
Providing Fine-Grained Aess Control for JavaPrograms ?Raju Pandey and Brant HashiiParallel and Distributed Computing LaboratoryComputer Siene DepartmentUniversity of California, Davis, CA 95616fpandey, hashiig�s.udavis.eduhttp://pdlab.s.udavis.edu/Abstrat. There is onsiderable interest in programs that an migratefrom one host to another and exeute. Mobile programs are appealingbeause they support eÆient utilization of network resoures and exten-sibility of information servers. However, sine they ross administrativedomains, they have the ability to aess and possibly misuse a host'sproteted resoures. In this paper, we present a novel approah for on-trolling and proteting a site's resoures. In this approah, a site uses adelarative poliy language to speify a set of onstraints on aesses toresoures. A set of ode transformation tools enfores these onstraintson mobile programs by integrating the aess onstraint heking odediretly into the mobile program and resoure de�nitions. Beause ourapproah does not require resoures to make expliit alls to a referenemonitor, it does not depend upon a spei� runtime system implemen-tation.1 IntrodutionThere is inreasing interest in omputing models that support migration of pro-grams. In these models, a program migrates to a remote host, exeutes there,and aesses the site's resoures. For instane, Java [2℄ programs are inreas-ingly being used to add dynami ontent to a web page. When a user aessesthe web page through a browser, the browser migrates Java programs assoi-ated with the page and exeutes them at the user's site. There are many otheromputing models that support mobility of programs. For example, the remoteevaluation [34℄ model supports program migration by allowing one to upload a? This work is supported by the Defense Advaned Researh Projet Ageny (DARPA)and Rome Laboratory, Air Fore Materiel Command, USAF, under agreement num-ber F30602-97-1-0221. The U.S. Government is authorized to reprodue and dis-tribute reprints for Governmental purposes notwithstanding any opyright annota-tion thereon. The views and onlusions ontained herein are those of the authorsand should not be interpreted as neessarily representing the oÆial poliies or en-dorsements, either expressed or implied, of the Defense Advaned Researh ProjetAgeny (DARPA), Rome Laboratory, or the U.S. Government.



program to a remote site. The mobile programming model [3, 35℄ supports gen-eral purpose mobility that also allows programs to migrate to other sites duringtheir exeutions. The ommon element in all of these models is the ability ofa runtime system to load externally de�ned user programs and exeute themwithin the loal name spae of the runtime system.Although appealing [4℄ from both system design and extensibility points ofview, mobile programs have serious seurity impliations. Mobile programs havethe ability to maliiously disrupt the exeution of programs at a site by readingand writing into their name spaes, by using unauthorized resoures, by over-using resoures, and by denying resoures to other programs. For instane, the\Ghost of Zealand" Java applet misuses the ability to write to the sreen: Itturns areas of the desktop white, making the mahine pratially useless until itis rebooted.1 Another example is Hamburg's Chaos Computer Club2 demonstra-tion of the dangers of using AtiveX [6℄. AtiveX is Mirosoft's mobile programtehnology whih allows omponents to be dynamially installed on a user'sdesktop. The vitim uses Internet Explorer to visit a web page that downloadsan AtiveX ontrol. The AtiveX ontrol heks to see if Quiken, a �nanialmanagement software, is installed. If it is, the ontrol adds a monetary trans-fer order to Quiken's bath of transfer orders. When the vitim next pays thebills, the additional transfer order is performed. All of this goes unnotied bythe vitim, until she reeives her statement.In this paper, we fous primarily on a spei� seurity problem assoiatedwith mobile programs, namely the aess ontrol problem. The aess ontrolproblem involves allowing a site to ontrol a mobile program's ability to aessloal resoures. Many operating systems [17℄ implement a notion of aess ontrolby limiting aesses to spei� resoures that the operating systems administer.For instane, in the UNIX operating system, the owners of �les an ontrol theaessibility of their �les.The aess ontrol problem in the mobile programming domain di�ers fromthe traditional aess ontrol models in many ways. First, there is no �xed set ofresoures that a site an administer; di�erent sites may de�ne di�erent resoures.An aess ontrol mehanism annot be based on ontrolling aesses to spei�resoures. The mehanism should be appliable to any resoure that a hostmay de�ne. Seond, the aess ontrol model should allow the ustomization ofaess ontrol poliies from one site to another, one mobile program to another,and one resoure to another. Third, the aess ontrol model should support a�ne-grained aess ontrol spei�ation. In many aess ontrol models, aessontrol involves either allowing an aess or ompletely denying it. In the mobileprogramming domain, we argue for a onditional aess ontrol model whereaesses to resoures an be based on a boolean expression [26℄. In other words, asite may allow a mobile program to aess resoures if ertain onditions are met.1 For full details see http://www.�njan.om/applet alert.fm orhttp://www.internetworld.om/print/1998/05/11/webdev/19980511-hostile.html.2 For full details see http://www.iks-jena.de/mitarb/lutz/seurity/ativex.hip97.html orhttp://www.iks-jena.de/mitarb/lutz/seurity/ativex.en.html.



These onditions may depend on the state of mobile programs, state of resoures,runtime system state and/or seurity state. For instane, a database vendor mayspeify that if there are more than 20 mobile programs in the system, eah mobileprogram an only aess its database up to ten times. In this example, a mobileprogram's ability to aess the database depends on a runtime system state,suh as the number of mobile programs running, and a seurity state, i.e. thenumber of times mobile programs aess the database.Aess ontrol spei�ation and enforement have been studied in great de-tail. The di�erent approahes an be broadly lassi�ed into three ategories:operating system-based , runtime system-based , and language-based . In the oper-ating system-based approahes [17, 1℄, an operating system implements a spei�aess ontrol model whih spei�es how system-wide resoures suh as the net-work, �les, and displays an be aessed. The operating system enfores theseurity poliy by heking whether the type of aess is allowed. In runtimesystem-based approahes [10, 13℄, a runtime system enfores spei� ontrolsover aesses to various objets. Eah method �rst alls a referene monitorwhih heks to ensure that the method all is permitted. In language-basedtehniques [11, 37, 31, 21℄ aess ontrol poliies are spei�ed along with a pro-gram spei�ation. A ompiler not only generates ode for the program but alsoode to enfore seurity poliies.In this paper, we present an alternate approah for speifying and enfor-ing aess ontrol over mobile programs written in Java. Spei�ally, the paperdesribes the following:{ We present an aess ontrol model for speifying how aesses to resouresan be ontrolled. In this model, a site de�nes a set of aess onstraints, eahspeifying the ondition under whih a spei� resoure an be aessed.{ We present a novel aess onstraint enforement mehanism in whih aessonstraints are enfored by integrating aess onstraint heks diretly intomobile program ode and resoure ode before they are loaded into theruntime system.Separating the spei�ation of aess onstraints from the spei�ation of Javaprograms and resoures has the following impliations:{ Resoure developers do not need to manually insert alls to seurity hekingode inside eah resoure that a host may want to protet. Further, the aessontrol mehanism an be used to de�ne and enfore aess onstraints tosystems that were not designed with seurity in mind, suh as legay systems.{ Both resoure de�nitions and aess onstraints an be modi�ed indepen-dently without a�eting eah other's implementation.We have implemented a version of this mehanism for programs representedusing Java byteode [25℄. The performane results show that the overhead ofthis approah is moderate. Further, it performs better than the approah imple-mented in the Java runtime system in many ases.This paper is organized as follows: Setion 2 ontains a desription of ourresoure aess model and how aesses to various resoures an be spei�ed.



Setion 3 desribes an implementation of this model. Setion 4 ontains an anal-ysis of the approah, inluding its performane behavior. Setion 5 ontains abrief survey of related work. Setion 6 ontains a summary of the approah anddisussion of future work.2 Aess Control ModelThe aess ontrol model ontains two parts: a resoure model for representingresoures and an aess onstraint spei�ation language. We desribe the twoin detail below.2.1 Resoure ModelA site provides many resoures to a mobile program. These resoures inludelasses for utility libraries, aessing �les, networks, and interfaes to other re-soures suh as a proprietary database. For instane, a site providing aess toa weather database exports a set of interfaes that speify how the databasean be aessed. In our seurity model, eah Java lass or method represents aresoure and, thus, is a unit of protetion. Our aess ontrol mehanism doesnot di�erentiate between system lasses and user-de�ned lasses, or between lo-ally de�ned lasses and lasses down-loaded from remote hosts. The model alsoallows the de�nition of lass-sublass relationships among resoures using theJava's inheritane model.2.2 Aess Constraint Spei�ation LanguageThe aess onstraint spei�ation language ontains two parts: a notation forspeifying onstraints over aesses to resoures and an inheritane model foraess onstraints.Aess Constraints: We �rst desribe the motivation behind our aess ontrollanguage. A Java program uses a resoure by invoking its methods. In Fig. 1(a),we show that program P invokes a method f to aess resoure R. During anexeution of P , the ontrol jumps to f , exeutes f , and returns bak to P upontermination. The Java ompiler implements a simple aess semantis in whihthere are no onstraints on aesses to R through f .Our approah is to allow a host to make the aess relationship between P andR onditional by adding a onstraint, B (see Fig. 1(b)). The aess onstraintis spei�ed separately from both P and R and has the e�et of imposing theonstraint that P an invoke f on R only if ondition B is true. A site, thus,restrits aesses to spei� resoures by enumerating a set of aess onstraints,whih forms a site's aess ontrol poliy.Below, we present only the ore aspets of the language. For brevity we haveomitted the details regarding spei�ation of seurity onstraints over groups oflasses, methods and objets. The following EBNF shows how a site an speifyaess onstraints:



P f R(a) Default method invoationsemanti BP f R(b) Seurity onstraints onmethod invoationsFig. 1. Method invoation semantisConstraints ::= f AessConstraint gAessConstraint ::= deny '(' [Entity℄ Relationship Entity ')'[when Condition℄Relationship ::= 7! | aEntity ::= ClassIdentifier | MethodIdentifierCondition ::= BooleanExpressionA site ontrols aesses to di�erent resoures (Java objets) by de�ning a setof AessConstraints. We desribe the various terms in the grammar informallybelow:{ Entity: An entity denotes objets and method invoations of Java programs.A ClassIdenti�er, thus, identi�es the set of objets to whih a given aessrelationship applies. Similarly, aMethodIdenti�er denotes a set of invoationsof a method. The urrent implementation de�nes an entity based on its name.However, this an be extended to de�ne an entity on the basis of its soure,signature, or behavior pattern.{ Relationship: The omposition mehanisms of a programming language al-low one to de�ne various relationships (data omposition through aggrega-tion and inheritane, and program omposition through method invoations)among the entities of a program. We are primarily interested in the followingtwo aess relationships here:1. Instantiate ( a ): A relation E a R exists if an entity E reates aninstane of lass R.2. Invoke ( 7! ): A relation E 7! R exists if an entity E invokes an entityR.{ Condition: The term Condition denotes a boolean expression that an be de-�ned in terms of objet states, program state (global state), runtime systemstate, seurity state, and parameters of methods.Semantis: An aess onstraint of the formdeny (E � R) when Conditionspei�es that entity E annot aess R through relationship � if Condition istrue. E is optional. Hene, there are two kinds of aess onstraints: all aess
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B1E1E2En(b) Seletive aess onstraintsFig. 2. Category of aess onstraintsonstraints and seletive aess onstraints . Global onstraints denote those on-straints that do not depend on the initiator of the aess relationship. For in-stane, as shown in Fig. 2(a), no program an aess R when B is true. A hostmay speify the onstraint that no Java applet an aess a set of proprietary�les.Seletive aess onstraints denote those onstraints that depend on the ini-tiator of the aess relationship. For instane, as shown Fig. 2(b), eah entityEi's aess to R is onstrained by a separate and possibly di�erent Bi. A sitean use seletive aess onstraints to assoiate di�erent seurity poliies withdi�erent Java programs that ome from di�erent sites.Examples of all aess onstraints are:Constraint Semantisdeny ( a C2) when B No instanes of C2 an be reated if B is truedeny ( 7! C2:M2) when B Method M2 of lass C2 annot be invokedif B is true.Examples of seletive aess onstraints are:Constraint Semantisdeny (C1:M a C2) when B Method M of lass C1 annot reatean objet of C2 if B is true.deny (C1:M1 7! C2:M2) when B Method M1 of lass C1 annot invokeM2 of C2 if B is true.In our approah, the default is to allow all aesses unless a site spei�allydenies them. We all this model the ative denial model . This is unlike mostapproahes in whih the default is to deny all requests unless a site spei�allyallows them. We all this model the ative permission model. The ative per-mission model provides better guarantees about system seurity in ases when asite makes mistakes about speifying aess ontrol poliy, the reasoning beingthat it is better to deny legitimate aesses than allow illegitimate aesses [33℄.



We hose to use the ative denial model beause we want to onstrut auni�ed aess ontrol framework for all method invoations. In other words,every ation (every method all, objet reation, deletion, et.) is oneivablya seurity relevant event whih a site may want to ontrol. For instane, wewant to be able to speify onstraints suh as users an invoke a funtion, saysqrt, only 10 times. Implementation of this aess ontrol model using the ativepermission model would require that a site de�ne permissions for every methodall, whih an be quite umbersome. Runtime system-based approahes [25℄deal with this problem by embedding alls to an aess ontroller heker withinall methods that the site might want to ontrol The heker enfores an ativepermission model over these alls. All resoures that do not embed alls are notheked and hene an be aessed by anyone. Suh models, thus, di�erentiatebetween resoures that must be proteted, through embedded alls, and thosethat need not. Our approah uses a single mehanism for handling both. Theative denial model an be used to implement the ative permission model byrepresenting the permission onditions through the negation of denial onditions.We are, therefore, looking at ways of integrating the ative permission model inour language.Examples: We now present three examples. The �rst example implements asimple �le aess ontrol mehanism. The seond example shows how we anuse the state of the runtime system to ontrol aesses to resoures. Finally, thelast example shows how we an assoiate spei� seurity states with programomponents and use these states to speify aess ontrol.Example 1. File aess ontrol. In this example, we speify aess onstraintsfor ontrolling the �le resoures that mobile programs an aess. Assume thatthe �le resoure is de�ned using the following Java lass:lass File fpubli File(String Name);publi har Read();publi void Write(har data);publi final String GetFileName();gThe following onstraint spei�es that no mobile program an read \/et/passwd"�le: deny ( 7! File.Read) when (#2.GetFileName() == "/et/passwd")Here we introdue a new notation within the boolean expression. The terms #1and #2 refer to the entities before and after the relationship, respetively. Thus,in the above expression the term#2.GetFileName() an be read File.GetFileName().The aess onstraint that mobile programs an only read �les A and B anbe spei�ed by expressions of the form:deny ( 7! File.Read) when((#2.GetFileName() != "A") && (#2.GetFileName() != "B"))



The onstraint that mobile programs annot write to the loal disk is spei�edby the following onstraint:deny ( 7! File.Write)As we an see from the above example, an aess onstraint an ontrol exeu-tions of methods on the basis of program states. In ertain ases, a site may wishto impose onstraints on the basis of the state assoiated with the runtime sys-tem or the underlying operating system. The poliy language allows spei�ationof suh onstraints. We show this through an example:Example 2. Network aess ontrol. Assume that the following de�nes the soketresoure for making network onnetions:Class Soket fSoket();void Open(Host hostId, int SoketId);void Write(Bytes data);Bytes Read();gAlso, assume that the runtime system keeps trak of the number of networkonnetions that have already been opened. This forms the state assoiated withthe runtime system. Let the method RuntimeSystem.Network.NumConnetions()return the number of open onnetions. A onstraint that limits the number ofnetwork onnetions to a spei� upper-bound an be spei�ed in the followingmanner:deny ( a Soket) when(RuntimeSystem.Network.NumConnetions() == UPPERBOUND)In addition to runtime system state, a site may wish to store additional informa-tion for implementing aess ontrol. We all this kind of information seuritystate. A site may assoiate a seurity state with a method, objet, or a group ofobjets, and may de�ne onstraints over aesses to methods on the basis of theseurity state. We present an example below that illustrates this:Example 3. Control over number of aesses. Assume that we want to imple-ment the onstraint that a program p an invoke a method, say f, on a resoureR at most ten times.This an be implemented by assoiating an objet, say SeurityState, with p.The objet keeps trak of the number of times p alls f. Let method SeurityS-tate.ChekCount(int x) be de�ned in the following manner:publi boolean ChekCount(int x) fif (ount < x) fUpdateCount(); // inrement the ounterreturn(false);g else return(true);g



The poliy statementsadd SeState SeurityState to Rdeny (p 7! R.f) when R.SeurityState.ChekCount(10)adds the new objet to R and spei�es that p an invoke f at most 10 times.Inheritane of aess onstraints: We now present an inheritane modelfor aess onstraints. The inheritane model desribes what denials to resoureaesses mean in terms of denials of aesses to sublasses of resoures.Assume that a site de�nes two resoures, R and Rs:lass R fpubli void f();publi void g();publi void h();glass Rs extends R fgRs is a sublass of R: Rs inherits methods f, g, and h from R. Assume thatthe site de�nes the following onstraints on the resoures:deny (E 7! R:f) when Bfdeny (E 7! R:g) when Bgdeny (E 7! Rs:f) when Bsfdeny (E 7! Rs:h) when BshThere are two omponents to the inheritane model:{ Inheritane of aess onstraints: A sublass inherits all aess onstraintsfrom its superlasses. Hene, the resulting aess onstraint on invoationsof g on an instane of Rs is de�ned by the following expression:deny (E 7! Rs:g) when BgAess onstraints are not inherited from sublasses to superlasses. Hene,although the aess onstraint on h in Rs is Bsh, there are no aess on-straints on h in R.{ Strengthening of aess onstraints: A sublass annot override its inher-ited onstraints. Spei�ation of additional onstraints in the sublass onlystrengthen the onstraints de�ned in its superlasses. Hene, the resultingaess onstraint on invoations of f on an instane of Rs is:deny (E 7! Rs:f) when Bf _ BsfIn other words, method Rs:f annot be invoked from E if either Bf or Bsfis true.This model of inheritane ensures that a mobile program annot override aessonstraints on methods by de�ning a sublass and by weakening the aessonstraints. Also, the above inheritane model applies for aess onstraints ona as well. That is, if a lass R annot be instantiated, none of its sublassesan be instantiated.



3 Aess Constraint EnforementAn enforement of a-
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Runtime SystemFig. 3. Seurity poliy enforement of mobile programs

ess onstraints on a re-soure involves plainginterposition ode be-tween the resoure a-ess ode and resourede�nition ode. The in-terposition ode heksif a spei� resoure a-ess is allowed. It anbe insertedmanually bysite managers, generatedby the ompiler, or de-�ned by the runtime sys-tems or operating sys-tems through speial sys-tem alls. For instane,in the Java runtime sys-tem [12, 13℄, resouredevelopers manually in-sert alls to a referenemonitor in the resoures they want to protet. The referene monitor onsultsaess ontrol poliies to hek if a spei� resoure aess is allowed.We use an alternate approah for generating interposition ode. In this ap-proah, a set of tools generates the interposition ode and integrates them withinmobile programs and resoures before they are loaded in the JVM. In this ap-proah, there are no referene monitors. In essene, the approah generates refer-ene monitors on the y and integrates them within the relevant Java programsand resoures. The approah, thus, eliminates the need to manually inlude allsto referene monitors in resoure de�nitions.In Fig. 3, we desribe our implementation for enforing aess ontrol poliieson Java programs. We show a Java program P that migrates to a site S. Rdenotes resoures that the site makes available to mobile programs; and l denotesloal libraries linked into P .During lass name resolution and dynami linking, the Java lass loader [24℄retrieves R and l and passes them to a tool, alled the aess onstraint om-piler . The aess onstraint ompiler examines P , R, and l to determine theresoure aess relationships that must be onstrained in order to implementthe aess onstraint A. It then generates interposition ode s that implementthe spei� aess onstraints. It also generates a set of editing instrutions eifor the byteode editor. The byteode editor uses ei to integrate s within P , Rand l. The transformed programs and resoures are then loaded into the JVMand exeuted.



We now desribe in detail how we determine aess relationships in Javaprograms, generate ode, and edit Java lass �les.3.1 Type ExtrationType extration involves examining Java lass �les to determine type de�nitionsdelared in the lass �les. Type de�nitions are used for automatially onstrut-ing a resoure model from lass �les as well as for determining how Java lassesshould be modi�ed. Type extration an be done easily sine Java lass �lesmaintain omplete symboli information about a lass. Our type extration teh-nique makes use of two entities within the Java lass �le: the onstant pool andthe method de�nition setions. The onstant pool is similar to a symbol tablein that it ontains all of the information needed to dynamially link lasses. Itis an index to the symboli referenes of �elds, lasses, interfaes and methods,as well as their names. It also ontains all literals, both string and numeri,used throughout a lass. For example, a methodref entry in the onstant poolinludes all the symboli information assoiated with a method. It ontains twoonstant pool indexes: one for the lass name and one for the name and type ofthe method. The method de�nitions setion de�nes eah method and identi�esthem by name and signature.3.2 Extration of Aess RelationshipsThe extration of aess relationships involves searhing the bodies of the meth-ods for method invoation instrutions. In the JVM, four opodes (invokevirtual,invokespeial, invokestati, and invokeinterfae) are used for method invoation.Eah method invoation instrution has an operand whih indexes into the on-stant pool. Sine this index is either a methodref entry or an interfaeref entry,the lass name, method name, and signature of the method being invoked isimmediately available. Both instantiate and invoke relationships are, thus, deter-mined by searhing the method bodies for one of the four invoke opodes andmathing it with the objet's lass name, method name, and signature. Notethat this information may not be entirely valid due to the dynami binding ofmethods. This problem is disussed in detail in the following setions.3.3 Code Generation and Binary EditingWe now desribe the nature of the ode that is generated and its integrationwithin mobile programs. Our ode generation and editing involves modifyinglass de�nitions in order to add runtime state to lasses and to insert runtimeheks into methods.An aess onstraint of the formdeny (E � R) when Bis implemented by generating the following ode:



if (B)then error(); // raise exeptionelse aess Rand pathing it into lasses and methods. The nature of the editing depends onthe nature of the aess onstraints. Global onstraints of the formdeny (� R) when Bspeify onstraints on aesses to R without any regard to objets or methodsthat may aess R. The generated ode is, thus, integrated into the methods ofR. On the other hand, seletive aess onstraints of the formdeny (E � R) when Bimposes onditions on aesses to R from E. The generated ode is, thus, inte-grated into the methods of E whih expliitly aess R.We also support addition of seurity states to spei� Java lasses in orderto monitor site-spei� behavior. This mehanism allows a site to ustomize itsseurity poliies, espeially if the poliies annot be represented diretly by thepoliy language. Seurity state objets are added to a lass de�nition by usingthe statement:add SeurityStateType SeurityStateObjet to RThe onstraint ompiler generates ode for initializing external objets. Exam-ple 3 shows how suh objets an be used to speify aess ontrol poliies.3.4 Implementation DetailsIn this setion we desribe the ode generation and ode editing proess for dif-ferent instanes of aess onstraints. For the purposes of explanation we restritaess to R when the �rst parameter is 5. Note that the boolean ondition onlya�ets the nature of ode that is generated for B; it does not a�et the generalpattern of the aess hek ode or the method of editing. Also, the followingtehnique is independent of the ation that should be taken in the event that anaess is denied. Our implementation throws a seurity exeption. Alternatively,one ould take any oneivable programmable ation, suh as writing to an auditlog, ending the mobile program, or even moving the mobile program to anothersite.Implementation of Global Constraints: The �rst set of ases involve per-forming editing within the de�nition of a alled method. We �rst onsider aonstraint of the formdeny ( 7! R.f(I)V) when (#2.(1) == 5)



Reall that the term #2 refers to the entity being invoked. The term #2.(1)refers to the �rst parameter of that method. Also note that (I)V following R.fis the Java byteode representation of the signature of that method. The aboveaess onstraint is enfored by generating ode of the form shown in Fig. 4 andpathing the ode into the body of f.In Fig. 4, the number to the left of an in-
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A7 goto 210 iload 12 ld #674 if impeq 1013 dup17 athrow10 new #6514 invokespeial #66original ode for Bmethod R.f(I)VFig. 4. The modi�ed methodR.f(I)V

strution indiates the byte o�set for the in-strution from the beginning of the methodbody. Further, a term #i in Fig. 4 and Fig. 5indiates the ith entry in the onstant pool.In ode segment A of Fig. 4, #67 indexesthe integer onstant 5, whereas #65 in odesegment B indexes the entry for a seurityexeption lass and #66 indexes the entryfor its onstrutor.Code segmentA (Fig. 4) ontains the odefor heking the onditional, whereas odesegment B ontains ode for throwing an ex-eption if the boolean ondition is true. Thisode is inserted into the beginning of themethod. Care must be taken to ensure thatthe seurity exeption objet and its on-strutors are de�ned in the onstant pool. Ifthey are not, then these entries are added.Constraints of the formdeny ( a R) when Bspeify that an instane of R annot be re-ated if B is true. They are implemented by putting onstraints on invoations ofall onstrutors of R, whih, in the JVM, are given a speial name <init>. Thisase is, thus, implemented by adding ode similar to that shown in Fig. 4 to allmethods of R with the name <init>.Implementation of Seletive Aess Constraints: We now onsider theases in whih methods are modi�ed within the alling method. The most spei�ase involves denying aess to a method from a spei� method:deny (E.g()V 7! R.f(I)V) when (#2.(1) == 5)Binary editing here involves �rst searhing for all invoations of R.f(I)V withinthe body of E.g(). This involves examining the operands of all the invoke opodes.Sine the operand referenes a methodref entry in the onstant pool, we an readthe signature, method name, and lass name of the method being alled. If thesemath R.f(I)V, then the generated ode is inserted before the invoke opode.The aess relationship determined in this manner may only be partiallyorret due to the dynami binding of methods. Assume the inheritane hierarhyof Set. 2.2. Also, assume that method f is invoked on an objet O of type RC :



O.f();If entity O referenes an objet of type RC
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Fig. 5. The modi�ed methodE.g()V

or type RS , and onstraint B is de�ned forthe method of lass RC , the above approahworks beause the onstraint is inherited inthe sublass as well. The problem arises whenthe onstraint is de�ned over invoations tomethod f of RS and objet O may refereneobjets of type RC or type RS . Note that ifit referenes objets of type RC , the gener-ated ode should not be added beause on-straints are inherited from superlasses tosublasses, and not vie-versa. However, ifO referenes an objet of type RS , the gen-erated ode should be added in order to im-plement the onstraint. Sine the referenetype annot be determined statially, addi-tional ode must be generated that heksfor the type of objet at runtime and per-forms aess onstraint heks on the ba-sis of the type of the objet. Thus, in aseswhere dynami binding may play a role, aninstaneof instrution is added to dynami-ally hek the type of the objet. The gen-erated ode for this ase is shown in Fig. 5.The �rst step (ode segment A) is toaess the objet referene by popping theoperand stak, whih ontains method pa-rameters and the objet referene, into loalvariables. The method parameters and ob-jet referene are then pushed bak on thestak in ase the method is alled later. Thisalso need to be done if the onstraint refers to the parameters of the alledmethod. The seond step (B) involves pushing the objet referene onto thestak, performing an instaneof operation, and jumping to the method all if theobjet is not of type R. Term #3 is an index into the onstant pool that refers tothe lass R. As in the �rst ase, ode segment C performs the onditional hek,and setion D throws the seurity exeption. Setion E ontains the originalinvoke ommand. Term #10 is a onstant pool index that refers to the methodf with signature (I)V and lass R. Other instanes of aess onstraints an beimplemented using the above tehnique.Implementation of Inheritane Model: An implementation of the inher-itane model requires are beause of the possible onits between the Java



language mehanism for ontrolling extensibility and our inheritane model. Weillustrate the problem with a simple example.Assume that lass Rs is a sublass of R. Class R de�nes a method f :publi void f();Assume that Rs inherits f . Also, assume that the site spei�es the followingaess onstraint:deny ( 7! Rs:f) when BSine Rs inherits f , f needs to be modi�ed in order to impose the above aessonstraint. However, sine poliies are inherited down and not up, the methodbody of f in R annot be modi�ed. A possible solution is, then, to rede�ne fin Rs: publi void f() f<interposition ode for heking aess>super.f();gThe above solution works if f is not delared �nal in R. However, if f isdelared to be �nal, we annot rede�ne f in Rs as the Java byteode veri�er willrejet the rede�nition of a �nal method. Although we an edit the lass �le forR to remove the '�nal' onstraint, suh a hange may lead to seurity holes.Our solution, therefore, relies on modifying lass R as follows:lass R ffinal publi void f() fF ChekMethod();<ode for f>gprivate void F ChekMethod() f ; ggWe now rede�ne F ChekMethod() in Rs in order to implement aess onstraintheks that are spei� to Rs:lass Rs extends R f:private void F ChekMethod() f<interposition ode for heking F>gg4 DisussionsIn this setion, we analyze the proposed tehnique for its suitability as an aessonstraint enforement mehanism and for its performane behavior.



4.1 Charateristis of the ApproahIn our approah, a site spei�es aess onstraints separately from mobile pro-grams, resoures, and other lass de�nitions. Further, the aess onstraint en-forement mehanism is not part of either the Java runtime system or the om-piler. This impats how aess ontrol ode is managed and enfored at a site:{ Both aess onstraints and resoure de�nitions an be modi�ed indepen-dently. This makes it easy for a site to speify di�erent aess onstraintsfor di�erent mobile programs for the same resoure. For instane, a site mayspeify that mobile program P an aess R under ondition Bp whereasmobile program Q an aess R under ondition Bq .{ The same set of aess onstraints an be applied to di�erent resoures with-out requiring one to opy it from one resoure to another. For example, ifa single aess onstraint B applies to multiple resoures, it an be de�nedone and used for all resoures.{ An important advantage of the separation is that our approah an be usedfor enforing seurity on resoures that were not designed with seurity inthe �rst plae. In other words, the seurity omponent an be added to aresoure after it has been designed and implemented. Thus, it frees a libraryor resoure designer from worrying about seurity onerns when designingand implementing the library.A limitation of our approah is that it may end up building data strutures thatmirror some of the data strutures that runtime systems build. This limitationarises beause of the stati nature of ode enforement. In many ases, aessontrol poliies depend on the history of exeution as well as the dynami stateof an exeuting program. For instane, an aess ontrol poliy may requirethat a program aess a resoure only if all methods urrently on the stak arepermitted to aess the resoure. This means that the interposition ode musthek the permission of all methods urrently on the exeution stak. Sine ourenforement mehanism is ompletely separated from the runtime system, itneeds to build and maintain a separate runtime infra-struture, involving anexeution stak, in order to implement suh poliies. In runtime systems whihexports the neessary state, these poliies an be easily implemented.4.2 Performane AnalysisIn this setion, we desribe the performane behavior of the aess onstraintenforement mehanism. Spei�ally, we analyze the following:{ What are the time and spae overheads assoiated with our approah?{ How does our approah perform with respet to the Java runtime system'sapproah for enforing aess ontrol?We performed our experiments on a 266 MHz Pentium II running Red Hat Linux5.0. The results show that both the time and spae overheads of the approah aremoderate. Further, the approah performs better than the Java runtime systemin ertain ases.



Overhead Measurements: We measured both the time and spae osts ofmodifying resoures.There are four fators that a�et the exeution time assoiated with aessonstraint hek ode generation and editing:{ the ost assoiated with reading a method{ the number of aess onstraints{ the types of onstraints{ the number of ourrenes of restrited methods in a programWe do not onsider the ost of reading lass �les in our measurements sine therun-time system must perform this operation anyway.In the �rst experiment, we looked at how the size of the method being modi-�ed a�ets the ost of editing. In this experiment, only a single method invoationmust be wrapped. The ost of editing here is minimally a�eted by the size ofthe method. The ost varied between 0.08 and 0.16 seonds for methods rangingfrom 0 to 3200 instrutions. In the seond experiment, we looked at how the ostof editing hanges when the number of method alls that needs to be wrappedhanges. We found the ost to be proportional to number of methods that arewrapped.We have also alulated the inrease in size aused by adding ode to lassde�nitions. While the amount of ode that is added to a lass is independent ofthe size of the lass, it depends on the number of method invoations that needto be wrapped and the omplexity of the boolean portion of the onstraint. Forone wrapper, the minimum addition size (for a true boolean onstraint), is 56bytes. For two simple boolean expressions, it is about 206 bytes.Performane Comparison: We now ompare the performane behavior ofour approah with the runtime system approah, as implemented in the JDK1.1.3.For this experiment we reated a small program to test the performane ofimplementing seurity heks around one method invoation. Sine the atualamount of work a partiular site must perform depends on both the omplexityof the aess ontrol poliy and the number of restrited method invoations ina program, implementing a single poliy statement one forms a good basis foromparison. We based our omparisons on the aess ontrol poliy and lassesfrom Example 3. The omplete ode for our approah is shown in Fig. 6. Weimplemented the same poliy using Java's seurity manager as shown in Fig. 7.The test program alls the onstrained method variable number of times. Theaess poliy is that the method annot be alled more than 1000000 times.Figure 8 shows the exeution times of our approah and the Java's runtimesystem approah. In our approah, there is an initial overhead of about 0.08seonds for ode editing, whih does not our in the Java runtime system.However, after about 100000 method alls, our approah performs better thanthe Java runtime system. This is beause our approah inlines the aess ontrolhek ode, whereas in ase of the Java runtime system approah, eah aess



lass SeState fpubli SeState() fount = 0;gpubli int hek()f ount++; return ount; gprivate int ount;g (a) Seurity objet add SeState SeurityState to Rdeny 7! R.f()V when#1.SeurityState.hek() > 1000000(b) Control aess onstraintsFig. 6. The binary editing approahlass newSeManextends SeurityManager fpubli newSeMan() fount = 0;gpubli void hekf()throws SeurityExeption fount++;if (ount > 1000000)throw new SeurityExeption();gint ount;g (a) Seurity Manager
lass R fpubli void f() fnewSeMan seurity;seurity =System.getSeurityManager();if (seurity != null)seurity.hekf();gg (b) Resoure de�nitionFig. 7. The Java Runtime System-based approah
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Fig. 8. Comparison of exeution times with a poliy



onstraint hek involves making two method alls: one to the system, to getthe seurity manager, and another to the seurity manager itself. We an redueour ost even further by pre-editing the methods if we know that only a singleaess onstraint will be applied to the method, as is the ase in the Java runtimesystem approah. Our approah, in this ase, will then always outperform theJava runtime system approah.
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Fig. 9. Comparison of exeution times without a poliyIn the seond experiment, we ran the same program with no poliy imple-mented. As shown in Fig. 9, the Java runtime system is always less eÆient thatour approah. This is beause in the Java runtime system approah, a methodmust always all the runtime system to hek if there is a seurity managerinstalled, inurring the overhead of this all. Our approah does not inur anyoverhead sine it does not add any ode to methods that do not need to beonstrained.5 Related WorkIn this setion, we look at tehniques that provide resoure level aess ontrol.Muh of the work on mobile program seurity has dealt with supporting dif-ferent levels of seurity for Java programs. Therefore, we �rst onsider Java'sseurity model and various extensions to the model. We then turn to Safe-Tl,an interpreter based seurity model. Finally, we disuss Proof Carrying Code, alanguage based approah.Java: The initial seurity model [10, 22, 12℄ proposed by Sun for Java imple-ments aess ontrol poliies using a seurity manager. An aess ontrol poliyis reated by sublassing the SeurityManager lass and setting this as the sys-tem's seurity manager. A site then ensures that all protetable resoures make



an expliit all to the seurity manager to hek if aess is allowed. If the hekis not allowed, the seurity manager throws a seurity exeption. Otherwise, theontrol returns to the alling method. This deision is based on whether the odeis trusted, i.e. from the loal �le system, or untrusted, i.e. an applet downloadedfrom the net.The primary di�erene between our approah and this approah is that theJVM spei�es poliies in a proedural form. This allows the use of the full rangeof Java's language to speify any type of poliy. In our approah poliies arespei�ed in a delarative form. This allows for easier expression and analysis ofpoliies. We also allow poliies to inlude proedural aspets with the seuritystate objet.However, the extensibility of the seurity manager is limited. Suppose thereare other servies that the system is providing whih needs to be restrited.While it is possible to add methods to a sublass of the SeurityManager lassthat will do the neessary heks, adding the ode to all these heks might notbe easy, espeially if the programmer did not design these servies to do so. Thisproblem is further exaerbated if the software is proprietary ode provided by athird party. In ontrast, our approah allows us to add seurity information tomobile programs that might not been designed with seurity in mind. Further,the seurity models an be ustomized on the basis of program, seurity andruntime states, and method parameters.The approah in [20℄ extends the Java seurity model to implement a domain-based aess model. In this model, Java programs are given an unforgeable Seu-rityToken used to identify their domain. An AppletSeurity objet plays the roleof the Seurity Manager. It uses the SeurityToken of the applet to determine theapabilities of that applet, throwing a seurity exeption if the needed apabilityis not there. Other apability systems have been proposed by JavaSoft, EletriCommunities, and [16℄. Similarly, the approah in [28℄ provides a more exiblemehanisms for ontrolling aesses to resoures. Our approah di�ers from theseworks in that we propose a framework for implementing various seurity modelsand poliies, inluding the ones implemented in [20℄ and [28℄.Sun redesigned their seurity model [13℄ in order to provide the seurity in-frastruture for supporting �ne-grained aess ontrol and on�gurable seuritypoliies. The new model augments the SeurityManager with an AessControllerthat heks if mobile programs have permission to aess spei� resoures. Per-missions are stated in a poliy language that allows users to de�ne protetiondomains based on what URL they ame from and on who has signed them. Eahprotetion domain is assoiated with a set of ations that they are allowed todo. Unfortunately, for old resoures to take advantage of the new model, theseresoures must be re-implemented.The J-Kernel projet [19℄ extends the JVM seurity model by implementingmultiple protetion domains within a single Java virtual mahine. It providesaess to resoures by passing apabilities for them to a system-wide repository.Domains an then look up apabilities from this repository. Capabilities are im-



plemented as wrappers whih provide the bookkeeping assoiated with hangingprotetion domains.Type hiding [36℄ modi�es the dynami linking proess in Java to hide orreplae lasses seen by an applet. It allows a lass to be replaed by a proxylass that heks the arguments of the invoked method and onditionally throwsan exeption or all their original methods.Naio [9℄ provides a framework for speifying resoure hooks, state main-tenane ode, and safety poliies. State maintenane and aess heks are per-formed by adding wrappers. Programs are transformed to use these wrappersinstead of the original library ode.Grimm and Bershad [14℄ desribe an aess ontrol mehanism onsisting ofan enforement manager and a seurity poliy manager. The system is dividedinto protetion domains. The mehanism examines the system and rediretsinvoations to aess ontrol heks. The seurity model is based on DTE.Interpreter-Based Approahes: Safe-Tl [23, 32, 15℄ requires at least twointerpreters: a regular (or master) for trusted ode and a limited (or safe) onefor untrusted ode. The designers of Safe-Tl lassi�ed a set of instrutions asbeing unsafe and then disabled those instrutions in the safe interpreter. Whenuntrusted ode needs to aess a system resoure, the safe interpreter traps intothe master one. The regular interpreter then deides whether or not to allowthe aess. A seurity poliy is spei�ed by aliasing the disabled instrutions inthe safe interpreter to proedures in the master interpreter. These proeduresan then hek arguments and, if the seurity poliy allows, all the the maskedinstrution in the master interpreter. Furthermore, Safe-Tl allows a program torequest a poliy whih the interpreter an grant to the program as appropriate.Language-Based Approah: The approah taken in Proof-Carrying Code(PCC) [30, 29℄ is to assoiate a site spei� seurity poliy with a program byonstruting a ompiler that takes user programs and site spei� poliies andgenerates both the binary ode and proof of the program's safety with respetto the spei�ed poliies. As an external program is migrated for exeution at thekernel, the proof is validated, within the ontext of the site spei� safety poliy,at the kernel site. One advantage of this approah is that it is tamper proof.If either the program or the proof has been modi�ed in transit, then there willeither be a validation error, or the resulting PCC binary will still validate thepoliy. Also, sine PCC makes the deision on whether a program is seure onproperties of the ode rather than properties of the ode's origin, ryptographyis not needed. Further, PCC proof heks are similar to type hekers. Theyare simple to implement, easy to trust, and very eÆient. Unfortunately, thisapproah is not pratial for enforing host dependent poliies. In this ase, thehost must ommuniate its poliy to the site manufaturing the program and themanufaturing site must reate separate proofs for eah host. This is espeiallyserver for mobile programs whih may visit many di�erent sites eah with adi�erent seurity poliy.



Seurity Poliy Languages: The area of seurity poliy languages has alsofoused on mehanisms for speifying and enforing seurity. Seurity poliy lan-guages have been onsidered as the basis for verifying designs of seure systems.Various onsiderations have been given to poliy languages for doing generalenforement.Aess ontrol matries (ACMs) [1℄ are a traditional means for speifyingwhat is and is not allowed on a system. With ACMs, a two-dimensional matrixis given with the ative entities, alled subjets, in the rows and all the entities,or objets, in the olumns. A list of aess rights that a subjet has over anobjet is given in the orresponding matrix ell. The language desribed in thispaper an be used to desribe an aess ontrol matrix, as well as the onditionalstate transitions desribed in [18℄.Miller and Baldwin [27℄ desribe a method of aess ontrol based on booleanexpression evaluation. The idea is that eah subjet and objet is given a set ofattributes. In addition, there is also a set of rules whih link a subjet, an objet,and an ation. These rules an be based on any number of attributes. Sine theseattributes an be anything, inluding seurity level, group membership or time ofday, it an be used to implement most seurity poliies. Our approah is similarin that we apture the various attributes in terms of boolean expressions.Goguen and Meseguer [11℄ use an algebrai spei�ation approah to speifyseurity poliies. Their partiular approah expresses seurity poliies as a set ofnon-interferene assertions about a system. Cuppens, Saurel, and Cholvy [7, 5℄use a form of deonti logi to express poliies. In addition to speifying whatations an agent is permitted or forbidden to perform, it also allows statementsthat say what ations an agent is obliged to perform. They use deonti logi to�nd onsisteny problems between several poliies. These poliy languages aremuh more expressive than the one proposed in this paper. We plan to lose thisgap in the future. Our initial fous has been to develop a simple language foraess ontrol whih an be implemented easily and eÆiently.The DIAMOND [31℄ seurity model provides an alternative model for inher-iting seurity poliies in objet-oriented systems. This extends the MLS seuritymodel desribed by Denning [8℄ to objet oriented databases. The innovationis that seurity levels, and hene poliies, are not inherited from a lass's su-perlass. Instead, they are derived from its instanes. This allows a partiularinstane of a sublass to have a higher seurity level than its superlass.6 SummaryWe have desribed a mehanism for implementing general seurity poliies onmobile programs. There are two omponents of our approah. The �rst is a simpledelarative aess onstraint language that allows a site to restrit aesses to theobjets and methods of the system. The delarative nature of the language makesit easy to speify poliies while still allowing a hook to express proedural poliiesif neessary. The seond is a set of tools that enfore the spei�ed onstraints byediting mobile programs and resoures. Our approah's appeal is that a site an
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