Finding the k Shortest Paths

David Eppstein*
March 31, 1997

Abstract

We give algorithms for finding the k shortest paths (not required to be simple) connecting a
pair of verticesin adigraph. Our algorithms output an implicit representation of these pathsin a
digraph with n vertices and m edges, in time O(m + nlogn + k). We can aso find the k shortest
paths from a given source s to each vertex in the graph, in total time O(m+ nlogn+ kn). We de-
scribe applications to dynamic programming problemsincluding the knapsack problem, sequence
alignment, maximum inscribed polygons, and genealogical relationship discovery.

1 Introduction

We consider along-studied generalization of the shortest path problem, in which not one but severa
short paths must be produced. The k shortest paths problemisto list the k paths connecting a given
source-destination pair in the digraph with minimum total length. Our techniques also apply to the
problem of listing all paths shorter than some given threshhold length. In the version of these problems
studied here, cycles of repeated vertices are allowed. Wefirst present abasic version of our algorithm,
which is simple enough to be suitable for practical implementation while losing only a logarithmic
factor in time complexity. We then show how to achieve optimal time (constant time per path once a
shortest path tree has been computed) by applying Frederickson's [26] algorithm for finding the min-
imum k elementsin a heap-ordered tree.

1.1 Applications

The applications of shortest path computations are too numerous to cite in detail. They include situa-
tionsinwhich an actua path isthe desired output, such asrobot motion planning, highway and power
line engineering, and network connection routing. They include problems of scheduling such as criti-
cal path computation in PERT charts. Many optimization problems solved by dynamic programming
or more complicated matrix searching techniques, such as the knapsack problem, sequence alignment
in molecular biology, construction of optimal inscribed polygons, and length-limited Huffman coding,
can be expressed as shortest path problems.

*Department of Information and Computer Science, University of California, Irvine, CA 92697-3425, eppstein@ics.uci.
edu, http://www.ics.uci.edu/~eppstein/. Supported in part by NSF grant CCR-9258355 and by matching funds from Xerox
Corp.

Methods for finding k shortest paths have been applied to many of these applications, for severa
reasons.

e Additional constraints. One may wish to find a path that satisfies certain constraints beyond
having a small length, but those other constraints may be ill-defined or hard to optimize. For
instance, in power transmission route selection [18], a power line should connect its endpoints
reasonably directly, but there may be more or less community support for one option or another.
A typical solutionisto compute several short paths and then choose among them by considering
the other criteria. We recently implemented a similar technique as a heuristic for the NP-hard
problem of, given a graph with colored edges, finding a shortest path using each color at most
once[20]. Thistypeof application isthe main motivation cited by Dreyfus[17] and Lawler [39]
for k shortest path computations.

e Model evaluation. Paths may be used to model problems that have known solutions, indepen-
dent of the path formulation; for instance, in a k-shortest-path model of automatic transation
between natural languages [30], a correct trand ation can be found by a human expert. By listing
paths until this known solution appears, one can determine how well the model fits the problem,
in terms of the number of incorrect paths seen before the correct path. This information can be
used to tune the model as well as to determine the number of paths that need to be generated
when applying additional constraints to search for the correct solution.

e Sensitivity analysis. By computing more than one shortest path, one can determine how sen-
sitive the optimal solution is to variation of the problem’s parameters. In biological sequence
alignment, for example, one typically wishes to see severa “good” alignments rather than one
optimal alignment; by comparing these severa alignments, biol ogists can determine which por-
tions of an alignment are most essential [8,64]. This problem can be reduced to finding several
shortest pathsin a grid graph.

e Generation of alternatives. It may be useful to examine not just the optimal solution to a prob-
lem, but alarger class of solutions, to gain a better understanding of the problem. For example,
the states of a complex system might be represented as a finite state machine, essentially just
a graph, with different probabilities on each state transition edge. In such a model, one would
likely want to know not just the chain of events most likely to lead to afailure state, but rather all
chains having afailure probability over some threshhold. Taking thelogarithmsof thetransition
probabilities transforms this problem into one of finding all paths shorter than a given length.

We later discussin more detail some of the dynamic programming applications listed above, and
show how to find the k best solutions to these problems by using our shortest path algorithms. As
well asimproving previous solutionsto the general k shortest paths problem, our resultsimprove more
specialized algorithms for finding length-bounded paths in the grid graphs arising in sequence align-
ment [8] and for finding the k best solutions to the knapsack problem [15].

1.2 New Results

We prove the following results. In all cases we assume we are given adigraph in which each edge has
a non-negative length. We allow the digraph to contain self-loops and multiple edges. In each case
the paths are output in an implicit representation from which simple properties such as the length are
available in constant time per path. We may explicitly list the edges in any path in time proportional
to the number of edges.

e Wefind the k shortest paths (allowing cycles) connecting a given pair of verticesin a digraph,
intime O(m+ nlogn + k).

o Wefind thek shortest paths from agiven sourcein adigraph to each other vertex, intime O(m+
nlogn + kn).

We can al so solvethe similar problem of finding all paths shorter than agiven length, with the same
timebounds. The sametechniquesapply to digraphswith negative edge lengthsbut no negative cycles,
but the time bounds above should be modified to include the time to compute a single source shortest
path treein such networks, O(mn) [6,23] or O(mn*?log N) whereall edge lengthsareintegersand N
isthe absolute value of the most negative edgelength [29]. For adirected acyclic graph (DAG), with or
without negative edge lengths, shortest path trees can be constructed in linear time and the O(nlog n)
term above can be omitted. The related problem of finding the k longest pathsin a DAG [4] can be
transformed to a shortest path problem simply by negating all edge lengths; we can therefore al so solve
it in the same time bounds.

1.3 Related Work

Many papers study algorithms for k shortest paths[3,5,7,9,13,14,17,24, 31,32, 34, 35,37-41,43-45,
47,50, 51, 56-60, 63, 65-69]. Dreyfus[17] and Yen [69] cite several additional papers on the subject
going back as far as 1957.

Onemust distinguish several common variations of the problem. In many of the paperscited above,
the paths are restricted to be simple, i.e. no vertex can be repeated. This has advantagesin some appli-
cations, but asour results show thisrestriction seemsto make the problem significantly harder. Severa
papers[3,13, 17, 24,41, 42, 58, 59] consider the version of the k shortest paths problem in which re-
peated vertices are allowed, and it isthisversion that we al so study. Of course, for the DAGsthat arise
in many of the applications described above including scheduling and dynamic programming, no path
can have arepeated vertex and the two versions of the problem become equivalent. Note also that in
the application described earlier of listing the most likely failure paths of asystem maodelled by afinite
state machine, it isthe version studied here rather than the more common simple path version that one
wants to solve.

One can also make arestriction that the paths found be edge digoint or vertex digoint [61], or
include capacities on the edges [10-12, 49], however such changes turn the problem into one more
closely related to network flow.

Fox [24] gives amethod for the k shortest path problem based on Dijkstra’s algorithm which with
more recent improvementsin priority queue datastructures[27] takestime O (m+knlogn); thisseems

3

to be the best previously known k-shortest-paths algorithm. Dreyfus [17] mentions the version of the
problem in which we must find paths from one source to each other vertex in the graph, and describes
asimple O(kn?) time dynamic programming solution to this problem. For the k shortest simple paths
problem, the best known bound is O (k(m+ nlogn)) inundirected graphs[35] or O(kn(m+ nlogn))
in directed graphs [39, again including more recent improvements in Dijkstra's algorithm]. Thus all
previous algorithmstook time O(nlog n) or more per path. We improve thisto constant time per path.

A similar problem to the one studied here is that of finding the k minimum weight spanning trees
in agraph. Recent algorithms for this problem [21, 22, 25] reduce it to finding the k minimum weight
nodes in a heap-ordered tree, defined using the best swap in a sequence of graphs. Heap-ordered tree
sel ection has al so been used to find the smallest interpoint distances or the nearest neighborsin geomet-
ric point sets[16]. We apply asimilar tree selection technique to the k shortest path problem, however
the reduction of k shortest paths to heap ordered treesis very different from the constructionsin these
other problems.

2 TheBasic Algorithm

Finding the k shortest paths between two terminals s and t has been a difficult enough problem to war-
rant much research. In contrast, the similar problem of finding paths with only oneterminal s, ending
anywhere in the graph, is much easier: one can simply use breadth first search. Maintain a priority
gueue of paths, initially containing the single zero-edge path from s to itself; then repeatedly remove
the shortest path from the priority queue, add it to the list of output paths, and add all one-edge exten-
sions of that path to the priority queue. If the graph has bounded degree d, a breadth first search from
s until k paths are found takes time O(dk + k logk); note that this bound does not depend in any way
on the overall size of the graph. If the paths need not be output in order by length, Frederickson’s heap
selection algorithm [26] can be used to speed this up to O(dk).

Themainideaof our k shortest paths algorithm, then, isto trandate the problem from one with two
terminals, sandt, to aproblemwith only oneterminal. Onecanfind pathsfrom stot simply by finding
paths from s to any other vertex and concatenating a shortest path from that vertex tot. However we
cannot simply apply thisideadirectly, for several reasons: (1) Thereisno obviousrelation between the
ordering of the paths from s to other vertices, and of the corresponding pathsfrom stot. (2) Each path
from stot may be represented in many ways as a path from s to some vertex followed by a shortest
path from that vertex to t. (3) Our input graph may not have bounded degree.

In outline, we deal with problem (1) by using apotential function to modify the edgelengthsin the
graph so that the length of any shortest path to t is zero; therefore concatenating such paths to paths
from s will preserve the ordering of the path lengths. We deal with problem (2) by only considering
paths from s in which the last edge is not in a fixed shortest path tree to t; this leads to the implicit
representation we use to represent each path in constant space. (Similar ideas to these appear aso
in [46].) However this solution givesrise to afourth problem: (4) We do not wish to spend much time
searching edges of the shortest path tree, asthistime can not be charged against newly found s-t paths.

The heart of our algorithm is the solution to problems (3) and (4). Our ideaisto construct a bi-
nary heap for each vertex, listing the edges that are not part of the shortest path tree and that can be
reached from that vertex by shortest-path-tree edges. In order to save time and space, we use persis-

tence techniquesto allow these heaps to share common structures with each other. In the basic version
of the algorithm, this collection of heaps forms a bounded-degree graph having O(m + nlogn) ver-
tices. Later we show how to improve the time and space bounds of this part of the algorithm using tree
decomposition techniques of Frederickson [25].

2.1 Preliminaries

We assume throughout that our input graph G has n vertices and m edges. We allow self-loops and
multiple edges so m may be larger than (5). The length of an edge e is denoted ¢(e). By extension
we can define the length £(p) for any path in G to be the sum of its edge lengths. The distance d(s, t)
for agiven pair of verticesis the length of the shortest path starting at s and ending at t; with the as-
sumption of no negative cyclesthisis well defined. Note that d(s, t) may be unequal to d(t, s). The
two endpoints of a directed edge e are denoted tail (e) and head(e); the edge is directed from tail (e) to
head(e).

For our purposes, a heap is a binary tree in which vertices have weights, satisfying the restriction
that the weight of any vertex isless than or equal to the minimum weight of its children. We will not
always care whether the tree is balanced (and in some circumstances we will allow trees with infinite
depth). More generally, a D-heap isadegree-D tree with the same weight-ordering property; thusthe
usual heaps above are 2-heaps. Asiswell known (e.g. see[62]), any set of values can be placed into
a balanced heap by the heapify operation in linear time. In a balanced heap, any new element can be
inserted in logarithmic time. We can list the elements of aheap in order by weight, taking logarithmic
time to generate each element, simply by using breadth first search.

2.2 Implicit Representation of Paths

Asdiscussed earlier, our agorithm does not output each path it finds explicitly as a sequence of edges;
instead it uses an implicit representation, described in this section.

Theith shortest path in adigraph may have Q2 (ni) edges, so the best time we could hope for in an
explicit listing of shortest paths would be O(k?n). Our time bounds are faster than this, so we must
use an implicit representation for the paths. However our representation is not a serious obstacle to
use of our agorithm; we can list the edges of any path we output in time proportional to the number of
edges, and simple properties (such as the length) are available in constant time. Similar implicit rep-
resentations have previously been used for related problems such as the k minimum weight spanning
trees[21, 22, 25]. Further, previous papers on the k shortest path problem give time bounds omitting
the O(k?n) term above, and so these papers must tacitly or not be using an implicit representation.

Our representation issimilar in spirit to those used for the k minimum weight spanning trees prob-
lem: for that problem, each successivetree differsfrom apreviously listed tree by aswap, theinsertion
of one edge and removal of another edge. The implicit representation consists of a pointer to the pre-
vioustree, and a description of the swap. For the shortest path problem, each successive path will turn
out to differ from a previoudly listed path by the inclusion of a single edge not part of a shortest path
tree, and appropriate adjustments in the portion of the path that involves shortest path tree edges. Our
implicit representation consists of a pointer to the previous path, and a description of the newly added
edge.

®020%0 ® 6—6—0
Cl)i@ﬂ»@ﬂ@ B®—->8—a O

NN |]

O->0O0->0->0 @—>O®—0—0O

Figurel. (a) Exampledigraph G with edgelengths and specified terminals; (b) Shortest pathtree T and distances
totinG.

@iﬁ) O O =0 O O
O O OO0 O O—0=0
o P o

o O O O o O OO0

Figure 2. (a) Edgesin G — T labeled by §(e) (§(e) = O for edgesin T); (b) Path p, sidetracks(p) (the heavy
edges, labeled 3, 4, and 9), and prefpath(p) (differing from p in the two dashed edges; sidetracks(prefpath(p))
consists of the two edges labeled 3 and 4).

Givensandt inadigraph G (Figure 1(a)), let T be a single-destination shortest path tree with t as
destination (Figure 1(b); thisis the same as a single source shortest path tree in the graph GR formed
by reversing each edge of G). We can compute T intime O(m+ nlogn) [27]. We denote by nexty (v)
the next vertex reached after v on the path fromv tot in T.

Givenan edgeein G, define

5(e) = £(e) + d(head(e), t) — d(tail(e), 1).

Intuitively, § () measures how much distanceislost by being “sidetracked” along e instead of taking
ashortest path to t. The values of § for our example graph are shown in Figure 2(a).

Lemmal. Foranyee G,é(e) >0. Foranyee T,5(e) =0.

For any path p in G, formed by a sequence of edges, some edges of p may bein T, and some
othersmay bein G — T. Any path p from s tot isuniquely determined solely by the subsegquence
sidetracks(p) of itsedgesin G — T (Figure 2(b)). For, given apair of edgesin the subsequence, there
isauniquely determined way of inserting edges from T so that the head of the first edge is connected
to the tail of the second edge. As an example, the shortest pathin T from stot is represented by the

6

empty sequence. A sequence of edgesin G — T may not correspond to any s-t path, if it includes a
pair of edges that cannot be connected by apathin T. If S = sidetracks(p), we define path(S) to be
the path p.

Our implicit representation will involve these sequences of edgesin G — T. We next show how to
recover £(p) from information in sidetracks(p).

For any nonempty sequence Sof edgesin G — T, let prefix(S) be the sequence formed by the re-
moval of thelast edgein S. If S = sidetracks(p), then we denotethislast sidetrack edgeby lastsidetrack(p);
prefix(S) will define a path prefpath(p) = path(prefix(S)) (Figure 2(b)).

Lemma2. For any path pfromstot,

(p=dsth+) s@=dst+) s
ecSidetracks(p) eep

Lemma3. For anypath pfromstot inG, for which sidetracks(p) isnonempty, £(p) > £(prefpath(p)).

Our representation of a path p in the list of paths produced by our algorithm will then consist of
two components:

e Theposition in thelist of prefpath(p).
e Edge lastsidetrack(p).

Although thefinal version of our algorithm, which uses Frederickson’s heap selection technique, does
not necessarily output pathsin sorted order, we will neverthel ess be able to guarantee that prefpath(p)
is output before p. One can easily recover p itself from our representation in time proportional to the
number of edgesin p. Thelength £(p) for each path can easily be computed as § (lastsidetrack(p)) +
£(prefpath(p)). Wewill seelater that we can aso compute many other simple properties of the paths,
in constant time per path.

2.3 Representing Paths by a Heap

The representation of s-t paths discussed in the previous section gives anatural tree of paths, in which
the parent of any path p is prefpath(p) (Figure 3). The degree of any node in this path treeis at most
m, since there can be at most one child for each possible value of lastsidetrack(p). The possible values
of lastsidetrack(q) for paths g that are children of p are exactly those edgesin G — T that have tails
on the path from head(lastsidetrack(p)) tot in the shortest path tree T.

If G contains cycles, the path treeisinfinite. By Lemma 3, the path tree is heap-ordered. However
since its degree is not necessarily constant, we cannot directly apply breadth first search (nor Freder-
ickson’s heap selection technique, described later in Lemma 8) to find its k minimum values. Instead
we form a heap by replacing each node p of the path tree with an equivalent bounded-degree subtree
(essentially, a heap of the edges with tails on the path from head(lastsidetrack(p)) to t, ordered by
3(e)). We must also take care that we do thisin such away that the portion of the path tree explored
by our algorithm can be easily constructed.

{}

TAY

{3 {6 {10}
< x

(31 {34
A <r

{319} {346} {349
Figure 3. Tree of paths, labeled by sidetracks(p).

For each vertex v we wish to form a heap Hg (v) for all edges with tails on the path from v to't,
ordered by &(e). We will later use this heap to modify the path tree by replacing each node p with a
copy of Hg(head(lastsidetrack(p))).

Let out(v) denotethe edgesin G — T with tailsat v (Figure 4(a)). Wefirst build a heap Hoyt (v),
for each vertex v, of the edgesin out(v) (Figure 4(b)). The weights used for the heap are simply the
valuesé (e) defined earlier. Hoyt (v) will be a2-heap with the added restriction that the root of the heap
only has one child. It can be built for each v in time O(|out(v)|) by letting the root outroot(v) be the
edge minimizing é(e) in out(v), and letting its child be a heap formed by heapification of the rest of
the edgesin out(v). Thetotal time for this processis)~ O(Jout(v)|) = O(m).

We next form the heap Hg (v) by merging all heaps Hoyt(w) for w on the path in T from v to
t. More specifically, for each vertex v we merge Hoyt (v) into Hg (nextt (v)) to form Hg (v). We will
continueto need Hg (nextr (v)), so thismerger should be donein apersistent (nondestructive) fashion.

We guide this merger of heaps using a balanced heap Hy (v) for each vertex v, containing only
the roots outroot(w) of the heaps Hoyt(w), for each w on the path from v to t. Ht (v) isformed by
inserting outroot(v) into Hy (nextr (v)) (Figure 5(a)). To perform thisinsertion persistently, we create
new copies of the nodes on the path updated by theinsertion (marked by asterisksin Figure 5(a)), with
appropriate pointers to the other, unchanged, members of Hy (nextr (v)). Thus we can store Ht (v)
without changing Ht (nextr (v)), by using an additional O(logn) words of memory to store only the
nodes on that path.

We now form Hg (v) by connecting each node outroot(w) in Hy (v) to an additional subtree beyond
the two it points to in Hr (v), namely to the rest of heap Hoyt(w). Hg(v) can be constructed at the
sametime aswe construct Hy (v), with asimilar amount of work. Hg (v) isthusa3-heap as each node
includes at most three children, either two from Ht (v) and one from Hoyt(w), or none from Hr (v)
and two from Hoyt(w).

We summarize the construction so far, in aform that emphasi zes the shared structure in the various

heaps Hg (v).

Lemma4. Intime O(m+ nlogn) we can construct a directed acyclic graph D(G), and a map from
verticesv € G toh(v) € D(G), with the following properties:

8

Figure5. (a) Hr (v) with asterisks marking path of nodes updated by insertion of outroot(v) into Hy (nextr (v));

(=)
‘4@
N

8

W

10

(b) D(G) hasanode for each marked node in Figure 5(a) and each non-root node in Figure 4(b).

D(G) has O(m+ nlogn) vertices.

Each vertexin D(G) correspondsto anedgein G — T.

Each vertex in D(G) has out-degree at most 3.

e Theverticesreachablein D(G) fromh(v) forma 3-heap Hg (v) in which the vertices of the heap
correspond to edgesof G — T withtailsonthepathin T fromv tot, in heap order by the values
of §(e).

Proof: Theverticesin D(G) comefrom two sources: heaps Hoyt (v) and Ht (v). Eachnodein Hoyt (v)
correspondsto auniqueedgein G—T, sothereare at most m—n+-1 nodes coming from heaps Hoyt (v).
Each vertex of G also contributes |log, i] nodes from heaps Hr (v), wherei isthe length of the path
from thevertex tot, 1 + |log, i | measures the number of balanced binary heap nodes that need to be
updated when inserting outroot(v) into Hr (nextr (v)), and we subtract one because outroot(v) itself
was aready included in our total for Hoyt(v). Inthe worst case, T is a path and the total contribu-
tionisat most) ; |log,i| < nlog, n — cnwhere c varies between roughly 1.91 and 2 depending on
the ratio of n to the nearest power of two. Therefore the total number of nodes in D(G) is at most
m+ nlog, n — (c+ 1)n. The degree bound follows from the construction, and it is straightforward to
construct D(G) as described above in constant time per node, after computing the shortest path tree T
intime O(m+ nlogn) using Fibonacci heaps[27].

Map h(v) simply takes v to the root of Hg (v). For any vertex v in D(G), let §(v) be ashorthand
for §(e) where eisthe edgein G corresponding to v. By construction, the nodes reachable from h(v)
arethose in Hr (v) together with, for each such node w, the rest of the nodesin Hoyt(w); Hr (v) was
constructed to correspond exactly to the vertices on the path from v to t, and Hoyt(w) represents the
edges with tails at each vertex, so together these reachable nodes represent all edges with tails on the
path. Each edge (u, v) in D(G) either corresponds to an edge in some Ht (w) or some Hoyt(w), and
in either case the heap ordering for D(G) is a conseguence of the ordering in these smaller heaps. O

D(G) isshown in Figure 5(b). The nodes reachable from s in D(G) form a structure Hg (S) rep-
resenting the paths differing from the original shortest path by the addition of asingleedgein G — T.
We now describe how to augment D (G) with additional edges to produce a graph which can represent
al s-t paths, not just those paths with asingleedgein G — T.

We define the path graph P(G) as follows. The vertices of P(G) are those of D(G), with one
additional vertex, theroot r = r(s). The vertices of P(G) are unweighted, but the edges are given
lengths. For each directed edge (u, v) in D(G), we create the edge between the corresponding ver-
ticesin P(G), with length §(v) — §(u). We call such edges heap edges. For each vertex v in P(G),
corresponding to an edgein G — T connecting some pair of vertices u and w, we create a new edge
fromv toh(w) in P(G), having asitslength § (h(w)). We call such edges cross edges. We aso create
an initial edge between r and h(s), having asitslength §(h(s)).

P(G) has O(m+ nlogn) vertices, each with out-degree at most four. 1t can be constructed intime
O(Mm+ nlogn).

Lemmab. Thereisaone-to-onelength-preserving correspondence between s-t pathsin G, and paths
gtarting fromr in P(G).

10

Proof: Recall that an s-t path pin G isuniquely defined by sidetracks(p), the sequence of edgesfrom
pinG — T. We now show that for any such sequence, there corresponds a unique path fromr in
P(G) ending at a node corresponding to lastsidetrack(p), and conversely any path fromr in P(G)
corresponds to sidetracks(p) for some path p.

Given apath p in G, we construct a corresponding path p’ in P(G) asfollows. If sidetracks(p)
isempty (i.e. p isthe shortest path), we let p’ consist of the single node r. Otherwise, form a path g’
in P(G) corresponding to prefpath(p), by induction on the length of sidetracks(p). By induction, g’
ends at anode of P(G) corresponding to edge (u, v) = lastsidetrack(prefpath(p)). When we formed
P(G) from D(G), we added an edge from this node to h(v). Since lastsidetrack(p) has its tail on
the pathin T from v to t, it corresponds to a unique node in Hg (v), and we form p’ by concatenat-
ing g’ with the path from h(v) to that node. The edge lengths on this concatenated path telescope to
S(lastsidetrack(p)), and £(p) = £(prefpath(p)) + £(lastsidetrack(p)) by Lemma 2, so by induction
£(p) = £(q) + £(lastsidetrack(p)) = £(p’).

Conversely, to construct an s-t pathin G from apath p’ in P(G), we construct a sequence of edges
inG, pathseq(p’). If p’ isempty, pathseq(p’) isalso empty. Otherwise pathseq(p’) isformed by taking
in sequence the edges in G corresponding to tails of cross edgesin p’, and adding at the end of the
sequence the edge in G corresponding to the final vertex of p’. Since the nodes of P(G) reachable
from the head of each cross-edge (u, v) are exactly those in Hg (v), each successive edge added to
pathseq(p’) isonthepathin T from v to t, and pathseq(p’) is of the form sidetracks(p) for some path
pinG. O

Lemma6. In O(m + nlogn) time we can construct a graph P(G) with a distinguished vertexr,
having the following properties.

P(G) has O(m + nlogn) vertices.

Each vertex of P(G) has outdegree at most four.
e Each edge of P(G) has nonnegative weight.
e Thereisaone-to-one correspondence between s-t pathsin G and paths starting fromr in P(G).

The correspondence preserves lengths of paths in that length ¢ in P(G) corresponds to length
d(s,t) + 2inG.

Proof: The bounds on size, time, and outdegree follow from Lemma4, and the nonnegativity of edge
weights follows from the heap ordering proven in that lemma. The correctness of the correspondence
between pathsin G and in P(G) is shown abovein Lemmab. O

To complete our construction, we find from the path graph P(G) a4-heap H (G), so that the nodes
in H(G) represent pathsin G. H(G) is constructed by forming a node for each path in P(G) rooted
a r. The parent of a node is the path with one fewer edge. Since P(G) has out-degree four, each
node has at most four children. Weights are heap-ordered, and the weight of a node isthe length of the
corresponding path.

11

Lemma7. H(G) isa4-heap in which there is a one-to-one correspondence between nodes and s-t
pathsin G, and in which the length of a path in G isd(s, t) plusthe weight of the corresponding node
in H(G).

We note that, if an algorithm explores a connected region of O(k) nodesin H(G), it can represent
the nodes in constant space each by assigning them numbers and indicating for each node its parent
and the additional edge in the corresponding path of P(G). The children of a node are easy to find
simply by following appropriate out-edgesin P(G), and the weight of anodeis easy to compute from
the weight of its parent. It is also easy to maintain along with this representation the corresponding
implicit representation of s-t pathsin G.

2.4 Findingthek Shortest Paths

Theorem 1. Intime O(m 4+ nlogn) we can construct a data structure that will output the shortest
pathsfromstot inagraph in order by weight, taking time O(logi) to output the i th path.

Proof: We apply breadth first search to P(G), as described at the start of the section, and translate the
search results to paths using the correspondence described above. O

We next describe how to compute pathsfrom sto all n vertices of thegraph. Infact our construction
solves more easily the reverse problem, of finding paths from each vertex to the destination t. The
construction of P(G) is as above, except that instead of adding a single root r (s) connected to h(s),
we add aroot r (v) for each vertex v € G. The modification to P(G) takes O(n) time. Using the
modified P(G), we can compute aheap H, (G) of paths from each v to t, and compute the k smallest
such pathsintime O(k).

Theorem 2. Given a source vertex sinadigraph G, we can find intime O(m + nlogn + knlogk)
an implicit representation of the k shortest paths from s to each other vertexin G.

Proof: Weapply the construction aboveto GR, with s as destination. We form the modified path graph
P(GR), find for each vertex v aheap H, (GR) of pathsin GR from v to s, and apply breadth first search
to this heap. Each resulting path correspondsto apath fromstov in G. O

3 Improved Space and Time

The basic algorithm described above takestime O(m + nlogn + klogk), even if ashortest path tree
has been given. If the graph is sparse, the nlogn term makes this bound nonlinear. Thisterm comes
from two parts of our method, Dijkstra' s shortest path algorithm and the construction of P (G) fromthe
tree of shortest paths. But for certain graphs, or with certain assumptions about edge lengths, shortest
paths can be computed more quickly than O(m + nlogn) [2, 28, 33, 36], and in these cases we would
liketo speed up our construction of P(G) to match theseimprovements. In other cases, k may belarge
and the k log k term may dominate the time bound; again we would like to improvethis nonlinear term.
In this section we show how to reduce the timefor our algorithm to O(m+ n+ k), assuming a shortest
path treeisgivenintheinput. Asaconseguence we can also improve the space used by our algorithm.

12

Figure 6. (8) Restricted partition of order 2; (b) multi-level partition.

3.1 Faster Heap Selection

Thefollowing result is due to Frederickson [26].
Lemma8. We can find the k smallest weight verticesin any heap, in time O(k).

Frederickson’s result applies directly to 2-heaps, but we can easily extend it to D-heaps for any
constant D. One simple method of doing this involves forming a 2-heap from the given D-heap by
making D — 1 copies of each vertex, connected in a binary tree with the D children as leaves, and
breaking ties in such a way that the Dk smallest weight vertices in the 2-heap correspond exactly to
the k smallest weights in the D-heap.

By using this algorithm in place of breadth first search, we can reduce the O(k log k) term in our
time boundsto O (k).

3.2 Faster Path Heap Construction

Recall that the bottleneck of our algorithm is the construction of Ht (v), aheap for each vertex v in G
of those vertices on the path from v to t in the shortest path tree T. The verticesin Ht (v) arein heap
order by §(outroot(u)). In this section we consider the abstract problem, given atree T with weighted
nodes, of constructing aheap Hr (v) for each vertex v of the other nodes on the path from v to the root
of the tree. The construction of Lemma 4 solves this problem in time and space O(nlogn); here we
give amore efficient but also more complicated solution.

By introducing dummy nodes with large weights, we can assume without loss of generality that T
is binary and that theroot t of T has indegree one. We will also assume that all vertex weightsin T
are distinct; this can be achieved at no loss in asymptotic complexity by use of a suitable tie-breaking
rule. We use the following technique of Frederickson [25].

Definition 1. Arestricted partition of order z with respect to a rooted binary tree T is a partition of
the vertices of V such that:

13

1. Each set in the partition contains at most z vertices.
2. Each set in the partition induces a connected subtree of T.

3. For each set Sin the partition, if S contains more than one vertex, then there are at most two
tree edges having one endpoint in S.

4. No two sets can be combined and still satisfy the other conditions.

In genera such a partition can easily be found in linear time by merging sets until we get stuck.
However for our application, z will always be 2 (Figure 6(a)), and by working bottom up we can find
an optimal partition in linear time.

Lemma 9 (Frederickson [25]). In linear time we can find an order-2 partition of a binary tree T for
which there are at most 5n/6 setsin the partition.

Contracting each set in arestricted partition gives again abinary tree. We form amulti-level parti-
tion [25] by recursively partitioning this contracted binary tree (Figure 6(b)). We define a sequence of
trees T; asfollows. Let To = T. Forany i > O, let T; be formed from T, _; by performing arestricted
partition as above and contracting the resulting sets. Then |Ti| = O((5/6)' n).

For any set S of verticesin T, _; contracted to form avertex v in T;, define nextlevel (S) to be the
set inthe partition of T; containing S. We say that Sisaninterior set if it iscontracted to a degree two
vertex. Note that if t has indegree one, the same is true for the root of any T;, sot is not part of any
interior set, and each interior set has one incoming and one outgoing edge. Since T; is a contraction
of T, each edgein T; correspondsto an edgein T. Let e be the outgoing edge from v in T;; then we
define rootpath(S) to be the pathin T from head(e) tot. If Sisaninterior set, with asingle incoming
edge €, we let inpath(S) bethe pathin T from head(€') to tail(e).

Define an m-partial heap to beapair (M, H) where H isaheap and M isaset of m elements each
smaller than al nodesin H. If H isempty M can have fewer than m elements and we will still call
(M, H) an m-partial heap.

L et usoutline the structures used in our algorithm, before describing the details of computing these
structures. We first find a partial heap (M1(S), H1(S)) for the vertices of T in each path inpath(S).
Although our algorithm performs an interleaved construction of all of these sets at once, it is easiest
to define them top-down, by defining M1(S) for aset Sin the partition of T;_1 in terms of similar sets
in T; and higher levels of the multi-level partition. Specificaly, let M2(S) denote those elements in
M1(S) for those S containing S at higher levels of the multi-level partition, and let k = max(i +
2, IM2(9)| + 1); then we define M1(S) to be the vertices in inpath(S) having the k smallest vertex
weights. Our algorithm for computing H1(S) from the remaining vertices on inpath(S) involves an
intermediate heap Ho(S') formed by adding the verticesin M1(S) — M1 (S) to H1(S) where S consists
of oneor both of the subsets of Scontracted at the next lower level of the decomposition and containing
vertices of inpath(S). After abottom-up computation of My, Hi, and H,, we then perform atop-down
computation of afamily of (i + 1)-partia heaps, (M3(S), H3(S)); M3 isformed by removing some
elementsfrom M1 and Hz isformed by adding those elementsto H;. Finally, the desired output Hy (v)
can be constructed from the 1-partial heap (M3(v), H3(v)) at level Ty in the decomposition.

14

Before describing our algorithms, let us bound a quantity useful in their analysis. Let m; denote
the sum of |[M1(S)| over sets S contracted in T;.

Lemma10. For eachi,mi = O(i|Tj]).
Proof: By the definition of M1(S) above,

mi = ijmax(i +2,IMa(S)|+ 1) < XS:|M2(S)| +i+2<d +2)|'I'i|+2$: IM2(S)].

All sets M»(S) appearing in thissum are digoint, and all areincluded in m; 1, so we can simplify this
formulato

. . . 5,ji .
m < (+2IT+maa <) (+2IT1 <Y (+2(5) 1Tl = 0T

j=i j=i
O

We usethefollowing datastructureto computethe sets M1 (S) (which, recall, are setsof low-weight
vertices on inpath(S)) . For each interior set S, we form a priority queue Q(S), from which we can
retrieve the smallest weight vertex on inpath(S) not yet in M1 (S). This data structure is very simple;
if only one of the two subsetsforming S contains vertices on inpath(S), we simply copy the minimum-
weight vertex on that subset’s priority queue, and otherwise we compare the minimum-weight vertices
in each subset’s priority queue and select the smaller of the two weights. If one of the two subsets
priority queue values change, this structure can be updated ssmply by repeating this comparison.

We start by setting all the sets M1(S) to be empty, then progress top-down through the multi-level
decomposition, testing for each set Sin eachtree T; (in decreasing order of i) whether we have already
added enough membersto M1 (S). If not, weadd elementsone at atime, until there are enough to satisfy
the definition above of [M1(S)|. Whenever we add an element to M1(S) we add the same el ement to
M1(S) for each lower level subset S' to which it also belongs. An element is added by removing it
from Q(S) and from the priority queues of the sets at each lower level. We then update the queues
bottom up, recomputing the head of each queue and inserting it in the queue at the next level.

Lemma 11. The amount of time to compute M1 (S) for all sets Sin the multi-level partition, as de-
scribed above, is O(n).

Proof: By Lemma 10, the number of operationsin priority queuesfor subsetsof T; is O(i[Ti|). Sothe
total timeis)_ O(i|Ti|) = O(n)_i(5/6)') = O(n). O

We next describe how to compute the heaps H1(S) for the vertices on inpath(S) that have not been
chosenaspart of M1(S). For thisstagewework bottom up. Recall that Scorrespondsto oneor two ver-
ticesof Tj; each vertex correspondsto aset S’ contracted at apreviouslevel of the multi-level partition.
For each such S along the pathin Swewill have already formed the partial heap (M1(S), H1(S)). We
let Ho(S) beaheap formed by adding theverticesin M1 (S)— M1 (S) to H1(S). Since M1(S)—M1(S)
consists of at least one vertex (because of the requirement that [M1(S)| > [M1(S)| + 1), we can form
H.(S) as a2-heap in which the root has degree one.

15

If Sconsistsof asingle vertex wethenlet H1(S) = H»(S); otherwise we form H1(S) by combin-
ing the two heaps H,(S) for itstwo children. Thetimeis constant per set Sor linear overall.

We next compute another collection of partial heaps (M3(S), H3(S)) of vertices in rootpath(S)
for each set S contracted at some level of the tree. If Sis a set contracted to a vertex in T;, we let
(M3(S), H3(S)) beani + 1-partia heap. In this phase of the algorithm, we work top down. For each
set S, consisting of acollection of verticesin T; _1, we use (M3(S), H3(S)) to compute for each vertex
S the partial heap (M3(S), H3(S)).

If Sconsistsof asingleset S, orif S isthe parent of thetwo verticesin S, welet M3(S) beformed
by removing the minimum weight e ement from M3(S) and we let H3(S) be formed by adding that
minimum weight element as a new root to H3(S).

In the remaining case, if S and parent(S) are both in S, we form M3(S) by taking thei + 1
minimum values in M1 (parent(S)) U Ms(parent(S)). The remaining values in My (parent(S)) U
Ms(parent(S)) — M3(S) must include at least one value v greater than everything in Hy(parent(S)).
Weform H3(S') by sorting those remaining valuesinto achain, together with theroot of heap Hz(parent(S),
and connecting v to Hy(parent(S)).

To complete the process, we compute the heaps Hr (v) for each vertex v. Each such vertex isin
To, S0 the construction above has already produced a 1-partial heap (M3(v), H3(v)). We must add the
value for v itself and produce a true heap, both of which are easy.

Lemmal2. Givenatree T with weighted nodes, we can construct for each vertex v a 2-heap Hr (v)
of all nodes on the path from v to the root of the tree, in total time and space O(n).

Proof: Thetimefor constructing (M1, H1) has already been analyzed. The only remaining part of the
algorithm that does not take constant time per set isthe time for sorting remaining valuesinto achain,
intime O(logi) for aset at level i of the construction. Thetotal time at level i isthus O(|T;|i logi)
which, summed over al i, gives O(n). O

Applying this technique in place of Lemma4 gives the following result.

Theorem 3. Given adigraph G and a shortest path tree from a vertex s, we can find an implicit rep-
resentation of the k shortest s-t pathsin G, in time and space O(m + n + k).

4 Maintaining Path Properties

Our agorithm can maintain along with the other information in H (G) various forms of simple infor-
mation about the corresponding s-t pathsin G.

We have aready seen that H (G) allows us to recover the lengths of paths. However lengths are
not as difficult as some other information might be to maintain, since they form an additive group. We
used this group property in defining §(e) to be a difference of path lengths, and in defining edges of
P(G) to have weights that were differences of quantities 5 (e).

We now show that we canin fact keep track of any quantity formed by combining information from
the edges of the path using any monoid. We assume that there is some given function taking each edge
eto an element value(e) of amonoid, and that given two edgese and f we can compute the composite

16

value value(e) - value(f) in constant time. By associativity of monoids, the value value(p) of a path
p iswell defined. Examples of such values include the path length and number of edgesin a path (for
which composition is real or integer addition) and the longest or shortest edge in a path (for which
composition is minimization or maximization).

Recall that for each vertex we compute a heap Hg (v) representing the sidetracks reachable along
the shortest path from v to t. For each node x in Hg (v) we maintain two values: pathstart(x) pointing
to avertex on the path from v to t, and value(x) representing the value of the path from pathstart(x)
to the head of the sidetrack edge represented by x. We require that pathstart of the root of the tree
isv itsdlf, that pathstart(x) be a vertex between v and the head of the sidetrack edge representing X,
and that all descendents of x have pathstart values on the path from pathstart(x) to t. For each edge
in Hg (v) connecting nodes x and y we store a further value, representing the value of the path from
pathstart(x) to pathstart(y). We aso store for each vertex in G the value of the shortest path from v
tot.

Then as we compute paths from the root in the heap H (G), representing s-t pathsin G, we can
keep track of the value of each path merely by composing the stored values of appropriate paths and
nodesinthepathin H(G). Specifically, when wefollow an edgein aheap Hg (v) weincludethe value
stored at that edge, and when we take a sidetrack edge e from anode x in Hg (v) we include value(x)
and value(e). Finally we include the value of the shortest path to t from the tail of the last sidetrack
edgetot. The portion of the value except for the final shortest path can be updated in constant time
from the same information for a shorter path in H (G), and the remaining shortest path value can be
included again in constant time, so this computation takes O (1) time per path found.

The remaining difficulty is computing the values value(x), pathstart(x), and aso the values of
edgesin Hg (v).

In the construction of Lemma 4, we need only compute these values for the O(logn) nodes by
which Hg (v) differsfrom Hg (parent(v)), and we can compute each such va ue as we update the heap
in constant time per value. Thus the construction here goes through with unchanged compl exity.

In the construction of Lemma 12, each partial heap at each level of the construction correspondsto
al sidetracks with heads taken from some path in the shortest path tree. Aseach partial heap isformed
the corresponding path isformed by concatenating two shorter paths. Welet pathstart(x) for each root
of aheap be equal to the endpoint of this path farthest fromt. We a so store for each partial heap the
near endpoint of the path, and the value of the path. Then these values can all be updated in constant
time when we merge heaps.

Theorem 4. Given a digraph G and a shortest path tree from a vertex s, and given a monoid with
values value(e) for each edge e € G, we can compute value(p) for each of the k shortest s-t pathsin
G, intimeand space O(m + n + k).

5 Dynamic Programming Applications
Many optimization problems solved by dynamic programming or more complicated matrix searching

techniques can be expressed as shortest path problems. Since the graphs arising from dynamic pro-
grams are typically acyclic, we can use our algorithm to find longest as well as shortest paths. We

17

demonstrate this approach by afew selected examples.

5.1 TheKnapsack Problem

The optimization 0-1 knapsack problem (or knapsack problem for short) consists of placing “ objects’
into a“knapsack” that only has room for a subset of the objects, and maximizing the total value of the
included objects. Formally, oneisgivenintegers L, ¢j, and w; (0 < i < n)and onemust find X €
{0, 1} satisfying Y xic; < L and maximizing) x; w;. Dynamic programming solves the problem in
time O(nL); Dai et al. [15] show how to find the k best solutionsin time O(knL). We now show how
toimprovethisto O(nL + k) using longest pathsin aDAG.

Let directed acyclic graph G havenL + L + 2 vertices: two terminalssandt, and (n + 1)L other
verticeswith labels (i, j),0 <i <nand0 < j < L. Draw an edge from s to each (0, j) and from
each (n, j) tot, each having length 0. From each (i, j) withi < n, draw two edges: oneto (i + 1, j)
with length 0, and oneto (i + 1, j + ¢) with length wi (omit thislast edgeif j + ¢ > L).

Thereisasimple one-to-one correspondence between s-t paths and solutionsto the knapsack prob-
lem: given apath, define x; to be 1 if the path includes an edge from (i, j) to (i + 1, j + ¢;); instead
let x; be O if the path includes an edge from (i, j) to (i + 1, j). Thelength of the path is equal to the
corresponding value of) x;wj, so we can find the k best solutions simply by finding the k longest
pathsin the graph.

Theorem 5. Wecanfind thek best solutionsto the knapsack problemas defined above, intime O (nL+
K).

5.2 Seguence Alignment

The sequence alignment or edit distance problem is that of matching the characters in one sequence
against those of another, obtaining a matching of minimum cost where the cost combines terms for
mismatched and unmatched characters. This problem and many of its variations can be solved in time
O(xy) (where x and y denote the lengths of the two sequences) by a dynamic programming a gorithm
that takes the form of a shortest path computation in agrid graph.

Byers and Waterman [8, 64] describe a problem of finding all near-optimal solutions to sequence
alignment and similar dynamic programming problems. Essentially their problem isthat of finding all
s-t pathswith length lessthan agiven bound L. They describe asimple depth first search algorithm for
thisproblem, whichisespecially suited for grid graphs athough it will work in any graph and although
the authors discuss it in terms of general DAGs. In ageneral digraph their algorithm would use time
O(k®m) and space O(km). In the acyclic case discussed in the paper, these bounds can be reduced to
O(km) and O(m). In grid graphs its performance is even better: time O(xy + k(x + y)) and space
O(xy). Naor and Brutlag [46] discussimprovementsto thistechnique that among other resultsinclude
asimilar time bound for k shortest paths in grid graphs.

We now discuss the performance of our algorithm for the same length-limited path problem. In
general one could apply any k shortest paths algorithm together with adoubling search to find the value
of k corresponding to the length limit, but in our case the problem can be solved more ssimply: simply
replace the breadth first search in H (G) with alength-limited depth first search.

18

Theorem 6. Wecan find the k st pathsin a graph G that are shorter than a given length limit L, in
time O(m + n + K) once a shortest path treein G is computed.

Even for the grid graphs arising in sequence analysis, our O(xy + k) bound improves by afactor
of O(x + y) thetimes of the algorithms of Byers and Waterman [8] and Naor and Brutlag [46].

5.3 Inscribed Polygons

We next discussthe problem of, given an n-vertex convex polygon, finding the“best” approximationto
it by anr-vertex polygon, r < n. Thisarisese.g. in computer graphics, in which significant speedups
are possible by simplifying the shapes of faraway objects. To our knowledge the “k best solution” ver-
sion of the problem has not been studied before. We include it as an example in which the best known
agorithmsfor the single solution case do not appear to be of the form needed by our techniques; how-
ever one can transform an inefficient algorithm for the original problem into a shortest path problem
that with our techniques gives an efficient solution for large enough k.

Weformalize the problem asthat of finding the maximum areaor perimeter convex r -gon inscribed
in a convex n-gon. The best known solution takes time O(nlogn + n./r Togn) [1]. However this
algorithm does not appear to be in the form of a shortest path problem, as needed by our techniques.

Instead we describe al ess effi cient technique for solving the problem by using shortest paths. Num-
ber the n-gon vertices vy, vy, €tc. Suppose we know that v; isthe lowest numbered vertex to be part of
the optimal r -gon. WethenformaDAG G; with O(rn) verticesand O(rn?) edges, inr levels. Ineach
level we place a copy of each vertex v, connected to all vertices with lower numbersin the previous
level. Each path from the copy of v; in the first level of the graph to a vertex in the last level of the
graph hasr vertices with numbers in ascending order from v;, and thus correspondsto an inscribed r -
gon. We connect one such graph for each initial vertex v; into one large graph, by adding two vertices
s and t, edges from s to each copy of avertex v; at thefirst level of G;, and edges from each vertex
onlevel r of each G;j tot. Pathsin the overall graph G thus correspond to inscribed r -gons with any
starting vertex.

It remainsto describe the edge lengths in this graph. Edgesfrom s to each v; will have length zero
for either definition of the problem. Edges from a copy of v; at one level to a copy of v; at the next
level will have length equal to the Euclidean distancefrom v; to v, for the maximum perimeter version
of the problem, and edges connecting a copy of v; at the last level to t will have length equal to the
distance between vj and theinitial vertex v;. Thusthe length of a path becomes exactly the perimeter
of the corresponding polygon, and we can find the k best r -gons by finding the k longest paths.

For the maximum area problem, we instead |et the distance from v; to v; be measured by the area
of the n-gon cut off by aline segment from vj to vj. Thusthetotal length of apath is equal to the total
area outside the corresponding r-gon. Since we want to maximize the area inside the r-gon, we can
find the k best r -gons by finding the k shortest paths.

Theorem 7. We can find the k maximum area or perimeter r-gons inscribed in an n-gon, in time
ornd +Kk.

19

Albert Ludwig Friedrich Louise Caroline
Francis Alexandervon Wilhelmine Polyxene Friedrich
Charles Henriette = Wairttemberg Friederike of Nassau- von
Augustus Caroline Christian Usingen = Brabant(2)
Victoria Emanuel Augustelulie IX von
| Welf = vonWettin vonBrabant= Oldenburg
Edward Alice Maud Alexander AmalieTherese Alexandra Georgel von Augusta Wilhelmvon
Vil Maryvon PaulLudwig LuiseWilhelmine CarolineMary Oldenburg Wilhelmina Brabant(2)
Wettin Wettin Constantirvon Philippinevon Charlotte Louisavon
Wirttemberg ~ Wirttemberg Louisa Brabant
Juliavon
Oldenburg
GeorgeV Victoria FranzPaul Alexandra Geolrgé\/ Andrewvon Mary Adelaide Louise
Windsor Alberta Karl Ludwig Friederike Windsor Oldenburg Wilhelmina Wilhelmine
Elizabeth Alexandervon HenriettePauline Elizabeth Friederike
Marielrene Wiurttemberg Marianne vonWelf Caroline
vonBrabant Elisabeth Augustelulie
vonWettin vonBrabant
George Victoria VictoriaMary OlgaRomanov GeorgeVl Philip VictoriaMary George von
Vi Alice Augustal ouisa Windsor Mountbatten AugustalLouisa Oldenburg
Windsor Elizabeth OlgaPauline OlgaPauline
JulieMarie Claudine Claudine
Mountbatten Agnesvon Agnesvon
Wirttemberg Wirttemberg
Elizabeth Philip Georlgé\/I Andrewvon Elizabeth Georlgé\/I Andrewvon
1l Mountbatten ~ Windsor Oldenburg Il Windsor Windsor Oldenburg
Windsor
Elizabeth Philip Elizabeth Philip
Il Windsor Mountbatten I Windsor ~ Mountbatten

Figure 7. Some short relations in a complicated geneal ogical database.

5.4 Genealogical Relations

If one has a database of family relations, one may often wish to determine how some two individu-
alsin the database are related to each other. Formalizing this, one may draw a DAG in which nodes
represent people, and an arc connects a parent to each of his or her children. Then each different type
of relationship (such as that of being a half-brother, great-aunt, or third cousin twice removed) can be
represented as a pair of digoint paths from a common ancestor (or couple forming a pair of common
ancestors) to the two related individuals, with the specific type of relationship being afunction of the
numbers of edges in each path, and of whether the paths begin at a couple or at a single common an-
cestor. In most families, the DAG one forms in this way has a tree-like structure, and relationships
are easy to find. However in more complicated families with large amounts of intermarriage, one can
be quickly overwhelmed with many different relationships. For instance, in the British roya family,
Queen Elizabeth and her husband Prince Philip are related in many ways, the closest few being sec-
ond cousins once removed through King Christian I X of Denmark and his wife Louise, third cousins

20

through Queen Victoria of England and her husband Albert, and fourth cousins through Duke L udwig
Friedrich Alexander of Wirttemberg and hiswife Henriette (Figure 7). The single shortest relationship
can be found as a shortest path in a graph formed by combining the DAG with itsreversal, but longer
paths in this graph do not necessarily correspond to digoint pairs of paths. A program | and my wife
Diana wrote, Gene (http://www.ics.uci.edu/~eppstein/gene/), is capable of finding small numbers of
relationships quickly using a backtracking search with heuristic pruning, but Gene startsto slow down
when asked to produce larger numbers of relationships.

We now describe atechniquefor applying our k-shortest-path algorithm to thisproblem, based on a
method of Perl and Shiloach [48] for finding shortest pairs of digoint pathsin DAGs. GivenaDAG D,
we construct alarger DAG D; asfollows. Wefirst find some topological ordering of D, and let f (x)
represent the position of vertex x in thisordering. We then construct one vertex of D for each ordered
pair of vertices (X, y) (not necessarily distinct) in D. We also add one additional vertex sin D;. We
connect (X, y) to (x, 2) in Dy if (y,z) isanarcof D and f(2) > max(f(x), f(y)). Symmetricaly,
we connect (X, y) to (z, y) if (x, 2) isanarc of D and f(2) > max(f(x), f(y)). We connect s to all
verticesin D1 of theform (v, v).

Lemma 13. Let verticesu and v be given. Then the pairs of digoint pathsin D from a common an-
cestor a to u and v are in one-for-one correspondence with the paths in D1 from s through (a, a) to

(u, v).

Asaconsequence, we can find shortest rel ationships between two verticesu and v by finding short-
est pathsin D1 from s to (u, v).

Theorem 8. GivenaDAG withn nodesand m edges, we can construct in O (mn) timea data structure
such that, given any two nodes u and v in a DAG, we can list (an implicit representation of) the k
shortest pairs of vertex-digoint paths from a common ancestor to u and v, in time O(k). The same
bound holds for listing all pairs with length less than a given bound (where k is the number of such
paths). Alternately, the pairs of paths can be output in order by total length, intime O(logi) tolist the
ith pair. Asbefore, our representation allows constant-time computation of some simple functions of
each path, and allows each path to be explicitly generated in time proportional to its length.

For a proof of Lemma 13 and more details of this application, see [19].

6 Conclusions

We have described algorithms for the k shortest paths problem, improving by an order of magnitude
previously known bounds. Theasymptotic performance of the algorithm makesit an especially promis-
ing choice in situations when large numbers of paths are to be generated, and we there already exist at
least two implementations. one by Shibuya, Imai, et a. [52-55] and one by Martins (http://www.mat.
uc.pt/~egvm/eqvm.html).

We list the following as open problems.

21

e Thelinear time construction when the shortest path tree is known israther complicated. Isthere
asimpler method for achieving the same result? How quickly can we maintain heaps Hr (v) if
new leaves are added to the tree? (Lemma4 solvesthisin O(log n) time per vertex but it seems
that at least O(loglogn) should be possible.)

e As described above, we can find the k best inscribed r-gonsin an n-gon, in time O(rn® + k).
However the best single-optimum sol ution hasthe much faster timebound O (n log n+n./r Togn)
[1]. Our agorithmsfor the k best r -gons are efficient (in the sense that we use constant time per
r-gon) only when k = Q(rn?). The same phenomenon of overly large preprocessing times also
occurs in our application to genealogical relationship finding: the shortest relationship can be
found in linear time but our k-shortest-relationship method takes time O(mn+ k). Canweim-
prove these bounds?

o Arethere properties of paths not described by monoids which we can neverthel ess compute ef -
ficiently from our representation? In particular how quickly can we test whether each path gen-
erated issimple?

Acknowledgements

Thiswork was supported in part by NSF grant CCR-9258355. | thank Greg Frederickson, Sandy Irani
and George Lueker for helpful comments on drafts of this paper.

References

[1] A.Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum weight K-link path in graphs
with Monge property and applications. Proc. 9th Symp. Computational Geometry, pp. 189-197.
Assoc. for Computing Machinery, 1993.

[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster agorithms for the shortest path
problem. J. Assoc. Comput. Mach. 37:213-223. Assoc. for Computing Machinery, 1990.

[3] J. A. Azevedo, M. E. O. Santos Costa, J. J. E. R. Silvestre Madeira, and E. Q. V. Martins. An
algorithm for the ranking of shortest paths. Eur. J. Operational Research 69:97-106, 1993.

[4] A.Bako. All pathsin an activity network. Mathematische Operationsforschung und Statistik
7:851-858, 1976.

[5] A.Bako and P. Kas. Determining the k-th shortest path by matrix method. Szigma 10:61-66,
1977. In Hungarian.

[6] R. E.Belman. On arouting problem. Quart. Appl. Math. 16:87-90, 1958.

[7] A.W.Brander and M. C. Sinclair. A comparative study of k-shortest path algorithms. Proc. 11th
UK Performance Engineering Worksh. for Computer and Tel ecommuni cations Systems, Septem-
ber 1995.

22

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

T.H. Byersand M. S. Waterman. Determining all optimal and near-optimal solutionswhen solv-
ing shortest path problems by dynamic programming. Oper ations Research 32:1381-1384, 1984.

P. Carrares and C. Sodini. A binary enumeration tree to find K shortest paths. Proc. 7th
Symp. Operations Research, pp. 177-188. Athenaum/Hain/Hanstein, Methods of Operations Re-
search 45, 1983.

G.-H. Chen and Y.-C. Hung. Algorithmsfor the constrained quickest path problem and the enu-
meration of quickest paths. Computers and Operations Research 21:113-118, 1994.

Y. L. Chen. Analgorithmfor finding thek quickest pathsin anetwork. Computersand Operations
Research 20:59-65, 1993.

Y. L. Chen. Finding the k quickest simple paths in a network. Information Processing Letters
50:89-92, 1994.

E. . Chong, S. R. Maddila, and S. T. Morley. On finding single-source single-destination k short-
est paths. Proc. 7th Int. Conf. Computing and Information, July 1995. http://phoenix.trentu.ca/
jci/papers/icci 95/A 206/P001.html.

A. Consiglio and A. Pecorella. Using simulated annealing to solve the K -shortest path problem.
Proc. Conf. Italian Assoc. Operations Research, September 1995.

Y. Dai, H. Imai, K. Iwano, and N. Katoh. How to treat delete requests in semi-online problems.
Proc. 4th Int. Symp. Algorithms and Computation, pp. 48-57. Springer Verlag, Lecture Notesin
Computer Science 762, 1993.

M. T. Dickersonand D. Eppstein. Algorithmsfor proximity problemsin higher dimensions. Cont
putational Geometry Theory and Applications 5:277-291, 1996.

S. E. Dreyfus. An appraisal of some shortest path algorithms. Operations Research 17:395-412,
1969.

El-Amin and Al-Ghamdi. An expert system for transmission line route selection. Int. Power
Engineering Conf, vol. 2, pp. 697—702. Nanyang Technol. Univ, Singapore, 1993.

D. Eppstein. Finding common ancestors and digoint pathsin DAGs. Tech. Rep. 95-52, Univ. of
California, Irvine, Dept. Information and Computer Science, 1995.

D. Eppstein. Ten algorithms for Egyptian fractions. Mathematica in Education and Research
4(2):5-15, 1995. http://www.ics.uci.edu/~eppstein/numth/egypt/.

D. Eppstein, Z. Galil, and G. F. Italiano. Improved sparsification. Tech. Rep. 93-20, Univ. of
Cdlifornia, Irvine, Dept. Information and Computer Science, 1993. http://www.ics.uci.edu:80/
TR/UCI:ICS-TR-93-20.

D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification — A technique for speed-
ing up dynamic graph algorithms. Proc. 33rd Symp. Foundations of Computer Science, pp. 60—
69. |IEEE, 1992.

L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ,
1962.

23

[24] B. L. Fox. k-th shortest paths and applications to the probabilistic networks. ORSA/TIMS Joint
National Mtg., vol. 23, p. B263, 1975.

[25] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. Proc. 32nd Symp. Foundations of Computer Science, pp. 632-641. |EEE, 1991.

[26] G. N. Frederickson. An optimal algorithm for selection in amin-heap. Information and Compu-
tation 104:197-214, 1993.

[27] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimiza-
tion algorithms. J. Assoc. Comput. Mach. 34:596-615. Assoc. for Computing Machinery, 1987.

[28] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. Proc. 31st Symp. Foundations of Computer Science, pp. 719-725. |EEE, 1990.

[29] A. V. Goldberg. Scaling agorithms for the shortest paths problem. SAM J. Computing
24(3):494-504. Soc. Industrial and Applied Math., June 1995.

[30] V. Hatzivassiloglou and K. Knight. Unification-based glossing. Proc. 14th Int. Joint Conf.
Artificial Intelligence, pp. 1382-1389. Morgan-Kaufmann, August 1995. http://www.isi.edu/
natural -language/mt/ijcai 95-gl osser.ps.

[31] G.J. Horne. FindingtheK least cost pathsin an acyclic activity network. J. Operational Research
Soc. 31:443-448, 1980.

[32] L.-M. Jinand S.-P. Chan. An electrical method for finding suboptimal routes. Int. Symp. Circuits
and Systems, vol. 2, pp. 935-938. |EEE, 1989.

[33] D. B. Johnson. A priority queue in which initialization and queue operations take O(loglog D)
time. Mathematical Systems Theory 15:295-309, 1982.

[34] N.Katoh, T. Ibaraki, and H. Mine. An O(K n?) algorithm for K shortest simple pathsin an undi-
rected graph with nonnegative arc length. Trans. Inst. Electronicsand Communication Engineers
of Japan E61:971-972, 1978.

[35] N.Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple paths. Networks
12(4):411-427, 1982.

[36] P.N.Klein, S. Rao, M. H. Rauch, and S. Subramanian. Faster shortest-path algorithmsfor planar
graphs. Proc. 26th Symp. Theory of Computing, pp. 27-37. Assoc. for Computing Machinery,
1994,

[37] N. Kumar and R. K. Ghosh. Paralel agorithm for finding first K shortest paths. Computer
Science and Informatics 24(3):21-28, September 1994.

[38] A. G.Law and A. Rezazadeh. Computing the K -shortest paths, under nonnegative weighting.
Proc. 22nd Manitoba Conf. Numerical Mathematics and Computing, pp. 277-280, Congr. Nu-
mer. 92, 1993.

[39] E.L.Lawler. A procedurefor computing the K best solutions to discrete optimization problems
and its application to the shortest path problem. Management Science 18:401-405, 1972.

24

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

E. L. Lawler. Comment on computing the k shortest pathsin agraph. Commun. Assoc. Comput.
Mach. 20:603-604. Assoc. for Computing Machinery, 1977.

E. Q. V. Martins. An agorithm for ranking paths that may contain cycles. Eur. J. Operational
Research 18(1):123-130, 1984.

S.-P. Miaou and S.-M. Chin. Computing k-shortest path for nuclear spent fuel highway trans-
portation. Eur. J. Operational Research 53:64-80, 1991.

E. Minieka. On computing sets of shortest paths in a graph. Commun. Assoc. Comput. Mach.
17:351-353. Assoc. for Computing Machinery, 1974.

E. Minieka. The K -th shortest path problem. ORSA/TIMS Joint National Mtg., vol. 23, p. B/116,
1975.

E. Minieka and D. R. Shier. A note on an algebra for the k best routes in a network. J. Inst.
Mathematics and Its Applications 11:145-149, 1973.

D. Naor and D. Brutlag. On near-optimal alignments of biological sequences. J. Computational
Biology 1(4):349-366, 1994. http://cmgm.stanford.edu/~brutlag/Publications/naor94.html.

A. Perko. Implementation of algorithms for K shortest loopless paths. Networks 16:149-160,
1986.

Y. Perl and Y. Shiloach. Finding two digjoint paths between two pairs of verticesin a graph. J.
Assoc. Comput. Mach. 25:1-9. Assoc. for Computing Machinery, 1978.

J. B. Rosen, S.-Z. Sun, and G.-L. Xue. Algorithms for the quickest path problem and the enu-
meration of quickest paths. Computers and Operations Research 18:579-584, 1991.

E. Ruppert. Finding the k shortest paths in parallel. Proc. 14th Symp. Theoretical Aspects of
Computer Science, February 1997.

T. Shibuya. Finding the k shortest paths by Al search techniques. Cooperative Research Reports
in Modeling and Algorithms 7(77):212-222. Ingt. of Statical Mathematics, March 1995.

T. Shibuya, T. Ikeda, H. Imai, S. Nishimura, H. Shimoura, and K. Tenmoku. Finding aredlistic
detour by Al search techniques. Proc. 2nd Intelligent Transportation Systems, val. 4, pp. 2037—
2044, November 1995. http://naomi.is.s.u-tokyo.ac.jp/papers/navigation/subopti mal - routes/
I TS%95/its.ps.gz.

T. Shibuya and H. Imai. Enumerating suboptimal alignments of multiple biological sequences
efficiently. Proc. 2nd Pacific Symp. Biocomputing, pp. 409-420, January 1997. http://www-smi.
stanford.edu/people/atman/psh97/shibuya.pdf.

T. Shibuya and H. Imai. New flexible approaches for multiple sequence alignment. Proc. 1st
Int. Conf. Computational Molecular Biology, pp. 267-276. Assoc. for Computing Machinery,
January 1997. http://naomi.is.s.u-tokyo.ac.jp/papers/genome/recomb97.ps.gz.

T. Shibuya, H. Imai, S. Nishimura, H. Shimoura, and K. Tenmoku. Detour queries in geo-
graphical databases for navigation and related algorithm animations. Proc. Int. Symp. Cooper-
ative Database Systems for Advanced Applications, vol. 2, pp. 333-340, December 1996. http:
/Inaomi.is.s.u-tokyo.ac.j p/papers/databases/codas96.ps.gz.

25

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

D. R. Shier. Algorithmsfor finding the k shortest pathsin a network. ORSA/TIMS Joint National
Mtg., p. 115, 1976.

D. R. Shier. Iterative methods for determining the k shortest paths in a network. Networks
6(3):205-229, 1976.

D. R. Shier. On algorithmsfor finding the k shortest pathsin a network. Networks 9(3):195-214,
1979.

C. C. Skicismand B. L. Golden. Solving k-shortest and constrained shortest path problems ef-
ficiently. Network Optimization and Applications, pp. 249-282. Baltzer Science Publishers, An-
nals of Operations Research 20, 1989.

K. Sugimoto and N. Katoh. An algorithm for finding k shortest loopless pathsin a directed net-
work. Trans. Information Processing Soc. Japan 26:356-364, 1985. In Japanese.

J. W. Suurballe. Digoint pathsin a network. Networks 4:125-145, 1974.

R. E. Tarjan. Data Sructures and Network Algorithms. CBM S-NSF Regional Conference Series
in Applied Mathematics 44. Soc. Industrial and Applied Math., 1983.

R. Thumer. A method for selecting the shortest path of a network. Zeitschrift fur Operations
Research, Serie B (Praxis) 19:B149-153, 1975. In German.

M. S. Waterman. Seguence alignments in the neighborhood of the optimum. Proc. Natl. Acad.
Sci. USA 80:3123-3124, 1983.

M. M. Weigand. A new algorithm for the solution of the k-th best route problem. Computing
16:139-151, 1976.

A. Wongseelashote. An agebrafor determining all path-values in a network with application to
k-shortest-paths problems. Networks 6:307—334, 1976.

A. Wongseelashote. Semirings and path spaces. Discrete Mathematics 26:55-78, 1979.

J. Y. Yen. Finding the K shortest loopless paths in a network. Management Science 17:712—716,
1971

J. Y. Yen. Another agorithm for finding the K shortest-loopless network paths. Proc. 41st Mtg.
Operations Research Society of America, vol. 20, p. B/185, 1972.

26

