
Path Planning in Expansive Con�guration SpacesDavid Hsu Jean-Claude Latombe Rajeev MotwaniDepartment of Computer ScienceStanford UniversityStanford, CA 94305fdyhsu, latombe, rajeevg@cs.stanford.eduAbstractWe introduce the notion of expansiveness to characterize afamily of robot con�guration spaces whose connectivity canbe e�ectively captured by a roadmap of randomly-sampledmilestones. The analysis of expansive con�guration spaceshas inspired us to develop a new randomized planning al-gorithm. This algorithm tries to sample only the portion ofthe con�guration space that is relevant to the current query,avoiding the cost of precomputing a roadmap for the entirecon�guration space. Thus, it is well-suited for problemswhere a single query is submitted for a given environment.The algorithm has been implemented and successfully ap-plied to complex assembly maintainability problems fromthe automotive industry.1 IntroductionPath planning is an important problem in robotics [14].Given the geometry of a robot and obstacles, a pathplanner is required to generate a collision-free path be-tween an initial and a goal con�guration. There isstrong evidence that a complete planner, i.e., a plan-ner that �nds a path whenever one exists and indi-cates that none exists otherwise, will take time expo-nential in the number of degrees of freedom (dof) ofthe robot [17]. However, recently, randomization hasbeen successfully exploited to provide an e�cient andgeneral path-planning scheme for many-dof robots [2].The Randomized Path Planner (RPP) [3] searchesfor a path by following the negated gradient of an arti-�cial potential �eld constructed over the con�gurationspace and escapes local minima of the potential func-tion by random walks. It has been used in practicewith good results, but there are several cases whereRPP behaves poorly [4]. Usually this happens whenthe robot is trapped in a local minimum and the onlyway to escape is to go through a narrow passage. Theprobability that a random walk goes through a narrowpassage is extremely small.Another planner, described in [12], uses randomsampling to construct a roadmap of the con�gurationspace and tries to �nd a path between any two inputcon�gurations by connecting them to the roadmap.After paying a relatively high cost for building the

Figure 1: A data set used to test the planner. It is a carpackaging model having 60,000 triangles.roadmap, it answers queries very e�ciently. This plan-ner is particularly suitable for problems where multi-ple path-planning queries have to be answered in thesame static environment. There are several di�erenttechniques for constructing roadmaps, including uni-form sampling followed by enhancement in di�cult re-gions [12], using random reections at C-space obsta-cles [8], and sampling on contact surfaces in the con-�guration space [1].These randomized planners have demonstrated goodperformance empirically, but are not complete. Someof them achieve the weaker notion of probabilistic com-pleteness, i.e., they �nd a path with high probabilitywhenever one exists. Note that if no path exists, theplanner may never terminate. There have been severalattempts to provide theoretical justi�cation for the ob-served success of these planners. In [13], potential �eldplanners are analyzed based on the study of Markovchains and di�usion processes. In [9], an estimate isgiven for the probability that the roadmap planner can�nd a path between two given con�gurations, assum-ing that a path of certain clearance exists. A vari-ant of the roadmap planner is described in [11], andthe connectivity property of roadmaps that it producesis analyzed under an assumption called �-goodness ofthe con�guration space. Unfortunately this variant as-sumes a complete planner is available to be invokedin order to improve the connectivity of the roadmap.1



This assumption is clearly not realistic.In this paper we introduce the notion of an expansivespace, which involves a slightly stronger assumptionthan �-goodness. We show that in an expansive con�g-uration space, if we build the roadmap by sampling thecon�guration space uniformly at random and checkingstraight-line paths between each pair of sampled con-�gurations, then the resulting connected componentsof the roadmap conform to the connected regions of thefree con�guration space with high probability. Unlikein [11], there is no need for a complete planner here.Although the roadmap planner o�ers an e�cient so-lution for multiple-query path planning problems, itis not suitable when only a single query is submit-ted for a given environment. A good example is as-sembly maintainability problems, where we must de-termine whether there exists a path to remove a partfrom an assembly for maintenance [5]. For single-querypath planning problems, the con�guration space maycontain many connected components, but only one ofthem is relevant to the query being processed if theinitial and the goal con�guration are path-connected.It is clearly unreasonable to perform expensive prepro-cessing to construct a roadmap of the entire con�gura-tion space. We would prefer to build only the part ofthe roadmap relevant to the query, i.e., the part thatcontains only the con�gurations that are connected toeither the initial con�guration qinit or the goal con�g-uration qgoal .Our analysis of the roadmap planner suggests onesuch scheme in the case of expansive spaces. The ideais to devise a strategy that samples only the connectedcomponents containing either qinit or qgoal. We startby sampling in the neighborhoods of qinit or qgoal andthen repeatedly choose new samples in the neighbor-hoods of the con�gurations known to be connected toqinit or qgoal, until a path is discovered. The intuitiveexplanation for the success of this scheme is via ananalogy to the rapid mixing property of random walkson expander graphs [15].We have implemented this algorithmand tested it onassembly maintainability problems from the automo-tive industry. These problems contain complex CADmodels that describe cluttered environments having upto 200,000 triangles. An example is shown in Figure 1.2 De�nition of Expansive SpacesThe con�guration of a robot is a speci�cation of theposition and orientation of the robot with respect to a�xed frame in the workspace. The set of all con�gura-tions forms a con�guration space C. A con�guration qis free if a robot placed at q does not collide with ob-stacles. The set of all free con�gurations forms a freespace F � C.To construct a roadmap graph R = (V;E) of C, wesample con�gurations uniformly at random from C andretain the free con�gurations in V asmilestones. There

p qFigure 2: A con�guration space whose connectivity is dif-�cult to capture via random sampling due to the presenceof a narrow passage.is an edge between two milestones if they can be con-nected by a straight-line path lying entirely in F .Narrow passages in F pose signi�cant di�culty forplanners that build a roadmap by random sampling,because the probability of picking at random mile-stones that can be connected by straight paths throughsuch passages is very small. In Figure 2, we show anexample where the free space consists of two globesconnected by a narrow passage. If we fail to sample apair of milestones that are connected by a straight-linepath through the narrow passage, then the roadmapgraph R will contain two connected components, onein each globe, and therefore will not reect the con-nectivity of F , which has only one connected compo-nent. In order to capture the complexity of a con�g-uration space due to narrow passages, we parametrizethis complexity using three numbers, �, �, and � (seeDe�nition 1), and express the running time of a plan-ner in terms of these three parameters. We can thenanalyze the change in running time of a planner as �,�, and � vary. We may also seek techniques to im-prove running times by decomposing the con�gurationspace into connected components such that each com-ponent has large �, �, and �. This is further discussedin Section 7.We now show how to characterize a con�gurationspace in terms of �, �, and �. For any subset S � F,let �(S) denote its volume, where for convenience weassume that �(F) = 1. Two con�gurations are visiblefrom each other if they can be connected by a straight-line path in F . We will also say that they see eachother. Let V(p) denote the region of F visible fromsome point p 2 F .De�nition 1 Let �, �, and � be constants in the openinterval (0; 1). The free space F is (�; �; �)-expansiveif each of its connected components F 0 � F satis�esthe following conditions:� for every point p 2 F 0, �(V(p)) � �;� for any connected subset S � F 0, the setlookout(S) = fq 2 S j �(V(q)nS) � ���(F 0nS)ghas volume �(lookout(S)) � �� �(S).The �rst condition guarantees that F is �-good [11].That is, every point in F can see at least an � frac-tion of the free space. In the second condition, the setlookout(S) contains points in S that see a � fraction2



Fj V(q) n SS lookout(S)Figure 3: A component Fj in an expansive space.of the complement of S in the component of the freespace containing S, and � measures the relative vol-ume of such points. Parameters � and � characterizethe volume of points that can potentially contributenew visibility regions. Refer to Figure 3 for an illus-tration. If a space is expansive with large � and �,then it is very easy to sample new points to expandthe visibility region. Suppose that we think of S � F 0as the visibility region induced by a set of points M .If it is easy to �nd additional points q 2 S to add toM so that S expands signi�cantly, S will eventuallycover the whole free space. We will then have enoughinformation about the con�guration space to solve thepath planning problem.Pathological cases, such as those shown in Fig-ures 2 and 4, cannot have large � and �. We can simplytake S to be one globe of the con�guration space shownin either �gure. Then there is only a very small fractionof S that can see a large portion of the complement ofS. Note, however, that there is a di�erence betweenthe two examples. In the case of Figure 2, if we require� to be large, then � must be small, i.e., the volume oflookout(S) is small. If we take � to be large enough,� will have to be zero, because all points in S has verylimited view due to the long, narrow passage. None ofthem sees a � fraction of the complement. In the caseof Figure 4, however, � is always strictly greater thanzero regardless of the choice of �, because those pointsclose to the narrow opening can see almost the wholecon�guration space.SFigure 4: A space with small � and �. The free spaceconsists of two globes connected by a narrow opening. Mostpoints in S can see little of of the complement of S. A fewpoints close to the opening can see almost the whole space.3 Analyzing Roadmaps in ExpansiveSpacesOur goal is to show that the connectivity of theroadmap conforms to the connectivity of the free space

with high probability. The precise statment is given inTheorem 3.We begin by de�ning the linking sequence of a pointp 2 F (see Figure 5).De�nition 2 The linking sequence of a point p 2 F isa sequence of points p0 = p; p1; p2; : : : and a sequenceof sets V0 = V(p0); V1; V2; : : : � F such that for alli � 1, pi 2 lookout(Vi�1) and Vi = Vi�1 [ V(pi).Note that the sets V0; V1; V2; : : : are completely deter-mined by the sequence of points p0; p1; p2; : : :, and sowe will henceforth refer to just the sequence of pointsp0; p1; p2; : : : as a linking sequence for p.The following two lemmas underscore the signi�-cance of this de�nition. Lemma 1 shows that any setof randomly-sampled milestones is fairly likely to con-tain a linking sequence of a given length for any pointin the free space. Lemma 2 shows that the sets as-sociated with a linking sequence of this length span alarge volume. The consequence is that the �nal setsdetermined by long-enough linking sequences for anytwo milestones p and q must intersect, since their vol-umes are large. In that case p and q will be connectedby a path. This is a crucial observation which will beused in Theorem 3 to estimate the probability that twomilestones in the roadmap are path-connected.In both lemmas, we assume that C is (�; �; �)-expansive.Lemma 1 Suppose that a set M of n milestones ischosen independently and uniformly at random fromthe free space F . Let s = 1=��. Given any milestonep 2M , there exists a linking sequence in M of lengtht for p with probability at least 1� se�(n�t�1)=s.Proof. Let Li be the event that there exists a linkingsequence in M of length i and Li be the event thatthere does not exist such a sequence.Pr(Li) = Pr(Li j Li�1) Pr(Li�1)+Pr(Li j Li�1) Pr(Li�1)� Pr(Li�1) + Pr(Li j Li�1):We would like to estimate Pr(Li j Li�1). That is,given that there exist p1; p2; : : : ; pi�1 2 M forming alinking sequence of length i � 1, what is the proba-bility that M contains no linking sequence of lengthi for p? All we need is that M contains no point ly-ing in lookout(Vi�1). Note that p; p1; p2; : : : ; pi�1are conditioned and we cannot expect them to lie inlookout(Vi�1). However, the remaining n� i pointsin M are unconditioned and chosen uniformly and in-dependently from F . Since V(p) = V0 � Vi�1, we havethat �(Vi�1) � �(V(p)) � �by the �rst requirement in the de�nition of an (�; �; �)-expansive space F . Further, by the second part of thede�nition, we obtain that�(lookout(Vi�1)) � �� �(Vi�1) � �� = 1=s:3



It follows that the probability thatM does not containa point in lookout(Vi�1) is at most(1� 1=s)n�i � e�(n�i)=s:Hence we havePr(Li) � Pr(Li�1) + e�(n�i)=sm;and Pr(Lt) � tXi=1 e�(n�i)=s = e�(n�1)=s t�1Xi=0 ei=s= e�(n�1)=s et=s � 1e1=s � 1 :Noting that e1=s�1 � 1=s, we obtain the desired boundPr(Lt) � se�(n�t�1)=s:That is, with probability at least 1� se�(n�t�1)=s, Mcontains a linking sequence of length t for p. 2Lemma 2 Let vt = �(Vt) denote the volume of the tthset Vt determined by a linking sequence p0; p1; p2; : : :for a point p 2 F 0, where F 0 is some connected com-ponent of F . Then, for t � ��1 ln 4 � 1:39=�,vt � 3�(F 0)=4.Proof. Let us scale up all the volumes so that �(F 0) =1. Observe that since Vi = Vi�1 [ V(pi), we obtain�(Vi) = �(Vi�1) + �(V(pi) n Vi�1)� �(Vi�1) + � � �(F 0 n Vi�1):The last inequality follows by the de�nition of an ex-pansive space. Observing that �(F 0 n Vi�1) = �(F 0)��(Vi�1) = 1� vi�1, we have the recurrencevi � vi�1 + �(1 � vi�1):The solution to this recurrence turns out to bevi � (1� �)iv0 + � i�1Xj=0(1� �)j = 1� (1� �)i(1� v0):Observing that v0 � 0 and that (1 � �) � e�� , weobtain vi � 1� e��i:Clearly, for t � ��1 ln 4, we have vt � 3=4. 2We are now ready to state our main result. It relatesthe notion of a linking sequence to randomly-sampledmilestones. Suppose that a set S of milestones are sam-pled from F . Let R be the roadmap graph obtainedby taking as vertices all the milestones in S, and intro-ducing edges between any two milestones in S that cansee each other. Let M � S be a subset of milestones.For each connected component Fj in F , let Mj � Mbe the set of milestones belonging to Fj, and Rj bethe subgraph of R containing the set Mj of vertices.

pt�1 x qt�1 q0 = qq1q2q3p0 = pp1p2 p3Figure 5: Linking sequences for p and q.Theorem 3 Let  be a constant in the open inter-val (0; 1). Suppose a set S of 2n milestones, forn = d8 ln(8=��)=�� + 3=� + 2e, is chosen indepen-dently and uniformly at random from the free spaceF . Then, with probability at least 1 � , each of theroadmap graphs Rj is a connected graph.Proof. Suppose that we sample a total of 2nmilestonesfrom F . Divide them into two sets, M and N , of nmilestones each.It follows from Lemma 1 that any milestone m 2Mhas a linking sequence of length t in M with prob-ability at least 1 � se�(n�t�1)=s. Consider any twopoints p; q 2 Mj . Let Vt(p) and Vt(q) be the �nalsets determined by the linking sequences of length tfor the two points. By Lemma 2, both sets have vol-ume at least 3�(Fj)=4 if we choose t = 1:5=�, andhence they must have a non-empty intersection withvolume at least �(Fj)=2. We know that �(Fj) � �,because by the �rst condition in the de�nition of ex-pansive spaces, the visibility region of any point inFj must have volume at least �. Since the n mile-stones in N are sampled independently at random, itfollows that there is a milestone x 2 N that lies inthe intersection (see Figure 5) with probability at least1 � (1 � �(Fj)=2)n � 1 � (1 � �=2)n � 1 � e�n�=2.Note that both p and q have a path to x consistingof straight-line segments bending only at the linkingsequence points, which of course belong to the set ofmilestones Mj. This means that there is a path from pand q to x using only the edges of the roadmap graphRj .Let B denote the event that p and q fail to beconnected. We now calculate the probability Pr(B).Event B occurs if the sets in the linking sequences ofp and q do not intersect or no points of N lie in theintersection. Hence, choosing n � 2t+ 2 and recallingthat s = 1=��, we havePr(B) � 2se�(n�t�1)=s + e�n�=2� 2se�n=2s + e�n=2s � 3se�n=2s:The graph Rj will fail to be a connected graph if anypair of nodes p; q 2 Mj fail to be connected. Theprobability is at most�n2�Pr(B) = �n2� 3se�n=2s� 2n2se�n=2s4



� 2se�(n�4s lnn)=2s� 2se�n=4s;where the last inequality follows from the observationthat n=2 � 4s lnn for n � 8s ln 8s. Now if we furtherrequire that n � 8s ln(8s=), we have2se�n=4s � 2se�2 ln(8s=)� 2s(=8s)2� :Clearly it is su�cient to choose n � 8s ln(8s=) +2t+2 to get the desired bound. Substituting s = 1=��and t = 1:5=� into the expression for n, the resultfollows. 2Note that as �, � and � get larger, the space be-comes more expansive and the number of milestonesrequired decreases in inverse proportion; also, as thefailure probability  becomes smaller, n grows no fasterthan ln(1=).4 The New PlannerThe key notion used in the above analysis is the linkingsequence of a point. If the visibility region associatedwith the linking sequence of qinit intersects with that ofqgoal, then a path is found. This suggests a very simplealgorithm for single-query path planning problems inexpansive spaces: given two con�gurations qinit andqgoal, we sample at random from C, but retain onlythose con�gurations path-connected to either qinit orqgoal. We thus build two trees rooted at qinit and qgoal,respectively. Each node in the tree represents a freecon�guration that is path-connected to the root. Thesetwo trees keep growing until the visibility region of onetree intersects with that of the other. The visibilityregion of a tree is de�ned as the union of the visibilityregions of its nodes.Formally our algorithm iteratively executes two ba-sic steps, expansion and connection, until either apath is found or the maximum number of iterationsis reached.We assume that the con�guration space is given im-plicitly by a function, clearance: C ! R, that mapsa con�guration q to the distance between the robotplaced at q and the obstacles.Expansion. We simultaneously build two treesTinit = (Vinit ; Einit and Tgoal = (Vgoal ; Egoal. Sincethese two operations are identical, we give a genericdescription of the algorithm, which grows a tree T =(V;E) starting from a given con�guration. We pick anode x in the tree with probability 1=w(x) where w(x)is the weight of x. We then sample the neighborhoodof x uniformly at random and retain those con�gura-tions that are most likely to contribute to the visibilityregion. The details are given below.

Algorithm expansion1. Pick a node x from V with probability 1=w(x).2. Sample K points from Nd(x) = fq 2 C jdistc(q; x) < dg, where distc is some distancemetric of C. (K and d are parameters.)3. for each con�guration y that has been picked do4. calculate w(y) and retain y with probability1=w(y).5. if y is retained, clearance(y) > 0 andlink(x; y) returns YES6. then put y in V and place a edge betweenx and y.In Step 5, link determines whether there is a straight-line path between two con�gurations. Its implementa-tion will be discussed in Section 5.We want to make sure that as the running time in-creases, the set of nodes stored in Tinit and Tgoal getdistributed rather uniformly over the connected com-ponents that contain qinit and qgoal respectively. Toachieve this, the de�nition of w(x) is essential. We de-�ne w(x) to be the number of sampled nodes in the treethat lie in Nd(x). Intuitively this implies that regionsthat contain few nodes will more likely be sampled. Ifthe space is expansive, then it may be argued that theset of randomly sampled con�gurations quickly con-verges to the uniform distribution.Connection. We now have two trees, Tinit and Tgoal .In the connection step, the planner tries to establish apath between qinit and qgoal.Algorithm connection1. for every x 2 Vinit and y 2 Vgoal do2. if distw(x; y) < l (l is a parameter.)3. then link(x; y).In Step 2, we try to limit the number of calls to linkby calculating the distance between x and y accordingto another metric distw(x; y) in C, because in mostspaces, two distant con�gurations are unlikely to seeeach other.If link returns YES for some x and y, then a pathgoing through x and y is found between qinit and qgoal.The planner terminates successfully.5 Implementation DetailsWe now discuss some implementation details of theplanner for a rigid-body robot translating and rotatingin 3-D workspace.Parameterizing the con�guration space. Werepresent a con�guration of a rigid-body robot bya seven-tuple (q0; q1; : : : ; q6) where (q0; q1; q2) speci-�es the position of the robot and (q3; q4; q5; q6) is aunit quaternion specifying the orientation of the robot.Compared to other representations, unit quaternionbest reveals the topology of the 3-D rotation space. Itsadvantages include low memory usage and robustness5



against oating point errors. Interpolating betweentwo quaternions is also very easy [18].Distance between two con�gurations. We haveused two distance metrics in our algorithm, distc anddistw. For distc, we can simply treat C as the Carte-sian space R7 and use either the L2 or L1 metric sothat we can sample new con�gurations very e�ciently.We have to be more careful in de�ning distw, becauseit must reect the fact that two con�gurations thatare close under this metric are more likely to see eachother. We de�ne distw(p; q) to be the maximum dis-tance traveled by any point on the robot when it movesalong a straight-line path between p and q. Computingan upper bound of this metric is relatively fast.Uni-directional versus bi-directional expansion.The algorithm described in Section 4 grows two trees,Tinit and Tgoal , simultaneously. However, if the robot ishighly constrained around qinit and totally free to movearound qgoal, as in the case of assembly maintainabilityproblems, it will be much faster to build Tinit only andtry to connect each node in Vinit to qgoal.Choosing d. The choice of d is important. If d isset so large as to encompass the entire workspace, thenthis new algorithm will su�er the same problem as theroadmap planner. A lot of samples will fall into con-nected components of C that are irrelevant to the cur-rent query. On the other hand, if d is too small, mostsamples will be in regions close to qinit or qgoal , mak-ing it di�cult to �nd a path between qinit and qgoal.Generally speaking, the more constrained the space is,the smaller d should be.Choosing K. The algorithm is not very sensitive tothe choice of K. A small number such as 10 usuallyworks well.Computing clearance. The function clearance iscalled many times during planning. It can be imple-mented in various ways. At one extreme, it can com-pute the exact Euclidean distance between a robot andobstacles, which is expensive. At the other extreme, itcan simply return YES or NO, in which case it becomesa collision checker. There are many variations possiblein between the two extremes.Collision checking is usually faster than distancecomputation. It reduces the time spent for each callto clearance. On the other hand, although distancecomputation takes longer to execute, it provides moreinformation, which can be used to reduce the numberof calls to clearance. Our experience indicates that thesecond approach works better. We will discuss thisfurther in the next paragraph. There is considerableliterature on collision checking and distance computa-tion, notably, [6, 7, 16].Checking straight-line connection. The functionlink checks whether there is a straight-line path be-tween two con�gurations p and q. Suppose that clear-ance computes the distance between a robot and ob-

(a) (b) (c)(e) (f) (g)Figure 6: A computed example. The size of the squareobstacle is 128 � 128. The size of the holes is 30� 30. (a)and (g) shows the initial and goal con�guration. (b)-(f) areintermediate con�gurations along the path.stacles. Let p and q have clearance � and �, respec-tively. We say that p and q are adjacent if distw(p; q) <max(�; �). If p and q are adjacent, then the robot canmove between them along a straight-line path withoutcolliding with obstacles. Given p and q, link recursivelybreaks the straight-line segment between p and q intoshorter segments. It stops when the endpoints of eachsegment are adjacent, or one of the endpoints is not inthe free space. In the �rst case, p and q can see eachother. In the second case, they cannot. If we usedcollision checking instead of distance computation, wewould have to continue breaking the segment until apre-speci�ed resolution is reached. In general, this re-sults in more calls to clearance and only guaranteesthat p and q can be connected by a straight-line pathup the resolution speci�ed.Termination condition. Since the planner will notstop if no path exists, we must explicitly set the max-imum number of expansion and connection steps tobe executed. Alternatively we can choose to terminatethe algorithm if the minimumweight over all the nodesin the two trees exceeds a certain value, because thisindicates that we have su�ciently sampled the con�g-uration space, but are still unable to �nd a path.Path smoothing. Usually the path generated bythis planner has too many zig-zags, but it can besmoothed by a simple algorithm [14, page 248].6 Experimental ResultsThe planner is written in C++. Measurements re-ported in this section are the average of �ve indepen-dent runs for each problem. Unless noted otherwise,running times were measured on a Silicon GraphicsCrimson workstation with one 100MHz MIPS R4000processor and 256MB of memory.6



Figure 6 shows snapshots of a computed example.The workspace is bounded by a box and contains onlyone obstacle, which is a square with two holes. Therobot, which is an irregularly-shaped rigid-body bentat several places, has to travel from under the obsta-cle to above it. Since the square extends the full sizeof the bounding box of the workspace, the robot canachieve its goal only by going through one of the holes.We can infer that topologically, the free space F con-sists of two regions connected by two narrow passages.Table 1 shows the results for the problem with threedi�erent hole sizes. Column 1 shows the size of holes.In all three cases, the size of the square obstacle is128 � 128. Column 2 and 3 show the number of treenodes and distance computations used, respectively.Column 4 gives total running time1. As the hole sizegets smaller, the space becomes less expansive, andthe running time increases. In this particular example,as the area of the hole decreases linearly, the numberof distance computations used increases at about thesame rate. The number of tree nodes needed and theexecution time increase at a slightly slower rate.We have also tested this planner on assembly main-tainability problems. The input to the planner is CADdata describing an assembly of parts such as the oneshown in Figure 1. The environment usually consistsof tens of thousands of polygons and is very cluttereddue to designers' desire to pack everything into lim-ited space. The planner must determine whether thereexists a path to remove a speci�ed part.A typical problem that we have attempted hasaround 20,000 triangles and the planner can solve theproblem in about 4 to 10 minutes. Two examples2are particularly interesting. In one case, we must takeout the oil pan under the engine without colliding withthe long protrusion underneath the engine and otherparts around the engine. In the other case, the electricharness behind the dashboard must be removed. Theharness is a thin and long pipe-like object having threebranches. A slight change from its installed con�gura-tion may result in one or more of its branches collid-ing with parts nearby. Due to the special geometricarrangement of these two assemblies, the parts to beremoved must execute complicated maneuvers in orderto clear all the obstacles. The planner solved the �rstproblem in 386 seconds and the second problem in 405seconds. The number of distance computations usedare 4257 and 7822, respectively. The largest examplewe have run contains 200,000 triangles. The objectiveis to remove the casing of the transmission mechanism,clearing the dashboard and shift stick. The plannerfound a path in about 35 minutes.Among the problems that we have worked on, there1These running times were obtained on a SGI Indigo 2 work-station with a 200MHz MIPS R4400 processor and 128MB ofmemory.2Due to the proprietary nature of these data, we cannot showimages here.

hole size nodes dist. comp. exe. time (sec)25� 30 1213 23677 84.830� 30 990 14490 55.640� 30 688 10453 23.9Table 1: Results for the problem shown in Figure 6.is one case where the planner failed to �nd a path afterrunning for more than eight hours. We were unable todetermine whether a path actually exists or not.7 DiscussionWhen there are narrow passages in the con�gurationspace, the parameters �, � and � will be extremelysmall. Our analysis suggests that the running timeof the planner will be signi�cantly longer. However,in some problems, the location of narrow passages isobvious to the user. We can take advantage of thisand ask the user to input some intermediate points inaddition to qinit and qgoal. That is, the user speci-�es qinit; q1; : : : ; qn; qgoal. If the planner is successful in�nding a path between each pair of consecutive con�g-urations, then of course a path is established betweenqinit and qgoal. During our experiments, this simpleextension was able to solve some problems not solvedby the original algorithm and resulted in signi�cantreduction of execution time.Again, the notion of expansive spaces helps toexplain the usefulness of this extension. By spec-ifying the intermediate points, we e�ectively de-compose F 0, a connected component of the freespace, into a small number of expansive componentsK0;K1; : : : ;Km, which can possibly be overlapping.Let �i, �i and �i be the parameters that characterizethe expansiveness of Ki. The parameters �i, �i and �iwill be much larger than the corresponding parametersof the original space, because each Ki does not containpassages that are very narrow with respect to its ownvolume. See Figure 7 for an illustration. Our analysisin Section 3 indicates that the running time should becorrespondingly shorter.F 0qinit qgoalq2q1 K1 K2K0Figure 7: Expansive decomposition. By inserting q1 andq2, we e�ectively decompose the free space into three com-ponents, each of which is expansive with large �, � and �.Note that this extension of the basic algorithm isdi�erent from cell decomposition algorithms in litera-ture. No explicit decomposition is computed here. Italso takes far fewer components to decompose the con-�guration space into expansive cells than into convex7



cells required by most of the cell decomposition algo-rithms.An open problem is, of course, to generate these in-termediate points automatically. It would not only re-lieve the user of the burden of specifying intermediatepoints, but also help in situations where narrow pas-sages are not obvious to the user. This problem maynot have an e�cient general solution, but may be ablesolvable in some speci�c planning environments.8 ConclusionWe have introduced the notion of expansive con�gu-ration spaces. In such a space, building a roadmapvia random sampling can e�ectively extract the con-nectivity information of the con�guration space. Anestimate is given for the number of milestones neededto achieve this.We have also presented a new randomized plannerfor robots with many dofs. This planner grows twotrees rooted at the initial and goal con�guration, re-spectively, until the visibility region associated withone tree intersects with that of the other. It is well-suited for single-query path planning problems. Wehave implemented this planner for a six-dof rigid-bodyrobot and successfully experimented with it on com-plex problems, including real-life examples from theautomotive industry with environments having up to200; 000 triangles. The expansive property of the spacehas helped to explain the success of this planner.One direction of future research would be to inte-grate the new planner with the roadmap planner [12]for multiple-query path planning problems. Currentlythe roadmap planner generates most of the milestonesby sampling uniformly at random from the con�gura-tion space. Typically most of the con�gurations picked(more than 99:5%) are in collision with obstacles [10]and discarded. It would be highly desirable to sam-ple collision-free con�gurations more e�ciently. Oneidea is to pick uniformly a small number of collision-free con�gurations and use the new planner to expandfrom these con�gurations in order to generate addi-tional milestones.AcknowledgmentThis work is supported by ARO MURI grant DAAH04-96-1-007. Rajeev Motwani is also supported by an AlfredP. Sloan Research Fellowship, an IBM Faculty PartnershipAward, and NSF Young Investigator Award CCR-9357849,with matching funds from IBM, Mitsubishi, SchlumbergerFoundation, Shell Foundation, and Xerox Corporation.Part of the experimental work reported in Section 6 wasdone in collaboration with GM R&D Center in Warren,MI. We also thank GM R&D Center for providing us thedata shown in Figure 1. We thank Li Zhang for pointingout an error in the original proof of Lemma 1 and SteveLaValle for reading early drafts of this paper.
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