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tober 3, 2000Abstra
t:De
ision trees are one of the most e�e
tive and widely used 
lassi�
ationmethods. However, many appli
ations require 
lass probability estimates, andprobability estimation trees (PETs) have the same attra
tive features as
lassi�
ation trees (e.g., 
omprehensibility, a

ura
y and eÆ
ien
y in highdimensions and on large data sets). Unfortunately, de
ision trees have beenfound to provide poor probability estimates. Several te
hniques have beenproposed to build more a

urate PETs, but, to our knowledge, there has notbeen a systemati
 experimental analysis of whi
h te
hniques a
tually improvethe probability estimates, and by how mu
h. In this paper we �rst dis
uss whythe de
ision-tree representation is not intrinsi
ally inadequate for probabilityestimation. Ina

urate probabilities are partially the result of de
ision-treeindu
tion algorithms that fo
us on maximizing 
lassi�
ation a

ura
y andminimizing tree size (for example via redu
ed-error pruning). Larger trees 
anbe better for probability estimation, even if the extra size is super
uous fora

ura
y maximization. We then present the results of a 
omprehensive set ofexperiments, testing a variety of di�erent methods for improving PETs. Theresults show, somewhat surprisingly, that alternative pruning methods do notimprove the probabilities. In 
ontrast, the experiments show that using asimple, 
ommon smoothing method|the Lapla
e 
orre
tion|uniformlyimproves probability estimates. In addition, bagging substantially improvesprobability estimates, and is even more e�e
tive for this purpose than forimproving a

ura
y. We 
on
lude that PETs, with these simple modi�
ations,should be 
onsidered when 
lass probability estimates are required.
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1 Introdu
tionDe
ision-tree learning programs have re
eived a great deal of attention over the past �fteenyears in the �elds of ma
hine learning and KDD. Several fa
tors 
ontribute to their popular-ity. De
ision-tree learning programs are fast and e�e
tive (Lim, Loh, & Shih, 2000). Theywork remarkably well with no tweaking of parameters, whi
h has fa
ilitated their wide use inthe 
omparison of di�erent learning algorithms. De
ision trees also work 
omparatively wellwith very large data sets (Provost & Kolluri, 1999), with large numbers of variables, andwith mixed-type data (
ontinuous, nominal, Boolean, et
.). These qualities result in partfrom the simple yet powerful divide-and-
onquer algorithm underlying de
ision-tree learners,and in part from the high-quality software pa
kages that have been available for learningde
ision trees (most notably, CART (Breiman, Friedman, Olshen, & Stone, 1984) and C4.5(Quinlan, 1993)).There is another reason why de
ision-tree learning programs are so popular. In manysituations bla
k-box models, or models where the reasons for de
isions are hidden behindopaque mathemati
al formulae, are una

eptable to users. This may be true be
ause a systemis going to in
orporate the models, and 
ertain managers have responsibility for the system'sbehavior (and therefore must understand its inner workings). Or in
omprehensible modelsmay be una

eptable be
ause the model is built as a stage in a knowledge dis
overy pro
ess,in whi
h the goal is to indu
e 
omprehensible models for human 
onsumption. De
ision treesare easy for people to understand. Furthermore, they 
an be transformed easily into rulesets, whi
h are even more 
omprehensible (Quinlan, 1993; F�urnkranz, 1999).As they have been used in most resear
h and appli
ations, de
ision trees are 
ategori
al
lassi�ers. They are models that map instan
es des
ribed by a ve
tor of independent vari-ables to one of a set of 
lasses. However, as des
ribed below, in many appli
ations 
ategori
al
lassi�
ation is not suÆ
ient; 
lass probabilities are needed. Be
ause of the attra
tive prop-erties of de
ision trees, probability estimation trees (PETs)|de
ision trees that estimatethe probability of 
lass membership|are seeing in
reasing use in su
h appli
ations. Unfor-tunately, de
ision trees have been observed to produ
e poor estimates of 
lass probabilities(Breiman, 1998, 2000; Pazzani, Merz, Murphy, Ali, Hume, & Brunk, 1994; Smyth, Gray, &Fayyad, 1995; Bradley, 1997; Provost, Faw
ett, & Kohavi, 1998). Several resear
hers haveproposed te
hniques to improve the estimates, yet to our knowledge there has not been asystemati
 study of their eÆ
a
y. 1



In this paper, we present su
h a study. We �rst dis
uss prior work using and improvingprobability estimation trees. We then explain that the de
ision tree representation is not(inherently) doomed to produ
e poor estimates, and that part of the problem is that mod-ern de
ision-tree indu
tion algorithms are biased against building a

urate PETs. We usethe results of this analysis and the suggestions of prior work to make a number of simplemodi�
ations to the popular de
ision-tree learning program C4.5. We apply the �rst pairof modi�
ations to some simple syntheti
 problems, demonstrating the improvement in theprobability estimates. We then report the results of a 
omprehensive experiment of a varietyof modi�
ations applied to a wide variety of ben
hmark data sets. The results show 
on
lu-sively that it indeed is possible to improve substantially the quality of probability estimationin de
ision trees.2 Prior workPETs re
ently have seen in
reasing use by pra
titioners and resear
hers, for example inspee
h re
ognition (Jelinek, 1997), as node models in Bayesian networks (Friedman & Gold-szmidt, 1996), in the re
ently introdu
ed dependen
y-network representation and its appli
a-tion to 
ollaborative �ltering and other areas (He
kerman, Chi
kering, Meek, Rounthwaite, &Kadie, 2000), in network diagnosis (Danyluk & Provost, 2000), and in 
ost-sensitive learningresear
h (Domingos, 1999; Provost et al., 1998). As des
ribed above, de
ision-tree learninghas many attra
tive properties. Under what 
onditions would it be desirable or ne
essaryfor a learned de
ision tree to produ
e 
lass probability estimates?If mis
lassi�
ation 
osts or the marginal (prior) 
lass distribution 
an not be spe
i�edpre
isely when the 
lassi�er is built, it is impossible to spe
ify the appropriate 
lassi�
a-tion task. Instead of 
ategori
al 
lassi�
ations, models should estimate the probability ofmembership in the various 
lasses. Similarly, in some situations rankings are preferred to
ategori
al 
lassi�
ations. For example, a news-story �lter or a web-page re
ommender mayuse the probability that an instan
e is a member of the 
lass \interesting to user" to rankpreviously unseen instan
es for presentation. Learning and 
lassifying in su
h situations isdes
ribed in detail elsewhere (Provost & Faw
ett, 2000).How are probability estimates typi
ally generated from de
ision trees? Re
all that ade
ision tree partitions the data re
ursively at ea
h node. Ea
h leaf (terminal node) de�nes2



the subset of the data 
orresponding to the 
onjun
tion of the 
onditions along the pathba
k to the root. The goal of the de
ision-tree learning program is to make these subsetsbe less \impure", in terms of the mixture of 
lass labels, than the unpartitioned data set.For example, 
onsider an unpartitioned population with two equally represented 
lasses(maximally impure). A leaf node de�ning a subset of the population of whi
h 90% are one
lass would be mu
h less impure, and may fa
ilitate a

urate 
lassi�
ation (only 10% errorif this subset were 
lassi�ed as the majority 
lass).The previous example illustrates how probabilities are typi
ally generated from de
isiontrees. If a leaf node de�nes a subset of 100 training instan
es, 90 of whi
h are one 
lass (
allit the \positive" 
lass), then in use, any instan
e that 
orresponds to this leaf is assigned aprobability of 0.9 (90/100) that it belongs to the positive 
lass.Now you might noti
e a potential problem with this method of probability estimation.What if a leaf 
omprises only 5 training instan
es, all of whi
h are of the positive 
lass? Areyou willing to have your probability estimator give an estimate of 1.0 (5/5) that subsequentinstan
es mat
hing the leaf's 
onditions also will be positive? Perhaps 5 instan
es is notenough eviden
e for su
h a strong statement? There are two potential dire
t solutions to thisproblem. One is that a statement of 
on�den
e in the probability estimation a

ompany theestimate itself; then de
ision making 
ould take the 
on�den
e into a

ount (Apte, Grossman,Pednault, Rosen, Tipu, & White, 1999). The se
ond potential solution is to \smooth" theprobability estimate, repla
ing it with a less extreme value. We only 
onsider the latter inthis paper, in order to keep the s
ope of the proje
t narrow and fo
used on de
ision treesthat give more a

urate probability estimates.Smoothing of probability estimates from small samples is a well-studied statisti
al prob-lem (Simono�, 1998), and we believe that a thorough study of what are the best methods(and why) for PETs would be a useful 
ontribution to ma
hine-learning resear
h. In thispaper we fo
us on the method that has be
ome a de fa
to standard for pra
titioners: theso-
alled Lapla
e estimate or Lapla
e 
orre
tion. Assume there are p examples of the 
lassin question at a leaf, N total examples, and C total 
lasses. The frequen
y-based estimatepresented above 
al
ulates the estimated probability as pN . The Lapla
e estimate 
al
ulatesthe estimated probability as p+1N+C . Thus, while the frequen
y estimate yields a probabilityof 1.0 from the p = 5; N = 5 leaf, for a two-
lass problem the Lapla
e estimate yields aprobability of 5+15+2 = 0:86. The Lapla
e 
orre
tion 
an be viewed as a form of Bayesian3



estimation of the expe
ted parameters of a multinomial distribution using a Diri
hlet prior(Buntine, 1991). It e�e
tively in
orporates a prior probability of 1C for ea
h 
lass|note thatwith zero examples the probability of ea
h 
lass is 1C . This may or may not be desirablefor a spe
i�
 problem; however, pra
titioners have found the Lapla
e 
orre
tion worthwhile.To our knowledge, the Lapla
e 
orre
tion was introdu
ed in ma
hine learning by Niblett(1987). Clark and Boswell (1991) in
orporated it into the CN2 rule learner, and its use isnow widespread. For de
ision-tree learning the Lapla
e 
orre
tion has been used by 
ertainresear
hers and pra
titioners (Pazzani et al., 1994; Bradford, Kunz, Kohavi, Brunk, & Brod-ley, 1998; Provost et al., 1998; Bauer & Kohavi, 1999; Danyluk & Provost, 2000), but othersstill use frequen
y-based estimates.To our knowledge, the most detailed treatment of the produ
tion of 
lass probabilityestimates from de
ision trees is reported by Smyth, Gray and Fayyad (Smyth et al., 1995).They do not 
on
entrate on the smaller leaves, as we have in the dis
ussion so far. Insteadthey suggest a problem with estimating probabilities from the larger leaves. Spe
i�
ally,they note that every example from a parti
ular leaf will re
eive the same probability esti-mate. They question whether the 
oarse granularity of probability estimates may lead toredu
ed a

ura
y. To address this problem, they make a fundamental 
hange to the repre-sentation. Spe
i�
ally, at ea
h leaf of the de
ision tree they pla
e a kernel-based probabilitydensity estimator (just for the subset of the population de�ned by the leaf). They show thatthis method produ
es substantially better probability estimates than standard de
ision-treeprograms (CART and C4.5).This approa
h seems well founded and quite promising, but from our perspe
tive it isproblemati
. First of all, one of the primary advantages of the de
ision-tree representationis its simpli
ity and modularity. In parti
ular, be
ause 
omprehensibility is so important,de
ision trees often are preferable to single density estimators, even when the latter haveslightly better a

ura
y.1 The new model is a 
ompli
ated 
ombination of many densityestimators (and indeed Smyth et al. note that one way to see the method is that thede
ision-tree learner is a feature sele
tor for density estimation). Equally important is adi�erent problem. This work does not address the question of whether there is a fundamentalproblem with using de
ision trees for probability estimation. If in fa
t there is, then showingthat the new method beats the probability estimates of CART and C4.5 is not parti
ularly1We have observed this in more than one real-world appli
ation of ma
hine learning te
hniques.4



impressive. Therefore it is important to investigate whether standard de
ision trees 
an bemade better probability estimators. We note however that if they 
an, then the method ofSmyth et al. might be improved by grafting the density estimators onto the more a

uratePET.2Finally, we should note that simply produ
ing a probability estimate may not be enoughfor a real-world appli
ation. In a re
ent appli
ation of data mining te
hniques (in
ludingde
ision trees) to estimate probabilities for dis
overing insuran
e risk, Apte et al. (1999)des
ribe in detail a variety of 
ompli
ations that also must be 
onsidered. For this paper,all we address is the produ
tion of a

urate probability estimates.3 Representation versus indu
tionViewed as probability estimators, de
ision trees 
onstru
t pie
ewise uniform approximationswithin regions de�ned by axis-parallel boundaries. Intuitively this may not seem as appro-priate as a numeri
 method that estimates 
lass probabilities as smoothly varying 
ontinuousoutputs. However, de
ision trees in prin
iple 
an be �ne PETs. To see this we �rst must sep-arate de
ision trees as a representation from the indu
tion algorithm. Here we will 
onsiderthe former. In the next se
tion we will see that problems arise with the latter.First 
onsider nominal attributes. The de
ision tree represents the relevant 
ombinationsof features|relevant 
onditional probabilities. Any 
onditional probability distribution 
anbe represented by a PET.For 
ontinuous attributes, a suÆ
iently large PET 
an estimate any 
lass probabilityfun
tion to arbitrary pre
ision. Consider the simple univariate, two-
lass problem depi
tedin Figure 1: ea
h 
lass is distributed normally about a di�erent mean. These overlappingprobability densities de�ne a 
ontinuous 
lass-membership probability fun
tion over the do-main of the variable (
all it x). This may be just about the worse problem to whi
h to applya PET, be
ause pie
ewise-uniform representations are obviously a poor indu
tive bias, andmoreover be
ause the problem is rather easy for other sorts of density estimators. However,for this and for any su
h problem a PET 
an estimate the probability of 
lass membershipto arbitrary pre
ision. For this problem, ea
h split in the de
ision tree partitions the x-axis,2Or, of 
ourse, the new PET may improve probability estimates so mu
h that little 
an be gained bygrafting on the density estimators. 5
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Figure 1: The test problem: Overlapping Gaussians.and ea
h leaf is a segment of the x-axis. A PET would estimate the probability by lookingat the 
lass distribution for its segment (whi
h in the �gure 
an be seen by 
utting a verti
alsli
e and looking at the relative heights of the 
urves of the two 
lasses in the sli
e). Thekey is to note that as the number of leaves in
reases, the sli
es be
ome narrower, and theprobability estimates 
an be
ome more and more pre
ise. In the limit, the de
ision treepredi
ts 
lass probability perfe
tly.Of 
ourse, learning su
h PETs is our ultimate interest. In the 
ase of Figure 1, othermethods would learn better using fewer examples. But when the dimensionality of theproblem is even moderately high, and little is known about the form of the underlyingdistribution, a pie
ewise-uniform approximation may well have lower bias and/or varian
ethan smoother estimators.4 Why PETs behave badlySo the question remains: why is it observed repeatedly that the de
ision trees produ
ed bystandard algorithms do not yield good probability estimates?The answer is in the tree-building algorithm, not in the representation. For a histori
alperspe
tive, it is useful to take a higher-level view of the resear
h fo
us that (in part) drovemu
h work on building de
ision trees. De
ision trees have been evaluated, for the most part,6
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Figure 2: The 
orresponding 
lass probability fun
tion.by two 
riteria: 
lassi�
ation a

ura
y and tree size (smaller is better). These have led to awide variety of heuristi
s that have been remarkably su

essful at building small, a

uratede
ision trees. However, these very heuristi
s redu
e the quality of the probability estimates!Why? Consider again our problem of univariate, overlapping Gaussians. What is thesmallest, a

ura
y-maximizing de
ision tree? It is the tree with a single split at x = 1. Thisseparates the 
lasses as well as any de
ision tree, and among the a

ura
y-maximizing trees ithas minimal size. So, a good de
ision-tree building algorithm should return this simple tree(or a 
lose approximation thereto). But how good are this de
ision tree's 
lass probabilityestimates? Not very good at all. All data points on one side of the split are assigned thesame probability, e.g., the proportion of the 
lass that fall on the 
orresponding side of thesplit.Above we say that this behavior (pathologi
al from the PET point of view) is due tothe tree-building algorithm, but we 
an be more spe
i�
. Modern de
ision-tree buildingalgorithms �rst grow a (sometimes very) large tree, and then prune it ba
k. The pruningstage tries to �nd a small, high-a

ura
y tree. Various pruning strategies are used. One su
hstrategy is redu
ed-error pruning: remove sub-trees if they seem not to improve resultanta

ura
y on a validation set. In our example above, if the �rst split is 
orre
t, no subtreewill improve a

ura
y. We believe that the details of the growing phase are less 
riti
al toobtaining good PETs than the 
hoi
e of pruning me
hanism. In parti
ular, the 
ommonly7



used splitting 
riteria (e.g., information gain and Gini index) also appear reasonable whenthe goal is to obtain good probability estimates. This is reinfor
ed by the observations ofBreiman et al. (1984) and Drummond and Holte (2000) that mis
lassi�
ation 
osts aregenerally insensitive to the 
hoi
e of splitting 
riteria.5 Training well-behaved PETsOur question is whether we 
an build trees that yield better 
lass probability estimates. Theforegoing analysis suggests that pruning is the 
ulprit. Looking more 
losely, we see thatpruning removes two types of distin
tions made by the de
ision tree: (i) false distin
tions|those that were found simply be
ause of \over�tting" idiosyn
rasies of the training data set,and (ii) distin
tions that indeed generalize (e.g., entropy in fa
t is redu
ed), and in fa
t willimprove 
lass probability estimation, but do not improve a

ura
y.5.1 C4.4To build better PETs we would like not to prune away distin
tions of the latter type (wewill return to the former later). The simplest strategy for keeping type-ii distin
tions issimply not to prune at all. We 
an see on our overlapping-Gaussians problem that thisstrategy indeed gives us the desired result. In parti
ular, we modi�ed C4.5 by turning o�pruning, turning o� \
ollapsing" (a little-known pruning strategy that C4.5 performs evenwhen growing its \unpruned" tree), and 
al
ulating 
lass probabilities with the Lapla
e
orre
tion. We 
all this version C4.4.We hypothesized that C4.4 may beat C4.5 at probability estimation. Of 
ourse thiswent against our better intuition, established by years of reading ma
hine learning paperstouting the virtues of pruning. However, in the literature there are hints of support for su
ha hypothesis. For example, as mentioned above, Bradford et al. (Bradford et al., 1998) showthat 
ost-sensitive de
ision-tree pruning is no better than simply not pruning at all, as longas the Lapla
e 
orre
tion is used. One possible reason is that unpruned de
ision trees givevery good probability estimates.3Figure 2 shows the 
lass probability boundary of the overlapping Gaussians problem(from Figure 1).3If a model gives very good probability estimates, it inherently is 
ost sensitive (Provost & Faw
ett, 1998).8
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Figure 3: Comparing 
lass probability estimates.Figure 3 shows the performan
e of the PETs learned by C4.5 and C4.4 on the overlappingGaussians problem. This was generated from trees built with 100,000 examples. The 
lassprobability estimates given by C4.5 produ
e a pie
ewise-
onstant fun
tion, as expe
ted. Notethat C4.5 indeed �nds a high-a

ura
y split, but the probability estimates (the horizontalsegments) do not tra
k the true 
lass probability boundary well at all. C4.4's PET tra
ksthe 
lass probability boundary remarkably well.Of 
ourse, one may argue that the boundary still is rather rough,4 and that an estimatewith a better bias (e.g., a sigmoid fun
tion of the input) would perform better. As wementioned earlier, the univariate, overlapping-Gaussians problem is about the worst possibleappli
ation for a PET, in part be
ause it is easy to propose a better alternative. However,
onsider the 
lass probability fun
tion shown in Figure 4. This will be more diÆ
ult formost methods than the problem in Figure 3.Now, 
onsider the performan
e of C4.5 versus C4.4 on this problem. Note on
e again thatfor this probability fun
tion, the optimal de
ision tree also is a single 
ut, this time at a pointin the interval (-1,0). Therefore, the following should be viewed simply as a demonstrationof the potential power of PETs over de
ision trees.C4.5 with pruning was used to build a PET (using the Lapla
e 
orre
tion at the leaves),4Note that C4.5 uses a minimum des
ription length heuristi
 to redu
e spurious splitting on numeri
attributes, and be
ause of this the leaves remain larger than they would without the heuristi
.9
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Figure 4: A more 
omplex 
lass probability fun
tion.as was C4.4 (no pruning, no 
ollapsing, Lapla
e 
orre
tion). The 
lass probability borderslearned by C4.5 and by C4.4 are shown in Figure 5.As before, and as expe
ted, C4.5 pla
es a single split very near to the point whereerror should be minimized. Of 
ourse, this gives poor probability estimates for almost allinstan
es. C4.4, on the other hand, produ
es 
lass probability estimates that tra
k thea
tual 
lass probability border quite well. As more data are used to build the tree, the 
lassprobability estimates be
ome more pre
ise. Figure 5 shows the result of training the PETs on10,000 training examples. Figure 6 shows the result of training the PETs on 100,000 trainingexamples. Noti
e that as the training sets get larger, both C4.5 and C4.4 do better at theirprimary task. C4.5's single split is 
loser to the point where a

ura
y is maximized. C4.4produ
es �ner-grained probability estimates that tra
k the a
tual border more pre
isely.5.2 So where is the rub?Of 
ourse, training PETs in pra
ti
e is not that simple. As we mentioned earlier, there aretwo types of distin
tions removed by pruning. In arguing for C4.4 we highlighted distin
tionsof type-ii, whi
h obviously should be retained for probability estimation. However, we ignoreddistin
tions of type-i: spurious distin
tions resulting from over�tting the training set. In theprevious se
tions C4.4 was applied to plenty of data, given the low dimensionality of the10
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Figure 5: Learned probability borders: 10,000 training examples.problem. What will happen when data is sparse? Will not C4.4 produ
e false distin
tionsthat will distort its probability estimates?It almost 
ertainly will. Do the bene�ts of C4.4 outweigh the drawba
ks? Are thePETs produ
ed by C4.4 better than those produ
ed by C4.5? We evaluate this empiri
allybelow. A further question is whether there is an e�e
tive middle ground. Pruning based onminimizing a

ura
y obviously is not the right thing to do. On the other hand, not pruningat all may be too drasti
. It might be useful to prune with the spe
i�
 goal of preservingdistin
tions that are important for probability estimation.Redu
ed-error pruning is not the only pruning strategy that has been used in buildingde
ision trees. A strategy that seems better aligned with the goal of retaining distin
tionsthat are signi�
ant from the perspe
tive of probability estimation is 
hi-square pruning.With 
hi-square pruning, leaves of the tree are 
ollapsed to their parent node if a 
hi-squaretest does not indi
ate that there is a signi�
ant di�eren
e in the 
lass distributions before andafter the split. Several de
ision-tree learning algorithms have used variations of 
hi-squarepruning (Quinlan, 1986; Jensen & S
hmill, 1997; Kass, 1980). Perhaps most notably, C4.5'sprede
essor, ID3 (Quinlan, 1986) used 
hi-square \prepruning"; it stopped growing the treewhen a 
hi-square test did not show a signi�
ant di�eren
e in the distributions.We hypothesized that an augmented C4.4, using 
hi-square pruning, would yield im-proved performan
e over C4.4. Su
h a pro
edure would be parameterized by the p-level at11
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Figure 6: Learned probability borders: 100,000 training examples.whi
h pruning would o

ur, and the question then would arise as to how to set the p-levelappropriately. However, given a suÆ
ient amount of data, 
ross-validation 
ould be used todetermine empiri
ally what p-level would be appropriate.5.3 Another alternative for building PETsIn the foregoing, we assumed that the goal was to improve the probability estimates resultingfrom a single tree. A di�erent strategy for using de
ision trees for probability estimationhas re
eived attention re
ently. Multiple-model 
lassi�ers, whi
h learn multiple 
lassi�
ationmodels and then 
ombine their predi
tions (e.g., having them vote on a 
lassi�
ation), havere
ently been shown often to improve 
lassi�
ation a

ura
y when 
ompared to using a singlemodel. For example, bagging (Breiman, 1996) has been shown to outperform single modelte
hniques with surprising 
onsisten
y. Re
ent results suggest that the improvements frombagging also apply to the use of de
ision trees for probability estimation (Provost et al., 1998;Bauer & Kohavi, 1999). We should note that averaging multiple de
ision trees to produ
eprobability estimates is not a novel produ
t of the re
ent interest in multiple models; Buntinestudied the te
hnique ten years ago (Buntine, 1991). However, our experiments have led usto the 
on
lusion that bagging and the Bayesian averaging studied by Buntine are in fa
tquite di�erent (Domingos, 1997). 12



6 Experiments and ResultsThe results presented above were obtained from simple syntheti
 data. We were interested inwhether the improved performan
e hypothesized for C4.4, and observed above, generalizedto data from real-world problems. We also were interested in verifying or refuting our otherhypothesized improvements, in
luding 
hi-square pruning and bagging.6.1 Comparison metri
For this work it is ne
essary to evaluate and 
ompare di�erent models with respe
t to theirestimates of 
lass probabilities. In the standard ma
hine-learning evaluation paradigm, thetrue 
lass probability distributions are not known. Instead, a set of instan
es is available,labeled with the true 
lass. Comparisons are based on estimates of performan
e from thesedata.The standard method, 
omparing undi�erentiated error rates, is obviously not appro-priate (Provost et al., 1998). One alternative is to use ROC analysis (Swets, 1988), whi
h
ompares visually the 
lassi�ers' performan
e a
ross the entire range of probabilities. Provostand Faw
ett (Provost & Faw
ett, 1997, 1998) des
ribe how pre
ise, obje
tive 
omparisons
an be made with ROC analysis.However, for the purpose of this study, we want to evaluate the probabilities generallyrather than under spe
i�
 
onditions or under ranges of 
onditions. Knowing nothing aboutthe task for whi
h they will be used, whi
h probabilities are generally better? The Wil
oxon-Mann-Whitney non-parametri
 test statisti
 (the Wil
oxon) (Hand, 1997) is appropriate forthis 
omparison. The Wil
oxon measures, for a parti
ular 
lassi�er, the probability that arandomly 
hosen 
lass 0 
ase will be assigned a higher 
lass 0 probability than a randomly
hosen 
lass 1 
ase. Therefore higher Wil
oxon s
ore indi
ates that the probabilities aregenerally better (there may be spe
i�
 
onditions under whi
h the 
lassi�er with a lowerWil
oxon s
ore is preferable), if 
alibration of the probabilities is ignored.5 Another metri
for 
omparing 
lassi�ers a
ross a wide range of 
onditions is the area under the ROC 
urve5An inherently good probability estimator 
an be skewed systemati
ally, so that although the probabilitiesare not a

urate, they still rank 
ases equivalently. This would be the 
ase, for example, if the probabilitieswere squared. Su
h an estimator will re
eive a high Wil
oxon s
ore. A higher Wil
oxon s
ore indi
ates that,with proper re
alibration, the probabilities of the estimator will be better. Probabilities 
an be re
alibratedempiri
ally, for example as des
ribed by Soberhart et al. (2000).13



(AUC) (Bradley, 1997); AUC measures the quality of an estimator's 
lassi�
ation perfor-man
e, averaged a
ross all possible probability thresholds. Interestingly, it has been shownthat the AUC is equivalent to the Wil
oxon statisti
 (Hanley & M
Neil, 1982). (It alsois equivalent to the Gini 
oeÆ
ient (Hand, 1997).) Therefore, for this work we will reportthe AUC when 
omparing 
lass probability estimators. (Hand (1997) provides a thoroughtreatment of the 
omparison of 
lass probability estimates both when the true probabilitydistribution is known and when it is unknown.)We are interested in whether, by making the modi�
ations we make, the probabilitiesgenerally improve. We make no 
laims as to whether one algorithm is \better" than anotherfor the problems from whi
h these data were drawn. The AUC metri
(s) judge the relativequality of the probabilities averaged over all possible output thresholds. It may be the 
asethat for a parti
ular set of 
onditions under whi
h the PETs will be used, i.e., where aparti
ular output threshold is 
alled for, a PET with a lower AUC s
ore in fa
t is desirable.6.2 ResultsWe used the following 25 databases from the UCI repository (Blake &Merz, 2000): audiology,breast 
an
er (Ljubljana), 
hess (king-rook vs. king-pawn), 
redit (Australian), diabetes,e
ho
ardiogram, glass, heart disease (Cleveland), hepatitis, hypothyroid, iris, LED, liverdisorders, lung 
an
er, lymphography, mushroom, primary tumor, promoters, solar 
are,sonar, soybean (small), spli
e jun
tions, voting re
ords, wine, and zoology. Ea
h databasewas randomly divided 20 times into 2/3 of the examples for training and 1/3 for testing. Theresults presented are averages of these 20 runs. For data sets with more than two 
lasses we
omputed the expe
ted AUC, whi
h is the weighted average of the AUCs obtained takingea
h 
lass as the referen
e 
lass in turn (i.e., making it 
lass 0 and all other 
lasses 
lass1). The weight of a 
lass's AUC is the 
lass's frequen
y in the data. The results obtainedare shown in Table 1, and summarized in Table 2. \Sign test" is the signi�
an
e level ofa binomial sign test on the number of wins (with a tie 
ounting as half a win; the normalapproximation to the binomial was used). \Wil
oxon test" is the signi�
an
e level of aWil
oxon signed-ranks test. Our observations are summarized below.
14



Table 1: Experimental results: Expe
ted AUC (area under the ROC 
urve, as per
entageof maximum possible) and its standard deviation for C4.5, C4.5 with the Lapla
e 
orre
tion(C4.5-L), C4.4, C4.4 with 
hi-square pruning with a 5% signi�
an
e threshold (C4.4-X),bagged C4.5 (C4.5-B) and bagged C4.4 (C4.4-B).Database C4.5 C4.5-L C4.4 C4.4-X C4.5-B C4.4-BAudiology 89.4�0.8 91.1�0.9 91.0�0.8 57.3�2.6 94.7�0.5 95.2�0.6Breast 60.9�1.7 63.1�1.4 60.6�1.2 62.8�1.4 68.9�1.3 67.4�1.3Chess 99.7�0.1 99.7�0.0 99.9�0.0 99.9�0.0 99.9�0.0 99.9�0.0Credit 87.9�0.7 89.9�0.5 87.3�0.4 90.7�0.5 92.6�0.5 92.1�0.4Diabetes 74.8�0.9 76.9�0.8 77.3�0.7 78.7�0.7 83.4�0.5 83.2�0.5E
ho
ardio 54.1�1.3 55.9�1.6 57.7�1.1 58.4�1.1 67.4�1.5 67.8�1.6Glass 79.2�0.9 81.3�1.0 81.3�0.8 78.8�1.2 88.9�0.8 88.7�0.8Heart 76.0�1.2 81.1�1.1 83.6�0.8 81.3�0.9 88.4�0.6 89.1�0.6Hepatitis 64.3�2.5 68.4�2.2 76.7�1.5 71.7�1.9 83.2�1.4 84.0�1.4Iris 96.0�0.6 96.9�0.3 97.3�0.4 97.2�0.4 99.0�0.2 99.2�0.2LED 81.4�0.9 81.9�1.0 84.3�1.0 65.3�1.6 90.6�0.8 90.6�0.9Liver 62.6�1.2 63.7�1.1 64.8�1.5 62.3�1.4 74.0�0.7 73.9�0.7Lung 54.6�3.6 51.1�3.5 50.5�3.3 50.0�0.0 65.3�3.0 62.0�3.4Lympho 79.7�1.4 83.0�1.5 84.7�0.8 82.8�1.2 91.2�0.8 91.3�0.8Mushroom 100.0�0.0 100.0�0.0 100.0�0.0 100.0�0.0 100.0�0.0 100.0�0.0Promoters 78.4�1.6 82.9�1.5 81.2�1.5 82.4�1.4 93.0�1.2 93.8�1.0Solar 87.5�0.6 88.9�0.5 88.6�0.5 87.0�0.4 89.8�0.5 89.7�0.5Sonar 70.5�1.3 76.2�1.4 76.5�1.4 75.2�1.7 85.2�1.4 84.5�1.3Soybean 98.2�0.5 97.8�0.7 97.8�0.7 82.3�2.1 100.0�0.0 100.0�0.0Spli
e 96.4�0.2 97.7�0.1 97.8�0.1 98.2�0.1 98.7�0.1 98.9�0.1Thyroid 94.4�0.9 96.2�0.5 97.0�0.4 97.5�0.4 97.5�0.4 98.6�0.3Tumor 68.8�0.7 71.7�0.7 68.5�0.8 63.1�1.0 77.0�0.7 76.0�0.6Voting 97.1�0.4 98.2�0.2 94.6�0.7 97.9�0.2 98.6�0.2 98.9�0.1Wine 94.3�0.6 94.5�0.7 94.4�0.8 94.3�0.8 99.4�0.1 99.4�0.1Zoology 96.4�0.5 98.0�0.4 98.4�0.4 93.5�1.4 99.4�0.3 99.6�0.1
15



Table 2: Summary of experimental results: AUC 
omparisons.Systems Wins-Ties-Losses Avg. di�. (%) Sign test Wil
oxon testC4.4 vs. C4.5 18 - 1 - 6 2.0 1.0 0.3C4.4 vs. C4.5-L 13 - 3 - 9 0.2 30.0 30.0C4.5-L vs. C4.5 21 - 2 - 2 1.7 0.1 0.1C4.4-X vs. C4.4 8 - 2 - 15 �3.3 5.0 3.0C4.4-X vs. C4.5-L 9 - 1 - 15 �3.1 8.0 6.0C4.5-B vs. C4.5 24 - 1 - 0 7.3 0.1 0.1C4.4-B vs. C4.4 23 - 2 - 0 5.3 0.1 0.1C4.4-B vs. C4.5-B 11 - 5 - 9 �0.1 45.0 50.06.3 Pruning and Lapla
e 
orre
tionC4.4 is a very marked improvement over C4.5. Most of this improvement is due to the useof the Lapla
e 
orre
tion, whi
h, despite its simpli
ity, is extremely e�e
tive in improvingthe quality of a tree's probability estimates. Our results in this respe
t agree with, but arestronger than, the results of Bauer and Kohavi (Bauer & Kohavi, 1999), who report that theuse of an \m-estimate Lapla
e 
orre
tion" (Kohavi, Be
ker, & Sommer�eld, 1997) redu
esthe mean-squared error (MSE) of PET probability estimates from 10.7% to 10.0%, averageda
ross fourteen data sets. The present results, using AUC, give a perspe
tive 
omplementaryto those obtained with MSE. In addition, the uniformity of su

ess of the simple Lapla
e
orre
tion (e.g., 21-2-2 for C4.5) is remarkable.Not pruning outperforms pruning in more databases than the reverse, but the di�eren
eis not signi�
ant. We hypothesize that these in
on
lusive results are due to two 
ompetinge�e
ts: when pruning is disabled, more leaves are produ
ed, whi
h leads to a �ner approx-imation to the true 
lass probability fun
tion, but there are fewer data within ea
h leaf,whi
h in
reases the varian
e in the approximation. Whi
h of these two e�e
ts will prevailmay depend on the size of the database. The limited range of data-set sizes used in theexperiments and the presen
e of many 
onfounding fa
tors pre
lude �nding a 
lear patternin our results. We hypothesize that as we move to larger and larger data sets, as seems tobe the trend in KDD, the advantage of C4.4 will be
ome stronger.16



6.4 Chi-square pruningHowever, as noted above, simply not pruning is not intuitively satisfying as the best methodfor training PETs. It seems that it would be more advantageous to modify the pruning toaddress the produ
tion of probability estimates dire
tly.We 
ompared C4.4 with and without 
hi-square pruning, using the same data sets andmethodology as above. The results were quite surprising. Chi-square pruning generally didnot improve C4.4; more often, it degraded the probability estimates. This result holds a
rossthe entire spe
trum of pruning thresholds (
hi-square p values); we tried thresholds of 0.1%,1%, 5%, 10% and 20%, with and without the Lapla
e 
orre
tion (only the results for 5%with the Lapla
e 
orre
tion are shown in Table 1). As with the 
omparison with C4.5, webelieve these results may be due to the small size of the UCI data sets. C4.4 with 
hi-squaretends to prune a lot, even with a high signi�
an
e threshold like 20%, be
ause after the �rstfew levels there is not enough data for it to 
on
lude with any reasonable 
on�den
e thatparent and 
hild distributions are signi�
antly di�erent.We also 
ompared C4.4 with a version of C4.4 that stops growing when the leaves be
ometoo small. Spe
i�
ally, the C4.5 pa
kage provides a parameter m su
h that C4.5 will notsplit a node unless at least two of its 
hildren 
ontain more than m (default 2) examples.A simple method for pruning is to in
rease m. Perhaps not surprisingly in light of the
hi-square results, all values tried also underperformed C4.4.6.5 BaggingBagging also substantially improves the quality of probability estimates in almost all do-mains, and the improvements are often very large. This also agrees with the results of Bauerand Kohavi using mean-squared error (MSE) (Bauer & Kohavi, 1999). They show a de-
rease in the average MSE over fourteen data sets from 10.7% for regular PETs to 7.5% forbagged PETs. The present results also show, over the twenty-�ve data sets, not a single
ase where bagging degrades the probability estimates, as measured by AUC. This a

ordswith work done by Provost, Faw
ett and Kohavi (1998), who present the ROC 
urves of sixalgorithms evaluated on ten data sets. We observe that the ROC 
urves of bagged PETs(\bagged MC4") have larger areas in their graphs. In fa
t, in all but one 
ase, the baggedPETs 
ompletely dominate the 
urves of individual Lapla
e-
orre
ted PETs (\MC4").It is noteworthy that the improvements in AUC with bagging are on average mu
h larger17



than the improvements in a

ura
y (7.3% vs. 2.8% for C4.5), indi
ating that bagging maybe even more e�e
tive for improving probability estimators than for improving 
lassi�ers.The improvements in AUC are larger on average for C4.5 than for C4.4, presumably be
ausethere is more room for improvement in C4.5. On
e bagging is used, whether or not pruningand the Lapla
e 
orre
tion are used makes little di�eren
e. Despite its e�e
tiveness, bagginghas the disadvantage that the 
omprehensibility of the single tree is lost, and it also 
arriesgreater 
omputational 
ost. When high-quality estimation is the sole 
on
ern, bagging should
learly be used. When 
omprehensibility and/or 
omputational 
ost are also important, asingle C4.4 tree may be preferable.7 Con
lusions and dis
ussionThe poor performan
e of PETs built by 
onventional de
ision-tree learning programs 
anbe explained by a 
ombination of two fa
tors. First, as shown by the demonstrations onsyntheti
 data, the heuristi
s used to build small a

urate de
ision trees are biased stronglyagainst building a

urate PETs. Perhaps 
ounter-intuitively (at �rst), larger trees 
an workbetter for probability estimation. We are disappointed that our results do not support thehypothesis that more a

urate PETs 
an be built by using a pruning strategy designedspe
i�
ally for improving probability estimation. We hope that future studies 
an explainthis, perhaps by looking at larger data sets.The se
ond fa
tor explaining the poor performan
e of 
onventional PETs is that, whena purely frequen
y-based (unsmoothed) estimate is used, small leaves give poor probabilityestimates. This is the probability-estimation 
ounterpart of the well-known \small disjun
tsproblem": in indu
ed disjun
tive 
lass des
riptions, small disjun
ts are more error-prone(Holte, A
ker, & Porter, 1989). While this is not surprising statisti
ally, the uniformityand magnitude of the improvement given by the simple, easy-to-use, Lapla
e 
orre
tionnevertheless is remarkable.These results have interesting 
onne
tions to other re
ent work studying the relationshipof model 
omplexity and predi
tive performan
e. Oates and Jensen (1998) show that on UCIdatabases as the number of examples in
reases the a

ura
y of de
ision trees soon stabilizes,but de
ision-tree 
omplexity (number of nodes) 
ontinues to in
rease. Our results presentan important 
aveat: although larger trees may not be more a

urate, that does not mean18



that they are not better models. As shown by the results on the syntheti
 data, larger treesoften model the problem mu
h better even though they have equivalent a

ura
y.6 Apte etal. (1999) have also noted re
ently that when building rule-based and de
ision-tree-basedprobability estimators, the quality of the probability estimates 
ontinues to in
rease as moreand more data are used for training|far beyond the points observed by Oates and Jensen,and in fa
t exhausting their 1.4 million data points without rea
hing a plateau.Another signi�
ant observation is that bagged PETs produ
e ex
ellent probability esti-mates. As with a

ura
y, bagging substantially improves PETs. Moreover, over the twenty-�ve data sets we tested, bagging never degrades the probability estimates. Furthermore,bagging improves probability estimates (as measured by AUC) even more than it improves
lassi�
ation a

ura
y. The extent of this is quite remarkable: in 9 of 25 domains bagginggives an absolute AUC improvement of more than 0.1. We strongly e
ho the 
on
lusion ofBauer and Kohavi (Bauer & Kohavi, 1999) that for problems where probability estimationis required, one should seriously 
onsider using bagged PETs|espe
ially in ill-de�ned orhigh-dimensional domains.Bagged PETs also have impli
ations for other areas of data mining and ma
hine learningresear
h. For example, the MetaCost algorithm (Domingos, 1999) uses a bagged PET as asubpro
edure for 
ost-sensitive learning. The quality of the probability estimates obtained inthis way was an open question; our results validate the pro
edure used. As another example,the smoothing obtained by bagging the estimates, along with the in
rease in their a

ura
y,will help with probabilisti
 ranking (e.g., of interesting do
uments), for whi
h the 
oarseestimates of small trees are parti
ularly problemati
.8 Limitations, extensions and future workThe purpose of this work was to study how the probability estimates obtained by de
isiontrees 
ould be improved. We believe that the results we have presented have given usa substantially better understanding. However, what we have not yet studied is how thesePETs 
ompare with other methods for estimating probabilities. We hypothesize that as longas there are many examples, PETs 
an 
ompete with more traditional methods for building6This does not 
ontradi
t the results of Oates and Jensen, who show that 
onventional de
ision-treeindu
ers build very large trees even from random data (Oates & Jensen, 1998).19




lass probability estimators, espe
ially for high-dimensional problems (where de
ision treestypi
ally ex
el, 
omparatively). We are espe
ially interested in a 
omparison of baggedPETs with traditional methods. Their performan
e is parti
ularly impressive in our study.However, it may just be that plain-old PETs still do not produ
e very good probabilityestimates. If this is the 
ase, moving to methods for smoothing more sophisti
ated than theLapla
e estimate may be worthwhile (Simono�, 1998; Jelinek, 1997).There are two possibilities that we have not yet tried that may improve the probabilityestimates of the bagged PETs even further. Breiman (Breiman, 1998) has noted that theestimates produ
ed by bagged de
ision trees may be improved by using the 37% of the dataheld out of ea
h bootstrap sample to obtain better estimates at the leaf nodes (be
ausethese data were not used for training). Also, more 
omplex smoothing algorithms (su
h asaveraging a leaf's estimates with those of its an
estors in the tree, with appropriate weights(Jelinek, 1997)) may do signi�
antly better than the simple Lapla
e 
orre
tion.Finally, sin
e we began by listing 
omprehensibility as one of the attra
tive features ofde
ision trees, it is important to note that our strongest 
on
lusion (bagged PETs workvery well) involves an opaque 
ombination of multiple trees. One method for produ
ing a
omprehensible model of a multiple-model 
lassi�er is to use it to label examples, and thenlearn from these new data (Craven, 1996; Domingos, 1997). For PETs the pro
edure wouldhave to be modi�ed slightly, sin
e the learning task would be learning probabilities fromprobabilities. Of 
ourse, even C4.4-style PETs may be less than 
omprehensible, given theirlarge size.Referen
esApte, C., Grossman, E., Pednault, E., Rosen, B., Tipu, F., & White, B. (1999). Proba-bilisti
 estimation-based data mining for dis
overing insuran
e risks.. IEEE IntelligentSystems, 14, 49{58.Bauer, E., & Kohavi, R. (1999). An empiri
al 
omparison of voting 
lassi�
ation algorithms:Bagging, boosting and variants. Ma
hine Learning, 36, 105{142.Blake, C., & Merz, C. J. (2000). UCI repository of ma
hine learning databases.Ma
hine-readable data repository, Department of Information and Computer S
ien
e,20



University of California at Irvine, Irvine, CA. http://www.i
s.u
i.edu/�mlearn/-MLRepository.html.Bradford, J., Kunz, C., Kohavi, R., Brunk, C., & Brodley, C. (1998). Pruning de
ision treeswith mis
lassi�
ation 
osts. In Pro
eedings of ECML-98.Bradley, A. P. (1997). The use of the area under the ROC 
urve in the evaluation of ma
hinelearning algorithms. Pattern Re
ognition, 30 (7), 1145{1159.Breiman, L. (1998). Out-of-bag estimation. Te
h. rep. Unpublished manus
ript.Breiman, L. (1996). Bagging predi
tors. Ma
hine Learning, 24, 123{140.Breiman, L. (2000). Private 
ommuni
ation..Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classi�
ation andRegression Trees. Wadsworth International Group.Buntine, W. (1991). A theory of learning 
lassi�
ation rules. Ph.D. thesis, S
hool of Com-puter S
ien
e, University of Te
hnology, Sydney, Australia.Clark, P., & Boswell, R. (1991). Rule indu
tion with CN2: Some re
ent improvements. InPro
eedings of the Sixth European Working Session on Learning, pp. 151{163 Porto,Portugal. Springer.Craven, M. W. (1996). Extra
ting Comprehensible Models from Trained Neural Networks.Ph.D. thesis, University of Wis
onson { Madison. Te
hni
al Report No. 1326.Danyluk, A., & Provost, F. (2000). Tele
ommuni
ations network diagnosis. In Kloesgen, W.,& Zytkow, J. (Eds.), Handbook of Knowledge Dis
overy and Data Mining. To appear.Domingos, P. (1997). Why does bagging work? A Bayesian a

ount and its impli
ations. InPro
eedings of the Third International Conferen
e on Knowledge Dis
overy and DataMining, pp. 155{158 Newport Bea
h, CA. AAAI Press.Domingos, P. (1999). MetaCost: a general method for making 
lassi�ers 
ost-sensitive.In Pro
eedings of the Fifth ACM SIGKDD International Conferen
e on KnowledgeDis
overy and Data Mining, pp. 155{164.21



Domingos, P. (1997). Knowledge a
quisition from examples via multiple models. In Fisher,D. H. (Ed.), Pro
eedings of the Fourteenth International Conferen
e on Ma
hine Learn-ing (ICML-97), pp. 98{106. San Fran
is
o, CA:Morgan Kaufmann.Drummond, C., & Holte, R. (2000). Exploiting the 
ost (in)sensitivity of de
ision tree split-ting 
riteria. In Pro
eedings of the Seventeenth International Conferen
e on Ma
hineLearning, pp. 239{246 Stanford, CA. Morgan Kaufmann.Friedman, N., & Goldszmidt, M. (1996). Learning Bayesian networks with lo
al stru
ture.In Pro
eedings of the Twelfth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, pp.252{262 Portland, OR. Morgan Kaufmann.F�urnkranz, J. (1999). Separate-and-
onquer rule learning. Arti�
ial Intelligen
e Review,13 (1), 3{54.Hand, D. J. (1997). Constru
tion and Assessment of Classi�
ation Rules. Chi
hester:JohnWiley and Sons.Hanley, J. A., & M
Neil, B. J. (1982). The meaning and use of the area under a re
eiveroperating 
hara
teristi
 (ROC) 
urve. Radiology, 143, 29{36.He
kerman, D., Chi
kering, M., Meek, C., Rounthwaite, R., & Kadie, C. (2000). Dependen
ynetworks for density estimation, 
ollaborative �ltering, and data visualization. In Pro-
eedings of the Sixteenth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e Stanford,CA. Morgan Kaufmann.Holte, R., A
ker, L., & Porter, B. (1989). Con
ept learning and the problem of smalldisjun
ts.. In Pro
eedings of the Eleventh International Joint Conferen
e on Arti�
ialIntelligen
e, pp. 813{818 San Mateo, CA. Morgan Kaufmann.Jelinek, F. (1997). Statisti
al Methods for Spee
h Re
ognition. MIT Press, Cambridge, MA.Jensen, D., & S
hmill, M. (1997). Adjusting for multiple 
omparisons in de
ision tree prun-ing. In Pro
eedings of the Third International Conferen
e on Knowledge Dis
overy andData Mining, pp. 195{198.Kass, G. (1980). An exploratory te
hnique for investigating large quantities of 
ategori
aldata. Applied Statisti
s, 29, 119{127. 22



Kohavi, R., Be
ker, B., & Sommer�eld, D. (1997). Improving simple Bayes. In The NinthEuropean Conferen
e on Ma
hine Learning, pp. 78{87. Available: http://roboti
s.stanford.edu/users/ronnyk.Lim, T.-J., Loh, W.-Y., & Shih, Y.-S. (2000). A 
omparison of predi
tion a

ura
y, 
omplex-ity, and training time of thirty-three old and new 
lassi�
ation algorithms. Ma
hineLearning, 40 (3), 203{228.Niblett, T. (1987). Constru
ting de
ision trees in noisy domains. In Pro
eedings of the Se
ondEuropean Working Session on Learning, pp. 67{78 Bled, Yugoslavia. Sigma.Oates, T., & Jensen, D. (1998). Large data sets lead to overly 
omplex models: an expla-nation and a solution. In Agrawal, R., & Stolorz, P. (Eds.), Pro
eedings of the FourthInternational Conferen
e on Knowledge Dis
overy and Data Mining (KDD-99), pp.294{298. Menlo Park, CA: AAAI Press.Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., & Brunk, C. (1994). Redu
ingmis
lassi�
ation 
osts. In Pro
. 11th International Conferen
e on Ma
hine Learning,pp. 217{225. Morgan Kaufmann.Provost, F., & Faw
ett, T. (1997). Analysis and visualization of 
lassi�er performan
e:Comparison under impre
ise 
lass and 
ost distributions. In Pro
eedings of the ThirdInternational Conferen
e on Knowledge Dis
overy and Data Mining (KDD-97), pp.43{48. AAAI Press.Provost, F., & Faw
ett, T. (1998). Robust 
lassi�
ation systems for impre
ise environments.In Pro
eedings of the Fifteenth National Conferen
e on Arti�
ial Intelligen
e, pp. 706{713. Menlo Park, CA: AAAI Press.Provost, F., & Faw
ett, T. (2000). Robust 
lassi�
ation for impre
ise environments. To ap-pear in Ma
hine Learning. http://www.
roftj.net/~faw
ett/papers/ROCCH-MLJ.ps.gz.Provost, F., Faw
ett, T., & Kohavi, R. (1998). The 
ase against a

ura
y estimation for
omparing indu
tion algorithms. In Pro
eedings of the Fifteenth International Con-feren
e on Ma
hine Learning, pp. 445{453. Morgan Kaufmann. Available: http://www.
roftj.net/~faw
ett/papers/ICML98-final.ps.gz.23



Provost, F., & Kolluri, V. (1999). A survey of methods for s
aling up indu
tive algorithms.Data Mining and Knowledge Dis
overy, 3 (2), 131{169.Quinlan, J. R. (1986). Indu
tion of de
ision trees. Ma
hine Learning, 1, 81{106.Quinlan, J. R. (1993). C4.5: Programs for Ma
hine Learning. Morgan Kaufmann, SanMateo, California.Simono�, J. (1998). Three sides of smoothing: 
ategori
al data smoothing, nonparametri
regression, and density estimation. International Statisti
al Review, 66(2), 137{156.Smyth, P., Gray, A., & Fayyad, U. (1995). Retro�tting de
ision tree 
lassi�ers using kerneldensity estimation. In Pro
eedings of the 12th International Conferen
e on Ma
hineLearning, pp. 506{514.Sobehart, J. R., Stein, R. M., Mikityanskaya, V., & Li, L. (2000). Moody's publi
 �rm riskmodel: A hybrid approa
h to modeling short term default risk. Te
h. rep., Moody'sInvestors Servi
e, Global Credit Resear
h. Available: http://www.moodysqra.
om/resear
h/
rm/53853.asp.Swets, J. (1988). Measuring the a

ura
y of diagnosti
 systems. S
ien
e, 240, 1285{1293.

24


