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t. There is 
onsiderable interest in programs that 
an migratefrom one host to another and exe
ute. Mobile programs are appealingbe
ause they support eÆ
ient utilization of network resour
es and exten-sibility of information servers. However, sin
e they 
ross administrativedomains, they have the ability to a

ess and possibly misuse a host'sprote
ted resour
es. In this paper, we present a novel approa
h for 
on-trolling and prote
ting a site's resour
es. In this approa
h, a site uses ade
larative poli
y language to spe
ify a set of 
onstraints on a

esses toresour
es. A set of 
ode transformation tools enfor
es these 
onstraintson mobile programs by integrating the a

ess 
onstraint 
he
king 
odedire
tly into the mobile program and resour
e de�nitions. Be
ause ourapproa
h does not require resour
es to make expli
it 
alls to a referen
emonitor, it does not depend upon a spe
i�
 runtime system implemen-tation.1 Introdu
tionThere is in
reasing interest in 
omputing models that support migration of pro-grams. In these models, a program migrates to a remote host, exe
utes there,and a

esses the site's resour
es. For instan
e, Java [2℄ programs are in
reas-ingly being used to add dynami
 
ontent to a web page. When a user a

essesthe web page through a browser, the browser migrates Java programs asso
i-ated with the page and exe
utes them at the user's site. There are many other
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program to a remote site. The mobile programming model [3, 35℄ supports gen-eral purpose mobility that also allows programs to migrate to other sites duringtheir exe
utions. The 
ommon element in all of these models is the ability ofa runtime system to load externally de�ned user programs and exe
ute themwithin the lo
al name spa
e of the runtime system.Although appealing [4℄ from both system design and extensibility points ofview, mobile programs have serious se
urity impli
ations. Mobile programs havethe ability to mali
iously disrupt the exe
ution of programs at a site by readingand writing into their name spa
es, by using unauthorized resour
es, by over-using resour
es, and by denying resour
es to other programs. For instan
e, the\Ghost of Zealand" Java applet misuses the ability to write to the s
reen: Itturns areas of the desktop white, making the ma
hine pra
ti
ally useless until itis rebooted.1 Another example is Hamburg's Chaos Computer Club2 demonstra-tion of the dangers of using A
tiveX [6℄. A
tiveX is Mi
rosoft's mobile programte
hnology whi
h allows 
omponents to be dynami
ally installed on a user'sdesktop. The vi
tim uses Internet Explorer to visit a web page that downloadsan A
tiveX 
ontrol. The A
tiveX 
ontrol 
he
ks to see if Qui
ken, a �nan
ialmanagement software, is installed. If it is, the 
ontrol adds a monetary trans-fer order to Qui
ken's bat
h of transfer orders. When the vi
tim next pays thebills, the additional transfer order is performed. All of this goes unnoti
ed bythe vi
tim, until she re
eives her statement.In this paper, we fo
us primarily on a spe
i�
 se
urity problem asso
iatedwith mobile programs, namely the a

ess 
ontrol problem. The a

ess 
ontrolproblem involves allowing a site to 
ontrol a mobile program's ability to a

esslo
al resour
es. Many operating systems [17℄ implement a notion of a

ess 
ontrolby limiting a

esses to spe
i�
 resour
es that the operating systems administer.For instan
e, in the UNIX operating system, the owners of �les 
an 
ontrol thea

essibility of their �les.The a

ess 
ontrol problem in the mobile programming domain di�ers fromthe traditional a

ess 
ontrol models in many ways. First, there is no �xed set ofresour
es that a site 
an administer; di�erent sites may de�ne di�erent resour
es.An a

ess 
ontrol me
hanism 
annot be based on 
ontrolling a

esses to spe
i�
resour
es. The me
hanism should be appli
able to any resour
e that a hostmay de�ne. Se
ond, the a

ess 
ontrol model should allow the 
ustomization ofa

ess 
ontrol poli
ies from one site to another, one mobile program to another,and one resour
e to another. Third, the a

ess 
ontrol model should support a�ne-grained a

ess 
ontrol spe
i�
ation. In many a

ess 
ontrol models, a

ess
ontrol involves either allowing an a

ess or 
ompletely denying it. In the mobileprogramming domain, we argue for a 
onditional a

ess 
ontrol model wherea

esses to resour
es 
an be based on a boolean expression [26℄. In other words, asite may allow a mobile program to a

ess resour
es if 
ertain 
onditions are met.1 For full details see http://www.�njan.
om/applet alert.
fm orhttp://www.internetworld.
om/print/1998/05/11/webdev/19980511-hostile.html.2 For full details see http://www.iks-jena.de/mitarb/lutz/se
urity/a
tivex.hip97.html orhttp://www.iks-jena.de/mitarb/lutz/se
urity/a
tivex.en.html.



These 
onditions may depend on the state of mobile programs, state of resour
es,runtime system state and/or se
urity state. For instan
e, a database vendor mayspe
ify that if there are more than 20 mobile programs in the system, ea
h mobileprogram 
an only a

ess its database up to ten times. In this example, a mobileprogram's ability to a

ess the database depends on a runtime system state,su
h as the number of mobile programs running, and a se
urity state, i.e. thenumber of times mobile programs a

ess the database.A

ess 
ontrol spe
i�
ation and enfor
ement have been studied in great de-tail. The di�erent approa
hes 
an be broadly 
lassi�ed into three 
ategories:operating system-based , runtime system-based , and language-based . In the oper-ating system-based approa
hes [17, 1℄, an operating system implements a spe
i�
a

ess 
ontrol model whi
h spe
i�es how system-wide resour
es su
h as the net-work, �les, and displays 
an be a

essed. The operating system enfor
es these
urity poli
y by 
he
king whether the type of a

ess is allowed. In runtimesystem-based approa
hes [10, 13℄, a runtime system enfor
es spe
i�
 
ontrolsover a

esses to various obje
ts. Ea
h method �rst 
alls a referen
e monitorwhi
h 
he
ks to ensure that the method 
all is permitted. In language-basedte
hniques [11, 37, 31, 21℄ a

ess 
ontrol poli
ies are spe
i�ed along with a pro-gram spe
i�
ation. A 
ompiler not only generates 
ode for the program but also
ode to enfor
e se
urity poli
ies.In this paper, we present an alternate approa
h for spe
ifying and enfor
-ing a

ess 
ontrol over mobile programs written in Java. Spe
i�
ally, the paperdes
ribes the following:{ We present an a

ess 
ontrol model for spe
ifying how a

esses to resour
es
an be 
ontrolled. In this model, a site de�nes a set of a

ess 
onstraints, ea
hspe
ifying the 
ondition under whi
h a spe
i�
 resour
e 
an be a

essed.{ We present a novel a

ess 
onstraint enfor
ement me
hanism in whi
h a

ess
onstraints are enfor
ed by integrating a

ess 
onstraint 
he
ks dire
tly intomobile program 
ode and resour
e 
ode before they are loaded into theruntime system.Separating the spe
i�
ation of a

ess 
onstraints from the spe
i�
ation of Javaprograms and resour
es has the following impli
ations:{ Resour
e developers do not need to manually insert 
alls to se
urity 
he
king
ode inside ea
h resour
e that a host may want to prote
t. Further, the a

ess
ontrol me
hanism 
an be used to de�ne and enfor
e a

ess 
onstraints tosystems that were not designed with se
urity in mind, su
h as lega
y systems.{ Both resour
e de�nitions and a

ess 
onstraints 
an be modi�ed indepen-dently without a�e
ting ea
h other's implementation.We have implemented a version of this me
hanism for programs representedusing Java byte
ode [25℄. The performan
e results show that the overhead ofthis approa
h is moderate. Further, it performs better than the approa
h imple-mented in the Java runtime system in many 
ases.This paper is organized as follows: Se
tion 2 
ontains a des
ription of ourresour
e a

ess model and how a

esses to various resour
es 
an be spe
i�ed.



Se
tion 3 des
ribes an implementation of this model. Se
tion 4 
ontains an anal-ysis of the approa
h, in
luding its performan
e behavior. Se
tion 5 
ontains abrief survey of related work. Se
tion 6 
ontains a summary of the approa
h anddis
ussion of future work.2 A

ess Control ModelThe a

ess 
ontrol model 
ontains two parts: a resour
e model for representingresour
es and an a

ess 
onstraint spe
i�
ation language. We des
ribe the twoin detail below.2.1 Resour
e ModelA site provides many resour
es to a mobile program. These resour
es in
lude
lasses for utility libraries, a

essing �les, networks, and interfa
es to other re-sour
es su
h as a proprietary database. For instan
e, a site providing a

ess toa weather database exports a set of interfa
es that spe
ify how the database
an be a

essed. In our se
urity model, ea
h Java 
lass or method represents aresour
e and, thus, is a unit of prote
tion. Our a

ess 
ontrol me
hanism doesnot di�erentiate between system 
lasses and user-de�ned 
lasses, or between lo-
ally de�ned 
lasses and 
lasses down-loaded from remote hosts. The model alsoallows the de�nition of 
lass-sub
lass relationships among resour
es using theJava's inheritan
e model.2.2 A

ess Constraint Spe
i�
ation LanguageThe a

ess 
onstraint spe
i�
ation language 
ontains two parts: a notation forspe
ifying 
onstraints over a

esses to resour
es and an inheritan
e model fora

ess 
onstraints.A

ess Constraints: We �rst des
ribe the motivation behind our a

ess 
ontrollanguage. A Java program uses a resour
e by invoking its methods. In Fig. 1(a),we show that program P invokes a method f to a

ess resour
e R. During anexe
ution of P , the 
ontrol jumps to f , exe
utes f , and returns ba
k to P upontermination. The Java 
ompiler implements a simple a

ess semanti
s in whi
hthere are no 
onstraints on a

esses to R through f .Our approa
h is to allow a host to make the a

ess relationship between P andR 
onditional by adding a 
onstraint, B (see Fig. 1(b)). The a

ess 
onstraintis spe
i�ed separately from both P and R and has the e�e
t of imposing the
onstraint that P 
an invoke f on R only if 
ondition B is true. A site, thus,restri
ts a

esses to spe
i�
 resour
es by enumerating a set of a

ess 
onstraints,whi
h forms a site's a

ess 
ontrol poli
y.Below, we present only the 
ore aspe
ts of the language. For brevity we haveomitted the details regarding spe
i�
ation of se
urity 
onstraints over groups of
lasses, methods and obje
ts. The following EBNF shows how a site 
an spe
ifya

ess 
onstraints:



P f R(a) Default method invo
ationsemanti
 BP f R(b) Se
urity 
onstraints onmethod invo
ationsFig. 1. Method invo
ation semanti
sConstraints ::= f A

essConstraint gA

essConstraint ::= deny '(' [Entity℄ Relationship Entity ')'[when Condition℄Relationship ::= 7! | aEntity ::= ClassIdentifier | MethodIdentifierCondition ::= BooleanExpressionA site 
ontrols a

esses to di�erent resour
es (Java obje
ts) by de�ning a setof A

essConstraints. We des
ribe the various terms in the grammar informallybelow:{ Entity: An entity denotes obje
ts and method invo
ations of Java programs.A ClassIdenti�er, thus, identi�es the set of obje
ts to whi
h a given a

essrelationship applies. Similarly, aMethodIdenti�er denotes a set of invo
ationsof a method. The 
urrent implementation de�nes an entity based on its name.However, this 
an be extended to de�ne an entity on the basis of its sour
e,signature, or behavior pattern.{ Relationship: The 
omposition me
hanisms of a programming language al-low one to de�ne various relationships (data 
omposition through aggrega-tion and inheritan
e, and program 
omposition through method invo
ations)among the entities of a program. We are primarily interested in the followingtwo a

ess relationships here:1. Instantiate ( a ): A relation E a R exists if an entity E 
reates aninstan
e of 
lass R.2. Invoke ( 7! ): A relation E 7! R exists if an entity E invokes an entityR.{ Condition: The term Condition denotes a boolean expression that 
an be de-�ned in terms of obje
t states, program state (global state), runtime systemstate, se
urity state, and parameters of methods.Semanti
s: An a

ess 
onstraint of the formdeny (E � R) when Conditionspe
i�es that entity E 
annot a

ess R through relationship � if Condition istrue. E is optional. Hen
e, there are two kinds of a

ess 
onstraints: all a

ess
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B1E1E2En(b) Sele
tive a

ess 
onstraintsFig. 2. Category of a

ess 
onstraints
onstraints and sele
tive a

ess 
onstraints . Global 
onstraints denote those 
on-straints that do not depend on the initiator of the a

ess relationship. For in-stan
e, as shown in Fig. 2(a), no program 
an a

ess R when B is true. A hostmay spe
ify the 
onstraint that no Java applet 
an a

ess a set of proprietary�les.Sele
tive a

ess 
onstraints denote those 
onstraints that depend on the ini-tiator of the a

ess relationship. For instan
e, as shown Fig. 2(b), ea
h entityEi's a

ess to R is 
onstrained by a separate and possibly di�erent Bi. A site
an use sele
tive a

ess 
onstraints to asso
iate di�erent se
urity poli
ies withdi�erent Java programs that 
ome from di�erent sites.Examples of all a

ess 
onstraints are:Constraint Semanti
sdeny ( a C2) when B No instan
es of C2 
an be 
reated if B is truedeny ( 7! C2:M2) when B Method M2 of 
lass C2 
annot be invokedif B is true.Examples of sele
tive a

ess 
onstraints are:Constraint Semanti
sdeny (C1:M a C2) when B Method M of 
lass C1 
annot 
reatean obje
t of C2 if B is true.deny (C1:M1 7! C2:M2) when B Method M1 of 
lass C1 
annot invokeM2 of C2 if B is true.In our approa
h, the default is to allow all a

esses unless a site spe
i�
allydenies them. We 
all this model the a
tive denial model . This is unlike mostapproa
hes in whi
h the default is to deny all requests unless a site spe
i�
allyallows them. We 
all this model the a
tive permission model. The a
tive per-mission model provides better guarantees about system se
urity in 
ases when asite makes mistakes about spe
ifying a

ess 
ontrol poli
y, the reasoning beingthat it is better to deny legitimate a

esses than allow illegitimate a

esses [33℄.



We 
hose to use the a
tive denial model be
ause we want to 
onstru
t auni�ed a

ess 
ontrol framework for all method invo
ations. In other words,every a
tion (every method 
all, obje
t 
reation, deletion, et
.) is 
on
eivablya se
urity relevant event whi
h a site may want to 
ontrol. For instan
e, wewant to be able to spe
ify 
onstraints su
h as users 
an invoke a fun
tion, saysqrt, only 10 times. Implementation of this a

ess 
ontrol model using the a
tivepermission model would require that a site de�ne permissions for every method
all, whi
h 
an be quite 
umbersome. Runtime system-based approa
hes [25℄deal with this problem by embedding 
alls to an a

ess 
ontroller 
he
ker withinall methods that the site might want to 
ontrol The 
he
ker enfor
es an a
tivepermission model over these 
alls. All resour
es that do not embed 
alls are not
he
ked and hen
e 
an be a

essed by anyone. Su
h models, thus, di�erentiatebetween resour
es that must be prote
ted, through embedded 
alls, and thosethat need not. Our approa
h uses a single me
hanism for handling both. Thea
tive denial model 
an be used to implement the a
tive permission model byrepresenting the permission 
onditions through the negation of denial 
onditions.We are, therefore, looking at ways of integrating the a
tive permission model inour language.Examples: We now present three examples. The �rst example implements asimple �le a

ess 
ontrol me
hanism. The se
ond example shows how we 
anuse the state of the runtime system to 
ontrol a

esses to resour
es. Finally, thelast example shows how we 
an asso
iate spe
i�
 se
urity states with program
omponents and use these states to spe
ify a

ess 
ontrol.Example 1. File a

ess 
ontrol. In this example, we spe
ify a

ess 
onstraintsfor 
ontrolling the �le resour
es that mobile programs 
an a

ess. Assume thatthe �le resour
e is de�ned using the following Java 
lass:
lass File fpubli
 File(String Name);publi
 
har Read();publi
 void Write(
har data);publi
 final String GetFileName();gThe following 
onstraint spe
i�es that no mobile program 
an read \/et
/passwd"�le: deny ( 7! File.Read) when (#2.GetFileName() == "/et
/passwd")Here we introdu
e a new notation within the boolean expression. The terms #1and #2 refer to the entities before and after the relationship, respe
tively. Thus,in the above expression the term#2.GetFileName() 
an be read File.GetFileName().The a

ess 
onstraint that mobile programs 
an only read �les A and B 
anbe spe
i�ed by expressions of the form:deny ( 7! File.Read) when((#2.GetFileName() != "A") && (#2.GetFileName() != "B"))



The 
onstraint that mobile programs 
annot write to the lo
al disk is spe
i�edby the following 
onstraint:deny ( 7! File.Write)As we 
an see from the above example, an a

ess 
onstraint 
an 
ontrol exe
u-tions of methods on the basis of program states. In 
ertain 
ases, a site may wishto impose 
onstraints on the basis of the state asso
iated with the runtime sys-tem or the underlying operating system. The poli
y language allows spe
i�
ationof su
h 
onstraints. We show this through an example:Example 2. Network a

ess 
ontrol. Assume that the following de�nes the so
ketresour
e for making network 
onne
tions:Class So
ket fSo
ket();void Open(Host hostId, int So
ketId);void Write(Bytes data);Bytes Read();gAlso, assume that the runtime system keeps tra
k of the number of network
onne
tions that have already been opened. This forms the state asso
iated withthe runtime system. Let the method RuntimeSystem.Network.NumConne
tions()return the number of open 
onne
tions. A 
onstraint that limits the number ofnetwork 
onne
tions to a spe
i�
 upper-bound 
an be spe
i�ed in the followingmanner:deny ( a So
ket) when(RuntimeSystem.Network.NumConne
tions() == UPPERBOUND)In addition to runtime system state, a site may wish to store additional informa-tion for implementing a

ess 
ontrol. We 
all this kind of information se
uritystate. A site may asso
iate a se
urity state with a method, obje
t, or a group ofobje
ts, and may de�ne 
onstraints over a

esses to methods on the basis of these
urity state. We present an example below that illustrates this:Example 3. Control over number of a

esses. Assume that we want to imple-ment the 
onstraint that a program p 
an invoke a method, say f, on a resour
eR at most ten times.This 
an be implemented by asso
iating an obje
t, say Se
urityState, with p.The obje
t keeps tra
k of the number of times p 
alls f. Let method Se
urityS-tate.Che
kCount(int x) be de�ned in the following manner:publi
 boolean Che
kCount(int x) fif (
ount < x) fUpdateCount(); // in
rement the 
ounterreturn(false);g else return(true);g



The poli
y statementsadd Se
State Se
urityState to Rdeny (p 7! R.f) when R.Se
urityState.Che
kCount(10)adds the new obje
t to R and spe
i�es that p 
an invoke f at most 10 times.Inheritan
e of a

ess 
onstraints: We now present an inheritan
e modelfor a

ess 
onstraints. The inheritan
e model des
ribes what denials to resour
ea

esses mean in terms of denials of a

esses to sub
lasses of resour
es.Assume that a site de�nes two resour
es, R
 and Rs:
lass R
 fpubli
 void f();publi
 void g();publi
 void h();g
lass Rs extends R
 fgRs is a sub
lass of R
: Rs inherits methods f, g, and h from R
. Assume thatthe site de�nes the following 
onstraints on the resour
es:deny (E 7! R
:f) when B
fdeny (E 7! R
:g) when B
gdeny (E 7! Rs:f) when Bsfdeny (E 7! Rs:h) when BshThere are two 
omponents to the inheritan
e model:{ Inheritan
e of a

ess 
onstraints: A sub
lass inherits all a

ess 
onstraintsfrom its super
lasses. Hen
e, the resulting a

ess 
onstraint on invo
ationsof g on an instan
e of Rs is de�ned by the following expression:deny (E 7! Rs:g) when B
gA

ess 
onstraints are not inherited from sub
lasses to super
lasses. Hen
e,although the a

ess 
onstraint on h in Rs is Bsh, there are no a

ess 
on-straints on h in R
.{ Strengthening of a

ess 
onstraints: A sub
lass 
annot override its inher-ited 
onstraints. Spe
i�
ation of additional 
onstraints in the sub
lass onlystrengthen the 
onstraints de�ned in its super
lasses. Hen
e, the resultinga

ess 
onstraint on invo
ations of f on an instan
e of Rs is:deny (E 7! Rs:f) when B
f _ BsfIn other words, method Rs:f 
annot be invoked from E if either B
f or Bsfis true.This model of inheritan
e ensures that a mobile program 
annot override a

ess
onstraints on methods by de�ning a sub
lass and by weakening the a

ess
onstraints. Also, the above inheritan
e model applies for a

ess 
onstraints ona as well. That is, if a 
lass R
 
annot be instantiated, none of its sub
lasses
an be instantiated.
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y enfor
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ess 
onstraints on a re-sour
e involves pla
inginterposition 
ode be-tween the resour
e a
-
ess 
ode and resour
ede�nition 
ode. The in-terposition 
ode 
he
ksif a spe
i�
 resour
e a
-
ess is allowed. It 
anbe insertedmanually bysite managers, generatedby the 
ompiler, or de-�ned by the runtime sys-tems or operating sys-tems through spe
ial sys-tem 
alls. For instan
e,in the Java runtime sys-tem [12, 13℄, resour
edevelopers manually in-sert 
alls to a referen
emonitor in the resour
es they want to prote
t. The referen
e monitor 
onsultsa

ess 
ontrol poli
ies to 
he
k if a spe
i�
 resour
e a

ess is allowed.We use an alternate approa
h for generating interposition 
ode. In this ap-proa
h, a set of tools generates the interposition 
ode and integrates them withinmobile programs and resour
es before they are loaded in the JVM. In this ap-proa
h, there are no referen
e monitors. In essen
e, the approa
h generates refer-en
e monitors on the 
y and integrates them within the relevant Java programsand resour
es. The approa
h, thus, eliminates the need to manually in
lude 
allsto referen
e monitors in resour
e de�nitions.In Fig. 3, we des
ribe our implementation for enfor
ing a

ess 
ontrol poli
ieson Java programs. We show a Java program P that migrates to a site S. Rdenotes resour
es that the site makes available to mobile programs; and l denoteslo
al libraries linked into P .During 
lass name resolution and dynami
 linking, the Java 
lass loader [24℄retrieves R and l and passes them to a tool, 
alled the a

ess 
onstraint 
om-piler . The a

ess 
onstraint 
ompiler examines P , R, and l to determine theresour
e a

ess relationships that must be 
onstrained in order to implementthe a

ess 
onstraint A
. It then generates interposition 
ode s that implementthe spe
i�
 a

ess 
onstraints. It also generates a set of editing instru
tions eifor the byte
ode editor. The byte
ode editor uses ei to integrate s within P , Rand l. The transformed programs and resour
es are then loaded into the JVMand exe
uted.



We now des
ribe in detail how we determine a

ess relationships in Javaprograms, generate 
ode, and edit Java 
lass �les.3.1 Type Extra
tionType extra
tion involves examining Java 
lass �les to determine type de�nitionsde
lared in the 
lass �les. Type de�nitions are used for automati
ally 
onstru
t-ing a resour
e model from 
lass �les as well as for determining how Java 
lassesshould be modi�ed. Type extra
tion 
an be done easily sin
e Java 
lass �lesmaintain 
omplete symboli
 information about a 
lass. Our type extra
tion te
h-nique makes use of two entities within the Java 
lass �le: the 
onstant pool andthe method de�nition se
tions. The 
onstant pool is similar to a symbol tablein that it 
ontains all of the information needed to dynami
ally link 
lasses. Itis an index to the symboli
 referen
es of �elds, 
lasses, interfa
es and methods,as well as their names. It also 
ontains all literals, both string and numeri
,used throughout a 
lass. For example, a methodref entry in the 
onstant poolin
ludes all the symboli
 information asso
iated with a method. It 
ontains two
onstant pool indexes: one for the 
lass name and one for the name and type ofthe method. The method de�nitions se
tion de�nes ea
h method and identi�esthem by name and signature.3.2 Extra
tion of A

ess RelationshipsThe extra
tion of a

ess relationships involves sear
hing the bodies of the meth-ods for method invo
ation instru
tions. In the JVM, four op
odes (invokevirtual,invokespe
ial, invokestati
, and invokeinterfa
e) are used for method invo
ation.Ea
h method invo
ation instru
tion has an operand whi
h indexes into the 
on-stant pool. Sin
e this index is either a methodref entry or an interfa
eref entry,the 
lass name, method name, and signature of the method being invoked isimmediately available. Both instantiate and invoke relationships are, thus, deter-mined by sear
hing the method bodies for one of the four invoke op
odes andmat
hing it with the obje
t's 
lass name, method name, and signature. Notethat this information may not be entirely valid due to the dynami
 binding ofmethods. This problem is dis
ussed in detail in the following se
tions.3.3 Code Generation and Binary EditingWe now des
ribe the nature of the 
ode that is generated and its integrationwithin mobile programs. Our 
ode generation and editing involves modifying
lass de�nitions in order to add runtime state to 
lasses and to insert runtime
he
ks into methods.An a

ess 
onstraint of the formdeny (E � R) when Bis implemented by generating the following 
ode:



if (B)then error(); // raise ex
eptionelse a

ess Rand pat
hing it into 
lasses and methods. The nature of the editing depends onthe nature of the a

ess 
onstraints. Global 
onstraints of the formdeny (� R) when Bspe
ify 
onstraints on a

esses to R without any regard to obje
ts or methodsthat may a

ess R. The generated 
ode is, thus, integrated into the methods ofR. On the other hand, sele
tive a

ess 
onstraints of the formdeny (E � R) when Bimposes 
onditions on a

esses to R from E. The generated 
ode is, thus, inte-grated into the methods of E whi
h expli
itly a

ess R.We also support addition of se
urity states to spe
i�
 Java 
lasses in orderto monitor site-spe
i�
 behavior. This me
hanism allows a site to 
ustomize itsse
urity poli
ies, espe
ially if the poli
ies 
annot be represented dire
tly by thepoli
y language. Se
urity state obje
ts are added to a 
lass de�nition by usingthe statement:add Se
urityStateType Se
urityStateObje
t to RThe 
onstraint 
ompiler generates 
ode for initializing external obje
ts. Exam-ple 3 shows how su
h obje
ts 
an be used to spe
ify a

ess 
ontrol poli
ies.3.4 Implementation DetailsIn this se
tion we des
ribe the 
ode generation and 
ode editing pro
ess for dif-ferent instan
es of a

ess 
onstraints. For the purposes of explanation we restri
ta

ess to R when the �rst parameter is 5. Note that the boolean 
ondition onlya�e
ts the nature of 
ode that is generated for B; it does not a�e
t the generalpattern of the a

ess 
he
k 
ode or the method of editing. Also, the followingte
hnique is independent of the a
tion that should be taken in the event that ana

ess is denied. Our implementation throws a se
urity ex
eption. Alternatively,one 
ould take any 
on
eivable programmable a
tion, su
h as writing to an auditlog, ending the mobile program, or even moving the mobile program to anothersite.Implementation of Global Constraints: The �rst set of 
ases involve per-forming editing within the de�nition of a 
alled method. We �rst 
onsider a
onstraint of the formdeny ( 7! R.f(I)V) when (#2.(1) == 5)



Re
all that the term #2 refers to the entity being invoked. The term #2.(1)refers to the �rst parameter of that method. Also note that (I)V following R.fis the Java byte
ode representation of the signature of that method. The abovea

ess 
onstraint is enfor
ed by generating 
ode of the form shown in Fig. 4 andpat
hing the 
ode into the body of f.In Fig. 4, the number to the left of an in-
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A7 goto 210 iload 12 ld
 #674 if i
mpeq 1013 dup17 athrow10 new #6514 invokespe
ial #66original 
ode for Bmethod R.f(I)VFig. 4. The modi�ed methodR.f(I)V

stru
tion indi
ates the byte o�set for the in-stru
tion from the beginning of the methodbody. Further, a term #i in Fig. 4 and Fig. 5indi
ates the ith entry in the 
onstant pool.In 
ode segment A of Fig. 4, #67 indexesthe integer 
onstant 5, whereas #65 in 
odesegment B indexes the entry for a se
urityex
eption 
lass and #66 indexes the entryfor its 
onstru
tor.Code segmentA (Fig. 4) 
ontains the 
odefor 
he
king the 
onditional, whereas 
odesegment B 
ontains 
ode for throwing an ex-
eption if the boolean 
ondition is true. This
ode is inserted into the beginning of themethod. Care must be taken to ensure thatthe se
urity ex
eption obje
t and its 
on-stru
tors are de�ned in the 
onstant pool. Ifthey are not, then these entries are added.Constraints of the formdeny ( a R) when Bspe
ify that an instan
e of R 
annot be 
re-ated if B is true. They are implemented by putting 
onstraints on invo
ations ofall 
onstru
tors of R, whi
h, in the JVM, are given a spe
ial name <init>. This
ase is, thus, implemented by adding 
ode similar to that shown in Fig. 4 to allmethods of R with the name <init>.Implementation of Sele
tive A

ess Constraints: We now 
onsider the
ases in whi
h methods are modi�ed within the 
alling method. The most spe
i�

ase involves denying a

ess to a method from a spe
i�
 method:deny (E.g()V 7! R.f(I)V) when (#2.(1) == 5)Binary editing here involves �rst sear
hing for all invo
ations of R.f(I)V withinthe body of E.g(). This involves examining the operands of all the invoke op
odes.Sin
e the operand referen
es a methodref entry in the 
onstant pool, we 
an readthe signature, method name, and 
lass name of the method being 
alled. If thesemat
h R.f(I)V, then the generated 
ode is inserted before the invoke op
ode.The a

ess relationship determined in this manner may only be partially
orre
t due to the dynami
 binding of methods. Assume the inheritan
e hierar
hyof Se
t. 2.2. Also, assume that method f is invoked on an obje
t O of type RC :



O.f();If entity O referen
es an obje
t of type RC
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44 invokevirtual #10rest of E.g()V ED
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A10 istore 212 astore 314 aload 316 iload 218 aload 323 ifeq 4420 instan
eof #326 iload 230 if i
mpeq 3633 goto 4428 ld
 #35

39 dup43 athrow36 new #3340 inokespe
ial #34

rest of E.g()V

Fig. 5. The modi�ed methodE.g()V

or type RS , and 
onstraint B is de�ned forthe method of 
lass RC , the above approa
hworks be
ause the 
onstraint is inherited inthe sub
lass as well. The problem arises whenthe 
onstraint is de�ned over invo
ations tomethod f of RS and obje
t O may referen
eobje
ts of type RC or type RS . Note that ifit referen
es obje
ts of type RC , the gener-ated 
ode should not be added be
ause 
on-straints are inherited from super
lasses tosub
lasses, and not vi
e-versa. However, ifO referen
es an obje
t of type RS , the gen-erated 
ode should be added in order to im-plement the 
onstraint. Sin
e the referen
etype 
annot be determined stati
ally, addi-tional 
ode must be generated that 
he
ksfor the type of obje
t at runtime and per-forms a

ess 
onstraint 
he
ks on the ba-sis of the type of the obje
t. Thus, in 
aseswhere dynami
 binding may play a role, aninstan
eof instru
tion is added to dynami-
ally 
he
k the type of the obje
t. The gen-erated 
ode for this 
ase is shown in Fig. 5.The �rst step (
ode segment A) is toa

ess the obje
t referen
e by popping theoperand sta
k, whi
h 
ontains method pa-rameters and the obje
t referen
e, into lo
alvariables. The method parameters and ob-je
t referen
e are then pushed ba
k on thesta
k in 
ase the method is 
alled later. Thisalso need to be done if the 
onstraint refers to the parameters of the 
alledmethod. The se
ond step (B) involves pushing the obje
t referen
e onto thesta
k, performing an instan
eof operation, and jumping to the method 
all if theobje
t is not of type R. Term #3 is an index into the 
onstant pool that refers tothe 
lass R. As in the �rst 
ase, 
ode segment C performs the 
onditional 
he
k,and se
tion D throws the se
urity ex
eption. Se
tion E 
ontains the originalinvoke 
ommand. Term #10 is a 
onstant pool index that refers to the methodf with signature (I)V and 
lass R. Other instan
es of a

ess 
onstraints 
an beimplemented using the above te
hnique.Implementation of Inheritan
e Model: An implementation of the inher-itan
e model requires 
are be
ause of the possible 
on
i
ts between the Java



language me
hanism for 
ontrolling extensibility and our inheritan
e model. Weillustrate the problem with a simple example.Assume that 
lass Rs is a sub
lass of R
. Class R
 de�nes a method f :publi
 void f();Assume that Rs inherits f . Also, assume that the site spe
i�es the followinga

ess 
onstraint:deny ( 7! Rs:f) when BSin
e Rs inherits f , f needs to be modi�ed in order to impose the above a

ess
onstraint. However, sin
e poli
ies are inherited down and not up, the methodbody of f in R
 
annot be modi�ed. A possible solution is, then, to rede�ne fin Rs: publi
 void f() f<interposition 
ode for 
he
king a

ess>super.f();gThe above solution works if f is not de
lared �nal in R
. However, if f isde
lared to be �nal, we 
annot rede�ne f in Rs as the Java byte
ode veri�er willreje
t the rede�nition of a �nal method. Although we 
an edit the 
lass �le forR
 to remove the '�nal' 
onstraint, su
h a 
hange may lead to se
urity holes.Our solution, therefore, relies on modifying 
lass R
 as follows:
lass R
 ffinal publi
 void f() fF Che
kMethod();<
ode for f>gprivate void F Che
kMethod() f ; ggWe now rede�ne F Che
kMethod() in Rs in order to implement a

ess 
onstraint
he
ks that are spe
i�
 to Rs:
lass Rs extends R
 f:private void F Che
kMethod() f<interposition 
ode for 
he
king F>gg4 Dis
ussionsIn this se
tion, we analyze the proposed te
hnique for its suitability as an a

ess
onstraint enfor
ement me
hanism and for its performan
e behavior.



4.1 Chara
teristi
s of the Approa
hIn our approa
h, a site spe
i�es a

ess 
onstraints separately from mobile pro-grams, resour
es, and other 
lass de�nitions. Further, the a

ess 
onstraint en-for
ement me
hanism is not part of either the Java runtime system or the 
om-piler. This impa
ts how a

ess 
ontrol 
ode is managed and enfor
ed at a site:{ Both a

ess 
onstraints and resour
e de�nitions 
an be modi�ed indepen-dently. This makes it easy for a site to spe
ify di�erent a

ess 
onstraintsfor di�erent mobile programs for the same resour
e. For instan
e, a site mayspe
ify that mobile program P 
an a

ess R under 
ondition Bp whereasmobile program Q 
an a

ess R under 
ondition Bq .{ The same set of a

ess 
onstraints 
an be applied to di�erent resour
es with-out requiring one to 
opy it from one resour
e to another. For example, ifa single a

ess 
onstraint B applies to multiple resour
es, it 
an be de�nedon
e and used for all resour
es.{ An important advantage of the separation is that our approa
h 
an be usedfor enfor
ing se
urity on resour
es that were not designed with se
urity inthe �rst pla
e. In other words, the se
urity 
omponent 
an be added to aresour
e after it has been designed and implemented. Thus, it frees a libraryor resour
e designer from worrying about se
urity 
on
erns when designingand implementing the library.A limitation of our approa
h is that it may end up building data stru
tures thatmirror some of the data stru
tures that runtime systems build. This limitationarises be
ause of the stati
 nature of 
ode enfor
ement. In many 
ases, a

ess
ontrol poli
ies depend on the history of exe
ution as well as the dynami
 stateof an exe
uting program. For instan
e, an a

ess 
ontrol poli
y may requirethat a program a

ess a resour
e only if all methods 
urrently on the sta
k arepermitted to a

ess the resour
e. This means that the interposition 
ode must
he
k the permission of all methods 
urrently on the exe
ution sta
k. Sin
e ourenfor
ement me
hanism is 
ompletely separated from the runtime system, itneeds to build and maintain a separate runtime infra-stru
ture, involving anexe
ution sta
k, in order to implement su
h poli
ies. In runtime systems whi
hexports the ne
essary state, these poli
ies 
an be easily implemented.4.2 Performan
e AnalysisIn this se
tion, we des
ribe the performan
e behavior of the a

ess 
onstraintenfor
ement me
hanism. Spe
i�
ally, we analyze the following:{ What are the time and spa
e overheads asso
iated with our approa
h?{ How does our approa
h perform with respe
t to the Java runtime system'sapproa
h for enfor
ing a

ess 
ontrol?We performed our experiments on a 266 MHz Pentium II running Red Hat Linux5.0. The results show that both the time and spa
e overheads of the approa
h aremoderate. Further, the approa
h performs better than the Java runtime systemin 
ertain 
ases.



Overhead Measurements: We measured both the time and spa
e 
osts ofmodifying resour
es.There are four fa
tors that a�e
t the exe
ution time asso
iated with a

ess
onstraint 
he
k 
ode generation and editing:{ the 
ost asso
iated with reading a method{ the number of a

ess 
onstraints{ the types of 
onstraints{ the number of o

urren
es of restri
ted methods in a programWe do not 
onsider the 
ost of reading 
lass �les in our measurements sin
e therun-time system must perform this operation anyway.In the �rst experiment, we looked at how the size of the method being modi-�ed a�e
ts the 
ost of editing. In this experiment, only a single method invo
ationmust be wrapped. The 
ost of editing here is minimally a�e
ted by the size ofthe method. The 
ost varied between 0.08 and 0.16 se
onds for methods rangingfrom 0 to 3200 instru
tions. In the se
ond experiment, we looked at how the 
ostof editing 
hanges when the number of method 
alls that needs to be wrapped
hanges. We found the 
ost to be proportional to number of methods that arewrapped.We have also 
al
ulated the in
rease in size 
aused by adding 
ode to 
lassde�nitions. While the amount of 
ode that is added to a 
lass is independent ofthe size of the 
lass, it depends on the number of method invo
ations that needto be wrapped and the 
omplexity of the boolean portion of the 
onstraint. Forone wrapper, the minimum addition size (for a true boolean 
onstraint), is 56bytes. For two simple boolean expressions, it is about 206 bytes.Performan
e Comparison: We now 
ompare the performan
e behavior ofour approa
h with the runtime system approa
h, as implemented in the JDK1.1.3.For this experiment we 
reated a small program to test the performan
e ofimplementing se
urity 
he
ks around one method invo
ation. Sin
e the a
tualamount of work a parti
ular site must perform depends on both the 
omplexityof the a

ess 
ontrol poli
y and the number of restri
ted method invo
ations ina program, implementing a single poli
y statement on
e forms a good basis for
omparison. We based our 
omparisons on the a

ess 
ontrol poli
y and 
lassesfrom Example 3. The 
omplete 
ode for our approa
h is shown in Fig. 6. Weimplemented the same poli
y using Java's se
urity manager as shown in Fig. 7.The test program 
alls the 
onstrained method variable number of times. Thea

ess poli
y is that the method 
annot be 
alled more than 1000000 times.Figure 8 shows the exe
ution times of our approa
h and the Java's runtimesystem approa
h. In our approa
h, there is an initial overhead of about 0.08se
onds for 
ode editing, whi
h does not o

ur in the Java runtime system.However, after about 100000 method 
alls, our approa
h performs better thanthe Java runtime system. This is be
ause our approa
h inlines the a

ess 
ontrol
he
k 
ode, whereas in 
ase of the Java runtime system approa
h, ea
h a

ess




lass Se
State fpubli
 Se
State() f
ount = 0;gpubli
 int 
he
k()f 
ount++; return 
ount; gprivate int 
ount;g (a) Se
urity obje
t add Se
State Se
urityState to Rdeny 7! R.f()V when#1.Se
urityState.
he
k() > 1000000(b) Control a

ess 
onstraintsFig. 6. The binary editing approa
h
lass newSe
Manextends Se
urityManager fpubli
 newSe
Man() f
ount = 0;gpubli
 void 
he
kf()throws Se
urityEx
eption f
ount++;if (
ount > 1000000)throw new Se
urityEx
eption();gint 
ount;g (a) Se
urity Manager

lass R fpubli
 void f() fnewSe
Man se
urity;se
urity =System.getSe
urityManager();if (se
urity != null)se
urity.
he
kf();gg (b) Resour
e de�nitionFig. 7. The Java Runtime System-based approa
h
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Fig. 8. Comparison of exe
ution times with a poli
y




onstraint 
he
k involves making two method 
alls: one to the system, to getthe se
urity manager, and another to the se
urity manager itself. We 
an redu
eour 
ost even further by pre-editing the methods if we know that only a singlea

ess 
onstraint will be applied to the method, as is the 
ase in the Java runtimesystem approa
h. Our approa
h, in this 
ase, will then always outperform theJava runtime system approa
h.
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Fig. 9. Comparison of exe
ution times without a poli
yIn the se
ond experiment, we ran the same program with no poli
y imple-mented. As shown in Fig. 9, the Java runtime system is always less eÆ
ient thatour approa
h. This is be
ause in the Java runtime system approa
h, a methodmust always 
all the runtime system to 
he
k if there is a se
urity managerinstalled, in
urring the overhead of this 
all. Our approa
h does not in
ur anyoverhead sin
e it does not add any 
ode to methods that do not need to be
onstrained.5 Related WorkIn this se
tion, we look at te
hniques that provide resour
e level a

ess 
ontrol.Mu
h of the work on mobile program se
urity has dealt with supporting dif-ferent levels of se
urity for Java programs. Therefore, we �rst 
onsider Java'sse
urity model and various extensions to the model. We then turn to Safe-T
l,an interpreter based se
urity model. Finally, we dis
uss Proof Carrying Code, alanguage based approa
h.Java: The initial se
urity model [10, 22, 12℄ proposed by Sun for Java imple-ments a

ess 
ontrol poli
ies using a se
urity manager. An a

ess 
ontrol poli
yis 
reated by sub
lassing the Se
urityManager 
lass and setting this as the sys-tem's se
urity manager. A site then ensures that all prote
table resour
es make



an expli
it 
all to the se
urity manager to 
he
k if a

ess is allowed. If the 
he
kis not allowed, the se
urity manager throws a se
urity ex
eption. Otherwise, the
ontrol returns to the 
alling method. This de
ision is based on whether the 
odeis trusted, i.e. from the lo
al �le system, or untrusted, i.e. an applet downloadedfrom the net.The primary di�eren
e between our approa
h and this approa
h is that theJVM spe
i�es poli
ies in a pro
edural form. This allows the use of the full rangeof Java's language to spe
ify any type of poli
y. In our approa
h poli
ies arespe
i�ed in a de
larative form. This allows for easier expression and analysis ofpoli
ies. We also allow poli
ies to in
lude pro
edural aspe
ts with the se
uritystate obje
t.However, the extensibility of the se
urity manager is limited. Suppose thereare other servi
es that the system is providing whi
h needs to be restri
ted.While it is possible to add methods to a sub
lass of the Se
urityManager 
lassthat will do the ne
essary 
he
ks, adding the 
ode to 
all these 
he
ks might notbe easy, espe
ially if the programmer did not design these servi
es to do so. Thisproblem is further exa
erbated if the software is proprietary 
ode provided by athird party. In 
ontrast, our approa
h allows us to add se
urity information tomobile programs that might not been designed with se
urity in mind. Further,the se
urity models 
an be 
ustomized on the basis of program, se
urity andruntime states, and method parameters.The approa
h in [20℄ extends the Java se
urity model to implement a domain-based a

ess model. In this model, Java programs are given an unforgeable Se
u-rityToken used to identify their domain. An AppletSe
urity obje
t plays the roleof the Se
urity Manager. It uses the Se
urityToken of the applet to determine the
apabilities of that applet, throwing a se
urity ex
eption if the needed 
apabilityis not there. Other 
apability systems have been proposed by JavaSoft, Ele
tri
Communities, and [16℄. Similarly, the approa
h in [28℄ provides a more 
exibleme
hanisms for 
ontrolling a

esses to resour
es. Our approa
h di�ers from theseworks in that we propose a framework for implementing various se
urity modelsand poli
ies, in
luding the ones implemented in [20℄ and [28℄.Sun redesigned their se
urity model [13℄ in order to provide the se
urity in-frastru
ture for supporting �ne-grained a

ess 
ontrol and 
on�gurable se
uritypoli
ies. The new model augments the Se
urityManager with an A

essControllerthat 
he
ks if mobile programs have permission to a

ess spe
i�
 resour
es. Per-missions are stated in a poli
y language that allows users to de�ne prote
tiondomains based on what URL they 
ame from and on who has signed them. Ea
hprote
tion domain is asso
iated with a set of a
tions that they are allowed todo. Unfortunately, for old resour
es to take advantage of the new model, theseresour
es must be re-implemented.The J-Kernel proje
t [19℄ extends the JVM se
urity model by implementingmultiple prote
tion domains within a single Java virtual ma
hine. It providesa

ess to resour
es by passing 
apabilities for them to a system-wide repository.Domains 
an then look up 
apabilities from this repository. Capabilities are im-



plemented as wrappers whi
h provide the bookkeeping asso
iated with 
hangingprote
tion domains.Type hiding [36℄ modi�es the dynami
 linking pro
ess in Java to hide orrepla
e 
lasses seen by an applet. It allows a 
lass to be repla
ed by a proxy
lass that 
he
ks the arguments of the invoked method and 
onditionally throwsan ex
eption or 
all their original methods.Na

io [9℄ provides a framework for spe
ifying resour
e hooks, state main-tenan
e 
ode, and safety poli
ies. State maintenan
e and a

ess 
he
ks are per-formed by adding wrappers. Programs are transformed to use these wrappersinstead of the original library 
ode.Grimm and Bershad [14℄ des
ribe an a

ess 
ontrol me
hanism 
onsisting ofan enfor
ement manager and a se
urity poli
y manager. The system is dividedinto prote
tion domains. The me
hanism examines the system and redire
tsinvo
ations to a

ess 
ontrol 
he
ks. The se
urity model is based on DTE.Interpreter-Based Approa
hes: Safe-T
l [23, 32, 15℄ requires at least twointerpreters: a regular (or master) for trusted 
ode and a limited (or safe) onefor untrusted 
ode. The designers of Safe-T
l 
lassi�ed a set of instru
tions asbeing unsafe and then disabled those instru
tions in the safe interpreter. Whenuntrusted 
ode needs to a

ess a system resour
e, the safe interpreter traps intothe master one. The regular interpreter then de
ides whether or not to allowthe a

ess. A se
urity poli
y is spe
i�ed by aliasing the disabled instru
tions inthe safe interpreter to pro
edures in the master interpreter. These pro
edures
an then 
he
k arguments and, if the se
urity poli
y allows, 
all the the maskedinstru
tion in the master interpreter. Furthermore, Safe-T
l allows a program torequest a poli
y whi
h the interpreter 
an grant to the program as appropriate.Language-Based Approa
h: The approa
h taken in Proof-Carrying Code(PCC) [30, 29℄ is to asso
iate a site spe
i�
 se
urity poli
y with a program by
onstru
ting a 
ompiler that takes user programs and site spe
i�
 poli
ies andgenerates both the binary 
ode and proof of the program's safety with respe
tto the spe
i�ed poli
ies. As an external program is migrated for exe
ution at thekernel, the proof is validated, within the 
ontext of the site spe
i�
 safety poli
y,at the kernel site. One advantage of this approa
h is that it is tamper proof.If either the program or the proof has been modi�ed in transit, then there willeither be a validation error, or the resulting PCC binary will still validate thepoli
y. Also, sin
e PCC makes the de
ision on whether a program is se
ure onproperties of the 
ode rather than properties of the 
ode's origin, 
ryptographyis not needed. Further, PCC proof 
he
ks are similar to type 
he
kers. Theyare simple to implement, easy to trust, and very eÆ
ient. Unfortunately, thisapproa
h is not pra
ti
al for enfor
ing host dependent poli
ies. In this 
ase, thehost must 
ommuni
ate its poli
y to the site manufa
turing the program and themanufa
turing site must 
reate separate proofs for ea
h host. This is espe
iallyserver for mobile programs whi
h may visit many di�erent sites ea
h with adi�erent se
urity poli
y.



Se
urity Poli
y Languages: The area of se
urity poli
y languages has alsofo
used on me
hanisms for spe
ifying and enfor
ing se
urity. Se
urity poli
y lan-guages have been 
onsidered as the basis for verifying designs of se
ure systems.Various 
onsiderations have been given to poli
y languages for doing generalenfor
ement.A

ess 
ontrol matri
es (ACMs) [1℄ are a traditional means for spe
ifyingwhat is and is not allowed on a system. With ACMs, a two-dimensional matrixis given with the a
tive entities, 
alled subje
ts, in the rows and all the entities,or obje
ts, in the 
olumns. A list of a

ess rights that a subje
t has over anobje
t is given in the 
orresponding matrix 
ell. The language des
ribed in thispaper 
an be used to des
ribe an a

ess 
ontrol matrix, as well as the 
onditionalstate transitions des
ribed in [18℄.Miller and Baldwin [27℄ des
ribe a method of a

ess 
ontrol based on booleanexpression evaluation. The idea is that ea
h subje
t and obje
t is given a set ofattributes. In addition, there is also a set of rules whi
h link a subje
t, an obje
t,and an a
tion. These rules 
an be based on any number of attributes. Sin
e theseattributes 
an be anything, in
luding se
urity level, group membership or time ofday, it 
an be used to implement most se
urity poli
ies. Our approa
h is similarin that we 
apture the various attributes in terms of boolean expressions.Goguen and Meseguer [11℄ use an algebrai
 spe
i�
ation approa
h to spe
ifyse
urity poli
ies. Their parti
ular approa
h expresses se
urity poli
ies as a set ofnon-interferen
e assertions about a system. Cuppens, Saurel, and Cholvy [7, 5℄use a form of deonti
 logi
 to express poli
ies. In addition to spe
ifying whata
tions an agent is permitted or forbidden to perform, it also allows statementsthat say what a
tions an agent is obliged to perform. They use deonti
 logi
 to�nd 
onsisten
y problems between several poli
ies. These poli
y languages aremu
h more expressive than the one proposed in this paper. We plan to 
lose thisgap in the future. Our initial fo
us has been to develop a simple language fora

ess 
ontrol whi
h 
an be implemented easily and eÆ
iently.The DIAMOND [31℄ se
urity model provides an alternative model for inher-iting se
urity poli
ies in obje
t-oriented systems. This extends the MLS se
uritymodel des
ribed by Denning [8℄ to obje
t oriented databases. The innovationis that se
urity levels, and hen
e poli
ies, are not inherited from a 
lass's su-per
lass. Instead, they are derived from its instan
es. This allows a parti
ularinstan
e of a sub
lass to have a higher se
urity level than its super
lass.6 SummaryWe have des
ribed a me
hanism for implementing general se
urity poli
ies onmobile programs. There are two 
omponents of our approa
h. The �rst is a simplede
larative a

ess 
onstraint language that allows a site to restri
t a

esses to theobje
ts and methods of the system. The de
larative nature of the language makesit easy to spe
ify poli
ies while still allowing a hook to express pro
edural poli
iesif ne
essary. The se
ond is a set of tools that enfor
e the spe
i�ed 
onstraints byediting mobile programs and resour
es. Our approa
h's appeal is that a site 
an



spe
ify a

ess 
onstraints separately from both mobile program de�nitions andresour
e de�nitions. This separation of 
on
erns has a number of bene�ts. Botha

ess 
onstraints and resour
e de�nitions 
an be modi�ed independently. Sites
an easily spe
ify di�erent a

ess 
onstraints for di�erent mobile programs forthe same resour
e. Finally, our approa
h 
an enfor
e se
urity on systems thatwere not originally designed with se
urity in mind.Our future work �rst involves generalizing our a

ess 
ontrol model to im-plement well-known se
urity poli
ies and 
onstraints. We are developing me
ha-nisms for fa
ilitating the pro
ess of building se
urity models using our approa
h.As part of our resear
h in system software extensibility, we are 
onsidering var-ious approa
hes for integrating our te
hnique within the existing operating sys-tem and runtime system framework. Integration within the Java 
lass loader is
urrently underway.7 A
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