

Finding the k Shortest Paths

David Eppstein∗

March 31, 1997

Abstract

We give algorithms for finding the k shortest paths (not required to be simple) connecting a
pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a
digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest
paths from a given source s to each vertex in the graph, in total time O(m+n log n+ kn). We de-
scribe applications to dynamic programming problems including the knapsack problem, sequence
alignment, maximum inscribed polygons, and genealogical relationship discovery.

1 Introduction

We consider a long-studied generalization of the shortest path problem, in which not one but several
short paths must be produced. The k shortest paths problem is to list the k paths connecting a given
source-destination pair in the digraph with minimum total length. Our techniques also apply to the
problem of listing all paths shorter than some given threshhold length. In the version of these problems
studied here, cycles of repeated vertices are allowed. We first present a basic version of our algorithm,
which is simple enough to be suitable for practical implementation while losing only a logarithmic
factor in time complexity. We then show how to achieve optimal time (constant time per path once a
shortest path tree has been computed) by applying Frederickson’s [26] algorithm for finding the min-
imum k elements in a heap-ordered tree.

1.1 Applications

The applications of shortest path computations are too numerous to cite in detail. They include situa-
tions in which an actual path is the desired output, such as robot motion planning, highway and power
line engineering, and network connection routing. They include problems of scheduling such as criti-
cal path computation in PERT charts. Many optimization problems solved by dynamic programming
or more complicated matrix searching techniques, such as the knapsack problem, sequence alignment
in molecular biology, construction of optimal inscribed polygons, and length-limited Huffman coding,
can be expressed as shortest path problems.

∗Department of Information and Computer Science, University of California, Irvine, CA 92697-3425, eppstein@ics.uci.
edu, http://www.ics.uci.edu/∼eppstein/. Supported in part by NSF grant CCR-9258355 and by matching funds from Xerox
Corp.

1

Methods for finding k shortest paths have been applied to many of these applications, for several
reasons.

• Additional constraints. One may wish to find a path that satisfies certain constraints beyond
having a small length, but those other constraints may be ill-defined or hard to optimize. For
instance, in power transmission route selection [18], a power line should connect its endpoints
reasonably directly, but there may be more or less community support for one option or another.
A typical solution is to compute several short paths and then choose among them by considering
the other criteria. We recently implemented a similar technique as a heuristic for the NP-hard
problem of, given a graph with colored edges, finding a shortest path using each color at most
once [20]. This type of application is the main motivation cited by Dreyfus [17] and Lawler [39]
for k shortest path computations.

• Model evaluation. Paths may be used to model problems that have known solutions, indepen-
dent of the path formulation; for instance, in a k-shortest-path model of automatic translation
between natural languages [30], a correct translation can be found by a human expert. By listing
paths until this known solution appears, one can determine how well the model fits the problem,
in terms of the number of incorrect paths seen before the correct path. This information can be
used to tune the model as well as to determine the number of paths that need to be generated
when applying additional constraints to search for the correct solution.

• Sensitivity analysis. By computing more than one shortest path, one can determine how sen-
sitive the optimal solution is to variation of the problem’s parameters. In biological sequence
alignment, for example, one typically wishes to see several “good” alignments rather than one
optimal alignment; by comparing these several alignments, biologists can determine which por-
tions of an alignment are most essential [8,64]. This problem can be reduced to finding several
shortest paths in a grid graph.

• Generation of alternatives. It may be useful to examine not just the optimal solution to a prob-
lem, but a larger class of solutions, to gain a better understanding of the problem. For example,
the states of a complex system might be represented as a finite state machine, essentially just
a graph, with different probabilities on each state transition edge. In such a model, one would
likely want to know not just the chain of events most likely to lead to a failure state, but rather all
chains having a failure probability over some threshhold. Taking the logarithms of the transition
probabilities transforms this problem into one of finding all paths shorter than a given length.

We later discuss in more detail some of the dynamic programming applications listed above, and
show how to find the k best solutions to these problems by using our shortest path algorithms. As
well as improving previous solutions to the general k shortest paths problem, our results improve more
specialized algorithms for finding length-bounded paths in the grid graphs arising in sequence align-
ment [8] and for finding the k best solutions to the knapsack problem [15].

2

1.2 New Results

We prove the following results. In all cases we assume we are given a digraph in which each edge has
a non-negative length. We allow the digraph to contain self-loops and multiple edges. In each case
the paths are output in an implicit representation from which simple properties such as the length are
available in constant time per path. We may explicitly list the edges in any path in time proportional
to the number of edges.

• We find the k shortest paths (allowing cycles) connecting a given pair of vertices in a digraph,
in time O(m + n log n + k).

• We find the k shortest paths from a given source in a digraph to each other vertex, in time O(m+
n log n + kn).

We can also solve the similar problem of finding all paths shorter than a given length, with the same
time bounds. The same techniques apply to digraphs with negative edge lengths but no negative cycles,
but the time bounds above should be modified to include the time to compute a single source shortest
path tree in such networks, O(mn) [6,23] or O(mn1/2 log N) where all edge lengths are integers and N
is the absolute value of the most negative edge length [29]. For a directed acyclic graph (DAG), with or
without negative edge lengths, shortest path trees can be constructed in linear time and the O(n log n)

term above can be omitted. The related problem of finding the k longest paths in a DAG [4] can be
transformed to a shortest path problem simply by negating all edge lengths; we can therefore also solve
it in the same time bounds.

1.3 Related Work

Many papers study algorithms for k shortest paths [3,5,7,9,13,14,17,24,31,32,34,35,37–41,43–45,
47, 50, 51, 56–60, 63, 65–69]. Dreyfus [17] and Yen [69] cite several additional papers on the subject
going back as far as 1957.

One must distinguish several common variations of the problem. In many of the papers cited above,
the paths are restricted to be simple, i.e. no vertex can be repeated. This has advantages in some appli-
cations, but as our results show this restriction seems to make the problem significantly harder. Several
papers [3, 13, 17, 24, 41, 42, 58, 59] consider the version of the k shortest paths problem in which re-
peated vertices are allowed, and it is this version that we also study. Of course, for the DAGs that arise
in many of the applications described above including scheduling and dynamic programming, no path
can have a repeated vertex and the two versions of the problem become equivalent. Note also that in
the application described earlier of listing the most likely failure paths of a system modelled by a finite
state machine, it is the version studied here rather than the more common simple path version that one
wants to solve.

One can also make a restriction that the paths found be edge disjoint or vertex disjoint [61], or
include capacities on the edges [10–12, 49], however such changes turn the problem into one more
closely related to network flow.

Fox [24] gives a method for the k shortest path problem based on Dijkstra’s algorithm which with
more recent improvements in priority queue data structures [27] takes time O(m+kn log n); this seems

3

to be the best previously known k-shortest-paths algorithm. Dreyfus [17] mentions the version of the
problem in which we must find paths from one source to each other vertex in the graph, and describes
a simple O(kn2) time dynamic programming solution to this problem. For the k shortest simple paths
problem, the best known bound is O(k(m+n log n)) in undirected graphs [35] or O(kn(m+n log n))

in directed graphs [39, again including more recent improvements in Dijkstra’s algorithm]. Thus all
previous algorithms took time O(n log n) or more per path. We improve this to constant time per path.

A similar problem to the one studied here is that of finding the k minimum weight spanning trees
in a graph. Recent algorithms for this problem [21, 22, 25] reduce it to finding the k minimum weight
nodes in a heap-ordered tree, defined using the best swap in a sequence of graphs. Heap-ordered tree
selection has also been used to find the smallest interpoint distances or the nearest neighbors in geomet-
ric point sets [16]. We apply a similar tree selection technique to the k shortest path problem, however
the reduction of k shortest paths to heap ordered trees is very different from the constructions in these
other problems.

2 The Basic Algorithm

Finding the k shortest paths between two terminals s and t has been a difficult enough problem to war-
rant much research. In contrast, the similar problem of finding paths with only one terminal s, ending
anywhere in the graph, is much easier: one can simply use breadth first search. Maintain a priority
queue of paths, initially containing the single zero-edge path from s to itself; then repeatedly remove
the shortest path from the priority queue, add it to the list of output paths, and add all one-edge exten-
sions of that path to the priority queue. If the graph has bounded degree d, a breadth first search from
s until k paths are found takes time O(dk+ k log k); note that this bound does not depend in any way
on the overall size of the graph. If the paths need not be output in order by length, Frederickson’s heap
selection algorithm [26] can be used to speed this up to O(dk).

The main idea of our k shortest paths algorithm, then, is to translate the problem from one with two
terminals, sand t , to a problem with only one terminal. One can find paths from s to t simply by finding
paths from s to any other vertex and concatenating a shortest path from that vertex to t . However we
cannot simply apply this idea directly, for several reasons: (1) There is no obvious relation between the
ordering of the paths from s to other vertices, and of the corresponding paths from s to t . (2) Each path
from s to t may be represented in many ways as a path from s to some vertex followed by a shortest
path from that vertex to t . (3) Our input graph may not have bounded degree.

In outline, we deal with problem (1) by using a potential function to modify the edge lengths in the
graph so that the length of any shortest path to t is zero; therefore concatenating such paths to paths
from s will preserve the ordering of the path lengths. We deal with problem (2) by only considering
paths from s in which the last edge is not in a fixed shortest path tree to t ; this leads to the implicit
representation we use to represent each path in constant space. (Similar ideas to these appear also
in [46].) However this solution gives rise to a fourth problem: (4) We do not wish to spend much time
searching edges of the shortest path tree, as this time can not be charged against newly found s-t paths.

The heart of our algorithm is the solution to problems (3) and (4). Our idea is to construct a bi-
nary heap for each vertex, listing the edges that are not part of the shortest path tree and that can be
reached from that vertex by shortest-path-tree edges. In order to save time and space, we use persis-

4

tence techniques to allow these heaps to share common structures with each other. In the basic version
of the algorithm, this collection of heaps forms a bounded-degree graph having O(m + n log n) ver-
tices. Later we show how to improve the time and space bounds of this part of the algorithm using tree
decomposition techniques of Frederickson [25].

2.1 Preliminaries

We assume throughout that our input graph G has n vertices and m edges. We allow self-loops and
multiple edges so m may be larger than

(n
2

)
. The length of an edge e is denoted `(e). By extension

we can define the length `(p) for any path in G to be the sum of its edge lengths. The distance d(s, t)
for a given pair of vertices is the length of the shortest path starting at s and ending at t ; with the as-
sumption of no negative cycles this is well defined. Note that d(s, t) may be unequal to d(t, s). The
two endpoints of a directed edge e are denoted tail(e) and head(e); the edge is directed from tail(e) to
head(e).

For our purposes, a heap is a binary tree in which vertices have weights, satisfying the restriction
that the weight of any vertex is less than or equal to the minimum weight of its children. We will not
always care whether the tree is balanced (and in some circumstances we will allow trees with infinite
depth). More generally, a D-heap is a degree-D tree with the same weight-ordering property; thus the
usual heaps above are 2-heaps. As is well known (e.g. see [62]), any set of values can be placed into
a balanced heap by the heapify operation in linear time. In a balanced heap, any new element can be
inserted in logarithmic time. We can list the elements of a heap in order by weight, taking logarithmic
time to generate each element, simply by using breadth first search.

2.2 Implicit Representation of Paths

As discussed earlier, our algorithm does not output each path it finds explicitly as a sequence of edges;
instead it uses an implicit representation, described in this section.

The i th shortest path in a digraph may have Ä(ni) edges, so the best time we could hope for in an
explicit listing of shortest paths would be O(k2n). Our time bounds are faster than this, so we must
use an implicit representation for the paths. However our representation is not a serious obstacle to
use of our algorithm: we can list the edges of any path we output in time proportional to the number of
edges, and simple properties (such as the length) are available in constant time. Similar implicit rep-
resentations have previously been used for related problems such as the k minimum weight spanning
trees [21, 22, 25]. Further, previous papers on the k shortest path problem give time bounds omitting
the O(k2n) term above, and so these papers must tacitly or not be using an implicit representation.

Our representation is similar in spirit to those used for the k minimum weight spanning trees prob-
lem: for that problem, each successive tree differs from a previously listed tree by a swap, the insertion
of one edge and removal of another edge. The implicit representation consists of a pointer to the pre-
vious tree, and a description of the swap. For the shortest path problem, each successive path will turn
out to differ from a previously listed path by the inclusion of a single edge not part of a shortest path
tree, and appropriate adjustments in the portion of the path that involves shortest path tree edges. Our
implicit representation consists of a pointer to the previous path, and a description of the newly added
edge.

5

s

t11

12

109

13

818

7

15

14202

27

15 20

14

25

0111937

7233342

22365655

Figure 1. (a) Example digraph G with edge lengths and specified terminals; (b) Shortest path tree T and distances
to t in G.

s

t

3

4

10 6

1

9

s

t

3

4

9

Figure 2. (a) Edges in G − T labeled by δ(e) (δ(e) = 0 for edges in T); (b) Path p, sidetracks(p) (the heavy
edges, labeled 3, 4, and 9), and prefpath(p) (differing from p in the two dashed edges; sidetracks(prefpath(p))

consists of the two edges labeled 3 and 4).

Given s and t in a digraph G (Figure 1(a)), let T be a single-destination shortest path tree with t as
destination (Figure 1(b); this is the same as a single source shortest path tree in the graph GR formed
by reversing each edge of G). We can compute T in time O(m+n log n) [27]. We denote by nextT (v)

the next vertex reached after v on the path from v to t in T .
Given an edge e in G, define

δ(e) = `(e) + d(head(e), t) − d(tail(e), t).

Intuitively, δ(e) measures how much distance is lost by being “sidetracked” along e instead of taking
a shortest path to t . The values of δ for our example graph are shown in Figure 2(a).

Lemma 1. For any e ∈ G, δ(e) ≥ 0. For any e ∈ T, δ(e) = 0.

For any path p in G, formed by a sequence of edges, some edges of p may be in T , and some
others may be in G − T . Any path p from s to t is uniquely determined solely by the subsequence
sidetracks(p) of its edges in G − T (Figure 2(b)). For, given a pair of edges in the subsequence, there
is a uniquely determined way of inserting edges from T so that the head of the first edge is connected
to the tail of the second edge. As an example, the shortest path in T from s to t is represented by the

6

empty sequence. A sequence of edges in G − T may not correspond to any s-t path, if it includes a
pair of edges that cannot be connected by a path in T . If S = sidetracks(p), we define path(S) to be
the path p.

Our implicit representation will involve these sequences of edges in G − T . We next show how to
recover `(p) from information in sidetracks(p).

For any nonempty sequence Sof edges in G − T , let prefix(S) be the sequence formed by the re-
moval of the last edge in S. If S = sidetracks(p), then we denote this last sidetrack edge by lastsidetrack(p);
prefix(S) will define a path prefpath(p) = path(prefix(S)) (Figure 2(b)).

Lemma 2. For any path p from s to t,

`(p) = d(s, t) +
∑

e∈sidetracks(p)

δ(e) = d(s, t) +
∑
e∈p

δ(e).

Lemma 3. For any path p from sto t in G, for which sidetracks(p) is nonempty, `(p) ≥ `(prefpath(p)).

Our representation of a path p in the list of paths produced by our algorithm will then consist of
two components:

• The position in the list of prefpath(p).

• Edge lastsidetrack(p).

Although the final version of our algorithm, which uses Frederickson’s heap selection technique, does
not necessarily output paths in sorted order, we will nevertheless be able to guarantee that prefpath(p)

is output before p. One can easily recover p itself from our representation in time proportional to the
number of edges in p. The length `(p) for each path can easily be computed as δ(lastsidetrack(p)) +
`(prefpath(p)). We will see later that we can also compute many other simple properties of the paths,
in constant time per path.

2.3 Representing Paths by a Heap

The representation of s-t paths discussed in the previous section gives a natural tree of paths, in which
the parent of any path p is prefpath(p) (Figure 3). The degree of any node in this path tree is at most
m, since there can be at most one child for each possible value of lastsidetrack(p). The possible values
of lastsidetrack(q) for paths q that are children of p are exactly those edges in G − T that have tails
on the path from head(lastsidetrack(p)) to t in the shortest path tree T .

If G contains cycles, the path tree is infinite. By Lemma 3, the path tree is heap-ordered. However
since its degree is not necessarily constant, we cannot directly apply breadth first search (nor Freder-
ickson’s heap selection technique, described later in Lemma 8) to find its k minimum values. Instead
we form a heap by replacing each node p of the path tree with an equivalent bounded-degree subtree
(essentially, a heap of the edges with tails on the path from head(lastsidetrack(p)) to t , ordered by
δ(e)). We must also take care that we do this in such a way that the portion of the path tree explored
by our algorithm can be easily constructed.

7

{}

{3}

{3,1} {3,4}

{3,4,6} {3,4,9}

{6} {10}

{3,1,9}

Figure 3. Tree of paths, labeled by sidetracks(p).

For each vertex v we wish to form a heap HG(v) for all edges with tails on the path from v to t ,
ordered by δ(e). We will later use this heap to modify the path tree by replacing each node p with a
copy of HG(head(lastsidetrack(p))).

Let out(v) denote the edges in G − T with tails at v (Figure 4(a)). We first build a heap Hout(v),
for each vertex v, of the edges in out(v) (Figure 4(b)). The weights used for the heap are simply the
values δ(e) defined earlier. Hout(v) will be a 2-heap with the added restriction that the root of the heap
only has one child. It can be built for each v in time O(|out(v)|) by letting the root outroot(v) be the
edge minimizing δ(e) in out(v), and letting its child be a heap formed by heapification of the rest of
the edges in out(v). The total time for this process is

∑
O(|out(v)|) = O(m).

We next form the heap HG(v) by merging all heaps Hout(w) for w on the path in T from v to
t . More specifically, for each vertex v we merge Hout(v) into HG(nextT (v)) to form HG(v). We will
continue to need HG(nextT (v)), so this merger should be done in a persistent (nondestructive) fashion.

We guide this merger of heaps using a balanced heap HT (v) for each vertex v, containing only
the roots outroot(w) of the heaps Hout(w), for each w on the path from v to t . HT (v) is formed by
inserting outroot(v) into HT (nextT (v)) (Figure 5(a)). To perform this insertion persistently, we create
new copies of the nodes on the path updated by the insertion (marked by asterisks in Figure 5(a)), with
appropriate pointers to the other, unchanged, members of HT (nextT (v)). Thus we can store HT (v)

without changing HT (nextT (v)), by using an additional O(log n) words of memory to store only the
nodes on that path.

We now form HG(v) by connecting each node outroot(w) in HT (v) to an additional subtree beyond
the two it points to in HT (v), namely to the rest of heap Hout(w). HG(v) can be constructed at the
same time as we construct HT (v), with a similar amount of work. HG(v) is thus a 3-heap as each node
includes at most three children, either two from HT (v) and one from Hout(w), or none from HT (v)

and two from Hout(w).
We summarize the construction so far, in a form that emphasizes the shared structure in the various

heaps HG(v).

Lemma 4. In time O(m+ n log n) we can construct a directed acyclic graph D(G), and a map from
vertices v ∈ G to h(v) ∈ D(G), with the following properties:

8

1

6

12

14

13

3

7

17

19
4

8

10

p

q

r

s

t

1

6

12 14

13 3

7
17

19

4

8

10

Figure 4. (a) Portion of a shortest path tree, showing out(v) and corresponding values of δ; (b) Hout(v).

4*

4*

17*

4*

13*17

17*

1*

134*

3*

4*17

p

q

r

s

t 4

4

17

17

3

4

4

13

1

4 6

12 14

7

19

8

10

Figure 5. (a) HT (v) with asterisks marking path of nodes updated by insertion of outroot(v) into HT (nextT (v));
(b) D(G) has a node for each marked node in Figure 5(a) and each non-root node in Figure 4(b).

9

• D(G) has O(m + n log n) vertices.

• Each vertex in D(G) corresponds to an edge in G − T.

• Each vertex in D(G) has out-degree at most 3.

• The vertices reachable in D(G) from h(v) form a 3-heap HG(v) in which the vertices of the heap
correspond to edges of G− T with tails on the path in T from v to t , in heap order by the values
of δ(e).

Proof: The vertices in D(G) come from two sources: heaps Hout(v) and HT (v). Each node in Hout(v)

corresponds to a unique edge in G−T , so there are at most m−n+1 nodes coming from heaps Hout(v).
Each vertex of G also contributes blog2 i c nodes from heaps HT (v), where i is the length of the path
from the vertex to t , 1 + blog2 i c measures the number of balanced binary heap nodes that need to be
updated when inserting outroot(v) into HT (nextT (v)), and we subtract one because outroot(v) itself
was already included in our total for Hout(v). In the worst case, T is a path and the total contribu-
tion is at most

∑
i blog2 i c ≤ n log2 n − cn where c varies between roughly 1.91 and 2 depending on

the ratio of n to the nearest power of two. Therefore the total number of nodes in D(G) is at most
m+ n log2 n − (c+ 1)n. The degree bound follows from the construction, and it is straightforward to
construct D(G) as described above in constant time per node, after computing the shortest path tree T
in time O(m + n log n) using Fibonacci heaps [27].

Map h(v) simply takes v to the root of HG(v). For any vertex v in D(G), let δ(v) be a shorthand
for δ(e) where e is the edge in G corresponding to v. By construction, the nodes reachable from h(v)

are those in HT (v) together with, for each such node w, the rest of the nodes in Hout(w); HT (v) was
constructed to correspond exactly to the vertices on the path from v to t , and Hout(w) represents the
edges with tails at each vertex, so together these reachable nodes represent all edges with tails on the
path. Each edge (u, v) in D(G) either corresponds to an edge in some HT (w) or some Hout(w), and
in either case the heap ordering for D(G) is a consequence of the ordering in these smaller heaps. 2

D(G) is shown in Figure 5(b). The nodes reachable from s in D(G) form a structure HG(s) rep-
resenting the paths differing from the original shortest path by the addition of a single edge in G − T .
We now describe how to augment D(G) with additional edges to produce a graph which can represent
all s-t paths, not just those paths with a single edge in G − T .

We define the path graph P(G) as follows. The vertices of P(G) are those of D(G), with one
additional vertex, the root r = r (s). The vertices of P(G) are unweighted, but the edges are given
lengths. For each directed edge (u, v) in D(G), we create the edge between the corresponding ver-
tices in P(G), with length δ(v) − δ(u). We call such edges heap edges. For each vertex v in P(G),
corresponding to an edge in G − T connecting some pair of vertices u and w, we create a new edge
from v to h(w) in P(G), having as its length δ(h(w)). We call such edges cross edges. We also create
an initial edge between r and h(s), having as its length δ(h(s)).

P(G) has O(m+n log n) vertices, each with out-degree at most four. It can be constructed in time
O(m + n log n).

Lemma 5. There is a one-to-one length-preserving correspondence between s-t paths in G, and paths
starting from r in P(G).

10

Proof: Recall that an s-t path p in G is uniquely defined by sidetracks(p), the sequence of edges from
p in G − T . We now show that for any such sequence, there corresponds a unique path from r in
P(G) ending at a node corresponding to lastsidetrack(p), and conversely any path from r in P(G)

corresponds to sidetracks(p) for some path p.
Given a path p in G, we construct a corresponding path p′ in P(G) as follows. If sidetracks(p)

is empty (i.e. p is the shortest path), we let p′ consist of the single node r . Otherwise, form a path q′

in P(G) corresponding to prefpath(p), by induction on the length of sidetracks(p). By induction, q′

ends at a node of P(G) corresponding to edge (u, v) = lastsidetrack(prefpath(p)). When we formed
P(G) from D(G), we added an edge from this node to h(v). Since lastsidetrack(p) has its tail on
the path in T from v to t , it corresponds to a unique node in HG(v), and we form p′ by concatenat-
ing q′ with the path from h(v) to that node. The edge lengths on this concatenated path telescope to
δ(lastsidetrack(p)), and `(p) = `(prefpath(p)) + `(lastsidetrack(p)) by Lemma 2, so by induction
`(p) = `(q′) + `(lastsidetrack(p)) = `(p′).

Conversely, to construct an s-t path in G from a path p′ in P(G), we construct a sequence of edges
in G, pathseq(p′). If p′ is empty, pathseq(p′) is also empty. Otherwise pathseq(p′) is formed by taking
in sequence the edges in G corresponding to tails of cross edges in p′, and adding at the end of the
sequence the edge in G corresponding to the final vertex of p′. Since the nodes of P(G) reachable
from the head of each cross-edge (u, v) are exactly those in HG(v), each successive edge added to
pathseq(p′) is on the path in T from v to t , and pathseq(p′) is of the form sidetracks(p) for some path
p in G. 2

Lemma 6. In O(m + n log n) time we can construct a graph P(G) with a distinguished vertex r ,
having the following properties.

• P(G) has O(m + n log n) vertices.

• Each vertex of P(G) has outdegree at most four.

• Each edge of P(G) has nonnegative weight.

• There is a one-to-one correspondence between s-t paths in G and paths starting from r in P(G).

• The correspondence preserves lengths of paths in that length ` in P(G) corresponds to length
d(s, t) + ` in G.

Proof: The bounds on size, time, and outdegree follow from Lemma 4, and the nonnegativity of edge
weights follows from the heap ordering proven in that lemma. The correctness of the correspondence
between paths in G and in P(G) is shown above in Lemma 5. 2

To complete our construction, we find from the path graph P(G) a 4-heap H(G), so that the nodes
in H(G) represent paths in G. H(G) is constructed by forming a node for each path in P(G) rooted
at r . The parent of a node is the path with one fewer edge. Since P(G) has out-degree four, each
node has at most four children. Weights are heap-ordered, and the weight of a node is the length of the
corresponding path.

11

Lemma 7. H(G) is a 4-heap in which there is a one-to-one correspondence between nodes and s-t
paths in G, and in which the length of a path in G is d(s, t) plus the weight of the corresponding node
in H(G).

We note that, if an algorithm explores a connected region of O(k) nodes in H(G), it can represent
the nodes in constant space each by assigning them numbers and indicating for each node its parent
and the additional edge in the corresponding path of P(G). The children of a node are easy to find
simply by following appropriate out-edges in P(G), and the weight of a node is easy to compute from
the weight of its parent. It is also easy to maintain along with this representation the corresponding
implicit representation of s-t paths in G.

2.4 Finding the k Shortest Paths

Theorem 1. In time O(m + n log n) we can construct a data structure that will output the shortest
paths from s to t in a graph in order by weight, taking time O(log i) to output the i th path.

Proof: We apply breadth first search to P(G), as described at the start of the section, and translate the
search results to paths using the correspondence described above. 2

We next describe how to compute paths from s to all n vertices of the graph. In fact our construction
solves more easily the reverse problem, of finding paths from each vertex to the destination t . The
construction of P(G) is as above, except that instead of adding a single root r (s) connected to h(s),
we add a root r (v) for each vertex v ∈ G. The modification to P(G) takes O(n) time. Using the
modified P(G), we can compute a heap Hv(G) of paths from each v to t , and compute the k smallest
such paths in time O(k).

Theorem 2. Given a source vertex s in a digraph G, we can find in time O(m + n log n + kn log k)

an implicit representation of the k shortest paths from s to each other vertex in G.

Proof: We apply the construction above to GR, with s as destination. We form the modified path graph
P(GR), find for each vertex v a heap Hv(GR) of paths in GR from v to s, and apply breadth first search
to this heap. Each resulting path corresponds to a path from s to v in G. 2

3 Improved Space and Time

The basic algorithm described above takes time O(m + n log n + k log k), even if a shortest path tree
has been given. If the graph is sparse, the n log n term makes this bound nonlinear. This term comes
from two parts of our method, Dijkstra’s shortest path algorithm and the construction of P(G) from the
tree of shortest paths. But for certain graphs, or with certain assumptions about edge lengths, shortest
paths can be computed more quickly than O(m+ n log n) [2,28,33,36], and in these cases we would
like to speed up our construction of P(G) to match these improvements. In other cases, k may be large
and the k log k term may dominate the time bound; again we would like to improve this nonlinear term.
In this section we show how to reduce the time for our algorithm to O(m+n+k), assuming a shortest
path tree is given in the input. As a consequence we can also improve the space used by our algorithm.

12

Figure 6. (a) Restricted partition of order 2; (b) multi-level partition.

3.1 Faster Heap Selection

The following result is due to Frederickson [26].

Lemma 8. We can find the k smallest weight vertices in any heap, in time O(k).

Frederickson’s result applies directly to 2-heaps, but we can easily extend it to D-heaps for any
constant D. One simple method of doing this involves forming a 2-heap from the given D-heap by
making D − 1 copies of each vertex, connected in a binary tree with the D children as leaves, and
breaking ties in such a way that the Dk smallest weight vertices in the 2-heap correspond exactly to
the k smallest weights in the D-heap.

By using this algorithm in place of breadth first search, we can reduce the O(k log k) term in our
time bounds to O(k).

3.2 Faster Path Heap Construction

Recall that the bottleneck of our algorithm is the construction of HT (v), a heap for each vertex v in G
of those vertices on the path from v to t in the shortest path tree T . The vertices in HT (v) are in heap
order by δ(outroot(u)). In this section we consider the abstract problem, given a tree T with weighted
nodes, of constructing a heap HT (v) for each vertex v of the other nodes on the path from v to the root
of the tree. The construction of Lemma 4 solves this problem in time and space O(n log n); here we
give a more efficient but also more complicated solution.

By introducing dummy nodes with large weights, we can assume without loss of generality that T
is binary and that the root t of T has indegree one. We will also assume that all vertex weights in T
are distinct; this can be achieved at no loss in asymptotic complexity by use of a suitable tie-breaking
rule. We use the following technique of Frederickson [25].

Definition 1. A restricted partition of order z with respect to a rooted binary tree T is a partition of
the vertices of V such that:

13

1. Each set in the partition contains at most z vertices.

2. Each set in the partition induces a connected subtree of T.

3. For each set S in the partition, if S contains more than one vertex, then there are at most two
tree edges having one endpoint in S.

4. No two sets can be combined and still satisfy the other conditions.

In general such a partition can easily be found in linear time by merging sets until we get stuck.
However for our application, z will always be 2 (Figure 6(a)), and by working bottom up we can find
an optimal partition in linear time.

Lemma 9 (Frederickson [25]). In linear time we can find an order-2 partition of a binary tree T for
which there are at most 5n/6 sets in the partition.

Contracting each set in a restricted partition gives again a binary tree. We form a multi-level parti-
tion [25] by recursively partitioning this contracted binary tree (Figure 6(b)). We define a sequence of
trees Ti as follows. Let T0 = T . For any i > 0, let Ti be formed from Ti −1 by performing a restricted
partition as above and contracting the resulting sets. Then |Ti | = O((5/6)i n).

For any set S of vertices in Ti −1 contracted to form a vertex v in Ti , define nextlevel(S) to be the
set in the partition of Ti containing S. We say that S is an interior set if it is contracted to a degree two
vertex. Note that if t has indegree one, the same is true for the root of any Ti , so t is not part of any
interior set, and each interior set has one incoming and one outgoing edge. Since Ti is a contraction
of T , each edge in Ti corresponds to an edge in T . Let e be the outgoing edge from v in Ti ; then we
define rootpath(S) to be the path in T from head(e) to t . If S is an interior set, with a single incoming
edge e′, we let inpath(S) be the path in T from head(e′) to tail(e).

Define an m-partial heap to be a pair (M, H) where H is a heap and M is a set of m elements each
smaller than all nodes in H . If H is empty M can have fewer than m elements and we will still call
(M, H) an m-partial heap.

Let us outline the structures used in our algorithm, before describing the details of computing these
structures. We first find a partial heap (M1(S), H1(S)) for the vertices of T in each path inpath(S).
Although our algorithm performs an interleaved construction of all of these sets at once, it is easiest
to define them top-down, by defining M1(S) for a set S in the partition of Ti −1 in terms of similar sets
in Ti and higher levels of the multi-level partition. Specifically, let M2(S) denote those elements in
M1(S′) for those S′ containing S at higher levels of the multi-level partition, and let k = max(i +
2, |M2(S)| + 1); then we define M1(S) to be the vertices in inpath(S) having the k smallest vertex
weights. Our algorithm for computing H1(S) from the remaining vertices on inpath(S) involves an
intermediate heap H2(S′) formed by adding the vertices in M1(S′)−M1(S) to H1(S′) where S′ consists
of one or both of the subsets of Scontracted at the next lower level of the decomposition and containing
vertices of inpath(S). After a bottom-up computation of M1, H1, and H2, we then perform a top-down
computation of a family of (i + 1)-partial heaps, (M3(S), H3(S)); M3 is formed by removing some
elements from M1 and H3 is formed by adding those elements to H1. Finally, the desired output HT (v)

can be constructed from the 1-partial heap (M3(v), H3(v)) at level T0 in the decomposition.

14

Before describing our algorithms, let us bound a quantity useful in their analysis. Let mi denote
the sum of |M1(S)| over sets Scontracted in Ti .

Lemma 10. For each i , mi = O(i |Ti |).

Proof: By the definition of M1(S) above,

mi =
∑

S

max(i + 2, |M2(S)| + 1) ≤
∑

S

|M2(S)| + i + 2 ≤ (i + 2)|Ti | +
∑

S

|M2(S)|.

All sets M2(S) appearing in this sum are disjoint, and all are included in mi +1, so we can simplify this
formula to

mi ≤ (i + 2)|Ti | + mi +1 ≤
∑
j ≥i

(j + 2)|Tj | ≤
∑
j ≥i

(j + 2)
(5

6

) j −i |Ti | = O(i |Ti |).

2

We use the following data structure to compute the sets M1(S) (which, recall, are sets of low-weight
vertices on inpath(S)) . For each interior set S, we form a priority queue Q(S), from which we can
retrieve the smallest weight vertex on inpath(S) not yet in M1(S). This data structure is very simple:
if only one of the two subsets forming Scontains vertices on inpath(S), we simply copy the minimum-
weight vertex on that subset’s priority queue, and otherwise we compare the minimum-weight vertices
in each subset’s priority queue and select the smaller of the two weights. If one of the two subsets’
priority queue values change, this structure can be updated simply by repeating this comparison.

We start by setting all the sets M1(S) to be empty, then progress top-down through the multi-level
decomposition, testing for each set Sin each tree Ti (in decreasing order of i) whether we have already
added enough members to M1(S). If not, we add elements one at a time, until there are enough to satisfy
the definition above of |M1(S)|. Whenever we add an element to M1(S) we add the same element to
M1(S′) for each lower level subset S′ to which it also belongs. An element is added by removing it
from Q(S) and from the priority queues of the sets at each lower level. We then update the queues
bottom up, recomputing the head of each queue and inserting it in the queue at the next level.

Lemma 11. The amount of time to compute M1(S) for all sets S in the multi-level partition, as de-
scribed above, is O(n).

Proof: By Lemma 10, the number of operations in priority queues for subsets of Ti is O(i |Ti |). So the
total time is

∑
O(i |Ti |) = O(n

∑
i (5/6)i) = O(n). 2

We next describe how to compute the heaps H1(S) for the vertices on inpath(S) that have not been
chosen as part of M1(S). For this stage we work bottom up. Recall that Scorresponds to one or two ver-
tices of Ti ; each vertex corresponds to a set S′ contracted at a previous level of the multi-level partition.
For each such S′ along the path in Swe will have already formed the partial heap (M1(S′), H1(S′)). We
let H2(S′) be a heap formed by adding the vertices in M1(S′)−M1(S) to H1(S′). Since M1(S′)−M1(S)

consists of at least one vertex (because of the requirement that |M1(S′)| ≥ |M1(S)| + 1), we can form
H2(S′) as a 2-heap in which the root has degree one.

15

If Sconsists of a single vertex we then let H1(S) = H2(S′); otherwise we form H1(S) by combin-
ing the two heaps H2(S′) for its two children. The time is constant per set Sor linear overall.

We next compute another collection of partial heaps (M3(S), H3(S)) of vertices in rootpath(S)

for each set S contracted at some level of the tree. If S is a set contracted to a vertex in Ti , we let
(M3(S), H3(S)) be an i + 1-partial heap. In this phase of the algorithm, we work top down. For each
set S, consisting of a collection of vertices in Ti −1, we use (M3(S), H3(S)) to compute for each vertex
S′ the partial heap (M3(S′), H3(S′)).

If Sconsists of a single set S′, or if S′ is the parent of the two vertices in S, we let M3(S′) be formed
by removing the minimum weight element from M3(S) and we let H3(S′) be formed by adding that
minimum weight element as a new root to H3(S).

In the remaining case, if S′ and parent(S′) are both in S, we form M3(S′) by taking the i + 1
minimum values in M1(parent(S′)) ∪ M3(parent(S′)). The remaining values in M1(parent(S′)) ∪
M3(parent(S′))− M3(S′) must include at least one value v greater than everything in H1(parent(S′)).
We form H3(S′) by sorting those remaining values into a chain, together with the root of heap H3(parent(S′),
and connecting v to H1(parent(S′)).

To complete the process, we compute the heaps HT (v) for each vertex v. Each such vertex is in
T0, so the construction above has already produced a 1-partial heap (M3(v), H3(v)). We must add the
value for v itself and produce a true heap, both of which are easy.

Lemma 12. Given a tree T with weighted nodes, we can construct for each vertex v a 2-heap HT (v)

of all nodes on the path from v to the root of the tree, in total time and space O(n).

Proof: The time for constructing (M1, H1) has already been analyzed. The only remaining part of the
algorithm that does not take constant time per set is the time for sorting remaining values into a chain,
in time O(i log i) for a set at level i of the construction. The total time at level i is thus O(|Ti |i log i)
which, summed over all i , gives O(n). 2

Applying this technique in place of Lemma 4 gives the following result.

Theorem 3. Given a digraph G and a shortest path tree from a vertex s, we can find an implicit rep-
resentation of the k shortest s-t paths in G, in time and space O(m + n + k).

4 Maintaining Path Properties

Our algorithm can maintain along with the other information in H(G) various forms of simple infor-
mation about the corresponding s-t paths in G.

We have already seen that H(G) allows us to recover the lengths of paths. However lengths are
not as difficult as some other information might be to maintain, since they form an additive group. We
used this group property in defining δ(e) to be a difference of path lengths, and in defining edges of
P(G) to have weights that were differences of quantities δ(e).

We now show that we can in fact keep track of any quantity formed by combining information from
the edges of the path using any monoid. We assume that there is some given function taking each edge
e to an element value(e) of a monoid, and that given two edges eand f we can compute the composite

16

value value(e) · value(f) in constant time. By associativity of monoids, the value value(p) of a path
p is well defined. Examples of such values include the path length and number of edges in a path (for
which composition is real or integer addition) and the longest or shortest edge in a path (for which
composition is minimization or maximization).

Recall that for each vertex we compute a heap HG(v) representing the sidetracks reachable along
the shortest path from v to t . For each node x in HG(v) we maintain two values: pathstart(x) pointing
to a vertex on the path from v to t , and value(x) representing the value of the path from pathstart(x)

to the head of the sidetrack edge represented by x. We require that pathstart of the root of the tree
is v itself, that pathstart(x) be a vertex between v and the head of the sidetrack edge representing x,
and that all descendents of x have pathstart values on the path from pathstart(x) to t . For each edge
in HG(v) connecting nodes x and y we store a further value, representing the value of the path from
pathstart(x) to pathstart(y). We also store for each vertex in G the value of the shortest path from v

to t .
Then as we compute paths from the root in the heap H(G), representing s-t paths in G, we can

keep track of the value of each path merely by composing the stored values of appropriate paths and
nodes in the path in H(G). Specifically, when we follow an edge in a heap HG(v) we include the value
stored at that edge, and when we take a sidetrack edge e from a node x in HG(v) we include value(x)

and value(e). Finally we include the value of the shortest path to t from the tail of the last sidetrack
edge to t . The portion of the value except for the final shortest path can be updated in constant time
from the same information for a shorter path in H(G), and the remaining shortest path value can be
included again in constant time, so this computation takes O(1) time per path found.

The remaining difficulty is computing the values value(x), pathstart(x), and also the values of
edges in HG(v).

In the construction of Lemma 4, we need only compute these values for the O(log n) nodes by
which HG(v) differs from HG(parent(v)), and we can compute each such value as we update the heap
in constant time per value. Thus the construction here goes through with unchanged complexity.

In the construction of Lemma 12, each partial heap at each level of the construction corresponds to
all sidetracks with heads taken from some path in the shortest path tree. As each partial heap is formed
the corresponding path is formed by concatenating two shorter paths. We let pathstart(x) for each root
of a heap be equal to the endpoint of this path farthest from t . We also store for each partial heap the
near endpoint of the path, and the value of the path. Then these values can all be updated in constant
time when we merge heaps.

Theorem 4. Given a digraph G and a shortest path tree from a vertex s, and given a monoid with
values value(e) for each edge e ∈ G, we can compute value(p) for each of the k shortest s-t paths in
G, in time and space O(m + n + k).

5 Dynamic Programming Applications

Many optimization problems solved by dynamic programming or more complicated matrix searching
techniques can be expressed as shortest path problems. Since the graphs arising from dynamic pro-
grams are typically acyclic, we can use our algorithm to find longest as well as shortest paths. We

17

demonstrate this approach by a few selected examples.

5.1 The Knapsack Problem

The optimization 0-1 knapsack problem (or knapsack problem for short) consists of placing “objects”
into a “knapsack” that only has room for a subset of the objects, and maximizing the total value of the
included objects. Formally, one is given integers L , ci , and wi (0 ≤ i < n) and one must find xi ∈
{0, 1} satisfying

∑
xi ci ≤ L and maximizing

∑
xi wi . Dynamic programming solves the problem in

time O(nL); Dai et al. [15] show how to find the k best solutions in time O(knL). We now show how
to improve this to O(nL + k) using longest paths in a DAG.

Let directed acyclic graph G have nL + L + 2 vertices: two terminals s and t , and (n + 1)L other
vertices with labels (i, j), 0 ≤ i ≤ n and 0 ≤ j ≤ L . Draw an edge from s to each (0, j) and from
each (n, j) to t , each having length 0. From each (i, j) with i < n, draw two edges: one to (i + 1, j)
with length 0, and one to (i + 1, j + ci) with length wi (omit this last edge if j + ci > L).

There is a simple one-to-one correspondence between s-t paths and solutions to the knapsack prob-
lem: given a path, define xi to be 1 if the path includes an edge from (i, j) to (i + 1, j + ci); instead
let xi be 0 if the path includes an edge from (i, j) to (i + 1, j). The length of the path is equal to the
corresponding value of

∑
xi wi , so we can find the k best solutions simply by finding the k longest

paths in the graph.

Theorem 5. We can find the k best solutions to the knapsack problem as defined above, in time O(nL+
k).

5.2 Sequence Alignment

The sequence alignment or edit distance problem is that of matching the characters in one sequence
against those of another, obtaining a matching of minimum cost where the cost combines terms for
mismatched and unmatched characters. This problem and many of its variations can be solved in time
O(xy) (where x and y denote the lengths of the two sequences) by a dynamic programming algorithm
that takes the form of a shortest path computation in a grid graph.

Byers and Waterman [8, 64] describe a problem of finding all near-optimal solutions to sequence
alignment and similar dynamic programming problems. Essentially their problem is that of finding all
s-t paths with length less than a given bound L . They describe a simple depth first search algorithm for
this problem, which is especially suited for grid graphs although it will work in any graph and although
the authors discuss it in terms of general DAGs. In a general digraph their algorithm would use time
O(k2m) and space O(km). In the acyclic case discussed in the paper, these bounds can be reduced to
O(km) and O(m). In grid graphs its performance is even better: time O(xy + k(x + y)) and space
O(xy). Naor and Brutlag [46] discuss improvements to this technique that among other results include
a similar time bound for k shortest paths in grid graphs.

We now discuss the performance of our algorithm for the same length-limited path problem. In
general one could apply any k shortest paths algorithm together with a doubling search to find the value
of k corresponding to the length limit, but in our case the problem can be solved more simply: simply
replace the breadth first search in H(G) with a length-limited depth first search.

18

Theorem 6. We can find the k s-t paths in a graph G that are shorter than a given length limit L, in
time O(m + n + k) once a shortest path tree in G is computed.

Even for the grid graphs arising in sequence analysis, our O(xy + k) bound improves by a factor
of O(x + y) the times of the algorithms of Byers and Waterman [8] and Naor and Brutlag [46].

5.3 Inscribed Polygons

We next discuss the problem of, given an n-vertex convex polygon, finding the “best” approximation to
it by an r -vertex polygon, r < n. This arises e.g. in computer graphics, in which significant speedups
are possible by simplifying the shapes of faraway objects. To our knowledge the “k best solution” ver-
sion of the problem has not been studied before. We include it as an example in which the best known
algorithms for the single solution case do not appear to be of the form needed by our techniques; how-
ever one can transform an inefficient algorithm for the original problem into a shortest path problem
that with our techniques gives an efficient solution for large enough k.

We formalize the problem as that of finding the maximum area or perimeter convex r -gon inscribed
in a convex n-gon. The best known solution takes time O(n log n + n

√
r log n) [1]. However this

algorithm does not appear to be in the form of a shortest path problem, as needed by our techniques.
Instead we describe a less efficient technique for solving the problem by using shortest paths. Num-

ber the n-gon vertices v1, v2, etc. Suppose we know that vi is the lowest numbered vertex to be part of
the optimal r -gon. We then form a DAG Gi with O(rn) vertices and O(rn2) edges, in r levels. In each
level we place a copy of each vertex v j , connected to all vertices with lower numbers in the previous
level. Each path from the copy of vi in the first level of the graph to a vertex in the last level of the
graph has r vertices with numbers in ascending order from vi , and thus corresponds to an inscribed r -
gon. We connect one such graph for each initial vertex vi into one large graph, by adding two vertices
s and t , edges from s to each copy of a vertex vi at the first level of Gi , and edges from each vertex
on level r of each Gi to t . Paths in the overall graph G thus correspond to inscribed r -gons with any
starting vertex.

It remains to describe the edge lengths in this graph. Edges from s to each vi will have length zero
for either definition of the problem. Edges from a copy of vi at one level to a copy of v j at the next
level will have length equal to the Euclidean distance from vi to v j , for the maximum perimeter version
of the problem, and edges connecting a copy of v j at the last level to t will have length equal to the
distance between v j and the initial vertex vi . Thus the length of a path becomes exactly the perimeter
of the corresponding polygon, and we can find the k best r -gons by finding the k longest paths.

For the maximum area problem, we instead let the distance from vi to v j be measured by the area
of the n-gon cut off by a line segment from vi to v j . Thus the total length of a path is equal to the total
area outside the corresponding r -gon. Since we want to maximize the area inside the r -gon, we can
find the k best r -gons by finding the k shortest paths.

Theorem 7. We can find the k maximum area or perimeter r -gons inscribed in an n-gon, in time
O(rn3 + k).

19

Victoria

VI

II
Windsor

Elizabeth

Windsor

George

von

Windsor

Mountbatten
Philip

Mountbatten
Julie
Elizabeth

Alice
Victoria

Brabant
Marie
Elizabeth
Alberta
Victoria

Wettin
Mary

Alice

Maud

Marie

Irene

von

Paul

II

Olga

Karl

V

Windsor
Elizabeth

Windsor
George

Württemberg
Agnes
Claudine

Pauline
Augusta
Victoria

Württemberg
Alexander

Ludwig
Franz

Württemberg
Constantin

Ludwig
Alexander

Henriette

 VI

von

Louisa
Mary

von

Paul

 von

 =

Olga

Luise

Ludwig

Mountbatten
Philip

Oldenburg
Andrew

Romanov

 von
Elisabeth
Marianne

Henriette
Friederike
Alexandra

Württemberg
Philippine

Wilhelmine
Amalie

Württemberg
Alexander

von

Wettin

Pauline

von

Therese

von
Friedrich

II

Windsor
Elizabeth

Windsor
George

Windsor
George

Oldenburg
Julia
Louisa

Charlotte
Caroline

Alexandra

von
Auguste

Caroline
Friederike

Wilhelmine
Louise

 von

VI

V

Mary

Brabant =
Julie

Mountbatten
Philip

Oldenburg
Andrew

Oldenburg
George

Oldenburg
IX

Christian

 I

von

von

von

of

II

Olga

Mary

Windsor
Elizabeth

Windsor
George

Württemberg
Agnes
Claudine

Pauline
Augusta
Victoria

 von
Elizabeth

Wilhelmina
Adelaide

Brabant
Louisa
Wilhelmina

Augusta

Usingen
Nassau-

Polyxene
Caroline

 VI

von

Mary

Welf

von

 =

Louisa

von

Friedrich

Mountbatten
Philip

Oldenburg
Andrew

Oldenburg
George

Brabant
Auguste

Caroline
Friederike

Wilhelmine
Louise

Brabant
Wilhelm

Brabant
von

 I

(2)

von

von

Julie

(2)
von

George

Wettin
VII

Edward

 = Wettin von
Emanuel
Augustus
Charles
Francis
Albert

Welf I

Figure 7. Some short relations in a complicated genealogical database.

5.4 Genealogical Relations

If one has a database of family relations, one may often wish to determine how some two individu-
als in the database are related to each other. Formalizing this, one may draw a DAG in which nodes
represent people, and an arc connects a parent to each of his or her children. Then each different type
of relationship (such as that of being a half-brother, great-aunt, or third cousin twice removed) can be
represented as a pair of disjoint paths from a common ancestor (or couple forming a pair of common
ancestors) to the two related individuals, with the specific type of relationship being a function of the
numbers of edges in each path, and of whether the paths begin at a couple or at a single common an-
cestor. In most families, the DAG one forms in this way has a tree-like structure, and relationships
are easy to find. However in more complicated families with large amounts of intermarriage, one can
be quickly overwhelmed with many different relationships. For instance, in the British royal family,
Queen Elizabeth and her husband Prince Philip are related in many ways, the closest few being sec-
ond cousins once removed through King Christian IX of Denmark and his wife Louise, third cousins

20

through Queen Victoria of England and her husband Albert, and fourth cousins through Duke Ludwig
Friedrich Alexander of Württemberg and his wife Henriette (Figure 7). The single shortest relationship
can be found as a shortest path in a graph formed by combining the DAG with its reversal, but longer
paths in this graph do not necessarily correspond to disjoint pairs of paths. A program I and my wife
Diana wrote, Gene (http://www.ics.uci.edu/∼eppstein/gene/), is capable of finding small numbers of
relationships quickly using a backtracking search with heuristic pruning, but Gene starts to slow down
when asked to produce larger numbers of relationships.

We now describe a technique for applying our k-shortest-path algorithm to this problem, based on a
method of Perl and Shiloach [48] for finding shortest pairs of disjoint paths in DAGs. Given a DAG D,
we construct a larger DAG D1 as follows. We first find some topological ordering of D, and let f (x)

represent the position of vertex x in this ordering. We then construct one vertex of D1 for each ordered
pair of vertices (x, y) (not necessarily distinct) in D. We also add one additional vertex s in D1. We
connect (x, y) to (x, z) in D1 if (y, z) is an arc of D and f (z) > max(f (x), f (y)). Symmetrically,
we connect (x, y) to (z, y) if (x, z) is an arc of D and f (z) > max(f (x), f (y)). We connect s to all
vertices in D1 of the form (v, v).

Lemma 13. Let vertices u and v be given. Then the pairs of disjoint paths in D from a common an-
cestor a to u and v are in one-for-one correspondence with the paths in D1 from s through (a, a) to
(u, v).

As a consequence, we can find shortest relationships between two vertices u and v by finding short-
est paths in D1 from s to (u, v).

Theorem 8. Given a DAG with n nodes and medges, we can construct in O(mn) time a data structure
such that, given any two nodes u and v in a DAG, we can list (an implicit representation of) the k
shortest pairs of vertex-disjoint paths from a common ancestor to u and v, in time O(k). The same
bound holds for listing all pairs with length less than a given bound (where k is the number of such
paths). Alternately, the pairs of paths can be output in order by total length, in time O(log i) to list the
i th pair. As before, our representation allows constant-time computation of some simple functions of
each path, and allows each path to be explicitly generated in time proportional to its length.

For a proof of Lemma 13 and more details of this application, see [19].

6 Conclusions

We have described algorithms for the k shortest paths problem, improving by an order of magnitude
previously known bounds. The asymptotic performance of the algorithm makes it an especially promis-
ing choice in situations when large numbers of paths are to be generated, and we there already exist at
least two implementations: one by Shibuya, Imai, et al. [52–55] and one by Martins (http://www.mat.
uc.pt/∼eqvm/eqvm.html).

We list the following as open problems.

21

• The linear time construction when the shortest path tree is known is rather complicated. Is there
a simpler method for achieving the same result? How quickly can we maintain heaps HT (v) if
new leaves are added to the tree? (Lemma 4 solves this in O(log n) time per vertex but it seems
that at least O(log log n) should be possible.)

• As described above, we can find the k best inscribed r -gons in an n-gon, in time O(rn3 + k).
However the best single-optimum solution has the much faster time bound O(n log n+n

√
r log n)

[1]. Our algorithms for the k best r -gons are efficient (in the sense that we use constant time per
r -gon) only when k = Ä(rn3). The same phenomenon of overly large preprocessing times also
occurs in our application to genealogical relationship finding: the shortest relationship can be
found in linear time but our k-shortest-relationship method takes time O(mn+ k). Can we im-
prove these bounds?

• Are there properties of paths not described by monoids which we can nevertheless compute ef-
ficiently from our representation? In particular how quickly can we test whether each path gen-
erated is simple?

Acknowledgements

This work was supported in part by NSF grant CCR-9258355. I thank Greg Frederickson, Sandy Irani
and George Lueker for helpful comments on drafts of this paper.

References

[1] A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum weight K -link path in graphs
with Monge property and applications. Proc. 9th Symp. Computational Geometry, pp. 189–197.
Assoc. for Computing Machinery, 1993.

[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the shortest path
problem. J. Assoc. Comput. Mach. 37:213–223. Assoc. for Computing Machinery, 1990.

[3] J. A. Azevedo, M. E. O. Santos Costa, J. J. E. R. Silvestre Madeira, and E. Q. V. Martins. An
algorithm for the ranking of shortest paths. Eur. J. Operational Research 69:97–106, 1993.

[4] A. Bako. All paths in an activity network. Mathematische Operationsforschung und Statistik
7:851–858, 1976.

[5] A. Bako and P. Kas. Determining the k-th shortest path by matrix method. Szigma 10:61–66,
1977. In Hungarian.

[6] R. E. Bellman. On a routing problem. Quart. Appl. Math. 16:87–90, 1958.

[7] A. W. Brander and M. C. Sinclair. A comparative study of k-shortest path algorithms. Proc. 11th
UK Performance Engineering Worksh. for Computer and Telecommunications Systems, Septem-
ber 1995.

22

[8] T. H. Byers and M. S. Waterman. Determining all optimal and near-optimal solutions when solv-
ing shortest path problems by dynamic programming. Operations Research 32:1381–1384, 1984.

[9] P. Carraresi and C. Sodini. A binary enumeration tree to find K shortest paths. Proc. 7th
Symp. Operations Research, pp. 177–188. Athenäum/Hain/Hanstein, Methods of Operations Re-
search 45, 1983.

[10] G.-H. Chen and Y.-C. Hung. Algorithms for the constrained quickest path problem and the enu-
meration of quickest paths. Computers and Operations Research 21:113–118, 1994.

[11] Y. L. Chen. An algorithm for finding the k quickest paths in a network. Computers and Operations
Research 20:59–65, 1993.

[12] Y. L. Chen. Finding the k quickest simple paths in a network. Information Processing Letters
50:89–92, 1994.

[13] E. I. Chong, S. R. Maddila, and S. T. Morley. On finding single-source single-destination k short-
est paths. Proc. 7th Int. Conf. Computing and Information, July 1995. http://phoenix.trentu.ca/
jci/papers/icci95/A206/P001.html.

[14] A. Consiglio and A. Pecorella. Using simulated annealing to solve the K -shortest path problem.
Proc. Conf. Italian Assoc. Operations Research, September 1995.

[15] Y. Dai, H. Imai, K. Iwano, and N. Katoh. How to treat delete requests in semi-online problems.
Proc. 4th Int. Symp. Algorithms and Computation, pp. 48–57. Springer Verlag, Lecture Notes in
Computer Science 762, 1993.

[16] M. T. Dickerson and D. Eppstein. Algorithms for proximity problems in higher dimensions. Com-
putational Geometry Theory and Applications 5:277–291, 1996.

[17] S. E. Dreyfus. An appraisal of some shortest path algorithms. Operations Research 17:395–412,
1969.

[18] El-Amin and Al-Ghamdi. An expert system for transmission line route selection. Int. Power
Engineering Conf, vol. 2, pp. 697–702. Nanyang Technol. Univ, Singapore, 1993.

[19] D. Eppstein. Finding common ancestors and disjoint paths in DAGs. Tech. Rep. 95-52, Univ. of
California, Irvine, Dept. Information and Computer Science, 1995.

[20] D. Eppstein. Ten algorithms for Egyptian fractions. Mathematica in Education and Research
4(2):5–15, 1995. http://www.ics.uci.edu/∼eppstein/numth/egypt/.

[21] D. Eppstein, Z. Galil, and G. F. Italiano. Improved sparsification. Tech. Rep. 93-20, Univ. of
California, Irvine, Dept. Information and Computer Science, 1993. http://www.ics.uci.edu:80/
TR/UCI:ICS-TR-93-20.

[22] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification – A technique for speed-
ing up dynamic graph algorithms. Proc. 33rd Symp. Foundations of Computer Science, pp. 60–
69. IEEE, 1992.

[23] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ,
1962.

23

[24] B. L. Fox. k-th shortest paths and applications to the probabilistic networks. ORSA/TIMS Joint
National Mtg., vol. 23, p. B263, 1975.

[25] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. Proc. 32nd Symp. Foundations of Computer Science, pp. 632–641. IEEE, 1991.

[26] G. N. Frederickson. An optimal algorithm for selection in a min-heap. Information and Compu-
tation 104:197–214, 1993.

[27] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimiza-
tion algorithms. J. Assoc. Comput. Mach. 34:596–615. Assoc. for Computing Machinery, 1987.

[28] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. Proc. 31st Symp. Foundations of Computer Science, pp. 719–725. IEEE, 1990.

[29] A. V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J. Computing
24(3):494–504. Soc. Industrial and Applied Math., June 1995.

[30] V. Hatzivassiloglou and K. Knight. Unification-based glossing. Proc. 14th Int. Joint Conf.
Artificial Intelligence, pp. 1382–1389. Morgan-Kaufmann, August 1995. http://www.isi.edu/
natural-language/mt/ijcai95-glosser.ps.

[31] G. J. Horne. Finding the K least cost paths in an acyclic activity network. J. Operational Research
Soc. 31:443–448, 1980.

[32] L.-M. Jin and S.-P. Chan. An electrical method for finding suboptimal routes. Int. Symp. Circuits
and Systems, vol. 2, pp. 935–938. IEEE, 1989.

[33] D. B. Johnson. A priority queue in which initialization and queue operations take O(log log D)
time. Mathematical Systems Theory 15:295–309, 1982.

[34] N. Katoh, T. Ibaraki, and H. Mine. An O(Kn2) algorithm for K shortest simple paths in an undi-
rected graph with nonnegative arc length. Trans. Inst. Electronics and Communication Engineers
of Japan E61:971–972, 1978.

[35] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple paths. Networks
12(4):411–427, 1982.

[36] P. N. Klein, S. Rao, M. H. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. Proc. 26th Symp. Theory of Computing, pp. 27–37. Assoc. for Computing Machinery,
1994.

[37] N. Kumar and R. K. Ghosh. Parallel algorithm for finding first K shortest paths. Computer
Science and Informatics 24(3):21–28, September 1994.

[38] A. G. Law and A. Rezazadeh. Computing the K -shortest paths, under nonnegative weighting.
Proc. 22nd Manitoba Conf. Numerical Mathematics and Computing, pp. 277–280, Congr. Nu-
mer. 92, 1993.

[39] E. L. Lawler. A procedure for computing the K best solutions to discrete optimization problems
and its application to the shortest path problem. Management Science 18:401–405, 1972.

24

[40] E. L. Lawler. Comment on computing the k shortest paths in a graph. Commun. Assoc. Comput.
Mach. 20:603–604. Assoc. for Computing Machinery, 1977.

[41] E. Q. V. Martins. An algorithm for ranking paths that may contain cycles. Eur. J. Operational
Research 18(1):123–130, 1984.

[42] S.-P. Miaou and S.-M. Chin. Computing k-shortest path for nuclear spent fuel highway trans-
portation. Eur. J. Operational Research 53:64–80, 1991.

[43] E. Minieka. On computing sets of shortest paths in a graph. Commun. Assoc. Comput. Mach.
17:351–353. Assoc. for Computing Machinery, 1974.

[44] E. Minieka. The K -th shortest path problem. ORSA/TIMS Joint National Mtg., vol. 23, p. B/116,
1975.

[45] E. Minieka and D. R. Shier. A note on an algebra for the k best routes in a network. J. Inst.
Mathematics and Its Applications 11:145–149, 1973.

[46] D. Naor and D. Brutlag. On near-optimal alignments of biological sequences. J. Computational
Biology 1(4):349–366, 1994. http://cmgm.stanford.edu/∼brutlag/Publications/naor94.html.

[47] A. Perko. Implementation of algorithms for K shortest loopless paths. Networks 16:149–160,
1986.

[48] Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs of vertices in a graph. J.
Assoc. Comput. Mach. 25:1–9. Assoc. for Computing Machinery, 1978.

[49] J. B. Rosen, S.-Z. Sun, and G.-L. Xue. Algorithms for the quickest path problem and the enu-
meration of quickest paths. Computers and Operations Research 18:579–584, 1991.

[50] E. Ruppert. Finding the k shortest paths in parallel. Proc. 14th Symp. Theoretical Aspects of
Computer Science, February 1997.

[51] T. Shibuya. Finding the k shortest paths by AI search techniques. Cooperative Research Reports
in Modeling and Algorithms 7(77):212–222. Inst. of Statical Mathematics, March 1995.

[52] T. Shibuya, T. Ikeda, H. Imai, S. Nishimura, H. Shimoura, and K. Tenmoku. Finding a realistic
detour by AI search techniques. Proc. 2nd Intelligent Transportation Systems, vol. 4, pp. 2037–
2044, November 1995. http://naomi.is.s.u-tokyo.ac.jp/papers/navigation/suboptimal-routes/
ITS%95/its.ps.gz.

[53] T. Shibuya and H. Imai. Enumerating suboptimal alignments of multiple biological sequences
efficiently. Proc. 2nd Pacific Symp. Biocomputing, pp. 409–420, January 1997. http://www-smi.
stanford.edu/people/altman/psb97/shibuya.pdf.

[54] T. Shibuya and H. Imai. New flexible approaches for multiple sequence alignment. Proc. 1st
Int. Conf. Computational Molecular Biology, pp. 267–276. Assoc. for Computing Machinery,
January 1997. http://naomi.is.s.u-tokyo.ac.jp/papers/genome/recomb97.ps.gz.

[55] T. Shibuya, H. Imai, S. Nishimura, H. Shimoura, and K. Tenmoku. Detour queries in geo-
graphical databases for navigation and related algorithm animations. Proc. Int. Symp. Cooper-
ative Database Systems for Advanced Applications, vol. 2, pp. 333–340, December 1996. http:
//naomi.is.s.u-tokyo.ac.jp/papers/databases/codas96.ps.gz.

25

[56] D. R. Shier. Algorithms for finding the k shortest paths in a network. ORSA/TIMS Joint National
Mtg., p. 115, 1976.

[57] D. R. Shier. Iterative methods for determining the k shortest paths in a network. Networks
6(3):205–229, 1976.

[58] D. R. Shier. On algorithms for finding the k shortest paths in a network. Networks 9(3):195–214,
1979.

[59] C. C. Skicism and B. L. Golden. Solving k-shortest and constrained shortest path problems ef-
ficiently. Network Optimization and Applications, pp. 249–282. Baltzer Science Publishers, An-
nals of Operations Research 20, 1989.

[60] K. Sugimoto and N. Katoh. An algorithm for finding k shortest loopless paths in a directed net-
work. Trans. Information Processing Soc. Japan 26:356–364, 1985. In Japanese.

[61] J. W. Suurballe. Disjoint paths in a network. Networks 4:125–145, 1974.

[62] R. E. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional Conference Series
in Applied Mathematics 44. Soc. Industrial and Applied Math., 1983.

[63] R. Thumer. A method for selecting the shortest path of a network. Zeitschrift für Operations
Research, Serie B (Praxis) 19:B149–153, 1975. In German.

[64] M. S. Waterman. Sequence alignments in the neighborhood of the optimum. Proc. Natl. Acad.
Sci. USA 80:3123–3124, 1983.

[65] M. M. Weigand. A new algorithm for the solution of the k-th best route problem. Computing
16:139–151, 1976.

[66] A. Wongseelashote. An algebra for determining all path-values in a network with application to
k-shortest-paths problems. Networks 6:307–334, 1976.

[67] A. Wongseelashote. Semirings and path spaces. Discrete Mathematics 26:55–78, 1979.

[68] J. Y. Yen. Finding the K shortest loopless paths in a network. Management Science 17:712–716,
1971.

[69] J. Y. Yen. Another algorithm for finding the K shortest-loopless network paths. Proc. 41st Mtg.
Operations Research Society of America, vol. 20, p. B/185, 1972.

26

