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Distributed Space-Time Coding in
Wireless Relay Networks
Yindi Jing and Babak Hassibi, Senior Member, IEEE

Abstract— We apply the idea of space-time coding devised for
multiple-antenna systems to the problem of communications over
a wireless relay network with Rayleigh fading channels. We use
a two-stage protocol, where in one stage the transmitter sends
information and in the other, the relays encode their received
signals into a “distributed” linear dispersion (LD) code, and
then transmit the coded signals to the receive node. We show
that for high SNR, the pairwise error probability (PEP) behaves
as (log P/P )min{T,R}, with T the coherence interval, that is,
the number of symbol periods during which the channels keep
constant, R the number of relay nodes, and P the total transmit
power. Thus, apart from the log P factor, the system has the
same diversity as a multiple-antenna system with R transmit
antennas, which is the same as assuming that the R relays can
fully cooperate and have full knowledge of the transmitted signal.
We further show that for a network with a large number of relays
and a fixed total transmit power across the entire network, the
optimal power allocation is for the transmitter to expend half
the power and for the relays to collectively expend the other
half. We also show that at low and high SNR, the coding gain is
the same as that of a multiple-antenna system with R antennas.
However, at intermediate SNR, it can be quite different, which
has implications for the design of distributed space-time codes.

Index Terms— Space-time coding, multiple-antenna systems,
wireless relay networks, Rayleigh fading channels.

I. INTRODUCTION

IT is known that multiple antennas can greatly increase
the capacity and reliability of a wireless communication

link in a fading environment using space-time coding [1]–[4].
Recently, with the increasing interests in ad hoc networks,
researchers have been looking for methods to exploit spatial
diversity using antennas of different users in the network
[5]–[9]. In [8], the authors exploit spatial diversity using the
repetition and space-time algorithms. The mutual information
and outage probability of the network are analyzed. However,
in their model, the relays need to decode their received signals.
In [9], a network with a single relay under different protocols
is analyzed and second order spatial diversity is achieved. In
[10], the authors use space-time codes based on the Hurwitz-
Radon matrices and conjecture a diversity factor around R/2
from their simulations. Also, simulations in [11] show that
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the use of Khatri-Rao codes lowers the average bit error
rate. In this paper, we consider a relay network with fading
channels and apply a LD space-time code [12] among the
relays. The problem we are interested in is: “Can we increase
the reliability of a wireless network by using space-time codes
among the relays?”

More specifically, the focus of this paper is on the PEP
analysis of wireless relay networks. We investigate in the di-
versity gain and coding gain that can be achieved in a wireless
relay network by having the relays cooperate distributively.
Here, by diversity gain or diversity in brief, we mean the
negative of the exponent of the SNR or transmit power in the
PEP formula at high SNR regime. This definition is consistent
with the diversity definition in multiple-antenna systems [4],
[13]. It determines how fast the PEP decreases with the SNR
or transmit power. The same as before, coding gain is the
improvement in the PEP obtained by the code design.

The wireless relay network model we use is similar to those
in [14], [15]. In [14], the authors show that the capacity of a
wireless relay network with R nodes behaves like log R. In
[15], a power efficiency that behaves like

√
R is obtained. Both

results are based on the assumption that every relay knows its
local channels so that they can work coherently. Therefore,
for results of [14] and [15] to hold, the system should be
synchronized at the carrier level. In this paper, we assume
that the relays do not know the channel information. All we
need is a much more reasonable assumption that the system
is synchronized at the symbol level.

For communications in wireless relay networks, we use a
two-step protocol, where in the first step, the transmitter sends
information and in the other, the relays encode their received
signals into a “distributed” LD code, and then transmit the
coded signals to the receive node. A key feature of our work
is that we do not require the relays to decode. Only simple
signal processing is done at the relays. This has two main
benefits. First, the operations at the relays are considerably
simplified, and second, we can avoid imposing bottlenecks on
the rate by requiring some relays to decode (See e.g., [16]).

Our work shows that in a wireless relay network with R
relays, coherence interval T , and a single transmit-and-receive
pair, using distributed LD space-time codes among the relays
can achieve a diversity of min{T, R} (1 − log log P/ log P ),
where P is the total power used in the whole network. When
T ≥ R, the diversity gain is linear in the number of relays
(size of the network) and is a function of the transmit power.
When P is very large (log P � log log P ), the diversity
is approximately R. The coding gain for very large P is
det (Sk − Sl)∗(Sk − Sl), where Sk and Sl are codewords in

1536-1276/06$20.00 c© 2006 IEEE



JING and HASSIBI: DISTRIBUTED SPACE-TIME CODING IN WIRELESS RELAY NETWORKS 3525

t1

t2

tR

1r

r2

rR

1g
g2

gR
Rf

f 1

f
transmitter

relays

receiver

  .
  .

  .

. .
 . . .
 .s x

2

Fig. 1. Wireless relay network.

the distributed space-time code. Therefore, at very high SNR,
the same diversity gain and coding gain are obtained as in the
multiple-antenna case, which means that the system works as
if the relays can fully cooperate and have full knowledge of the
transmitted signal. We then improve the diversity gain shown
above and prove the optimality of the result. We also consider
a more general type of LD codes which includes Alamouti
scheme as a special case. Although the same diversity gains
are achieved, the coding gain can be improved. Simulations
are also provided, which verify our theoretical analysis.

The paper is organized as follows. In the following section,
the network model and the two-step protocol are introduced.
The distributed space-time code is explained in Section III
and the PEP is calculated in Section IV. In Section V, we
derive the optimum power allocation based on the PEP. Section
VI contains the main results of our work. The diversity gain
and the coding gain are derived. To motivate our results, we
first give a simple approximate derivation and then give the
more involved rigorous derivation. In Section VII, we slightly
improve the diversity gain obtained in Section VI and prove
the optimality of the new diversity result. A more general
distributed LD space-time code is discussed in Section VIII,
and in Section IX the diversity gain and coding gain for
a special case are obtained, which coincide with those in
Sections VI and VII. We have simulated the performance of
relay networks with random distributed LD space-time codes
and have compared it with the performance of the same space-
time codes used in multiple-antenna systems. Details of the
simulations and the figures are given in Section X. Section
XI provides the conclusion and future work. The proofs of
technical theorems and lemmas are given in the appendices.

II. SYSTEM MODEL

We first introduce some notation used in the paper. For
a complex matrix A, Ā, At, and A∗ denote the conjugate,
transpose, and Hermitian of A, respectively. detA, rankA,
and tr A indicate the determinant, rank, and trace of A,
respectively. ARe and AIm are the real and imaginary parts of
A. In denotes the n×n identity matrix and 0m,n is the m×n
matrix with all zero entries. We often omit the subscripts when
there is no confusion. diag {d1, . . . , dn} is the n×n diagonal
matrix whose ith diagonal entry is di. log, log2, log10 indicate
the natural logarithm, the base-2 logarithm, and the base-10
logarithm. ‖·‖ indicates the Frobenius norm. g(x) = O(f(x))
means that limx→∞

g(x)
f(x) is a constant. h(x) = o(f(x)) means

that limx→∞
h(x)
f(x) = 0. Pkl denotes the PEP of mistaking the

kth signal by the lth signal. E and P indicate the expectation
and probability.

Consider a wireless network with R + 2 nodes which
are placed randomly and independently according to some
distribution. There is one transmit node and one receive node.
All the other R nodes work as relays. Every node has a
single antenna, which can be used for both transmission and
reception. Denote the channel from the transmitter to the
ith relay as fi, and the channel from the ith relay to the
receiver as gi. Assume that fi and gi are independent complex
Gaussian random variables with zero-mean and unit-variance.
If the fading coefficients fi and gi are known to relay i, it is
proved in [14] and [15] that the capacity behaves like log R
and a power efficiency that behaves like

√
R can be obtained.

However, these results rely on the assumption that the relays
know their local connections, which requires the system to
be synchronized at the carrier level. In this paper, we make
the much more practical assumption that the relays are only
coherent at the symbol level. We assume that the relays know
only the statistical distribution of the channels. However, we
make the assumption that the receiver knows all the fading
coefficients fi and gi. Its knowledge of the channels can be
obtained by sending training signals from the relays and the
transmitter. Many types of gains can be obtained from the
network, for example, gains on the capacity and gains on the
error rate. In this paper, we focus on the error rate, more
precisely, the pairwise error probability (PEP).

Assume that the transmitter wants to send the signal s =
[s1, · · · , sT ]t in the codebook {s1, · · · , sL} to the receiver,
where L is the cardinality of the codebook. s is normalized
as

E s∗s = 1. (1)

The transmission is accomplished by the following two-step
strategy, which is also shown in Fig. 1. From time 1 to T ,
the transmitter sends signals

√
P1Ts1, · · · ,

√
P1TsT to each

relay. Based on the normalization of s in (1), the average
power used at the transmitter for every transmission is P1.
The received signal at the ith relay at time τ is denoted as
ri,τ , which is corrupted by both the fading fi and the noise
vi,τ . From time T +1 to 2T , the ith relay sends ti,1, · · · , ti,T
to the receiver. We denote the received signal and noise
at the receiver at time τ + T by xτ and wτ respectively.
Assume that the noises are independent complex Gaussian
random variables with zero-mean and unit-variance, that is,
the distribution of vi,τ , wτ is CN (0, 1).

We use the following notation:

vi =

⎡
⎢⎣

vi,1

...
vi,T

⎤
⎥⎦ , ri =

⎡
⎢⎣

ri,1

...
ri,T

⎤
⎥⎦ , ti =

⎡
⎢⎣

ti,1
...

ti,T

⎤
⎥⎦ ,w =

⎡
⎢⎣

w1

...
wT

⎤
⎥⎦ ,

and

x =

⎡
⎢⎣

x1

...
xT

⎤
⎥⎦ .

If we assume a coherence interval of T , that is fi and gi keep
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constant for T transmissions, clearly

ri =
√

P1Tfis + vi and x =
R∑

i=1

giti + w. (2)

There are two main differences between the wireless relay
network given above and a multiple-antenna system with R
transmit antennas and one receive antenna [4], [13], although
they both have R independent transmission routes from the
transmitter to the receiver. The first one is that in a multiple-
antenna system, antennas of the transmitter can cooperate
fully. In the considered network, they can cooperate only in
a distributive fashion since the relays are different users. The
other difference is that in the network, the relays observe only
noisy versions of the transmitted signal.

III. DISTRIBUTED SPACE-TIME CODING

From the above description, it is clear that if the trans-
mission rate is sufficiently low, all the relays can decode the
transmitted message. In this case, the relays can act as R
transmit antennas in a multiple-antenna system and therefore
the communication from the relays to the receiver can achieve
a diversity order of R. This approach, however, will require
a substantial reduction of the rate and we will therefore not
consider it. We will instead focus on the achievable diversity
without requiring the relays to decode.1

In this paper, we use the idea of LD space-time code [12]
for multiple-antenna systems by designing the transmit signal
at every relay as a linear function of its received signal:2

ti,τ =
√

P2

P1 + 1

T∑
t=1

ai,τtri,t,

or in other words,

ti =
√

P2

P1 + 1
Airi, (3)

where

Ai =

⎡
⎢⎣

ai,11 · · · ai,1T

...
. . .

...
ai,T1 · · · ai,TT

⎤
⎥⎦ , for i = 1, 2, · · · , R.

While within the framework of LD codes, the T × T
matrices Ai can be quite arbitrary (apart from a Frobenius
norm constraint), to have a protocol that is equitable among
different users and among different time instants, we shall
henceforth assume that Ai are unitary. As we shall presently
see, this also simplifies the analysis considerably.

Now let’s discuss the average transmit power at every relay.
Because E tr ss∗ = 1, fi, vi,j are CN (0, 1), and fi, si, vi,j are
independent, the average received power at relay i is:

E r∗i ri = E
(
P1T |fi|2s∗s + v∗

i vi

)
= (P1 + 1)T.

Therefore the average transmit power at relay i is

E t∗i ti =
P2

P1 + 1
E (Airi)∗(Airi) =

P2

P1 + 1
E r∗i ri = P2T,

1A combination of requiring some relays to decode and others to not, may
also be considered. However, in the interest of space, we shall not do so here.

2Note that the conjugate of ri does not appear in (3). The case with ri is
discussed in Section VIII.

which explains our normalization in (3). P2 is the average
transmit power for one transmission at every relay.

Let us now focus on the received signal. Clearly from (2),
the received signal can be calculated to be

x =
√

P1P2T

P1 + 1
SH + W, (4)

where we have defined

S =
[

A1s · · · ARs
]
, H =

⎡
⎢⎣

f1g1

...
fRgR

⎤
⎥⎦ , (5)

and

W =
√

P2

P1 + 1

R∑
i=1

giAivi + w. (6)

The T ×R matrix S in (4) works like the space-time code
in a multiple-antenna system. We shall call it the distributed
space-time code to emphasize that it has been generated in a
distributed way by the relays, without having access to s. H ,
which is R×1, is the equivalent channel matrix and W , which
is T × 1, is the equivalent noise. W is clearly influenced by
the choice of the space-time code. Using the unitarity of Ai,
it is easy to get the normalization of S: E trS∗S = R.

IV. PAIRWISE ERROR PROBABILITY

Since Ai are unitary and wj , vi,j are independent Gaussian
random variables, W is a Gaussian random vector when gi

are known. It is easy to see that E W = 0T,1 and VarW =(
1 + P2

P1+1

∑R
i=1 |gi|2

)
IT . Thus, W is both spatially and

temporally white. Assume that sk is transmitted. Define Sk =[
A1sk · · · ARsk

]
. Therefore, Sk is an element in the

distributed space-time code set. When both fi and gi are
known, x|sk is also a Gaussian random vector with mean√

P1P2T
P1+1 SkH and variance

(
1 + P2

P1+1

∑R
i=1 |gi|2

)
IT . Thus,

P (x|sk) =
e
−
�
x−
�

P1P2T
P1+1 SkH

�∗�
x−
�

P1P2T
P1+1 SkH

�

1+
P2

P1+1
�R

i=1 |gi|2

πT
(
1 + P2

P1+1

∑R
i=1 |gi|2

)T
.

The maximum-likelihood (ML) decoding of the system can
be easily seen to be

arg max
sk

P (x|sk) = argmin
sk

∥∥∥∥∥x−
√

P1P2T

P1 + 1
SkH

∥∥∥∥∥
2

. (7)

Since Sk is linear in sk, by splitting the real and imaginary
parts, the decoding is equivalent to the decoding of a real
linear system. Therefore, sphere decoding can be used [17],
[18].

Theorem 1 (Chernoff bound on the PEP): With the ML
decoding in (7), the PEP, averaged over the channel coef-
ficients, of mistaking sk by sl has the following Chernoff
bound:

Pkl ≤ E
fi,gi

e
− P1P2T

4(1+P1+P2
�R

i=1 |gi|2)
H∗(Sk−Sl)

∗(Sk−Sl)H
.
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Integrating over fi, we have

Pkl ≤ E
gi

det−1

[
IR +

P1P2T

4 (1 + P1 + P2g)
MG

]
, (8)

where

M = (Sk − Sl)∗(Sk − Sl), G = diag {|g1|2, · · · , |gR|2},
and g =

∑R
i=1 |gi|2.

Proof: See Appendix I.
Let us compare (8) with the PEP Chernoff bound of a

multiple-antenna system with R transmit antennas and one
receive antenna (the receiver knows the channel) [4], [13]:

Pkl ≤ det−1

[
IR +

PT

4R
M

]
.

The difference is that now we need to do the expectations
over gi. Similar to the multiple-antenna case, the full diversity
condition can be obtained from (8). It is easy to see that if Sk−
Sl drops rank, the upper bound in (8) increases. Therefore, the
Chernoff bound is minimized when Sk − Sl is full-rank, or
equivalently, det(Sk − Sl)∗(Sk − Sl) �= 0 for any 1 ≤ k �=
l ≤ L.

V. OPTIMUM POWER ALLOCATION FOR LARGE R

In this section, we discuss the optimum power allocation
between the transmitter and relays that minimizes the PEP.
Because of the expectations over gi, it is very difficult to
obtain the exact solution. We shall therefore recourse to a
heuristic argument. Note that g =

∑R
i=1 |gi|2 has the gamma

distribution [19]:

p(g) =
gR−1e−g

(R − 1)!
,

whose mean and variance are both R. It is therefore reasonable
to approximate g by its mean, i.e., g ≈ R, especially for large
R. (By the law of large numbers, almost surely g/R → 1 as
R → ∞.). Therefore, (8) becomes

Pkl � E
gi

det−1

[
IR +

P1P2T

4 (1 + P1 + P2R)
MG

]
, (9)

which is minimized when P1P2T
4(1+P1+P2R) is maximized.

Assume that the total power consumed in the whole network
is P per symbol transmission. Since for every symbol trans-
mission, the power used at the transmitter and every relay are
P1 and P2 respectively, we have P = P1 + RP2. Therefore,

P1P2T

4 (1 + P1 + P2R)
=

P1(P − P1)T
4R(1 + P )

≤ P 2T

16R(1 + P )
,

with equality when

P1 =
P

2
and P2 =

P

2R
. (10)

Thus, the optimum power allocation is such that the transmitter
uses half the total power and the relays share the other half.
So, for large R, the relays spend only a very small amount of
power to help the transmitter.

With this optimum power allocation, when P � 1,

P1P2T

4
(
1 + P1 + P2

∑R
i=1 |gi|2

)
≈

P
2

P
2RT

4
(

P
2 + P

2R

∑R
i=1 |gi|2

) =
PT

8(R +
∑R

i=1 |gi|2)
.

(8) becomes

Pkl � E
gi

det−1

[
IR +

PT

8(R +
∑R

i=1 |gi|2)
MG

]
. (11)

It is easy to see that the average receive SNR of the
system is P1P2T

4(1+P1+P2
�

R
i=1 |gi|2) . Therefore, this optimal power

allocation also maximizes the expected receive SNR for large
R. We should emphasis that this power allocation only works
for the wireless relay network described in Section II, in which
all channels are assumed to be i.i.d. Rayleigh and no path-loss
is considered. It is obvious that it may not be optimal when
the path-loss effect of the channels is considered.

VI. DERIVATION OF THE DIVERSITY

As mentioned earlier, to obtain the diversity we need to
compute the expectations in (11). Since the calculation is
detailed and gives little insight, to highlight the diversity result,
we begin with a simple approximate derivation which leads to
the same diversity result. As discussed in the previous section,
when R is large, g ≈ R with high probability. We use this
approximation.

We upper bound the PEP using the minimum nonzero
singular value of M , which is denoted as σ2. From (11),

Pkl � E
gi

det−1

(
IR +

PTσ2

16R
diag {Irank M , 0}G

)

= E
gi

rank M∏
i=1

(
1 +

PTσ2

16R
|gi|2
)−1

=

[∫ ∞

0

(
1 +

PTσ2

16R
x

)−1

e−xdx

]rank M

=
(

PTσ2

16R

)−rank M [
−e

16R
PT σ2 Ei

(
− 16R

PTσ2

)]rank M

,

where

Ei(χ) =
∫ χ

−∞

et

t
dt, χ < 0

is the exponential integral function [20]. When χ < 0,

Ei(χ) = c + log(−χ) +
∞∑

k=1

(−1)kχk

k · k!
, (12)

where c is the Euler constant. Therefore, when log P � 1,
e−

16R
PT σ2 = 1 + O (1/P ) ≈ 1 and

−Ei
(
− 16R

PTσ2

)
= log P + O(1) ≈ log P.

Thus,

Pkl �
(

16R

Tσ2

)rank M ( log P

P

)rank M

=
(

16R

Tσ2

)rank M

P−rankM(1− log log P
log P ). (13)
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Pkl �
R∑

r=0

(
8

PT

)r

Mr

(
1 − e−x

)R−r
r∑

j=0

BR+(R−k)x,x(j, r) [−Ei(−x)]r−j
. (14)

BA,x(j, r) =
(

r
j

) r∑
i1=1

r−i1∑
i2=1

· · ·
r−i1−···−ij−1∑

ij=1

(
r
i1

)
· · ·
(

r − i1 − · · · − ij−1

ij

)
Γ(i1, x) · · ·Γ(ij, x)Ar−i1−···−ij . (15)

When M is full rank, the diversity gain is
min{T, R} (1 − log log P/ logP ). Therefore, similar to
the multiple-antenna case, there is no point in having more
relays than the coherence interval [4], [13]. Thus, we will
henceforth always assume T ≥ R. The diversity gain is
therefore R (1 − log log P/ logP ). (13) also shows that the
PEP is smaller for bigger coherence interval T .

Now we give a rigorous derivation. Here is the main result.
Theorem 2 (Achievable diversity): Design the transmit sig-

nal at the ith relay as (3), and use the power allocation in (10).
Assume that T ≥ R and the distributed space-time code has
full diversity. The PEP can be upper bounded by (14) at the
top of this page, where

Mr =
∑

1≤i1<···<ir≤R

det−1[M ]i1,··· ,ir

with [M ]i1,··· ,ir the r×r matrix composed of the i1, · · · , irth
rows and columns of M and BA,x(j, r) is defined in (15) at
the top of this page.

Proof: See Appendix II.
Corollary 1: If log P � 1,

Pkl � 1
PR

R∑
r=0

(
8
T

)r

Mr

r∑
j=0

BR,0(r − j, r) logj P. (16)

Proof: Set x = 1/P .3 When log P � 1, since
[R + (R − k)/P ]k = Rk + o(1), −Ei (−1/P ) = log P +
O(1), 1 − e−1/P = 1/P + o (1/P ), and Γ (i, 1/P ) = (i −
1)!+ o(1), (16) is obtained from (14) by omitting lower order
terms of P .

Corollary 2: If log P � 1 and R � 1,

Pkl � 1
PR

R∑
r=0

(
8R

T

)r

Mr logr P. (17)

Proof: When R � 1, BR,0(0, r) >> BR,0(l, r) for all
l > 0 since BR,0(0, r) = Rr is the term with the highest order
of R. Therefore, (17) is obtained from (16).

Remarks:
1) The highest order term of P in (16) is the r = j = R

term, which can be written as

det −1M

(
8R

T

)R

P−R(1− log log P
log P ). (18)

Therefore, as in (13), distributed space-time coding
achieves diversity gain R (1 − log log P/ log P ), which

3Actually, this is not the optimal choice according to diversity gain. We can
improve the diversity gain slightly by choosing an optimal x. However, the
coding gain of that case is smaller. The details will be discussed in Section
VII.

is linear in the number of relays. When P is very
large (log P � log log P ), log log P/ logP � 1, and a
diversity gain about R is obtained. This is the same as
the diversity gain of a multiple-antenna system with R
transmit antennas and one receive antenna. Therefore,
the relays work as if they fully cooperate and have
full knowledge of the transmitted signal. Generally, the
diversity depends on the total transmit power P .

2) Note that in Theorem 2, we assume that T ≥
R. For the general case, the rank of M will be
min{T, R} instead of R. By a similar argument, diver-
sity min{T, R} (1 − log log P/ log P ) will be obtained.

3) In a multiple-antenna system, if the transmit power (or
SNR) is high, the PEP has the upper bound

det−1M

(
4R

PT

)R

.

Comparing this with the term given in (18), we can see
that the relay network performs

(3 + 10 log10 log P ) dB (19)

worse. The 3dB is because in the network, each the
transmitter and the relays use a half of the total power.
It can be easily seen that if the total power used in the
network is doubled, this 3dB difference will disappear.
The second term, 10 log10 log P , is due to the diversity
difference of the two cases. This analysis is verified by
simulations in Section X.

4) Corollary 2 also gives the coding gain for networks
with a large number of relays. When log P � 1,
the dominant term in (17) is (18). The coding gain is
therefore det−1 M , which is the same as that of the
multiple-antenna case. When P is not very large, the
second term in (17),(

8R

T

)R−1

MR−1
logR−1 P

PR
,

cannot be ignored and even the k = 3, 4, · · · terms have
non-negligible contributions. Therefore, to have good
performance, we want not only det M to be large but
also det[M ]i1,··· ,ir to be large for all 0 ≤ r ≤ R, 1 ≤
i1 < · · · < ir ≤ R. Note that [M ]i1,··· ,ir equals

([Sk]i1,··· ,ir − [Sl]i1,··· ,ir )∗([Sk]i1,··· ,ir − [Sl]i1,··· ,ir ),

where [Si]i1,··· ,ir =
[

Ai1si · · · Airsi

]
is the

space-time code when only the i1, · · · , irth relays are
working. To have good performance when the trans-
mit power is moderate, the distributed space-time code
should be “scale-free” in the sense that it is still a good
distributed space-time code when some of the relays are
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not working. In general, for networks with any R, the
same conclusion can be obtained from (16).

5) Now let’s look at the low transmit power case, that is,
the P � 1 case. With the same approximation g ≈ R,
using the power allocation given in (10),

P1P2T

4
(
1 + P1 + P2

∑R
i=1 |gi|2

) ≈
P
2

P
2RT

4 (1 + P )
=

P 2T

16R
.

Therefore, (8) becomes

Pkl � E
gi

det −1

(
IR +

P 2T

16R
MG

)

= E
gi

[
1 +

P 2T

16R
tr (MG) + o(P 2)

]−1

= E
gi

(
1 − P 2T

16R

R∑
i=1

mii|gi|2
)

+ o(P 2)

=
(

1 − P 2T

16R
tr M

)
+ o(P 2),

where mii is the ith diagonal entry of M . Therefore,
as in the multiple-antenna case, the coding gain at low
total transmit power is tr M . The design criterion is to
maximize tr M .

6) In our model, there is no direct link between the
transmitter and the receiver. Consider now that there
is a direct fading channel between the transmitter and
the receiver at step one. It is easy to see that diver-
sity 1 + R (1 − log log P/ log P ) can be achieved. If
this direct channel exists during the second step of
transmission only, let the transmitter sends AR+1s at
step two. The same diversity can be achieved if the
new distributed space-time code

[
A1s · · · AR+1s

]
is fully diverse. For the case that independent fading
channels exist for both steps, we design the signal sent
by the transmitter at step two as AR+1s with AR+1 a
T × T unitary matrix. It is easy to prove that diversity
2 + R (1 − log log P/ log P ) can be achieved if the
distributed space-time code

[
A1s · · · AR+1s

]
is

fully diverse.
7) As mentioned in Section II, the time slots for the two

transmission steps of our protocol are equal. In general,
we can use T1 symbol periods for the first step and T2

for the second. Ai should therefore be T2 × T1 unitary
matrices. When the distributed space-time code is fully
diverse, we can prove that the achievable diversity
is min{T2, R} (1 − log log P/ log P ). For the case of
T1 > T2, although T1 symbols are sent from the trans-
mitter, at most T2 of them can be independent for the
distributed space-time code to be full diverse. Therefore,
the is no benefit in having a longer time interval for the
first step. On the other hand, if we prolong the second
step and have T2 > T1, the diversity can be improved
when there are enough relays. However, the symbol rate
of transmissions decreases. Therefore, having equal time
slots for the two steps maximizes the symbol rate.

VII. IMPROVEMENT IN DIVERSITY GAIN

In Theorem 2, we have chosen x = 1/P . Although this
choice gives an upper bound on the PEP, it is not the optimal
choice in the sense that the diversity gain obtained from this
upper bound is not maximized. We can improve the diversity
slightly.

Theorem 3: The best diversity gain that can be achieved
using distributed space-time coding is α0R, where α0 is the
solution of

α +
log α

log P
= 1 − log log P

log P
. (20)

If log P � log log P , the PEP can be upper bounded by

R∑
r=0

(
8
T

)r

Mr

r∑
j=0

BR(r − j, r)P−[α0R+(1−α0)(r−j)]. (21)

If R � 1,

Pkl �
[

R∑
r=0

(
8R

T

)r

Mr

]
P−α0R. (22)

Proof: To save space, the proof of this theorem is
omitted. For details, refer to [21].

There is no closed form for the solution of equation (20).
The following theorem gives a region of α0 and also gives
some idea about how much improvement in diversity gain is
obtained.

Theorem 4: For P > e,

1− log log P

log P
< α0 < 1− log log P

log P
+

log log P

log P (log P − log log P )
.

Proof: Refer to [21].
Theorem 4 indicates that the PEP Chernoff bound

of the distributed space-time codes decreases faster
than

∑R
r=0 (8R/T )r Mr (log P/P )R and slower than∑R

r=0 (8R/T )r Mr

(
log1− 1

log P−log log P P/P
)R

. Thus,

1 − log log P/ logP is an accurate approximation of α0

when log P � log log P . The improvement in the diversity is
small.

Now let’s compare the new upper bound in (22) with
the one in (17). A slightly better diversity is obtained as
discussed above. However, the coding gain in (22), which

is
[∑R

r=0 (8R/T )r Mr

]−1

, is smaller than the coding gain
of (17), which is detM . To compare the two, we assume
that R = T and that the singular values of M take their
maximum value,

√
2. Therefore, the coding gain of (22) is[∑R

k=0

(
R
k

)
4k

]−1

= 5−R. The coding gain of (17) is

4−R. The upper bound in (17) is 0.97dB better according to
coding gain. Therefore, when P is large enough, the new upper
bound is tighter than the previous one since it has a larger
diversity. Otherwise, the previous bound is tighter since it has
a larger coding gain.
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[
ti,Re

ti,Im

]
=
√

P2

P1 + 1

[
Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re

] [
ri,Re

ri,Im

]
(23)

H =
R∑

i=1

[
gi,ReIT −gi,ImIT

gi,ImIT gi,ReIT

] [
Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re

] [
fi,ReIT −fi,ImIT

fi,ImIT fi,ReIT

]
(24)

W =
[

wRe

wIm

]
+
√

P2

P1 + 1

R∑
i=1

[
gi,ReIT −gi,ImIT

gi,ImIT gi,ReIT

] [
Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re

] [
vi,Re

vi,Im

]
(25)

Gi =
[

gi,ReIT −gi,ImIT

gi,ImIT gi,ReIT

] [
Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re

] [
(sk − sl)Re −(sk − sl)Im

(sk − sl)Im (sk − sl)Re

]
(26)

VIII. THE GENERAL DISTRIBUTED LINEAR DISPERSION

CODE

In this section, we work on a more general type of dis-
tributed linear dispersion space-time codes [12]. The transmit
signal at the ith relay is designed as

ti =
√

P2

P1 + 1
(Airi + Biri), (27)

where Ai, Bi are T × T complex matrices. By separating the
real and imaginary parts, we can write (27) equivalently as
(23) at the top of this page. Similar as before, for fairness and
simplicity, we assume that the 2T × 2T matrix[

Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re

]
is orthogonal. Therefore, the average transmit power per
transmission at every relay is P2.

After straightforward calculation, the following equivalent
system equation can be obtained:

x̂ =
√

P1P2T

P1 + 1
Hŝ + W ,

where H and W are the equivalent channel matrix and
equivalent noise vector, respectively. They are given in (24)
and (25) at the top of this page. For any T ×1 complex vector
x, the 2T × 1 real vector x̂ is defined as

[
xt

Re xt
Im

]t
.

Theorem 5 (ML decoding and PEP): Design the transmit
signal at the ith relay as in (27). The ML decoding is

argmax
si

P (x|si) = argmin
si

∥∥∥∥∥x̂−
√

P1P2T

P1 + 1
Hŝi

∥∥∥∥∥
2

.

Use the optimum power allocation given in (10). If P � 1,
the PEP of mistaking sk by sl can be upper bounded by

Pkl � E
gi

det− 1
2

⎡
⎣I2R +

PT
∑R

i=1 GiGt
i

8
(
R +
∑R

i=1 |gi|2
)
⎤
⎦ , (28)

where Gi is given in (26) at the top of this page.
Proof: Refer to [21].

IX. A SPECIAL CASE

We have not yet been able to explicitly evaluate the
expectation in (28). Our conjecture is that when T ≥ R,
the same diversity, R (1 − log log P/ log P ), will be obtained.
Here we analyze a much simpler, but far from trivial, case:

for any i, either Ai = 0 or Bi = 0. That is, each relay
sends a signal that is linear in either its received signal or
the conjugate of its received signal. It is clear to see that
Alamouti scheme is included in this case with R = 2, A1 =

I2, B1 = 0, A2 = 0, and B2 =
[

0 1
1 0

]
. The condition

that

[
Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re

]
is orthogonal be-

comes that Ai is unitary if Bi = 0 and Bi is unitary if Ai = 0.
Theorem 6: Design the transmit signal at the ith relay as

in (27). Use the optimum power allocation in (10). Further
assume that for any i = 1, · · · , R, either Ai = 0 or Bi = 0.
The PEP of mistaking sk with sl has the following Chernoff
upper bound:

Pkl � E
gi

det−1

⎡
⎣IR +

PT

8
(
R +
∑R

i=1 |gi|2
)M̂G

⎤
⎦ , (29)

where
M̂ = (Ŝk − Ŝl)∗(Ŝk − Ŝl). (30)

and

Ŝk =
[

A1sk + B1sk · · · ARsk + BRsk

]
. (31)

Ŝk is a T×R matrix, which is the distributed space-time code.

Proof: Refer to [21].
(29) is exactly the same as (11) except that now the

distributed space-time code is Ŝ instead of S. Therefore, by
the same argument, the following theorem can be obtained.

Theorem 7: Design the transmit signal at the ith relay as
in (27). Use the optimum power allocation in (10). Assume
T ≥ R and the distributed space-time code has full diversity.
If log P � 1, the PEP can be upper bounded by

Pkl � 1
PR

R∑
r=0

(
8
T

)r

M̂r

r∑
j=0

BR(r − j, r) logj P,

where
M̂r =

∑
1≤i1<···<ir≤R

det−1[M̂ ]i1,··· ,ir .

The best diversity gain that can be obtained is α0R. When
log P � log log P , the PEP can also be upper bounded by

R∑
r=0

(
8
T

)r

M̂r
r∑

j=0

BR(r − j, r)P−[α0R+(1−α0)(k−j)].
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Proof: The same as the proofs of Theorems 2 and 3.
Therefore, the same diversity gain is obtained as in Section

VI. The coding gain for log P � 1 is det M̂ . When P is
not very large, we want not only det M̂ to be large but also
det[M̂ ]i1,··· ,ir to be large for all 0 ≤ r ≤ R, 1 ≤ i1 <
· · · < ir ≤ R. That is, to have good performance for a
general transmit power, the distributed space-time code should
be “scale-free” in the sense that it is still a good code when
some of the relays are not working. We can see from Theorem
7 that this general code does not improve the diversity gain
of the system. However, from the definition of the new code
in (31), it can improve the coding gain by code optimization.

X. SIMULATIONS

In this section, we show the simulated performance of dis-
tributed space-time codes for different values of the coherence
interval T , number of relays R, and total transmit power
P . The fading coefficients between the transmitter and the
relays, fi, and between the receiver and the relays, gi, are
modeled as independent complex Gaussian random variables
with zero-mean and unit-variance. The fading coefficients keep
constant for T channel uses. The noises at the relays and
the receiver are also modeled as independent zero-mean unit-
variance Gaussian additive noise. The block error rate (BLER),
which corresponds to errors in decoding the signal vector s,
and the bit error rate (BER), which corresponds to errors in
decoding each information bits, is demonstrated as the error
events of interest. Note that a block error may correspond to
only a few bit errors.

The transmit signal at each relay is designed as in (3).
We should remark that our goal here is to compare the
performance of LD codes implemented distributively over
wireless networks with the performance of the same codes
in multiple-antenna systems. Therefore the actual design of
the LD codes and their optimality is not an issue here. All
that matters is that the codes should be the same.4 Therefore,
we generate Ai randomly based on isotropic distribution on
the space of T ×T unitary matrices. It is certainly conceivable
that the performance in the following figures can be improved
by several dBs if Ai are chosen optimally.

The signals s1, · · · , sT are designed as independent N2-
QAM signals. Both the real and imaginary parts of si are
equal probably chosen from the N -PAM signal set:√

6
T (N2 − 1)

{
−N − 1

2
, · · · , − 1

2
,
1
2
, · · · ,

N − 1
2

}
,

where N is a positive integer. The coefficient
√

6
T (N2−1) is

used for the normalization of s given in (1). The number of
possible transmit signals is N2T . The rate of the code is,
therefore,5

1
2T

log2 N2T = log2 N.

4The question of how to design optimal codes is an interesting one, but is
beyond the scope of this paper.

5Due to the half-duplex protocol, 2T channel uses are needed for trans-
missions of T symbols.
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Fig. 2. BERs of wireless networks with different T and R.

In the simulation of multiple-antenna systems, the number
of transmit antennas is R and the number of receive antennas
is one. We also model the channels and noises as independent
zero-mean unit-variance complex Gaussian random variables.
As discussed before, the space-time code is the T ×R matrix
S =

[
A1s · · · ARs

]
. The rate of the space-time code is

therefore 2 log2 N . In both systems, we use sphere decoding
[17], [18] to obtain ML results.

A. Performance of Wireless Networks with Different T and R

In Fig. 2, we compare BERs of relay networks for different
coherence intervals T and numbers of relays R. From the
plot we can see that the bigger R, the faster the BER curve
decreases, which verifies our analysis that the diversity is
linear in R when T ≥ R. However, the BER curves of
networks with T = R = 5 and T = 10, R = 5 have the
same slope when the transmit power is high. This verifies our
result that the diversity only depends on min{T, R}, which is
always R in our examples. Having a larger coherence interval
but the same number of relays does not improve the diversity.
According to the analysis in Section VI, increasing T can
improve the coding gain. From the plot, we can see that the
BER of the network with T = 10, R = 5 is about 1dB lower
than that of the network with T = R = 5.

B. Comparison of Distributed Space-Time Codes with Space-
Time Codes

In this subsection, we compare the performance of dis-
tributed space-time codes with that of space-time codes in
two ways. In one, we assume that the average total transmit
power for both systems is the same. (This is done since the
noise and channel variances are everywhere normalized to
unity.) In other words, the total transmit power in the network
(summed over the transmitter and R relays) is the same as the
transmit power of the multiple-antenna system. In the other,
we assume that the average receive SNR is the same. Assuming
that the total transmit power is P , in the distributed scheme,
the average receive SNR can be calculated to be P 2

4(1+P ) , and
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(a) Same total transmit power
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Fig. 3. Comparison of relay network with multiple-antenna system with
T = R = 5.

in the multiple-antenna setting it is P . Thus, we need roughly
a 6dB increase in power to make the receive SNR of the relay
network identical to that of the multiple-antenna system.

In the first example, T = R = 5 and N = 2. The BER and
BLER curves are shown in Fig. 3a and 3b. Fig. 3a shows the
BER and BLER of the two systems with respect to the total
transmit power. Fig. 3b shows the BER and BLER of the two
systems with respect to the receive SNR. From the figures we
can see that the performance of the multiple-antenna system
is always better than that of the relay network at any power or
SNR. This is what we expect because in the multiple-antenna
system, antennas of the transmitter can fully cooperate and
have perfect information of the transmitted signal. Also we
can see from Fig. 3a that the BER and BLER curves of the
multiple-antenna system decrease faster than those of the relay
network. However, the differences of the slopes of the BER
and BLER curves of the two systems are diminishing as the
total transmit power goes higher. We can see this more clearly
in Fig. 3b. At low SNR regime, the BER and BLER curves
of the multiple-antenna system decrease faster than those of
the relay network. As SNR goes higher, the differences of
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(a) Same total transmit power
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Fig. 4. Comparison of relay network with multiple-antenna system with
T = R = 10.

the slopes of the BER and BLER curves diminishes, which
indicates that the two systems have about the same diversity.
This verifies our analysis of the diversity.

Fig. 4a and Fig. 4b show the performance of the two
systems with T = R = 10 and N = 2. Fig. 4a shows the
BER and BLER of the two systems with respect to the total
transmit power. Fig. 4b shows the BER and BLER of the two
systems with respect to the receive SNR. We can see from
the figures that the slopes of the BER and BLER curves for
the wireless relay network approach the slopes of the BER
and BLER curves of the multiple-antenna systems when the
transmit power increases.

In Fig. 4a, at the BER of 10−7, the transmit power used in
the network is about 28dB. Our analysis of (19) indicates that
the performance of the relay network should be 11dB worse.
Reading from the plot, we get a 8.5dB difference. This verifies
the correctness and tightness of our upper bound.

Finally, we give an example with T �= R. In this example,
T = 10, R = 5 and N = 2. Performance of both the relay
network and the multiple-antenna system with respect to the
total transmit power is shown in Fig. 5. The same phenomenon
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ln P (x|sl) − ln P (x|sk) = −
[

P1P2T
P1+1 H∗(Sk − Sl)∗(Sk − Sl)H +

√
P1P2T
P1+1 H∗(Sk − Sl)∗W +

√
P1P2T
P1+1 W ∗(Sk − Sl)H

]
1 + P2

P1+1

∑R
i=1 |gi|2

(32)

Pkl ≤ E
fi,gi,W

e
− λ

1+
P2

P1+1
�R

i=1 |gi|2

�
P1P2T
P1+1 H∗(Sk−Sl)

∗(Sk−Sl)H+
�

P1P2T
P1+1 H∗(Sk−Sl)

∗W+
�

P1P2T
P1+1 W∗(Sk−Sl)H

�

= E
fi,gi

e
−

λ(1−λ)
P1P2T
1+P1

1+
P2

1+P1

�R
i=1 |gi|2

H∗(Sk−Sl)
∗(Sk−Sl)H

∫
e
−
�

λ

�
P1P2T
P1+1 (Sk−Sl)H+W

�∗�
λ

�
P1P2T
P1+1 (Sk−Sl)H+W

�

1+
P2

P1+1
�R

i=1 |gi|2[
π
(
1 + P2

P1+1

∑R
i=1 |gi|2

)]T dW

= E
fi,gi

e
− λ(1−λ)P1P2T

1+P1+P2
�R

i=1 |gi|2
H∗(Sk−Sl)

∗(Sk−Sl)H
(33)
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Fig. 5. Comparison of relay network with multiple-antenna system with
T = 10, R = 5 and the same total transmit power.

can be observed.

XI. CONCLUSION AND FUTURE WORK

In this paper, we propose the use of LD space-time codes
in a wireless relay network. We assume that the transmitter
and relays do not know the channel realizations but only
their statistical distribution. The ML decoding and PEP at
the receiver are analyzed. The main result is that diver-
sity min{T, R} (1 − log log P/ log P ) can be achieved, which
shows that when T ≥ R and the average total transmit
power is very high (logP � log log P ), the relay network
has about the same diversity as a multiple-antenna system
with R transmit antennas and one receive antenna. We further
show that the leading order term in the PEP behaves as(

8R log P
PT

)R

det−1(Sk − Sl)∗(Sk − Sl), which compared to(
4R
PT

)R
det−1(Sk − Sl)∗(Sk − Sl), the PEP of a space-time

code, shows the loss of performance due to the fact that the
code is implemented distributively and the relays have no
knowledge of the transmitted symbols. We also observe that
the high SNR coding gain, det(Sk − Sl)∗(Sk − Sl), is the

same as what arises in space-time coding. The same is true at
low SNR where tr (Sk −Sl)∗(Sk −Sl) should be maximized.

We then continue investigating the diversity gain of dis-
tributed space-time coding. At high total transmit power, we
improve the diversity gain achieved in Section VI slightly (by
an order no larger than O

(
log log P/ log2 P

)
). Furthermore,

we discuss a more general type of distributed LD space-
time codes: The transmit signal from each relay is a linear
combination of both its received signal and the conjugate of
its received signal. For a special case, which includes the
Alamouti scheme, the same diversity gains can be obtained.
Simulation results on random distributed space-time codes are
demonstrated, which verifies our results.

There are several directions for future work that can
be envisioned. One is to study the outage capacity of
our scheme. Another is to determine whether the diversity,
min{T, R} (1 − log log P/ log P ), can be improved by other
coding methods. We conjecture that it cannot. Another inter-
esting question is to study the design of distributed space-time
codes. For this the PEP expression (17) in Corollary 2 should
be useful. In fact, relay networks provide an opportunity
for the design of space-time codes with a large number of
transmit antennas, since R can be quite large. Finally, it should
be interesting to see whether differential space-time coding
techniques can be generalized to the distributive setting. We
believe that Cayley codes [22] are a suitable candidate for this.

APPENDIX I
PROOF OF THEOREM 1

Proof: The PEP of mistaking sk by sl has the following
Chernoff upper bound [13], [23]:

Pkl ≤ E eλ(ln P (x|sl)−lnP (x|sk)).

Since sk is transmitted, x =
√

P1P2T
P1+1 SkH +W . From (7), we

can obtain (32) and thus (33) at the top of this page. Choose
λ = 1/2 which maximizes λ(1 − λ) = 1/4 and therefore
minimizes the right-hand side of (33). We have

Pkl ≤ E
fi,gi

e
− P1P2T

4(1+P1+P2
�R

i=1 |gi|2)
H∗(Sk−Sl)

∗(Sk−Sl)H
.

This is the first upper bound in Theorem 1. To obtain the
second upper bound we need to calculate the expectation over
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∫ ∞

0

· · ·
∫ ∞

0

det−1

⎡
⎣IR +

PT

8
(
R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}
⎤
⎦ e−λ1 · · · e−λRdλ1 · · · dλR (34)

Pkl �
(∫ x

0

+
∫ ∞

x

)
· · ·
(∫ x

0

+
∫ ∞

x

)
det

⎡
⎣IR +

PT

8
(
R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}
⎤
⎦
−1

e−λ1 · · · e−λRdλ1 · · · dλR

=
R∑

r=0

∑
1≤i1<···<ir≤R

Ti1,··· ,ir (35)

Ti1,··· ,ir =
∫

· · ·
∫

λi1 ,...,λir
∈[x,∞]

other λ′s∈[0,x]

det

⎡
⎣IR +

PT

8
(
R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}
⎤
⎦
−1

e−λ1 · · · e−λRdλ1 · · · dλR (36)

T1,··· ,r <

(
8

PT

)r

det−1[M ]1,··· ,r
R∏

i=r+1

∫ x

0

e−λidλi

∫ ∞

x

· · ·
∫ ∞

x

[
R + (R − k)x +

r∑
i=1

λi

]r
e−λ1 · · · e−λr

λ1 · · ·λr
dλ1 · · · dλr

<

(
8

PT

)r

det−1[M ]1,··· ,r
(
1 − e−x

)R−r
r∑

j=0

BR+(R−k)x,x(j, r) [−Ei(−x)]r−j (37)

fi. Notice that H = G′f , where G′ = diag {g1, · · · , gR} and
f = [f1, · · · , fR]t. Therefore,

Pkl ≤ E
fi,gi

e
− P1P2T

4(1+P1+P2
�R

i=1 |gi|2)
f∗G′∗MG′f

= E
gi

∫
1

πR
e
− P1P2T

4(1+P1+P2
�R

i=1 |gi|2)
f∗G′∗MG′f

e−f∗fdf

= E
gi

det−1

⎡
⎣IR +

P1P2T

4
(
1 + P1 + P2

∑R
i=1 |gi|2

)G′∗MG

⎤
⎦

= E
gi

det−1

⎡
⎣IR +

P1P2T

4
(
1 + P1 + P2

∑R
i=1 |gi|2

)MG

⎤
⎦

as desired.

APPENDIX II
PROOF OF THEOREM 2

Proof: Before proving the theorem, we first give a lemma
that is needed.

Lemma 1: If A is a constant,

∫ ∞

x

· · ·
∫ ∞

x

(
A +

k∑
i=1

λi

)k

e−λ1 · · · e−λk

λ1 · · ·λk
dλ1 · · · dλk

=
k∑

j=0

BA,x(j, k) [−Ei(−x)]k−j
, (38)

where Γ(α, χ) =
∫∞

χ
e−ttα−1dt is the incomplete gamma

function [20].
Proof: See Appendix III.

From (11), we need to upper bound (34) at the top of this
page, where in (34), λi = |gi|2. Therefore, λi is a random
variable with exponential distribution pλi(x) = e−x. We upper

bound this by breaking every integral into two parts: the
integration from 0 to an arbitrary positive number x and the
integration from x to ∞, and then upper bound every one of
the resulting 2R terms. Therefore, we have (35) and (36) at
the top of this page. Without loss of generality, we calculate
T1,··· ,r. Since M > 0, for any 0 < λr+1, · · · , λR < x,

det

⎡
⎣IR +

PTMdiag {λ1, · · · , λR}
8
(
R +
∑R

i=1 λi

)
⎤
⎦

>det
[
IR +

PTMdiag{λ1, · · · , λr, 0, · · · , 0}
8 (R + (R − r)x +

∑r
i=1 λi)

]

>det
{

PT [M ]1,··· ,rdiag {λ1, · · · , λr}
8 [R + (R − r)x +

∑r
i=1 λi]

}

=
{

PT

8 [R + (R − r)x +
∑r

i=1 λi]

}r

λ1 · · ·λr det[M ]1,··· ,r.

Therefore, with Lemma 1, (37) at the top of this page can be
obtained. In general, we have (39) at the top of the next page.
Thus, (40) at the top of the next page can be obtained.

APPENDIX III
PROOF OF LEMMA 1

Proof: We want to explicitly evaluate

∫ ∞

x

· · ·
∫ ∞

x

(
A +

k∑
i=1

λi

)k

e−λ1e−λ2 · · · e−λk

λ1 · · ·λk
dλ1 · · ·dλk.

For the clarity in presentation, we denote this value as I .

Consider the expansion of
(
A +
∑k

i=1 λi

)k

into monomial
terms. We have (41) at the top of the next page, where j
denotes how many λ’s are present, l1, . . . , lj are the subscripts
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Ti1,··· ,ir <

(
8

PT

)r

det−1[M ]i1,··· ,ir

(
1 − e−x

)R−r
r∑

j=0

BR+(R−r)x,x(j, r) [−Ei(−x)]r−j (39)

Pkl ≤
R∑

r=0

(
8

PT

)r
⎛
⎝ ∑

1≤i1<···<ir≤R

det −1[M ]i1,··· ,ir

⎞
⎠(1 − e−x

)R−r
r∑

j=0

BR+(R−k)x,x(j, r) [−Ei(−x)]r−j (40)

(
A +

k∑
i=1

λi

)k

=
k∑

j=0

⎛
⎝ ∑

1≤l1<···<lj≤k

k∑
i1=1

k−i1∑
i2=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)λi1
l1

λi2
l2
· · ·λij

lj
Ak−i1−···−ij

⎞
⎠ (41)

I =
k∑

j=0

∑
1≤l1<···<lj≤k

k∑
i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)I(j; l1, . . . , lj ; i1, . . . , ij) (42)

I(j; l1, . . . , lj; i1, . . . , ij) ≡
∫ ∞

x

· · ·
∫ ∞

x

λi1
l1

λi2
l2
· · ·λij

lj
Ak−i1−···−ij

e−λ1 · · · e−λk

λ1 · · ·λk
dλ1 · · · dλk (43)

I =
k∑

j=0

∑
1≤l1<···<lj≤k

k∑
i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)Ak−i1−···−ij [−Ei(−x)]k−j
j∏

m=1

Γ(im, x)

=
k∑

j=0

⎡
⎣
⎛
⎝ ∑

1≤l1<···<lj≤k

1

⎞
⎠
⎛
⎝ k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)Ak−i1−···−ij Γ(i1, x) · · ·Γ(ij , x)

⎞
⎠
⎤
⎦ [−Ei(−x)]k−j

=
k∑

j=0

⎡
⎣(k

j

) k∑
i1=1

· · ·
k−i1−···−ij−1∑

ij=1

(
k

i1

)
· · ·
(

k − i1 − · · · − ij−1

ij

)
Γ(i1, x) · · ·Γ(ij , x)Ak−i1−···−ij

⎤
⎦ [−Ei(−x)]k−j

≡
k∑

j=0

BA,x(j, k) [−Ei(−x)]k−j (44)

of the j λ’s that appear, and im ≥ 1 indicates that λlm is taken
to the imth power ( the summation should be∑

i1,...,ij≥1�
im≤k

,

which is equivalent to
∑k

i1=1

∑k−i1
i2=1 · · ·

∑k−i1−···−ij−1
ij=1 . If we

sum i1 first, then i2, etc. ), and finally

C(i1, . . . , ij) =
(

k

i1

)(
k − i1

i2

)
· · ·
(

k − i1 − · · · − ij−1

ij

)

counts how many times the term λi1
l1

λi2
l2
· · ·λij

lj
Ak−i1−···−ij

appears in the expansion.
Thus we have (42) and (43) at the top of this page. We

compute

I(j; l1, . . . , lj; i1, . . . , ij)

= Ak−i1−···−ij

(
j∏

m=1

∫ ∞

x

λim−1
lm

e−λlm dλlm

)

∏
i�=i1,...ij

∫ ∞

x

e−λi

λi
dλi

= Ak−i1−···−ij

(
j∏

m=1

Γ(im, x)

)
[−Ei(−x)]k−j .

Note that the result is independent of l1, . . . , lj . Finally adding
the terms up, we have (44) at the top of this page. Thus ends
the proof.
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