 100.0�0.0 100.0�0.0Splie 96.4�0.2 97.7�0.1 97.8�0.1 98.2�0.1 98.7�0.1 98.9�0.1Thyroid 94.4�0.9 96.2�0.5 97.0�0.4 97.5�0.4 97.5�0.4 98.6�0.3Tumor 68.8�0.7 71.7�0.7 68.5�0.8 63.1�1.0 77.0�0.7 76.0�0.6Voting 97.1�0.4 98.2�0.2 94.6�0.7 97.9�0.2 98.6�0.2 98.9�0.1Wine 94.3�0.6 94.5�0.7 94.4�0.8 94.3�0.8 99.4�0.1 99.4�0.1Zoology 96.4�0.5 98.0�0.4 98.4�0.4 93.5�1.4 99.4�0.3 99.6�0.1
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Table 2: Summary of experimental results: AUC omparisons.Systems Wins-Ties-Losses Avg. di�. (%) Sign test Wiloxon testC4.4 vs. C4.5 18 - 1 - 6 2.0 1.0 0.3C4.4 vs. C4.5-L 13 - 3 - 9 0.2 30.0 30.0C4.5-L vs. C4.5 21 - 2 - 2 1.7 0.1 0.1C4.4-X vs. C4.4 8 - 2 - 15 �3.3 5.0 3.0C4.4-X vs. C4.5-L 9 - 1 - 15 �3.1 8.0 6.0C4.5-B vs. C4.5 24 - 1 - 0 7.3 0.1 0.1C4.4-B vs. C4.4 23 - 2 - 0 5.3 0.1 0.1C4.4-B vs. C4.5-B 11 - 5 - 9 �0.1 45.0 50.06.3 Pruning and Laplae orretionC4.4 is a very marked improvement over C4.5. Most of this improvement is due to the useof the Laplae orretion, whih, despite its simpliity, is extremely e�etive in improvingthe quality of a tree's probability estimates. Our results in this respet agree with, but arestronger than, the results of Bauer and Kohavi (Bauer & Kohavi, 1999), who report that theuse of an \m-estimate Laplae orretion" (Kohavi, Beker, & Sommer�eld, 1997) reduesthe mean-squared error (MSE) of PET probability estimates from 10.7% to 10.0%, averagedaross fourteen data sets. The present results, using AUC, give a perspetive omplementaryto those obtained with MSE. In addition, the uniformity of suess of the simple Laplaeorretion (e.g., 21-2-2 for C4.5) is remarkable.Not pruning outperforms pruning in more databases than the reverse, but the di�ereneis not signi�ant. We hypothesize that these inonlusive results are due to two ompetinge�ets: when pruning is disabled, more leaves are produed, whih leads to a �ner approx-imation to the true lass probability funtion, but there are fewer data within eah leaf,whih inreases the variane in the approximation. Whih of these two e�ets will prevailmay depend on the size of the database. The limited range of data-set sizes used in theexperiments and the presene of many onfounding fators prelude �nding a lear patternin our results. We hypothesize that as we move to larger and larger data sets, as seems tobe the trend in KDD, the advantage of C4.4 will beome stronger.16



6.4 Chi-square pruningHowever, as noted above, simply not pruning is not intuitively satisfying as the best methodfor training PETs. It seems that it would be more advantageous to modify the pruning toaddress the prodution of probability estimates diretly.We ompared C4.4 with and without hi-square pruning, using the same data sets andmethodology as above. The results were quite surprising. Chi-square pruning generally didnot improve C4.4; more often, it degraded the probability estimates. This result holds arossthe entire spetrum of pruning thresholds (hi-square p values); we tried thresholds of 0.1%,1%, 5%, 10% and 20%, with and without the Laplae orretion (only the results for 5%with the Laplae orretion are shown in Table 1). As with the omparison with C4.5, webelieve these results may be due to the small size of the UCI data sets. C4.4 with hi-squaretends to prune a lot, even with a high signi�ane threshold like 20%, beause after the �rstfew levels there is not enough data for it to onlude with any reasonable on�dene thatparent and hild distributions are signi�antly di�erent.We also ompared C4.4 with a version of C4.4 that stops growing when the leaves beometoo small. Spei�ally, the C4.5 pakage provides a parameter m suh that C4.5 will notsplit a node unless at least two of its hildren ontain more than m (default 2) examples.A simple method for pruning is to inrease m. Perhaps not surprisingly in light of thehi-square results, all values tried also underperformed C4.4.6.5 BaggingBagging also substantially improves the quality of probability estimates in almost all do-mains, and the improvements are often very large. This also agrees with the results of Bauerand Kohavi using mean-squared error (MSE) (Bauer & Kohavi, 1999). They show a de-rease in the average MSE over fourteen data sets from 10.7% for regular PETs to 7.5% forbagged PETs. The present results also show, over the twenty-�ve data sets, not a singlease where bagging degrades the probability estimates, as measured by AUC. This aordswith work done by Provost, Fawett and Kohavi (1998), who present the ROC urves of sixalgorithms evaluated on ten data sets. We observe that the ROC urves of bagged PETs(\bagged MC4") have larger areas in their graphs. In fat, in all but one ase, the baggedPETs ompletely dominate the urves of individual Laplae-orreted PETs (\MC4").It is noteworthy that the improvements in AUC with bagging are on average muh larger17



than the improvements in auray (7.3% vs. 2.8% for C4.5), indiating that bagging maybe even more e�etive for improving probability estimators than for improving lassi�ers.The improvements in AUC are larger on average for C4.5 than for C4.4, presumably beausethere is more room for improvement in C4.5. One bagging is used, whether or not pruningand the Laplae orretion are used makes little di�erene. Despite its e�etiveness, bagginghas the disadvantage that the omprehensibility of the single tree is lost, and it also arriesgreater omputational ost. When high-quality estimation is the sole onern, bagging shouldlearly be used. When omprehensibility and/or omputational ost are also important, asingle C4.4 tree may be preferable.7 Conlusions and disussionThe poor performane of PETs built by onventional deision-tree learning programs anbe explained by a ombination of two fators. First, as shown by the demonstrations onsyntheti data, the heuristis used to build small aurate deision trees are biased stronglyagainst building aurate PETs. Perhaps ounter-intuitively (at �rst), larger trees an workbetter for probability estimation. We are disappointed that our results do not support thehypothesis that more aurate PETs an be built by using a pruning strategy designedspei�ally for improving probability estimation. We hope that future studies an explainthis, perhaps by looking at larger data sets.The seond fator explaining the poor performane of onventional PETs is that, whena purely frequeny-based (unsmoothed) estimate is used, small leaves give poor probabilityestimates. This is the probability-estimation ounterpart of the well-known \small disjuntsproblem": in indued disjuntive lass desriptions, small disjunts are more error-prone(Holte, Aker, & Porter, 1989). While this is not surprising statistially, the uniformityand magnitude of the improvement given by the simple, easy-to-use, Laplae orretionnevertheless is remarkable.These results have interesting onnetions to other reent work studying the relationshipof model omplexity and preditive performane. Oates and Jensen (1998) show that on UCIdatabases as the number of examples inreases the auray of deision trees soon stabilizes,but deision-tree omplexity (number of nodes) ontinues to inrease. Our results presentan important aveat: although larger trees may not be more aurate, that does not mean18



that they are not better models. As shown by the results on the syntheti data, larger treesoften model the problem muh better even though they have equivalent auray.6 Apte etal. (1999) have also noted reently that when building rule-based and deision-tree-basedprobability estimators, the quality of the probability estimates ontinues to inrease as moreand more data are used for training|far beyond the points observed by Oates and Jensen,and in fat exhausting their 1.4 million data points without reahing a plateau.Another signi�ant observation is that bagged PETs produe exellent probability esti-mates. As with auray, bagging substantially improves PETs. Moreover, over the twenty-�ve data sets we tested, bagging never degrades the probability estimates. Furthermore,bagging improves probability estimates (as measured by AUC) even more than it improveslassi�ation auray. The extent of this is quite remarkable: in 9 of 25 domains bagginggives an absolute AUC improvement of more than 0.1. We strongly eho the onlusion ofBauer and Kohavi (Bauer & Kohavi, 1999) that for problems where probability estimationis required, one should seriously onsider using bagged PETs|espeially in ill-de�ned orhigh-dimensional domains.Bagged PETs also have impliations for other areas of data mining and mahine learningresearh. For example, the MetaCost algorithm (Domingos, 1999) uses a bagged PET as asubproedure for ost-sensitive learning. The quality of the probability estimates obtained inthis way was an open question; our results validate the proedure used. As another example,the smoothing obtained by bagging the estimates, along with the inrease in their auray,will help with probabilisti ranking (e.g., of interesting douments), for whih the oarseestimates of small trees are partiularly problemati.8 Limitations, extensions and future workThe purpose of this work was to study how the probability estimates obtained by deisiontrees ould be improved. We believe that the results we have presented have given usa substantially better understanding. However, what we have not yet studied is how thesePETs ompare with other methods for estimating probabilities. We hypothesize that as longas there are many examples, PETs an ompete with more traditional methods for building6This does not ontradit the results of Oates and Jensen, who show that onventional deision-treeinduers build very large trees even from random data (Oates & Jensen, 1998).19



lass probability estimators, espeially for high-dimensional problems (where deision treestypially exel, omparatively). We are espeially interested in a omparison of baggedPETs with traditional methods. Their performane is partiularly impressive in our study.However, it may just be that plain-old PETs still do not produe very good probabilityestimates. If this is the ase, moving to methods for smoothing more sophistiated than theLaplae estimate may be worthwhile (Simono�, 1998; Jelinek, 1997).There are two possibilities that we have not yet tried that may improve the probabilityestimates of the bagged PETs even further. Breiman (Breiman, 1998) has noted that theestimates produed by bagged deision trees may be improved by using the 37% of the dataheld out of eah bootstrap sample to obtain better estimates at the leaf nodes (beausethese data were not used for training). Also, more omplex smoothing algorithms (suh asaveraging a leaf's estimates with those of its anestors in the tree, with appropriate weights(Jelinek, 1997)) may do signi�antly better than the simple Laplae orretion.Finally, sine we began by listing omprehensibility as one of the attrative features ofdeision trees, it is important to note that our strongest onlusion (bagged PETs workvery well) involves an opaque ombination of multiple trees. One method for produing aomprehensible model of a multiple-model lassi�er is to use it to label examples, and thenlearn from these new data (Craven, 1996; Domingos, 1997). For PETs the proedure wouldhave to be modi�ed slightly, sine the learning task would be learning probabilities fromprobabilities. Of ourse, even C4.4-style PETs may be less than omprehensible, given theirlarge size.ReferenesApte, C., Grossman, E., Pednault, E., Rosen, B., Tipu, F., & White, B. (1999). Proba-bilisti estimation-based data mining for disovering insurane risks.. IEEE IntelligentSystems, 14, 49{58.Bauer, E., & Kohavi, R. (1999). An empirial omparison of voting lassi�ation algorithms:Bagging, boosting and variants. Mahine Learning, 36, 105{142.Blake, C., & Merz, C. J. (2000). UCI repository of mahine learning databases.Mahine-readable data repository, Department of Information and Computer Siene,20
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