
Experiences with a High-Speed Network Adaptor:
A Software Perspective

Peter Druschel and Larry L. Peterson� Bruce S. Davie

Department of Computer Science Computer Networking Research Department
University of Arizona Bell Communications Research

Tucson, AZ 85721 Morristown, NJ 07963

Abstract

This paper describes our experiences, from a software per-
spective, with the OSIRIS network adaptor. It first identifies
the problems we encountered while programming OSIRIS

and optimizing network performance, and outlines how we
either addressed them in the software, or had to modify
the hardware. It then describes the opportunities provided
by OSIRIS that we were able to exploit in the host operat-
ing system (OS); opportunities that suggested techniques
for making the OS more effective in delivering network
data to application programs. The most novel of these
techniques, called application device channels, gives appli-
cation programs running in user space direct access to the
adaptor. The paper concludes with the lessons drawn from
this work, which we believe will benefit the designers of
future network adaptors.

1 Introduction

With the emergence of high-speed network facilities, sev-
eral research efforts are focusing on the design and im-
plementation of network adaptors [5, 2, 3, 16, 20]. This
paper takes the next step in the evolution of adaptors for
high-speed networks by reporting our experiences with one
particular adaptor—the OSIRIS ATM board built for the AU-
RORA Gigabit Testbed [4, 8]. We consider the network
adaptor from a software perspective, identifying the subtle
interactions between the adaptor and the operating system
software that drives it. Others have looked at this hard-
ware/software interaction as well [18, 6, 16]. In our case,�This work supported in part by National Science Foundation Grant
CCR-9102040 and ARPA Contract DABT63-91-C-0030.

the flexibility built into the OSIRIS board makes this inter-
action an especially interesting one to study.

The OSIRIS network adaptor was designed specifically to
support software experimentation. Therefore, only the most
critical, high-speed functions are implemented in hardware,
and even these are primarily implemented in programmable
logic. It consists of two mostly independent halves—send
and receive—each controlled by an Intel 80960 micropro-
cessor.

The adaptor board attaches to a TURBOchannel option slot
provided by DEC workstations. From the host’s perspec-
tive, the adaptor looks like a 128KB region of memory. A
combination of host software and code running in the on-
board microprocessors determine the detailed structure of
this memory. In general, the memory is used to pass buffer
descriptors between the host and the adaptor. Network data
is not buffered in the dual-port memory; it is tranferred
directly from/to main memory buffers using DMA.

In the transmit direction, the software running on the mi-
croprocessor writes commands to a DMA controller and an
ATM cell generator. The general paradigm is that the host
passes buffer descriptors to the microprocessor through the
dual-port RAM, and the microprocessor executes a segmen-
tation algorithm to determine the order in which cells are
sent. For example, the host could queue a number of packets
and the microprocessor could transmit one cell from each
in turn. The microprocessor has the capability to interrupt
the host.

In the receive direction, the microprocessor reads from a
FIFO the VCI and AAL information that is stripped from
cells as they are received. By examining this information,
and using other information from the host (such as a list
of reassembly buffers), the microprocessor determines the
appropriate host memory address at which the payload of
each received cell is to be stored. It then issues commands to
another DMA controller; typically one command is issued
for each ATM cell received. As part of the reassembly
algorithm, the microprocessor decides when it is necessary
to interrupt the host.

The important point to understand from this brief descrip-



tion is that software running on the two 80960s controls the
send/receive functionality of the adaptor, and perhaps just
as importantly, this code effectively defines the software
interface between the host and the adaptor. The other rel-
evant piece of software, of course, is the OS running on
the host. In our case, it is the Mach 3.0 operating sys-
tem [1], retrofitted with a network subsystem based on the
x-kernel [9, 12]. For the purpose of this paper, there are
two relevant things to note about the OS. First, because
the x-kernel supports arbitrary protocols, our approach is
protocol-independent; it is not tailored to TCP/IP. Second,
because Mach is a microkernel-based system and the x-
kernel allows the protocol graph to span multiple protection
domains, our approach has to allow for the possibility that
network data traverses multiple protection domains; it is not
restricted to kernel-resident protocols.

This paper makes two contributions. First, it reports our
experiences programming the OSIRIS adaptor to achieve
good host-to-host performance. It includes an overview of
the problems we encountered, and how we either addressed
them in the software, or had to modify the hardware. This
discussion is given in Section 2. Second, it describes the
opportunities provided by the board that we were able to
exploit in the OS; opportunities that facilitated new tech-
niques for making the OS more effective in delivering net-
work data to application programs. The most novel of these
techniques, called application device channels, gives appli-
cation programs running in user space direct access to the
adaptor. This discussion is given in Section 3. Section 4
then presents the results of a performance study.

Throughout both Sections 2 and 3 we highlight those is-
sues (lessons) that are specific to an ATM adaptor, and those
that we believe to be applicable to the design of high-speed
network adaptors in general. These lessons are summarized
in Section 5.

2 Basic Functionality

This section describes our experiences programming the
OSIRIS board, highlighting the problems it imposed on the
software, and how we addressed them. For the most part,
this discussion is limited to how we implemented the basic
host-to-host functionality, both correctly, and with the high-
est possible performance; the next section describes how we
exploited certain features of the board to implement novel
OS techniques that turn this host-to-host performance into
equally good user-to-user performance.

2.1 Host/Board Communication

We begin by defining the software interface between the
host’s device driver and the processors on the OSIRIS board.
The host CPU communicates with the on-board processors

through shared data structures in the dual-port memory. In
addition, each on-board processor can issue an interrupt to
alert the host CPU of asynchronous events. The design of
the shared data structures and the discipline for using inter-
rupts was guided by the goals of minimizing packet delivery
latency and host CPU load, and of achieving host-to-host
throughput close to the capacity of the network link. Partic-
ular attention was paid to (1) minimizing the number of load
and store operations required to communicate with the on-
board processors (accesses to the dual port-memory across
the TURBOchannel are expensive), (2) avoiding delays due
to lock contention while accessing shared data structures in
the dual-port memory, and (3) minimizing the number of
interrupts, which place a significant load on the host CPU.

2.1.1 Shared Data Structure

As with any shared data structure, measures must be taken to
ensure consistency in the presence of concurrent accesses.
The dual-port memory itself guarantees atomicity of indi-
vidual 32bit load and store operations only. Each half of the
board provides a test-and-set register that can be used to im-
plement a simple spin-lock. The intended use is to enforce
mutually exclusive access to the dual-port memory by man-
dating that a processor must first acquire the corresponding
lock. This approach allows arbitrarily complex shared data
structures, but it restricts concurrency between host CPU
and on-board processors. As a result, both packet delivery
latency and CPU load can suffer due to lock contention.

To avoid this problem, we use simple lock-free data struc-
tures that rely only on the atomicity of load and store instruc-
tions. The basic data structure used in the dual-port memory
is a simple, one-reader-one-writer FIFO queue used to pass
buffers between the host and the adaptor. The queue con-
sists of an array of buffer descriptors, a head pointer, and a
tail pointer. The head pointer is only modified by the writer
and the tail pointer is only modified by the reader. The
processors determine the status of the queue by comparing
the head and tail pointers, as follows:head = tail , queue is empty(head+ 1) = tail mod size , queue is full
The simplicity of these lock-free queues maximizes con-
current access to the dual-port memory, and minimizes the
number of load and store operations required to communi-
cate.

A single queue is used for communication between the
host CPU and the transmit processor. Each queue ele-
ment describes a single buffer in main memory by its
physical address and length. To queue a buffer for trans-
mission, the host CPU performs the following actions
(xmitQueue[head] refers to the buffer descriptor re-
ferred to by the head pointer).



� wait until the transmit queue is not full� queue the buffer using xmitQueue[head]� increment the head pointer (modulo array size)

The transmit processor continuouslyperforms the following
actions.� wait until the transmit queue is not empty� read the descriptor at xmitQueue[tail]� transmit the buffer� increment the tail pointer (modulo array size)

Two queues are required for communication between the
host and the receive processor. The first queue is used to
supply buffers to the receive processor for storage of incom-
ing PDUs;1 the second queue holds filled buffers waiting
for processing by the host. Initially, the host fills the free
buffer queue. When a PDU arrives, the receive processor
removes a buffer from this queue, and stores incoming data
into the buffer. When the buffer is filled, or the end of
the incoming PDU is encountered, the processor adds the
buffer to the receive queue. If the receive queue was pre-
viously empty, an interrupt is asserted to notify the host of
the transition of the receive queue from the empty state to
a non-empty state. The host’s interrupt handler schedules
a thread that repeatedly performs the following steps until
the receive queue is found empty:� remove a buffer from the receive queue� add a free buffer to the free queue� initiate processing of the received data

2.1.2 Interrupts

Handling a host interrupt asserted by the OSIRIS board takes
approximately 75�s in Mach on a DecStation 5000/200. For
comparison, the service time for a received UDP/IP PDU is200�s; this number includes protocol processing and driver
overhead, but not interrupt handling. Given this high cost,
minimizing the number of host interrupts during network
communication is important to overall system performance.

In our scheme, the completion of a PDU transmission,
which is traditionally signalled to the host using an interrupt,
is instead indicated by the advance of the transmit queue’s
tail pointer. The driver checks for this condition as part of
other driver activity—for example, while queuing another
PDU—and takes the appropriate action. Interrupts are used
only in the relatively infrequent event of a full transmit
queue. In this case, the host suspends its transmit activity,
and the transmit processor asserts an interrupt as soon as
the queue reaches the half empty state.

In the receiving direction, an interrupt is only asserted
once for a burst of incoming PDUs. More specifically,1For the purpose of this paper, we use the term protocoldata unit (PDU)
to denote a packet processed by a protocol, where the protocol in question
is generally given by the context. In this case, the PDU corresponds to the
unit of data sent between device drivers.

whenever a buffer is queued before the host has dequeued
the previous buffer, no interrupt is asserted. This approach
achieves both low packet delivery latency for individually
arriving packets, and high throughput for incoming packet
trains. Note that in situations where high throughput is re-
quired (i.e. when packets arrive closely spaced), the number
of interrupts is much lower than the traditional one-per-
PDU.

2.2 Physical Buffer Fragmentation

The OSIRIS board relies on direct memory access (DMA) for
the actual transfer of network data between main memory
and network adaptor. The unit of data exchanged between
host driver software and on-board processors is a physical
buffer—a set of memory locations with contiguous physical
addresses. The descriptors used in the transmit and receive
queues contain the physical address and the length of a
buffer. The on-board processors initiate DMA transfers
based on the physical address of the buffers.

The per-PDU processing cost in the host driver increases
with the number of physical buffers used to hold the PDU.
Thus, one would like to minimize the number of physi-
cal buffers occupied by a single PDU. However, this is
made difficult by the fact that the contiguous virtual mem-
ory pages used to store a PDU are generally not contiguous
in the physical address space. The reason for this lies at
the heart of any page-based virtual memory system—the
ability to map non-contiguous physical pages to contiguous
virtual memory addresses, in order to avoid main memory
fragmentation.

Virtual 
Address Space

Address Space
Physical 

Header Body

Figure 1: PDU Buffer Fragmentation

Figure 1 depicts a PDU passed to the OSIRIS driver for
transmission. The PDU consists of two parts—a header
portion, which contains protocol headers, and the data por-
tion. The header portion usually contributes one physical
buffer. The data portion is typically not aligned with page
boundaries, and may thus occupy d(message data size �1)=page sizee + 1 pages. When the physical pages oc-
cupied by the data portion are not contiguous, each page
contributes a physical buffer. In practice, a PDU with a data
portion of length n pages usually occupies n + 2 physical
buffers.



Message fragmentation at the protocol level can aggra-
vate this proliferation of physical buffers. The problem is
that unless the fragment boundaries in the original message
coincide with page boundaries, each fragment may gener-
ate excess physical buffers in the driver. As an example of
an extreme case, assume that a contiguous 16KB applica-
tion message is transmitted using UDP/IP with a maximal
transfer unit (MTU) of 4KB,2 which is also the system’s
page size. The inclusion of the IP header reduces the data
space available in each fragment to slightly less than 4KB.
Consequently, the data portions of most fragments are not
page-aligned, and occupy two physical pages. In addition,
the IP header attached to each fragment occupies a separate
page. As a result, the transmission of a single, 16KB ap-
plication message can result in the processing of up to 14
physical buffers in the driver. This compounding effect of
IP fragmentation and buffer fragmentation can be avoided
by ensuring page alignment of application messages, and
by choosing an MTU size that is a multiple of the page
size, plus the IP header size. This ensures that fragment
boundaries align with page boundaries.

A similar problem exists on the receive side. Recall that
the host driver allocates receive buffers, and queues these
buffers for use by the receive processor. Most operating
systems do not support the dynamic allocation of physi-
cally contiguous pages. In this case, the size of the receive
buffers is restricted to the system’s memory page size, since
it represents the largest unit of physically contiguous mem-
ory that the driver can allocate. This limit on the size of
receive buffers causes the fragmentation of all incoming
network packets larger than the page size.

The proliferation of physical buffers is a potential source
of performance loss in the OSIRIS driver. A general so-
lution to this problem would require the use of physically
contiguous memory for the storage of network data. In tra-
ditional operating systems, where network data is copied
between application memory and kernel buffers, this can be
achieved by statically allocating contiguous physical pages
to the fixed set of kernel buffers. Unfortunately, this ap-
proach does not readily generalize to a copy-free data path
[9], since applications generally cannot be allowed to hold
buffers from a statically allocated pool. We are currently
experimenting with OS support for dynamic allocation of
contiguous physical pages on a best-effort basis.

Several modern workstation, such as the IBM RISC Sys-
tem/6000 and DEC 3000 AXP Systems provide support for
virtual address DMA through the use of a hardware virtual-
to-physical translation buffer (scatter/gather map). Host
driver software must set up the map to contain appropriate
mappings for all the fragments of a buffer before a DMA
transfer. When data is transferred directly from and to ap-2Keep in mind that the OSIRIS driver, not the hardware, defines the
MTU. We are just using 4KB as an example.

plication buffers, it may be necessary to update the map for
each individual message. As a result, physical buffer frag-
mentation is a potential performance concern even when
virtual DMA is available.

2.3 Cache Coherence

The cache subsystem of the host we were originally using—
the DECstation 5000/200—does not guarantee a coherent
view of memory contents after a DMA transfer into main
memory. That is, CPU reads from cached main memory lo-
cations that were overwritten by a DMA transfer may return
stale data. To avoid this problem, the operating system nor-
mally executes explicit instructions to invalidate any cached
contents of memory locations that were just overwritten by
a DMA transfer. Unfortunately, partial invalidations of the
data cache take approximately one CPU cycle per mem-
ory word (32bits), plus the cost of subsequent cache misses
caused by the invalidation of unrelated cached data.3 This
cost has a significant impact on the attainable host-to-host
throughput, as quantified in Section 4 (Figure 2).

The key idea for avoiding this cost is to take a lazy
approach to cache invalidation, and to rely on network
transmission error handling mechanisms for detecting errors
caused by stale cache data. When a data error is detected
at some stage during the processing of a received message,
the corresponding cache locations are invalidated, and the
message is re-evaluated before it is considered in error. The
feasibility of this approach depends on the following con-
ditions.

1. The underlying network is not reliable, and therefore
mechanisms for detecting or tolerating transmission
errors are already in place.

2. The rate of errors introduced by stale cache data is low
enough for the lazy approach to be effective.

3. Revealing stale data does not pose a security problem.

While the first condition is true for most networks, the
second condition deserves some careful consideration. The
OSIRIS driver employs a free buffer queue and a receive
queue with a length of 64 buffers each, and a buffer size
of 16KB. This implies that once a receive buffer is allo-
cated and queued on the free buffer queue, normally 63
other buffers are processed by the host until that buffers
re-appears at the top of the received buffer queue. In order
to become stale, a cached data word from a particular buffer
has to remain in the cache while 63 other receive buffers
are being processed. During this time, the CPU typically3The DECstation also supports a fast instruction that swaps the data
and instruction cache, which amounts to an invalidation of the entire cache
contents. However, the high cost of subsequent cache misses makes this
not an attractive solution.



reads the portion of the input buffers occupied by received
data, as well as other data relating to protocol processing,
application processing and other activities unrelated to the
reception of data. These accesses are likely to evict all
previously cached data from the DECstation’s 64KB data
cache.

Experimentally, we have seen no evidence of stale data
at all while running our test applications. This suggests that
the error rate should be low enough for this optimization
to be very effective. It should be noted that lazy cache
invalidation is not likely to scale to machines with much
larger caches. Fortunately, hardware designers have recog-
nized the high cost of software cache invalidation, and tend
to provide support for cache coherence on these machines.
For example, the DEC 3000 AXP workstation data cache is
updated during DMA transfers into main memory.

The third condition is satisfied whenever reliable proto-
cols are used that detect data errors before the data is passed
to an unprivileged application. However, with unreliable
protocols, an application could access stale data from a pre-
vious use of the receive buffer, potentially violating the
operating system’s security policy. This problem can be
solved by ensuring the reuse of receive buffers on the same
data stream. In this way, stale data read by an application is
guaranteed to originate from an earlier message received by
that application, thus eliminating security problems. The
reuse of receive buffers on the same data stream has other
advantages, as described in Section 3.1.

2.4 Page Wiring

Whenever the address of a buffer is passed to the OSIRIS

on-board processors for use in DMA transfers, the corre-
sponding pages must be wired. Wiring, also referred to as
pinning, refers to the marking of a page as being non-eligible
for replacement by the operating system’s paging daemon.
Since changing the wiring status of a page occurs in the
driver’s critical path, the performance of this operation is of
concern.

Our initial use of the Mach kernel’s standard service for
page wiring resulted in surprisingly high overhead. One
problem is that Mach’s implementation of page wiring pro-
vides stronger guarantees than are actually needed for DMA
transfers. In particular, it prevents not only replacement of
the page itself, but also of any pages containing page table
entries that might be needed during an address translation
for that page. We now use low-level functionality provided
by the Mach kernel to prevent replacement of pages with
acceptable performance.

2.5 DMA Length

The length of DMA transactions has a significant effect
on performance. As mentioned above, DMA usually takes

place one ATM cell at a time. This provides maximum
flexibility in the transmit direction (e.g. to interleave sev-
eral outgoing PDUs) and avoids the need for a reassembly
buffer in the receive direction. However, the initial deci-
sion to fix all DMA transactions at exactly one cell payload
(44 bytes, because of AAL overhead) had some undesirable
performance impact, for two reasons: (1) the DMA over-
head for the TURBOchannel is high enough to make transfers
as short as 44 bytes rather inefficient, and (2) fixed-length
DMA, especially when the length is not a power of two,
causes a range of problems at the edges of buffers. We now
discuss each of these problems, in turn.

2.5.1 DMA Overhead

As reported previously [8], the maximum data transfer
speed that can be sustained with 44 byte transfers over the
TURBOchannel on a DECstation 5000/200 is 367 Mbps in
the transmit direction and 463 Mbps in the receive direction.
These figures, which have been measured for brief periods
on the actual hardware, can be derived simply by consid-
ering the minimal overhead for DMA transactions in each
direction—8 cycles for writes, 13 cycles for reads. Thus,
for example, the maximum throughput for transmission is
11/(11+13)�800 = 367 Mbps.

Clearly, it would be advantageous to increase the length
of DMA transfers. In the transmit direction, the only penalty
for increasing DMA length is an increase in the granular-
ity of multiplexing. We argued previously that fine-grained
multiplexing is advantageous for latency and switch perfor-
mance reasons [7]. However, when the adaptor is used in a
mode where the goal is to maximize throughput to a single
application, neither of these reasons is relevant. It is there-
fore reasonable, and straightforward, to modify the DMA
controller so that it can perform DMA transactions longer
than one ATM cell. Note that if we allowed transfers of 88
bytes at a time, the maximum rate that data could be moved
across the bus would be 22/(22+13)�800 = 503 Mbps. This
is close to the 516 Mbps data bandwidth available in a 622
Mbps SONET/ATM link when 44 byte cell payloads are
used.

In the receive direction, the primary advantage in doing
single-cell DMAs is that it removes the need for a reassem-
bly buffer on the adaptor; cells can be placed directly in
host memory as they arrive. Not only does this reduce the
hardware complexity of the interface, but it also reduces the
likelihood that inadequate reassembly space is available.

In some circumstances, however, it is possible to preserve
the advantages of not having a reassembly buffer on the
adaptor while performing DMAs longer than one cell. The
quantity that we really wish to optimize is the user-to-user
throughput for a single application. In this case, as long
as cells arrive in order, most successively received cells
will contain data that is to be stored in contiguous regions



of host memory, the only exception being at the end of a
buffer. Since there is a small amount of FIFO buffering of
cells on the adaptor, the microprocessor can look at two cell
headers before deciding what to do with their associated
payloads. If the header information suggests that the two
payloads should be stored contiguously, then a single, 88-
byte DMA can be initiated.

We have implemented this change to the DMA controller
logic; the maximum throughput of the hardware is now
22/(22+8)�800 = 587 Mbps—more than the payload of
an OC-12 channel. Note that the biggest gain is achieved
just by going to double-cell DMAs, since we have already
driven the overhead down from 42% to 26%. With any
further increase in DMA length the returns diminish. The
measured performance of doing 88-byte DMAs is reported
in Section 4.

2.5.2 DMA Length Variation

So far we have considered DMA transactions that are multi-
ples of the ATM cell payload. The decision to restrict DMA
length was made to simplify the DMA controller design,
since the logic for this component is by far the most com-
plex part of OSIRIS. It initially seemed reasonable to assume
that data could be passed between the host and the adaptor
in contiguous buffers of arbitrary size, and that only the last
cell of a buffer would need to be partially filled. However,
there are several drawbacks to this approach.

The crux of the problem is that, for reasons of efficiency,
the host should not simply pass contiguous buffers to the
adaptor, but it should pass complete PDUs. Since PDUs are
generally composed of a number of discontiguous buffers,
and the size of the buffers is rarely a multiple of the ATM
payload size, it becomes necessary to send partially filled
cells in the middle of PDUs. Not only is this inelegant,
but it also makes interoperating with other systems impos-
sible and adds sufficient complexity to the microprocessor
reassembly code that it becomes difficult to meet the tight
instruction budget. The consequences for the reassembly
code complexity are even worse when partially filled cells
are received out-of-order, as discussed in Section 2.6.

Another problem arises when PDU sizes are multiples
of the page size, as is the case for network file system
(NFS) traffic. In the transmit direction, the last cell of a
page contains a few bytes of the next physical page. This
is almost certainly data that does not belong to the sending
application, so this may be considered a security risk. In the
receive direction, the only legitimate option is to stop filling
the page when the next cell would cause the page-boundary
to be crossed, and start on a new buffer. However, this is
likely to break many higher-layer services that expect to see
full pages (e.g. NFS).

The ideal solution would be to implement a DMA con-
troller that could handle arbitrary length DMA transactions.

The main drawback to this approach in our case was the
hardware complexity, which may have exhausted the re-
sources in the available programmable logic. The problem
could also be dealt with by some amount of copying by the
host, but this would adversely affect performance. Fortu-
nately, a solution that avoids copying but which is simpler
to implement than arbitrary-length DMA was found to be
acceptable. It turns out that, in the x-kernel/Mach environ-
ment, it is straightforward to arrange for all the buffers of a
PDU (except the last) to be aligned in such a way that they
end at page boundaries.

Thus, the DMA controller does not need to perform arbi-
trary length DMA, as long as it can avoid doingDMA across
page boundaries. We implemented the following modifica-
tion to the DMA logic: if the address handed to the DMA
controller by the microprocessor is within 44 bytes of a page
boundary, the DMA will stop when it reaches the boundary.
The DMA controller then waits for another address from
the microprocessor, which it uses to DMA enough bytes to
fill the remainder of the ATM cell. Typically, this second
address will be the start address of the next buffer in the
PDU.

It is noteworthy that the cause of the problem here was a
mismatch of abstractions between hardware and software.
The hardware designer’s abstraction was that the host would
pass contiguous buffers to the adaptor. For satisfactory
software performance, however, a better abstraction was to
pass a PDU consisting of a chain of discontiguous buffers.

The clear lesson here is the importance of being able to
design adaptor hardware in concert with the host software
that will drive it. The original scheme of single-length
DMA might have been workable if all the host software
were designed to fit that model. However, it is clearly
unreasonable to design an entire operating system to fit in
with the quirks of a network adaptor. The combination
of programmable logic and software control in the OSIRIS

adaptor enabled it to be modified to suit the requirements of
the host software.

2.6 Cell Misordering

One of the features of the OSIRIS interface is that it uses
striping to achieve a network speed of 622 Mbps. By this
we mean that four 155 Mbps channels are grouped together
and treated as a single logical channel, with data striped
at the cell level. Striping is a well-established technique
that enables an end user to achieve a network bandwidth in
excess of that which can readily be supported in the network
itself.

The principal drawback of striping in an ATM network is
that it has the potential to introduce misordering, which is
explicitly prohibited in the ATM standard.4 There are three4Note that the standards do not address striping.



main causes of misordering: (1) different delays experi-
enced by each physical link because of different physical
path lengths; (2) different delays introduced into the physi-
cal links by multiplexing equipment in the network; and (3)
different queuing delays experienced by cells on different
links as they pass through distinct ports on the switches in
the network.

The first cause can be eliminated by multiplexing all
physical links onto a single fiber, as is done in AURORA. It
is also possible to eliminate the third cause by adding some
complexity to the switch; the switch must coordinate the
different ports to keep all queue lengths equal. However,
adding this complexity has the undesirable effect of negating
the advantage of striping—to provide higher bandwidth to
those (presumably few) users who need it, without forcing
an upgrade to the network. The second cause came as a
surprise, and it was not within our power to eliminate it.
For these reasons, we decided to live with the misordering.

The misordering introduced by these factors is not arbi-
trary; cells transmitted on a given physical link will arrive
in order relative to each other, but may be delayed relative
to cells sent on other links. In our case, with four links, the
first and fifth cells of a PDU will travel on the same physical
link, and the fifth will always arrive after the first. However,
the second, third and fourth cells may arrive ahead of the
first. We refer to this limited class of misordering as skew,
and we identified two strategies for coping with it.

The first strategy involves putting a sequence number in
the AAL header of each cell. Since the OSIRIS design allows
each cell to be individually placed at a specific location
in host memory, the only change is to the 80960 code to
handle out-of-order arrivals. The sequence number is used
to determine the host memory address at which each cell is to
be stored. This approach has several drawbacks, however.
First, if skew is introduced by different queuing delays in
the switches, it is essentially unbounded and thus we can
never guarantee that the sequence number space is large
enough. Second, the possibility that the first cell of a PDU
will not be the first one received adds significant complexity
to the reassembly code.

The second approach takes advantage of the fact that this
is not arbitrary misordering. Since cells on a given physical
link arrive in order, we can view the reassembly of a PDU
as four concurrent reassemblies, where the four “packets”
happen to be interleaved with each other in memory. In
this case, we can use AAL5-style reassembly on each of
the four packets and when all four packets are complete, as
indicated by the framing bit in the AAL5 header, we can
declare the reassembly of the PDU to be complete. There is
a small problem if a PDU is less than 4 cells long, since we
would not receive four framing bits in this case. We could
deal with this using one additional framing bit in the ATM
header to indicate the very last cell of a PDU. The only
real drawback of this approach, aside from its impact on

standards, is that it was difficult to implement in the small
instruction budget available in the 80960. Since the goal of
the design was to permit experimentation with algorithms
that would ultimately be implemented in hardware, we feel
this is not a fatal flaw.

Whatever means are used to deal with skew, it does have
a serious disadvantage. As discussed in Section 2.5.1, the
performance of the interface can be significantly enhanced
by combining successively received cell payloads on the
board and transferring the combined data to the host as a
single, longer DMA. Once skew is introduced, the proba-
bility that two successive cells will be received in order is
greatly reduced.

2.7 DMA versus PIO

One of the most lively debates in network adaptor design is
over the relative merits of DMA and programmed I/O (PIO)
for data movement between the host and the adaptor. Both
the literature on the subject (e.g. [16, 2, 6]) and our own
experience have led us to the conclusion that the prefer-
able technique is highly machine-dependent. In the case of
the DEC workstations we used, the low throughput achiev-
able using PIO across the TURBOchannel ensures that, with
well designed software (i.e. no unnecessary copies) DMA
is preferable.

We argue that the best way to compare DMA performance
versus PIO is to determine how fast an application program
can access the data in each case. For example, when data
is DMAed into memory on a DECstation 5000/200, it will
not be in the cache; an additional read of the main memory
is necessary when the application accesses the data. On the
DECstation, reading data into the cache causes a dramatic
decrease in throughput from the pure DMA results, but
the throughput remains above that which can be achieved
by PIO simply because of the high performance penalty
for word-sized reads across the TURBOchannel. On DEC’s
Alpha-based machines, a greatly improved memory system
with a crossbar switch that connects TURBOchannel, main
memory and cache allows cache/memory transactions to
occur concurrently with DMA transfers on the TURBOchan-
nel. In addition, DMA writes to main memory update the
second level cache. On these machines, applications are
able to access the data at the rate of and concurrent with its
DMA transfer into main memory (see Section 4).

In the PIO case, with carefully designed software, data
can be read from the adaptor and written directly to the ap-
plication’s buffer in main memory, leaving the data in the
cache [13, 6]. If the application reads the data soon after the
PIO transfer, the data may still be in the cache. According
to one study, the PIO transfer from adaptor to application
buffer must be delayed until the application is scheduled for
execution, in order to ensure sufficient proximity of data ac-
cesses for the data to remain cached under realistic system



load conditions [15]. Loading data into the cache too early
is not only ineffective, but can actually decrease overall
system performance by evicting live data from the cache.
Unfortunately, delaying the transfer of data from adaptor
to main memory until the receiving application is sched-
uled for execution requires a substantial amount of buffer
space in the adaptor. With DMA, instead of using dedi-
cated memory resources on the adapter, incoming data can
be buffered in main memory. Using main memory to buffer
network data has the advantage that a single pool of mem-
ory resources is dynamically shared among applications,
operating system, and network subsystem.

3 New OS Mechanisms

This section introduces two novel OS mechanisms facil-
itated by the OSIRIS board—fast buffers (fbufs) and ap-
plication device channels (ADCs)—that are designed to
improve user-to-user throughput and latency, respectively.
Whereas the previous section focuses on how we achieved
good host-to-host performance, the mechanisms discussed
in this section address the problem of delivering equally
strong performance to application programs.

3.1 Fast Buffers

One of the key problems faced by the operating system,
especially a microkernel-based system in which device
drivers, network protocols, and application software might
all reside in different protection domains, is how to move
data across domain boundaries without sacrificing the band-
width delivered by the network. The fbuf mechanism is
designed to address this problem—it is a high-bandwidth
cross-domain buffer transfer and management facility.

The fbuf mechanism itself is simple to understand. It
combines two well-known techniques for transferring data
across protection domains: page remapping and shared
memory. It is equally correct to view fbufs as using shared
memory (where page remapping is used to dynamically
change the set of pages shared among a set of domains), or
using page remapping (where pages that have been mapped
into a set of domains are cached for use by future transfers).
Since fbufs are described in detail elsewhere [10], this sec-
tion concentrates on the OSIRIS features that we were able
to exploit.

The effectiveness of fbufs depends on the ability of the
adaptor to make an early demultiplexing decision. That is,
the “data path” through the system that the incoming packet
is going to traverse must be determined by the adaptor so
that it can be stored in an appropriate buffer; one that is
mapped into the right set of domains. We say that an fbuf
that is already mapped into a particular set of domains is
cached. Being able to use a cached fbuf, as opposed to

an uncached fbuf that is not mapped into any domains, can
mean an order of magnitude difference in how fast the data
can be transferred across a domain boundary.

In the case of the OSIRIS adaptor, the device driver em-
ploys the following strategy. It maintains queues of pre-
allocated cached fbufs for the 16 most recently used data
paths, plus a single queue of preallocated uncached fbufs.
The adaptor performs reassembly of incoming packets by
storing the ATM cell payloads into a buffer in main mem-
ory using DMA. When the adaptor needs a new reassembly
buffer, it checks to see if there is a preallocated fbuf for the
virtual circuit identifier (VCI) of the incoming packet. If
not, it uses a buffer from the queue of uncached fbufs.

One of the interesting aspects of this scheme is how we
use VCIs. The x-kernel provides a mechanism for estab-
lishing a path through the protocol graph, where a path is
given by the sequence of sessions that will process incoming
and outgoingmessages on behalf of a particular application-
level connection. Each path is is then bound to an unused
VCI by the device driver. This means that we treat VCIs as
a fairly abundant resource; each of the potentially hundreds
of paths (connections) on a given host is bound to a VCI for
the duration of the path (connection). This approach is not
compatible with a regime that treats VCIs as a scarce re-
source, and in particular, a resource that the network charges
for.

Early demultiplexing has advantages beyond that of en-
abling efficient delivery of data to applications. It is also
the basis for the appropriate processing of prioritized net-
work traffic under high receiver load [11]. The threads that
de-queue buffers from the various receive queues may be
assigned priorities corresponding to the traffic priorities of
the network stream they handle. During phases of receiver
overload, lower-priority receive queues will become full
before higher priority ones, allowing the adaptor board to
drop the lower priority packets before they have consumed
any processing resources on the host.

3.2 Application Device Channels

Fbufs take advantage of the OSIRIS demultiplexing capa-
bility to avoid costs associated with the transfer of data
across protection domain boundaries on the end host. These
costs would otherwise limit the attainable application-
to-application throughput. Application device channels
(ADCs) take the on-board demultiplexing approach a sig-
nificant step further. An ADC gives an application program
restricted but direct access to the OSIRIS network adaptor,
bypassing the operating system kernel. This approach re-
moves protection domain boundaries from both the control
and data path to the network adaptor, resulting in minimal
application-to-application message latencies.

ADCs are implemented as follows. The transmit dual-
port memory is divided into sixteen 4KB pages, each of



which contains a separate transmit queue. The receive
dual-port memory is similarly partitioned so that each page
contains a distinct free buffer queue and receive queue. One
transmit queue, and one pair of free/receive queues are used
by the operating system in the usual way. The remaining
pages are grouped in pairs of one transmit and one receive
page.

When an application opens a network connection, the op-
erating system may decide to map one pair of pages into the
application’s address space to form an application device
channel. Linked with the application is an ADC channel
driver, which performs essentially the same functions as the
in-kernel OSIRIS device driver. Also linked with the appli-
cation is a replicated implementation of the network pro-
tocol stack. The technology of application-linked network
protocols has been demonstrated elsewhere in the literature
[19, 14], and is also supported by the x-kernel.

The operating system assigns a set of VCIs, a priority,
and a list of physical pages to the ADC. The receive pro-
cessor queues incoming PDUs on the receive queue of an
ADC if the VCI of the PDU is in the set of VCIs assigned
to that ADC. The priority is used by the transmit processor
to determine the order of transmissions from the various
ADCs’ transmit queues. The list of physical pages is used
to maintain proper memory access protection; it determines
which pages the application can legally use as receive and
transmit buffers. When an application queues a buffer with
an unauthorized address, the on-board processor asserts an
interrupt, and the operating system in turn raises an access
violation exception in the offending application process.
Host interrupts are always fielded by the kernel’s interrupt
handler. If the interrupt indicates the transition of an ADC’s
receive queue from the empty to a non-empty state, the in-
terrupt handler directly signals a thread in the ADC channel
driver, as described in Section 2.1.2.

At first glance, ADCs may appear similar to the mapped
device drivers used in Mach [17] and other microkernel-
based systems. In these systems, the user-level UNIX server
is granted direct access to, and control of, the network de-
vice. However, application device channels are different
from mapped device drivers in two important ways. First,
the OS kernel remains in control of the device in the case
of ADCs; only certain kinds of access are granted to the ap-
plication domain. Second, the device can be fairly shared
among and directly accessed by a number of untrusted ap-
plications; the device is not mapped into a single domain, as
is the case with mapped device drivers. That is, the device
is shared by multiple end-user domains, rather than a single
network server domain.

The way in which ADCs allow applications direct access
to the network adaptor is analogous to the way an appli-
cation is allowed direct access to the CPU and to main
memory. The operating system restricts the use of certain
CPU instructions, and permits access to only a subset of

main memory in order to remain in control of the machine’s
resources. The OS kernel itself is normally only involved in
scheduling resources, as well as initialization and finaliza-
tion of program execution. In many distributed applications,
such as multimedia, network I/O is a frequent and common
component of program execution. ADCs recognize this
and allow the operating system kernel to be bypassed in the
common case of network data delivery. The OS need only
be involved in connection establishment and termination.

4 Performance

This section reports on several experiments designed to
evaluate the network performance achieved with the OSIRIS

board, and the impact of various optimizations described in
earlier sections. All presented results refer to message ex-
changes between test programs linked into the kernel. For
user-to-user performance using application device channels
(ADCs), the measured results were within the error margins
of those obtained in the kernel-to-kernel case on an other-
wise unloaded system. This is significant, since it implies
that there is no penalty for crossing the protection domain
boundary between OS kernel and unprivileged user pro-
cesses. The effectiveness of fbufs, independent of ADCs,
is reported elsewhere [10].

Machine Protocol Message size (bytes)
DEC model 1 1024 2048 4096
5000/200 ATM 353 417 486 778

UDP/IP 598 659 725 1011
3000/600 ATM 154 215 283 449

UDP/IP 316 376 446 619

Table 1: Round-Trip Latencies (�s)

Throughout this section, we report results obtained on
two generations of workstations: the DECStation 5000/200
(25Mhz MIPS R3000), and the DEC 3000/600 (175MHz
Alpha). Table 1 shows the round-trip latencies achieved be-
tween a pair of workstations connected by a pair of OSIRIS

boards linked back-to-back. The rows labeled “ATM” refer
to the round-trip latency of PDUs exchanged between test
programs configured directly on top of the OSIRIS device
driver. In the “UDP/IP” case, round-trip latency was mea-
sured between two test programs configured on top of the
UDP/IP protocol stack5. IP was configured to use an MTU
of 16KB, and UDP checksumming was turned off. The
measured latency numbers for 1 byte messages are com-
parable to—and in fact, a bit better than—those obtained5Our otherwise standard implementationsof IP and UDP were modified
to support message sizes large than 64KB.



when using the machines’ Ethernet adaptors under other-
wise identical conditions. This is a reassuring result, since
it demonstrates that the greater complexity of the OSIRIS

adaptor did not degrade the latency of short messages.

050100150200250300350400
1 2 4 8 16 32 64 128 256

Throughput in Mbps
Message size in KBytesdouble cell DMA 33 3 3 3 3 3 3 3 3single cell DMA ++ + + + + + + + +single cell DMA, cache invalidated 22 2 2 2 2 2 2 2 2

Figure 2: DEC 5000/200 UDP/IP/OSIRIS Receive Side
Throughput

The next set of measurements was designed to evaluate
the network performance of the receiving host in isolation.
For this purpose, the receiver processor of the OSIRIS board
was programmed to generate fictitious PDUs as fast as the
receiving host could absorb them. Figure 2 shows the mea-
sured data throughput achieved on a DEC 5000/200 with
the UDP/IP protocol stack, where the IP MTU was set to 16
KB. The graphs depict results measured with DMA transfer
sizes of one and two cell payloads, and with cache invali-
dation in the OSIRIS driver.

We make the following observations. First, the maximal
throughput achieved is 379 Mbps with double cell DMA,
340 Mbps with single cell DMA, and 250 Mbps with single
cell DMA when the data cache is pessimistically invali-
dated after each DMA transfer. The last number shows the
significant impact of cache invalidations on throughput.

In the DECStation 5000/200, all memory transactions oc-
cupy the TURBOchannel and no part of a DMA transaction
can overlap with the CPU accessing main memory. Thus,
memory writes and cache fills that result from CPU activ-
ity reduce DMA performance. Conversely, DMA traffic
increases the average memory access latency experienced
by the CPU. The combined effect of DMA overhead and
main memory contention result in a maximum throughput
rate of 340 Mbps in the receive direction. Note that in this
experiment, network data is never accessed by the CPU. In
the case where the data is read by the CPU (e.g., to compute
the UDP checksum), the maximal throughput decreases to
80 Mbps, due to the limited memory bandwidth on this

0100200300400500
1 2 4 8 16 32 64 128 256

Throughput in Mbps
Message size in KBytesdouble cell DMA 33 3 3 3 3 3 3 3 3double cell DMA, UDP-CS ++ + + + + + + + +single cell DMA 22 2 2 2 2 2 2 2 2single cell DMA, UDP-CS �� � � � � � � � �

Figure 3: DEC 3000/600 UDP/IP/OSIRIS Receive Side
Throughput

machine.

Figure 3 shows the corresponding results obtained using
DEC 3000/600 workstations. This machine has a greatly
improved memory system. A buffered crossbar allows
DMA transactions and cache fills/cache write-backs to pro-
ceed concurrently, and hardware ensures cache coherence
with respect to DMA. The experiment was run with sin-
gle and double DMA transfers, and with UDP checksum-
ming turned on and off. With double cell length DMA, the
throughput now approaches the full link bandwidth of 516
Mbps for message sizes of 16KB and larger. With DMA
checksumming turned on, the throughput decreases slightly
to 438 Mbps. This is an important result; it implies that
the network data can be read and checksummed at close to
90% of the network link speed. Also, the throughput for
small messages has improved greatly, thanks to the reduced
per-packet software latencies on this faster machine.

The final set of measurements evaluates the network per-
formance on the transmit side. The results for both the
DEC 5000/200 and the 3000/600 are shown in Figure 4.
The maximal throughput achieved on the transmit side is
currently 325 Mbps. This number is limited entirely by
TurboChannel contention due to the high overhead of sin-
gle ATM cell payload sized DMA transfers. A hardware
change to allow longer DMA transfers in this direction is
underway, but was not completed at the time of this writing.

With double cell DMA transfers on the transmit side, the
host-to-host throughput attained is expected to fall between
the graphs for single cell DMA and that for double cell DMA
on the receive side (Figure 3). The exact result depends on
the rate of double cell DMA transfers on the receiving host,
as detailed in Section 2.6.



050100150200250300350
1 2 4 8 16 32 64 128 256

Throughput in Mbps
Message size in KBytes3000/600 33 3 3 3 3 3 3 3 33000/600, UDP-CS ++ + + + + + + + +5000/200 22 2 2 2 2 2 2 2 2

Figure 4: UDP/IP/OSIRIS Transmit Side Throughput

5 Conclusions

Based on the experience of writing software for the OSIRIS

network adaptor, we draw three broad conclusions. First,
the flexibilitybuilt into the adaptor was critical to its success
as an experimental apparatus. This flexibility was primarily
embodied in the fact that both the adaptor’s algorithms, and
the interface it presents to the host, are defined by software;
programmable logic provides additional flexibility. This
provided several distinct benefits.� It allowed us to work around unexpected problems. For

example, in the case of the network introducing skew
that we were powerless to remove, we were able to re-
program the segmentation/reassembly code runningon
the board’s microprocessors.� It helped us to avoid forcing the abstractions of the
hardware designer onto the software architect. The
major example of this was the problem of fixed-length
DMA.� It allowed us to tune the host/adaptor interface, thereby
making it easier to write efficient operating system
software. Simple examples of how we optimized this
interface include minimizing locking contention be-
tween the host and the board, and reducing receive
interrupts to less than one-per-PDU. More complex
examples include fast buffers and application device
channels.

While speed is often sacrificed for flexibility, it is notewor-
thy that we were still able to reassemble ATM cells in the
common case and in the absence of misordering at approx-
imately OC-12 speeds in software. Given that production
adaptors will probably use custom hardware for reassembly,

which will be faster but less flexible, we feel this is strong
evidence that the cost of reassembly is not excessive.

Second, there were several difficult (and non-obvious)
problems that the operating system had to address, all of
which are essentially independent of the OSIRIS board. Ex-
amples include dealing with buffer fragmentation, page
wiring, and cache coherence.

Finally, given that the OSIRIS adaptor was designed to
provided maximal flexibility, it contains many more features
than one would include in a production board. Based on our
experience, we have found the following two features to be
important, and would recommend that they be considered
in future board designs.� The ability to make an early demultiplexing decision;

treating VCIs as an abundant resource that represents
end-to-end connections is a reasonable way to do this
on an ATM network. This is used by both the fbuf and
ADC mechanisms.� The ability to support multiple transmit and receive
queues, and map each of them directly into user-level
protection domains. It was this feature that facilitated
the ADC mechanism.

Acknowledgements

Special thanks to David Mosberger for porting the x-kernel
to the DEC Alphas. We also thank Jody Davie for suggest-
ing the name OSIRIS, in honor of the Egyptian god reported
to be the first victim of segmentation and reassembly. Ac-
cording to legend, he was cut into pieces by his brother Seth
and reasembled by his wife, Isis.

Trademarks

DECstation and TURBOchannel are trademarks of the Digital
Equipment Corporation. Intel is a trademark of the Intel
Corporation. UNIX is a trademark of the X/Open Company.
RISC System/6000 is a trademark of International Business
Machines.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A
new kernel foundation for Unix development. In Pro-
ceedings of the USENIX Summer ’86 Conference, July
1986.

[2] D. Banks and M. Prudence. A high-performance
network architecture for a PA-RISC workstation.
IEEE Journal on Selected Areas in Communications,
11(2):191–202, February 1993.



[3] G. Blair, et al. A network interface unit to support
continuous media. IEEE Journal on Selected Areas in
Communications, 11(2):264–275, February 1993.

[4] D. Clark, et al. The AURORA gigabit testbed. Computer
Networks and ISDN Systems, 25:599–621, 1992.

[5] Eric Cooper, et al. Host interface design for ATM
LANs. In Proc. 16th Conf. on Local Computer Net-
works, Minneapolis, MN, October 1991.

[6] C. Dalton, G. Watson, D. Banks, C. Calamvokis,
A. Edwards, and J. Lumley. Afterburner. IEEE Net-
work, 7(4):36–43, July 1993.

[7] B. S. Davie. A host-network interface architecture for
ATM. In Proc. ACM SIGCOMM ’91, Zurich, Septem-
ber 1991.

[8] B. S. Davie. The architecture and implementation of
a high-speed host interface. IEEE Journal on Selected
Areas in Communications, 11(2):228–239, February
1993.

[9] P. Druschel, M. B. Abbott, M. Pagels, and L. L. Pe-
terson. Network subsystem design. IEEE Network
(Special Issue on End-System Support for High Speed
Networks), 7(4):8–17, July 1993.

[10] P. Druschel and L. L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. In Proceed-
ings of the Fourteenth ACM Symposium on Operating
System Principles, Dec. 1993.

[11] D. C. Feldmeier. Multiplexing issues in communica-
tion system design. In Proc. ACM SIGCOMM ’90,
pages 209–219, Philadelphia, PA, Spetember 1990.

[12] N. C. Hutchinson and L. L. Peterson. The x-kernel:
An architecture for implementing network proto-
cols. IEEE Transactions on Software Engineering,
17(1):64–76, Jan. 1991.

[13] V. Jacobson. Efficient protocol implementation. ACM
SIGCOMM ’90 tutorial, Sept. 1990.

[14] C. Maeda and B. Bershad. Protocol service decompo-
sition for high-performance networking. In Proceed-
ings of the Fourteenth ACM Symposium on Operating
Systems Principles, Dec. 1993.

[15] M. Pagels, P. Druschel, and L. L. Peterson. Cache
and TLB effectiveness in the processing of network
data. Technical Report 93-4, Department of Computer
Science, University of Arizona, Mar. 1993.

[16] K. K. Ramakrishnan. Performance considerations
in designing network interfaces. IEEE Journal on
Selected Areas in Communications, 11(2):203–219,
February 1993.

[17] F. Reynolds and J. Heller. Kernel support for network
protocol servers. In Proceedings of the USENIX Mach
Symposium, pages 149–162, Monterey, Calif., Nov.
1991.

[18] J. M. Smith and C. B. S. Traw. Giving applications
access to Gb/s networking. IEEE Network, 7(4):44–
52, July 1993.

[19] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska.
Implementing network protocols at user level. In
Proceedings of the SIGCOMM ’93 Symposium, Sept.
1993.

[20] C. B. S. Traw and J. M. Smith. Hardware/software
organization of a high-performance atm host interface.
IEEE Journal on Selected Areas in Communications,
11(2):240–253, February 1993.


