Providing Fine-Grained Access Control for Java
Programs *

Raju Pandey and Brant Hashii

Parallel and Distributed Computing Laboratory
Computer Science Department
University of California, Davis, CA 95616
{pandey, hashii}@cs.ucdavis.edu
http://pdclab.cs.ucdavis.edu/

Abstract. There is considerable interest in programs that can migrate
from one host to another and execute. Mobile programs are appealing
because they support efficient utilization of network resources and exten-
sibility of information servers. However, since they cross administrative
domains, they have the ability to access and possibly misuse a host’s
protected resources. In this paper, we present a novel approach for con-
trolling and protecting a site’s resources. In this approach, a site uses a
declarative policy language to specify a set of constraints on accesses to
resources. A set of code transformation tools enforces these constraints
on mobile programs by integrating the access constraint checking code
directly into the mobile program and resource definitions. Because our
approach does not require resources to make explicit calls to a reference
monitor, it does not depend upon a specific runtime system implemen-
tation.

1 Introduction

There is increasing interest in computing models that support migration of pro-
grams. In these models, a program migrates to a remote host, executes there,
and accesses the site’s resources. For instance, Java [2] programs are increas-
ingly being used to add dynamic content to a web page. When a user accesses
the web page through a browser, the browser migrates Java programs associ-
ated with the page and executes them at the user’s site. There are many other
computing models that support mobility of programs. For example, the remote
evaluation [34] model supports program migration by allowing one to upload a

* This work is supported by the Defense Advanced Research Project Agency (DARPA)
and Rome Laboratory, Air Force Materiel Command, USAF, under agreement num-
ber F30602-97-1-0221. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Defense Advanced Research Project
Agency (DARPA), Rome Laboratory, or the U.S. Government.

program to a remote site. The mobile programming model [3, 35] supports gen-
eral purpose mobility that also allows programs to migrate to other sites during
their executions. The common element in all of these models is the ability of
a runtime system to load externally defined user programs and execute them
within the local name space of the runtime system.

Although appealing [4] from both system design and extensibility points of
view, mobile programs have serious security implications. Mobile programs have
the ability to maliciously disrupt the execution of programs at a site by reading
and writing into their name spaces, by using unauthorized resources, by over-
using resources, and by denying resources to other programs. For instance, the
“Ghost of Zealand” Java applet misuses the ability to write to the screen: It
turns areas of the desktop white, making the machine practically useless until it
is rebooted.! Another example is Hamburg’s Chaos Computer Club? demonstra-
tion of the dangers of using ActiveX [6]. ActiveX is Microsoft’s mobile program
technology which allows components to be dynamically installed on a user’s
desktop. The victim uses Internet Explorer to visit a web page that downloads
an ActiveX control. The ActiveX control checks to see if Quicken, a financial
management software, is installed. If it is, the control adds a monetary trans-
fer order to Quicken’s batch of transfer orders. When the victim next pays the
bills, the additional transfer order is performed. All of this goes unnoticed by
the victim, until she receives her statement.

In this paper, we focus primarily on a specific security problem associated
with mobile programs, namely the access control problem. The access control
problem involves allowing a site to control a mobile program’s ability to access
local resources. Many operating systems [17] implement a notion of access control
by limiting accesses to specific resources that the operating systems administer.
For instance, in the UNIX operating system, the owners of files can control the
accessibility of their files.

The access control problem in the mobile programming domain differs from
the traditional access control models in many ways. First, there is no fixed set of
resources that a site can administer; different sites may define different resources.
An access control mechanism cannot be based on controlling accesses to specific
resources. The mechanism should be applicable to any resource that a host
may define. Second, the access control model should allow the customization of
access control policies from one site to another, one mobile program to another,
and one resource to another. Third, the access control model should support a
fine-grained access control specification. In many access control models, access
control involves either allowing an access or completely denying it. In the mobile
programming domain, we argue for a conditional access control model where
accesses to resources can be based on a boolean expression [26]. In other words, a
site may allow a mobile program to access resources if certain conditions are met.

! For full details see http://www.finjan.com/applet_alert.cfm or
http://www.internetworld.com/print/1998/05/11 /webdev/19980511-hostile.html.

% For full details see http://www.iks-jena.de/mitarb/lutz/security/activex.hip97.html or
http://www.iks-jena.de/mitarb/lutz/security/activex.en.html.

These conditions may depend on the state of mobile programs, state of resources,
runtime system state and/or security state. For instance, a database vendor may
specify that if there are more than 20 mobile programs in the system, each mobile
program can only access its database up to ten times. In this example, a mobile
program’s ability to access the database depends on a runtime system state,
such as the number of mobile programs running, and a security state, i.e. the
number of times mobile programs access the database.

Access control specification and enforcement have been studied in great de-
tail. The different approaches can be broadly classified into three categories:
operating system-based, runtime system-based, and language-based. In the oper-
ating system-based approaches [17, 1], an operating system implements a specific
access control model which specifies how system-wide resources such as the net-
work, files, and displays can be accessed. The operating system enforces the
security policy by checking whether the type of access is allowed. In runtime
system-based approaches [10, 13|, a runtime system enforces specific controls
over accesses to various objects. Each method first calls a reference monitor
which checks to ensure that the method call is permitted. In language-based
techniques [11, 37, 31, 21] access control policies are specified along with a pro-
gram specification. A compiler not only generates code for the program but also
code to enforce security policies.

In this paper, we present an alternate approach for specifying and enforc-
ing access control over mobile programs written in Java. Specifically, the paper
describes the following:

— We present an access control model for specifying how accesses to resources
can be controlled. In this model, a site defines a set of access constraints, each
specifying the condition under which a specific resource can be accessed.

— We present a novel access constraint enforcement mechanism in which access
constraints are enforced by integrating access constraint checks directly into
mobile program code and resource code before they are loaded into the
runtime system.

Separating the specification of access constraints from the specification of Java
programs and resources has the following implications:

— Resource developers do not need to manually insert calls to security checking
code inside each resource that a host may want to protect. Further, the access
control mechanism can be used to define and enforce access constraints to
systems that were not designed with security in mind, such as legacy systems.

— Both resource definitions and access constraints can be modified indepen-
dently without affecting each other’s implementation.

We have implemented a version of this mechanism for programs represented
using Java bytecode [25]. The performance results show that the overhead of
this approach is moderate. Further, it performs better than the approach imple-
mented in the Java runtime system in many cases.

This paper is organized as follows: Section 2 contains a description of our
resource access model and how accesses to various resources can be specified.

Section 3 describes an implementation of this model. Section 4 contains an anal-
ysis of the approach, including its performance behavior. Section 5 contains a
brief survey of related work. Section 6 contains a summary of the approach and
discussion of future work.

2 Access Control Model

The access control model contains two parts: a resource model for representing
resources and an access constraint specification language. We describe the two
in detail below.

2.1 Resource Model

A site provides many resources to a mobile program. These resources include
classes for utility libraries, accessing files, networks, and interfaces to other re-
sources such as a proprietary database. For instance, a site providing access to
a weather database exports a set of interfaces that specify how the database
can be accessed. In our security model, each Java class or method represents a
resource and, thus, is a unit of protection. Qur access control mechanism does
not differentiate between system classes and user-defined classes, or between lo-
cally defined classes and classes down-loaded from remote hosts. The model also
allows the definition of class-subclass relationships among resources using the
Java’s inheritance model.

2.2 Access Constraint Specification Language

The access constraint specification language contains two parts: a notation for
specifying constraints over accesses to resources and an inheritance model for
access constraints.

Access Constraints: We first describe the motivation behind our access control
language. A Java program uses a resource by invoking its methods. In Fig. 1(a),
we show that program P invokes a method f to access resource R. During an
execution of P, the control jumps to f, executes f, and returns back to P upon
termination. The Java compiler implements a simple access semantics in which
there are no constraints on accesses to R through f.

Our approach is to allow a host to make the access relationship between P and
R conditional by adding a constraint, B (see Fig. 1(b)). The access constraint
is specified separately from both P and R and has the effect of imposing the
constraint that P can invoke f on R only if condition B is true. A site, thus,
restricts accesses to specific resources by enumerating a set of access constraints,
which forms a site’s access control policy.

Below, we present only the core aspects of the language. For brevity we have
omitted the details regarding specification of security constraints over groups of
classes, methods and objects. The following EBNF shows how a site can specify
access constraints:

P / R 2 \/{' R

B
(a) Default method invocation (b) Security constraints on
semantic method invocations

Fig. 1. Method invocation semantics

Constraints = { AccessConstraint }

AccessConstraint = deny ’(° [Entity] Relationship Entity ’)’
[when Condition]

Relationship = = | -

Entity = ClassIdentifier | MethodIdentifier

Condition ::= BooleanExpression

A site controls accesses to different resources (Java objects) by defining a set
of AccessConstraints. We describe the various terms in the grammar informally
below:

— Entity: An entity denotes objects and method invocations of Java programs.
A Classldentifier, thus, identifies the set of objects to which a given access
relationship applies. Similarly, a Methodldentifier denotes a set of invocations
of a method. The current implementation defines an entity based on its name.
However, this can be extended to define an entity on the basis of its source,
signature, or behavior pattern.

— Relationship: The composition mechanisms of a programming language al-
low one to define various relationships (data composition through aggrega-
tion and inheritance, and program composition through method invocations)
among the entities of a program. We are primarily interested in the following
two access relationships here:

1. Instantiate (4): A relation £ - R exists if an entity E creates an
instance of class R.

2. Invoke (+): A relation E — R exists if an entity E invokes an entity
R.

— Condition: The term Condition denotes a boolean expression that can be de-
fined in terms of object states, program state (global state), runtime system
state, security state, and parameters of methods.

Semantics: An access constraint of the form
deny (F ¢ R) when Condition

specifies that entity E cannot access R through relationship o if Condition is
true. F is optional. Hence, there are two kinds of access constraints: all access

El\

B')
\ B, | D2 =
B - .
R .
B/' En
(a) Global constraints (b) Selective access constraints

Fig. 2. Category of access constraints

constraints and selective access constraints. Global constraints denote those con-
straints that do not depend on the initiator of the access relationship. For in-
stance, as shown in Fig.2(a), no program can access R when B is true. A host
may specify the constraint that no Java applet can access a set of proprietary
files.

Selective access constraints denote those constraints that depend on the ini-
tiator of the access relationship. For instance, as shown Fig.2(b), each entity
E;’s access to R is constrained by a separate and possibly different B;. A site
can use selective access constraints to associate different security policies with
different Java programs that come from different sites.

Examples of all access constraints are:

|Constraint ||Semantics |
deny (4 C3) when B No instances of Cy can be created if B is true
deny (= C5.Ms) when B |[Method M, of class Cy cannot be invoked

if B is true.

Examples of selective access constraints are:

|Constraint [Semantics |
deny (C1.M H () when B Method M of class C cannot create
an object of Cy if B is true.

deny (C1.M; — Cs.Ms) when B [[Method M; of class C; cannot invoke
My of Cy if B is true.

In our approach, the default is to allow all accesses unless a site specifically
denies them. We call this model the active denial model. This is unlike most
approaches in which the default is to deny all requests unless a site specifically
allows them. We call this model the active permission model. The active per-
mission model provides better guarantees about system security in cases when a
site makes mistakes about specifying access control policy, the reasoning being
that it is better to deny legitimate accesses than allow illegitimate accesses [33].

We chose to use the active denial model because we want to construct a
unified access control framework for all method invocations. In other words,
every action (every method call, object creation, deletion, etc.) is conceivably
a security relevant event which a site may want to control. For instance, we
want to be able to specify constraints such as users can invoke a function, say
sqrt, only 10 times. Implementation of this access control model using the active
permission model would require that a site define permissions for every method
call, which can be quite cumbersome. Runtime system-based approaches [25]
deal with this problem by embedding calls to an access controller checker within
all methods that the site might want to control The checker enforces an active
permission model over these calls. All resources that do not embed calls are not
checked and hence can be accessed by anyone. Such models, thus, differentiate
between resources that must be protected, through embedded calls, and those
that need not. Our approach uses a single mechanism for handling both. The
active denial model can be used to implement the active permission model by
representing the permission conditions through the negation of denial conditions.
We are, therefore, looking at ways of integrating the active permission model in
our language.

Examples: We now present three examples. The first example implements a
simple file access control mechanism. The second example shows how we can
use the state of the runtime system to control accesses to resources. Finally, the
last example shows how we can associate specific security states with program
components and use these states to specify access control.

Ezample 1. File access control. In this example, we specify access constraints
for controlling the file resources that mobile programs can access. Assume that
the file resource is defined using the following Java class:

class File {
public File(String Name);
public char Read();
public void Write(char data);
public final String GetFileName() ;

}

The following constraint specifies that no mobile program can read “/etc/passwd”
file:

deny (+— File.Read) when (#2.GetFileName() == "/etc/passwd")

Here we introduce a new notation within the boolean expression. The terms #1
and #2 refer to the entities before and after the relationship, respectively. Thus,
in the above expression the term #2.GetFileName() can be read File.GetFileName().

The access constraint that mobile programs can only read files A and B can
be specified by expressions of the form:

deny (+— File.Read) when
((#2.GetFileName() '= "A") && (#2.GetFileName() '= "B"))

The constraint that mobile programs cannot write to the local disk is specified
by the following constraint:

deny (+— File.Write)

As we can see from the above example, an access constraint can control execu-
tions of methods on the basis of program states. In certain cases, a site may wish
to impose constraints on the basis of the state associated with the runtime sys-
tem or the underlying operating system. The policy language allows specification
of such constraints. We show this through an example:

Ezample 2. Network access control. Assume that the following defines the socket
resource for making network connections:

Class Socket {
Socket () ;
void Open(Host hostId, int SocketId);
void Write(Bytes data);
Bytes Read();

}

Also, assume that the runtime system keeps track of the number of network
connections that have already been opened. This forms the state associated with
the runtime system. Let the method RuntimeSystem.Network.NumConnections()
return the number of open connections. A constraint that limits the number of
network connections to a specific upper-bound can be specified in the following
manner:

deny (- Socket) when
(RuntimeSystem.Network.NumConnections() == UPPERBOUND)

In addition to runtime system state, a site may wish to store additional informa-
tion for implementing access control. We call this kind of information security
state. A site may associate a security state with a method, object, or a group of
objects, and may define constraints over accesses to methods on the basis of the
security state. We present an example below that illustrates this:

Example 3. Control over number of accesses. Assume that we want to imple-
ment the constraint that a program p can invoke a method, say f, on a resource
R at most ten times.

This can be implemented by associating an object, say SecurityState, with p.
The object keeps track of the number of times p calls f. Let method SecurityS-
tate.CheckCount(int x) be defined in the following manner:

public boolean CheckCount(int x) {
if (count < x) {
UpdateCount(); // increment the counter
return(false);
} else return(true);

The policy statements

add SecState SecurityState to R
deny (p — R.f) when R.SecurityState.CheckCount(10)

adds the new object to R and specifies that p can invoke f at most 10 times.

Inheritance of access constraints: We now present an inheritance model

for access constraints. The inheritance model describes what denials to resource

accesses mean in terms of denials of accesses to subclasses of resources.
Assume that a site defines two resources, R, and R,:

class R, {
public void £(Q);
public void gQ);
public void h();

}

class R, extends R, {
}

R, is a subclass of R.: Ry inherits methods f, g, and h from R.. Assume that
the site defines the following constraints on the resources:

deny (E + R..f) when By
deny (E — R..g) when B
deny (E +— R,.f) when By
deny (E — Rgs.h) when By,

There are two components to the inheritance model:

— Inheritance of access constraints: A subclass inherits all access constraints
from its superclasses. Hence, the resulting access constraint on invocations
of g on an instance of R is defined by the following expression:

deny (£ — R,.g) when B

Access constraints are not inherited from subclasses to superclasses. Hence,
although the access constraint on h in Ry is By, there are no access con-
straints on h in R..

— Strengthening of access constraints: A subclass cannot override its inher-
ited constraints. Specification of additional constraints in the subclass only
strengthen the constraints defined in its superclasses. Hence, the resulting
access constraint on invocations of f on an instance of Ry is:

deny (E — R,.f) when B.fV By

In other words, method Rj;.f cannot be invoked from F if either B.; or By
is true.

This model of inheritance ensures that a mobile program cannot override access
constraints on methods by defining a subclass and by weakening the access
constraints. Also, the above inheritance model applies for access constraints on
- as well. That is, if a class R. cannot be instantiated, none of its subclasses
can be instantiated.

3 Access Constraint Enforcement

An enforcement of ac-
cess constraints on a re-
source involves placing
interposition code be-
tween the resource ac-
cess code and resource
definition code. The in-
terposition code checks
if a specific resource ac-
cess is allowed. It can
be inserted manually by
site managers, generated
by the compiler, or de-
fined by the runtime sys-
tems or operating sys-

migraj

te

l

O

A, R

L

Class Loader — Access Constraint

L

P 1 s

e

Compiler

l

€i

/

Bytecode Editor

i

P!

i

Runtime System

A.: Access constraint

R: Resources

I: library

s: Generated code

e;: Generated instruction

tems through special sys-
tem calls. For instance,
in the Java runtime sys-
tem [12, 13], resource
developers manually in-
sert calls to a reference
monitor in the resources they want to protect. The reference monitor consults
access control policies to check if a specific resource access is allowed.

Site S

Fig. 3. Security policy enforcement of mobile programs

We use an alternate approach for generating interposition code. In this ap-
proach, a set of tools generates the interposition code and integrates them within
mobile programs and resources before they are loaded in the JVM. In this ap-
proach, there are no reference monitors. In essence, the approach generates refer-
ence monitors on the fly and integrates them within the relevant Java programs
and resources. The approach, thus, eliminates the need to manually include calls
to reference monitors in resource definitions.

In Fig. 3, we describe our implementation for enforcing access control policies
on Java programs. We show a Java program P that migrates to a site S. R
denotes resources that the site makes available to mobile programs; and ! denotes
local libraries linked into P.

During class name resolution and dynamic linking, the Java class loader [24]
retrieves R and [and passes them to a tool, called the access constraint com-
piler. The access constraint compiler examines P, R, and [to determine the
resource access relationships that must be constrained in order to implement
the access constraint A.. It then generates interposition code s that implement
the specific access constraints. It also generates a set of editing instructions e;
for the bytecode editor. The bytecode editor uses e; to integrate s within P, R
and [. The transformed programs and resources are then loaded into the JVM
and executed.

We now describe in detail how we determine access relationships in Java
programs, generate code, and edit Java class files.

3.1 Type Extraction

Type extraction involves examining Java class files to determine type definitions
declared in the class files. Type definitions are used for automatically construct-
ing a resource model from class files as well as for determining how Java classes
should be modified. Type extraction can be done easily since Java class files
maintain complete symbolic information about a class. Our type extraction tech-
nique makes use of two entities within the Java class file: the constant pool and
the method definition sections. The constant pool is similar to a symbol table
in that it contains all of the information needed to dynamically link classes. It
is an index to the symbolic references of fields, classes, interfaces and methods,
as well as their names. It also contains all literals, both string and numeric,
used throughout a class. For example, a methodref entry in the constant pool
includes all the symbolic information associated with a method. It contains two
constant pool indexes: one for the class name and one for the name and type of
the method. The method definitions section defines each method and identifies
them by name and signature.

3.2 Extraction of Access Relationships

The extraction of access relationships involves searching the bodies of the meth-
ods for method invocation instructions. In the JVM, four opcodes (invokevirtual,
invokespecial, invokestatic, and invokeinterface) are used for method invocation.
Each method invocation instruction has an operand which indexes into the con-
stant pool. Since this index is either a methodref entry or an interfaceref entry,
the class name, method name, and signature of the method being invoked is
immediately available. Both instantiate and invoke relationships are, thus, deter-
mined by searching the method bodies for one of the four invoke opcodes and
matching it with the object’s class name, method name, and signature. Note
that this information may not be entirely valid due to the dynamic binding of
methods. This problem is discussed in detail in the following sections.

3.3 Code Generation and Binary Editing

We now describe the nature of the code that is generated and its integration
within mobile programs. Our code generation and editing involves modifying
class definitions in order to add runtime state to classes and to insert runtime
checks into methods.

An access constraint of the form

deny (F ¢ R) when B

is implemented by generating the following code:

if (B)

then error(); // raise exception
else

access R

and patching it into classes and methods. The nature of the editing depends on
the nature of the access constraints. Global constraints of the form

deny (0 R) when B

specify constraints on accesses to R without any regard to objects or methods
that may access R. The generated code is, thus, integrated into the methods of
R. On the other hand, selective access constraints of the form

deny (FE ¢ R) when B

imposes conditions on accesses to R from E. The generated code is, thus, inte-
grated into the methods of E which explicitly access R.

We also support addition of security states to specific Java classes in order
to monitor site-specific behavior. This mechanism allows a site to customize its
security policies, especially if the policies cannot be represented directly by the
policy language. Security state objects are added to a class definition by using
the statement:

add SecurityStateType SecurityStateObject to R

The constraint compiler generates code for initializing external objects. Exam-
ple 3 shows how such objects can be used to specify access control policies.

3.4 Implementation Details

In this section we describe the code generation and code editing process for dif-
ferent instances of access constraints. For the purposes of explanation we restrict
access to R when the first parameter is 5. Note that the boolean condition only
affects the nature of code that is generated for B; it does not affect the general
pattern of the access check code or the method of editing. Also, the following
technique is independent of the action that should be taken in the event that an
access is denied. Our implementation throws a security exception. Alternatively,
one could take any conceivable programmable action, such as writing to an audit
log, ending the mobile program, or even moving the mobile program to another
site.

Implementation of Global Constraints: The first set of cases involve per-
forming editing within the definition of a called method. We first consider a
constraint of the form

deny (— R.f(I)V) when (#2.(1) == b)

Recall that the term #2 refers to the entity being invoked. The term #2.(1)
refers to the first parameter of that method. Also note that (1)V following R.f
is the Java bytecode representation of the signature of that method. The above
access constraint is enforced by generating code of the form shown in Fig.4 and
patching the code into the body of f.

In Fig. 4, the number to the left of an in-
struction indicates the byte offset for the in-
struction from the beginning of the method 0 iload 1
body. Further, a term #i in Fig. 4 and Fig. 5 2 1dc #67
indicates the ith entry in the constant pool.

4 if_icmpeq 10
In code segment A of Fig.4, #67 indexes

. . 7 goto 21
the integer constant 5, whereas #65 in code
segment B indexes the entry for a security 10 new #65
exception class and #66 indexes the entry 13 dup

for its constructor.

Code segment A (Fig. 4) contains the code
for checking the conditional, whereas code
segment B contains code for throwing an ex-
ception if the boolean condition is true. This
code is inserted into the beginning of the
method. Care must be taken to ensure that
the security exception object and its con-
structors are defined in the constant pool. If Fig.4. The modified method
they are not, then these entries are added. RADV

Constraints of the form

14 invokespecial #66
17 athrow

original code for
method R.£(I)V

deny (- R) when B

specify that an instance of R cannot be cre-

ated if B is true. They are implemented by putting constraints on invocations of
all constructors of R, which, in the JVM, are given a special name <init>. This
case is, thus, implemented by adding code similar to that shown in Fig.4 to all
methods of R with the name <init>.

Implementation of Selective Access Constraints: We now consider the
cases in which methods are modified within the calling method. The most specific
case involves denying access to a method from a specific method:

deny (E.gOOV — R.£f(I)V) when (#2.(1) == b)

Binary editing here involves first searching for all invocations of R.f(1)V within
the body of E.g(). This involves examining the operands of all the invoke opcodes.
Since the operand references a methodref entry in the constant pool, we can read
the signature, method name, and class name of the method being called. If these
match R.f(1)V, then the generated code is inserted before the invoke opcode.

The access relationship determined in this manner may only be partially
correct due to the dynamic binding of methods. Assume the inheritance hierarchy
of Sect.2.2. Also, assume that method f is invoked on an object O of type R¢:

0.£Q0);

If entity O references an object of type R¢o
or type Rg, and constraint B is defined for

the method of class R¢, the above approach rest of E.g(V
works because the constraint is inherited in
the subclass as well. The problem arises when 10 istore 2
the constraint is defined over invocations to 12 astore 3
. A
method f of Rg and object O may reference 14 aload 3
objects of type R¢c or type Rg. Note that if 16 iload 2
it references objects of type R¢, the gener-
ated code should not be added because con- 18 aload 3
straints are inherited from superclasses to 20 instanceof #3 B
subclasses, and not vice-versa. However, if 23 ifeq 44

O references an object of type Rg, the gen-

erated code should be added in order to im- 26 iload 2

plement the constraint. Since the reference el L LR c

type cannot be determined statically, addi- 30 if_icmpeq 36

tional code must be generated that checks 33 goto 44

for the type of object at runtime and per-

forms access constraint checks on the ba- 36 new #33

sis of the type of the object. Thus, in cases 39 dup D

where dynamic binding may play a role, an 40 inokespecial #34

instanceof instruction is added to dynami- 43 athrow

cally check the type of the object. The gen-

erated code for this case is shown in Fig. 5. 44 invokevirtual #10 LK
The first step (code segment A) is to

access the object reference by popping the rest of E.g(V

operand stack, which contains method pa-
rameters and the object reference, into local
variables. The method parameters and ob-
ject reference are then pushed back on the
stack in case the method is called later. This
also need to be done if the constraint refers to the parameters of the called
method. The second step (B) involves pushing the object reference onto the
stack, performing an instanceof operation, and jumping to the method call if the
object is not of type R. Term #3 is an index into the constant pool that refers to
the class R. As in the first case, code segment C performs the conditional check,
and section D throws the security exception. Section E contains the original
invoke command. Term #10 is a constant pool index that refers to the method
f with signature (I)V and class R. Other instances of access constraints can be
implemented using the above technique.

Fig.5. The modified method
E.g()V

Implementation of Inheritance Model: An implementation of the inher-
itance model requires care because of the possible conflicts between the Java

language mechanism for controlling extensibility and our inheritance model. We
illustrate the problem with a simple example.
Assume that class R; is a subclass of R.. Class R, defines a method f:

public void £(Q);

Assume that R, inherits f. Also, assume that the site specifies the following
access constraint:

deny (— R,.f) when B

Since R, inherits f, f needs to be modified in order to impose the above access
constraint. However, since policies are inherited down and not up, the method
body of f in R, cannot be modified. A possible solution is, then, to redefine f
in R,:

public void £(O) {
<interposition code for checking access>
super.f();

}

The above solution works if f is not declared final in R.. However, if f is
declared to be final, we cannot redefine f in R, as the Java bytecode verifier will
reject the redefinition of a final method. Although we can edit the class file for
R, to remove the ’final’ constraint, such a change may lead to security holes.

Our solution, therefore, relies on modifying class R, as follows:

class R, {
final public void £() {
_F_CheckMethod () ;
<code for f>

}

private void _F_CheckMethod() { ; }

}

We now redefine _F_CheckMethod() in R, in order to implement access constraint
checks that are specific to R,:

class R; extends R, {

private void _F_CheckMethod() {
<interposition code for checking F>
1

4 Discussions

In this section, we analyze the proposed technique for its suitability as an access
constraint enforcement mechanism and for its performance behavior.

4.1 Characteristics of the Approach

In our approach, a site specifies access constraints separately from mobile pro-
grams, resources, and other class definitions. Further, the access constraint en-
forcement mechanism is not part of either the Java runtime system or the com-
piler. This impacts how access control code is managed and enforced at a site:

— Both access constraints and resource definitions can be modified indepen-
dently. This makes it easy for a site to specify different access constraints
for different mobile programs for the same resource. For instance, a site may
specify that mobile program P can access R under condition B, whereas
mobile program () can access R under condition B,.

— The same set of access constraints can be applied to different resources with-
out requiring one to copy it from one resource to another. For example, if
a single access constraint B applies to multiple resources, it can be defined
once and used for all resources.

— An important advantage of the separation is that our approach can be used
for enforcing security on resources that were not designed with security in
the first place. In other words, the security component can be added to a
resource after it has been designed and implemented. Thus, it frees a library
or resource designer from worrying about security concerns when designing
and implementing the library.

A limitation of our approach is that it may end up building data structures that
mirror some of the data structures that runtime systems build. This limitation
arises because of the static nature of code enforcement. In many cases, access
control policies depend on the history of execution as well as the dynamic state
of an executing program. For instance, an access control policy may require
that a program access a resource only if all methods currently on the stack are
permitted to access the resource. This means that the interposition code must
check the permission of all methods currently on the execution stack. Since our
enforcement mechanism is completely separated from the runtime system, it
needs to build and maintain a separate runtime infra-structure, involving an
execution stack, in order to implement such policies. In runtime systems which
exports the necessary state, these policies can be easily implemented.

4.2 Performance Analysis

In this section, we describe the performance behavior of the access constraint
enforcement mechanism. Specifically, we analyze the following;:

— What are the time and space overheads associated with our approach?
— How does our approach perform with respect to the Java runtime system’s
approach for enforcing access control?

We performed our experiments on a 266 MHz Pentium IT running Red Hat Linux
5.0. The results show that both the time and space overheads of the approach are
moderate. Further, the approach performs better than the Java runtime system
in certain cases.

Overhead Measurements: We measured both the time and space costs of
modifying resources.

There are four factors that affect the execution time associated with access
constraint check code generation and editing;:

the cost associated with reading a method

— the number of access constraints

— the types of constraints

the number of occurrences of restricted methods in a program

We do not consider the cost of reading class files in our measurements since the
run-time system must perform this operation anyway.

In the first experiment, we looked at how the size of the method being modi-
fied affects the cost of editing. In this experiment, only a single method invocation
must be wrapped. The cost of editing here is minimally affected by the size of
the method. The cost varied between 0.08 and 0.16 seconds for methods ranging
from 0 to 3200 instructions. In the second experiment, we looked at how the cost
of editing changes when the number of method calls that needs to be wrapped
changes. We found the cost to be proportional to number of methods that are
wrapped.

We have also calculated the increase in size caused by adding code to class
definitions. While the amount of code that is added to a class is independent of
the size of the class, it depends on the number of method invocations that need
to be wrapped and the complexity of the boolean portion of the constraint. For
one wrapper, the minimum addition size (for a true boolean constraint), is 56
bytes. For two simple boolean expressions, it is about 206 bytes.

Performance Comparison: We now compare the performance behavior of
our approach with the runtime system approach, as implemented in the JDK
1.1.3.

For this experiment we created a small program to test the performance of
implementing security checks around one method invocation. Since the actual
amount of work a particular site must perform depends on both the complexity
of the access control policy and the number of restricted method invocations in
a program, implementing a single policy statement once forms a good basis for
comparison. We based our comparisons on the access control policy and classes
from Example 3. The complete code for our approach is shown in Fig.6. We
implemented the same policy using Java’s security manager as shown in Fig. 7.
The test program calls the constrained method variable number of times. The
access policy is that the method cannot be called more than 1000000 times.

Figure 8 shows the execution times of our approach and the Java’s runtime
system approach. In our approach, there is an initial overhead of about 0.08
seconds for code editing, which does not occur in the Java runtime system.
However, after about 100000 method calls, our approach performs better than
the Java runtime system. This is because our approach inlines the access control
check code, whereas in case of the Java runtime system approach, each access

class SecState {
public SecState() {count = 0;}
public int check()

{ count++; return count; } add SecState SecurityState to R
private int count; deny — R.f()V when
} #1.SecurityState.check() > 1000000
(a) Security object (b) Control access constraints

Fig. 6. The binary editing approach

class newSecMan
extends SecurityManager {

public newSecMan() {count = 0;} class R {
public void checkf () public void £() {
throws SecurityException { newSecMan security;
count++; security =
if (count > 1000000) System.getSecurityManager () ;
throw new SecurityException(); if (security != null)
} security.checkf ();
int count; }
} }
(a) Security Manager (b) Resource definition

Fig.7. The Java Runtime System-based approach

25 . .
binary editing —
security manager -----

time in sec

0
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
number of function calls

Fig. 8. Comparison of execution times with a policy

constraint check involves making two method calls: one to the system, to get
the security manager, and another to the security manager itself. We can reduce
our cost even further by pre-editing the methods if we know that only a single
access constraint will be applied to the method, as is the case in the Java runtime
system approach. Our approach, in this case, will then always outperform the
Java runtime system approach.

25 T T
binary editing —
security manager -----

time in sec

0 1 1 1 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
number of function calls

Fig. 9. Comparison of execution times without a policy

In the second experiment, we ran the same program with no policy imple-
mented. As shown in Fig.9, the Java runtime system is always less efficient that
our approach. This is because in the Java runtime system approach, a method
must always call the runtime system to check if there is a security manager
installed, incurring the overhead of this call. Our approach does not incur any
overhead since it does not add any code to methods that do not need to be
constrained.

5 Related Work

In this section, we look at techniques that provide resource level access control.
Much of the work on mobile program security has dealt with supporting dif-
ferent levels of security for Java programs. Therefore, we first consider Java’s
security model and various extensions to the model. We then turn to Safe-Tcl,
an interpreter based security model. Finally, we discuss Proof Carrying Code, a
language based approach.

Java: The initial security model [10, 22, 12] proposed by Sun for Java imple-
ments access control policies using a security manager. An access control policy
is created by subclassing the SecurityManager class and setting this as the sys-
tem’s security manager. A site then ensures that all protectable resources make

an explicit call to the security manager to check if access is allowed. If the check
is not allowed, the security manager throws a security exception. Otherwise, the
control returns to the calling method. This decision is based on whether the code
is trusted, i.e. from the local file system, or untrusted, i.e. an applet downloaded
from the net.

The primary difference between our approach and this approach is that the
JVM specifies policies in a procedural form. This allows the use of the full range
of Java’s language to specify any type of policy. In our approach policies are
specified in a declarative form. This allows for easier expression and analysis of
policies. We also allow policies to include procedural aspects with the security
state object.

However, the extensibility of the security manager is limited. Suppose there
are other services that the system is providing which needs to be restricted.
While it is possible to add methods to a subclass of the SecurityManager class
that will do the necessary checks, adding the code to call these checks might not
be easy, especially if the programmer did not design these services to do so. This
problem is further exacerbated if the software is proprietary code provided by a
third party. In contrast, our approach allows us to add security information to
mobile programs that might not been designed with security in mind. Further,
the security models can be customized on the basis of program, security and
runtime states, and method parameters.

The approach in [20] extends the Java security model to implement a domain-
based access model. In this model, Java programs are given an unforgeable Secu-
rityToken used to identify their domain. An AppletSecurity object plays the role
of the Security Manager. It uses the SecurityToken of the applet to determine the
capabilities of that applet, throwing a security exception if the needed capability
is not there. Other capability systems have been proposed by JavaSoft, Electric
Communities, and [16]. Similarly, the approach in [28] provides a more flexible
mechanisms for controlling accesses to resources. Our approach differs from these
works in that we propose a framework for implementing various security models
and policies, including the ones implemented in [20] and [28].

Sun redesigned their security model [13] in order to provide the security in-
frastructure for supporting fine-grained access control and configurable security
policies. The new model augments the SecurityManager with an AccessController
that checks if mobile programs have permission to access specific resources. Per-
missions are stated in a policy language that allows users to define protection
domains based on what URL they came from and on who has signed them. Each
protection domain is associated with a set of actions that they are allowed to
do. Unfortunately, for old resources to take advantage of the new model, these
resources must be re-implemented.

The J-Kernel project [19] extends the JVM security model by implementing
multiple protection domains within a single Java virtual machine. It provides
access to resources by passing capabilities for them to a system-wide repository.
Domains can then look up capabilities from this repository. Capabilities are im-

plemented as wrappers which provide the bookkeeping associated with changing
protection domains.

Type hiding [36] modifies the dynamic linking process in Java to hide or
replace classes seen by an applet. It allows a class to be replaced by a proxy
class that checks the arguments of the invoked method and conditionally throws
an exception or call their original methods.

Naccio [9] provides a framework for specifying resource hooks, state main-
tenance code, and safety policies. State maintenance and access checks are per-
formed by adding wrappers. Programs are transformed to use these wrappers
instead of the original library code.

Grimm and Bershad [14] describe an access control mechanism consisting of
an enforcement manager and a security policy manager. The system is divided
into protection domains. The mechanism examines the system and redirects
invocations to access control checks. The security model is based on DTE.

Interpreter-Based Approaches: Safe-Tcl [23, 32, 15] requires at least two
interpreters: a regular (or master) for trusted code and a limited (or safe) one
for untrusted code. The designers of Safe-Tcl classified a set of instructions as
being unsafe and then disabled those instructions in the safe interpreter. When
untrusted code needs to access a system resource, the safe interpreter traps into
the master one. The regular interpreter then decides whether or not to allow
the access. A security policy is specified by aliasing the disabled instructions in
the safe interpreter to procedures in the master interpreter. These procedures
can then check arguments and, if the security policy allows, call the the masked
instruction in the master interpreter. Furthermore, Safe-Tcl allows a program to
request a policy which the interpreter can grant to the program as appropriate.

Language-Based Approach: The approach taken in Proof-Carrying Code
(PCC) [30, 29] is to associate a site specific security policy with a program by
constructing a compiler that takes user programs and site specific policies and
generates both the binary code and proof of the program’s safety with respect
to the specified policies. As an external program is migrated for execution at the
kernel, the proof is validated, within the context of the site specific safety policy,
at the kernel site. One advantage of this approach is that it is tamper proof.
If either the program or the proof has been modified in transit, then there will
either be a validation error, or the resulting PCC binary will still validate the
policy. Also, since PCC makes the decision on whether a program is secure on
properties of the code rather than properties of the code’s origin, cryptography
is not needed. Further, PCC proof checks are similar to type checkers. They
are simple to implement, easy to trust, and very efficient. Unfortunately, this
approach is not practical for enforcing host dependent policies. In this case, the
host must communicate its policy to the site manufacturing the program and the
manufacturing site must create separate proofs for each host. This is especially
server for mobile programs which may visit many different sites each with a
different security policy.

Security Policy Languages: The area of security policy languages has also
focused on mechanisms for specifying and enforcing security. Security policy lan-
guages have been considered as the basis for verifying designs of secure systems.
Various considerations have been given to policy languages for doing general
enforcement.

Access control matrices (ACMs) [1] are a traditional means for specifying
what is and is not allowed on a system. With ACMs, a two-dimensional matrix
is given with the active entities, called subjects, in the rows and all the entities,
or objects, in the columns. A list of access rights that a subject has over an
object is given in the corresponding matrix cell. The language described in this
paper can be used to describe an access control matrix, as well as the conditional
state transitions described in [18].

Miller and Baldwin [27] describe a method of access control based on boolean
expression evaluation. The idea is that each subject and object is given a set of
attributes. In addition, there is also a set of rules which link a subject, an object,
and an action. These rules can be based on any number of attributes. Since these
attributes can be anything, including security level, group membership or time of
day, it can be used to implement most security policies. Our approach is similar
in that we capture the various attributes in terms of boolean expressions.

Goguen and Meseguer [11] use an algebraic specification approach to specify
security policies. Their particular approach expresses security policies as a set of
non-interference assertions about a system. Cuppens, Saurel, and Cholvy [7, 5]
use a form of deontic logic to express policies. In addition to specifying what
actions an agent is permitted or forbidden to perform, it also allows statements
that say what actions an agent is obliged to perform. They use deontic logic to
find consistency problems between several policies. These policy languages are
much more expressive than the one proposed in this paper. We plan to close this
gap in the future. Our initial focus has been to develop a simple language for
access control which can be implemented easily and efficiently.

The DIAMOND [31] security model provides an alternative model for inher-
iting security policies in object-oriented systems. This extends the MLS security
model described by Denning [8] to object oriented databases. The innovation
is that security levels, and hence policies, are not inherited from a class’s su-
perclass. Instead, they are derived from its instances. This allows a particular
instance of a subclass to have a higher security level than its superclass.

6 Summary

We have described a mechanism for implementing general security policies on
mobile programs. There are two components of our approach. The first is a simple
declarative access constraint language that allows a site to restrict accesses to the
objects and methods of the system. The declarative nature of the language makes
it easy to specify policies while still allowing a hook to express procedural policies
if necessary. The second is a set of tools that enforce the specified constraints by
editing mobile programs and resources. Our approach’s appeal is that a site can

specify access constraints separately from both mobile program definitions and
resource definitions. This separation of concerns has a number of benefits. Both
access constraints and resource definitions can be modified independently. Sites
can easily specify different access constraints for different mobile programs for
the same resource. Finally, our approach can enforce security on systems that
were not originally designed with security in mind.

Our future work first involves generalizing our access control model to im-
plement well-known security policies and constraints. We are developing mecha-
nisms for facilitating the process of building security models using our approach.
As part of our research in system software extensibility, we are considering var-
ious approaches for integrating our technique within the existing operating sys-
tem and runtime system framework. Integration within the Java class loader is
currently underway.

7 Acknowledgments

We thank Jeff Gragg and Raja Mukhopadhyay for help and support in im-
plementing the system. We also thank Fritz Barnes, Earl Barr, Matt Bishop,
Prem Devanbu, David Evans, Karl Levitt, Scott Malabarba, Ron Olsson, and
the anonymous reviewers for their excellent comments and help in writing this

paper.

References

[1] E. Amoroso. Fundamentals of Computer Security Technology. P T R Prentice
Hall, 1994.

[2] K. Arnold and J. Gosling. The Java Programming Language. Addison Wesley,
1996.

[3] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. Itinerant
Agents for Mobile Computing. IEEE Personal Communications, pages 34 49,
October 1995.

[4] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents: Are they
a good idea? In Jan Vitek and Christian Tschudin, editors, Mobile
Object Systems. Towards the Programmable Internet. Second International
Workshop, MOS ’96, number 1222 in Lecture Notes in Computer Science,
pages 25 47, Linz, Austria, July 1997. Springer-Verlag. Also available at
http://www.research.ibm.com/massdist/mobag.ps.

[5] Laurence Cholvy and Frédéric Cuppens. Analyzing consistency of security poli-
cies. In 1997 IEEE Symposium on Security and Privacy, pages 103 112, Oakland,
California, 1997. IEEE.

[6] T. Coombs, J. Coombs, and D. Brewer. ActiveX Sourcebook: Build an ActiveX-
Based Web Site. John Wiley & Sons, Inc., 1996.

[7] Frédéric Cuppens and Claire Saurel. Specifying a security policy: A case study.
In 9th IEEE Compuer Security Foundations Workshop, pages 123 134, Kenmare,
Ireland, June 1996. IEEE, IEEE Comput. Soc. Press.

[8] D. Denning and P.J. Denning. Certification of Programs for Secure Information
Flow. In Communcations of the ACM, volume 20(7), pages 504 513. ACM, 1977.

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]
[17]
18]

[19]

[20]

[21]

D. Evans and A. Twyman. Flexible policy-directed code safety. In Proceedings
of the 1999 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May
1999.

J.S. Fritzinger and M. Mueller. Java Security. JavaSoft White Paper, 1996.
http://www.javasoft.com /security /whitepaper.ps.

J.A. Goguen and J. Meseguer. Security policies and security models. In In Pro-
ceedings of the 1982 Symposium on Security and Privacy, pages 11-20, 1982.

L. Gong. Java security: Present and near future. IEEE Micro, pages 14-19,
May/June 1997.

L. Gong, M. Mueller., H. Prafullchandra, and R. Schemers. Going beyong the
sandbox: An overview of the new security architecture in the Java Development
Kit 1.2. In Proceedings of the USENIX Symposium on Internet Technologies and
Systems, Monterey, California, December 1997.

R. Grimm and B.N. Bershad. Providing policy-neutral and transparent access
control in extensible systems. Technical Report UW-CSE-98-02-02, Dept. of Com-
puter Science and Engineering, University of Washington, 1998.

S. Gritzalis and G. Aggelis. Security issues surrounding programming languages
for mobile code: Java vs. Safe-Tcl. Operating Systems Review, 32(2):16 32, April
1998.

D. Hagimont and L. Ismail. A protection scheme for mobile agents on Java. In
Mobicom 97, pages 215 222, Budapest, Hungary, 1997. ACM.

M.A. Harrison, W.L. R., and J.D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461-471, August 1976.

M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461-471, 1976.

C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu, and T. von Eicken. Implementing
multiple protection domains in Java. Technical Report 97-1160, Cornell Univer-
sity, 1997.

N. Islam, R. Anand, T. Jaeger, and J.R. Rao. A flexible security model for using
internet content. IEEE Software, 14(5):52-59, Sept.-Oct. 1997.

S. Jajodia, S. Pierangela, and V.S. Subrahmanian. A logical language for ex-
pressing authorizations. In Proceedings of the 1997 Symposium on Security and
Privacy, pages 31 42, 1997.

JavaSoft. JDK 1.1.1 Documentation.

D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, and G. Cybenko. Agent Tcl:
Targeting the needs of mobile computers. IEEE Internet Computing, 1(4):58 67,
July-August 1997.

S. Liang and G. Brach. Dynamic Class Loading in the Java Virtual Machine.
In C. Chambers, editor, Object-Oriented Programming Systems, Languages and
Applications Conference, in Special Issue of SIGPLAN Notices, number 10, Van-
couver, October 1998. ACM.

J. Meyer and T. Downing. Java Virtual Machine. O’Reilly, 1997.

D.V. Miller and R.W. Baldwin. Access control by boolean expression evaluation.
In Fifth Annual Computer Security Applications Conference, pages 131-139, Tuc-
son, AZ, 1990. IEEE, IEEE Comput. Soc. Press.

D.V. Miller and R.W. Baldwin. Access control by boolean expression evaluation.
In Fifth Annual Computer Security Applications Conference, pages 131 139, Tuc-
son, AZ, 1990. IEEE, IEEE Comput. Soc. Press.

N. Nagaratnam and S.B. Byrne. Resource access control for an internet user
agent. In Third USENIX Conference on Object-Oriented Technologies and Sys-
tems. USENIX, June 1997.

[29]

[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]

G.C. Necula. Proof-carrying code. In Proceedings of the 24th Annual Symposium
on Principles of Programming Languages. ACM SIGPLAN-SIGACT, Jan. 1997.
G.C. Necula and P. Lee. Safe kernel extensions without run-time checking. In
Second Symposium on Operating System Design and Implementations. Usenix,
Oct. 1996.

L.M. Null and J. Wong. The DIAMOND security policy for object-oriented
databases. In 1992 ACM Computer Science Conference. Communications Pro-
ceedings, pages 49 56, Kansas City, MO, 1992.

J.K. Ousterhout, J.Y. Levy, and B.B. Welch. The Safe-Tcl security model.
Technical Report TR-97-60, Sun Microsystem Laboratories, 1997. Available at
http://research.sun.com/technical-reports/1997/abstract-60.html.

J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278 1308, September 1975.

J.W. Stamos and D.K. Gifford. Remote Evaluation. ACM Transactions on Pro-
gramming Languages and Systems, 12(4):537-565, October 1990.

T. Thorn. Programming languages for mobile code. ACM Computing Surveys,
29(3):213 239, September 1997.

D.S. Wallach, D. Balfanz, D. Dean, and E.W. Felten. Extensible security archi-
tecture for Java. Technical report, Department of Computer Science, Princeton
University, 1997.

T.Y.C. Woo and S.S. Lam. Authorization in distributed systems: A formal ap-
proach. In Proceedings of the 1992 IEEE Computer Society Symposium on Re-
search in Security and Privacy, pages 33-50, 1992.

