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AbstractThe recent work on automata whose variables and parameters are real numbers(e.g., Blum, Shub, and Smale, 1989; Koiran, 1993; Bournez and Cosnard, 1996; Siegel-mann, 1996; Moore, 1996) has focused largely on questions about computational com-plexity and tractability. It is also revealing to examine the metric relations that suchsystems induce on automata via the natural metrics on their parameter spaces. Thisbrings the theory of computational classi�cation closer to theories of learning and sta-tistical modeling which depend on measuring distances between models. With this inmind, I develop a generalized method of identifying pushdown automata in one classof real-valued automata. I show how the real-valued automata can be implemented inneural networks. I then explore the metric organization of these automata in a basicexample, showing how it eshes out the skeletal structure of the Chomsky Hierarchyand indicates new approaches to problems in language learning and language typology.



10. IntroductionSmolensky (1990) argues that connectionist (or \neural") networks o�er an opportunityto overcome the brittleness of symbolic devices without foregoing their powerful com-putational capabilities. \Brittleness" refers to the fact that many symbolic devices arecatastrophically sensitive to small distortions in their encoding|a bit or a semicolon outof place can bring an entire system to its knees. Such sensitivity is reminisicent of thetrademark behavior of \chaotic" dynamical processes: small di�erences in initial condi-tions give rise to substantial di�erences in long-term behavior. It would be ironic, then,if the interpretation of neural devices as dynamical systems with potentially chaoticbehaviors led to a realization of Smolensky's ideal. Intriguingly, this is the character ofthe result that I report on here. Fractal objects, which turn up as the traces of chaoticprocesses, turn out to be especially useful for instantiating powerful computing devicesin systems of neurons which exhibit graceful modi�cation under small distortions (cf.Pollack, 1991). It is as though by embracing the caprice of a chaotic process, a compu-tational system can stay in its good graces and make e�ective use of its complexity (cf.Crutch�eld and Young, 1990; Crutch�eld, 1994).0.1 The Chomsky HierarchyI work here with the now-standard notion of what it means for a system to be computa-tionally powerful or complex. The Chomsky Hierarchy is an ordering of formal languagesinto increasingly more-inclusive classes. A formal language, L, is taken to be a set ofstrings of symbols. A computer which can be made to output any string of symbols in Lbut no string of symbols in the complement of L is called a generator for L. A computerwhich can determine, for any input string, whether or not it is a member of L is calleda recognizer for L.The lowest level on the Chomsky Hierarchy is the set of �nite state languages,so-called because computers which generate (or recognize) them need only be in a �nitenumber of distinct states. (We can think of two states of a computation as being distinctif they give rise to di�erent expectations about what will happen in the future|seeCrutch�eld, 1994.) Next up on the hierarchy are context-free languages, which can begenerated by the branching tree-structures that linguists often employ in descriptionsof natural languages. Each context-free language can be recognized by a device called apushdown automaton, which consists of a �nite-state controller coupled with a stack, orrecord of important features of the computation that have already taken place (Hopcroftand Ullman, 1979). The stack is a string of symbols, only the �rst of which is accessibleto the controller. The controller is allowed to remove this symbol (a pop move), leave thestack unchanged, or add additional symbols to the stack (push moves). Since the stackis allowed to be of arbitrary length, a pushdown automaton can be in arbitarily manydistinct states. Therefore, there is a big distinction between the �nite-state and context-



2free classes in that the latter but not the former include in�nite state languages. Non-�nite-state context-free languages are distinguished from �nite state languages by thepossession of strings which, when generated by branching tree-structures, require center-embedded descriptions of arbitary depth. A center-embedded description is a branchingtree-structure in which a branching node dominates nodes to the left and right of a nodedominating another branching tree structure.Above the context-free languages on the Chomsky Hierarchy are context-sensitivelanguages. These can be recognized by linear bounded automata. A linear boundedautomaton has, in place of a stack, a tape with a �nite number of slots in which the�nite controller can write symbols or erase them; the number of slots is a linear functionof the length of the input string; the controller can move forward and backward on thetape, one slot at a time. Linguists generally agree that the branching tree-structuresassociated with context-free languages are very useful for describing large portions ofmost natural languages, but it is also well-known that a few natural languages (e.g.Dutch) require a more powerful computer than a context-free grammar|in most suchcases, linear bounded automata are su�cient (e.g., Shieber, 1985). The most-inclusiveclass in the Chomsky hierarchy is that of the recursively enumerable languages. Thesecan be recognized by Turing machines, which di�er from linear bounded automata inthat the tape has a countable in�nity of slots.There are also many languages that cannot even be recognized by Turing Machines.Such languages are called unrestricted languages (e.g., Siegelmann, 1996).0.2 Dynamical AutomataIn this paper, I discuss a class of devices called \Dynamical Automata" which, in theirmost general form, can be con�gured as recognizers (or generators) of unrestricted lan-guages. I focus here, however, on a type of parameterization under which they emulatecontext free grammars.The term \Dynamical Automaton" is intentionally like the term \Dynamical Rec-ognizer" which has been used in closely related contexts. The dynamical automata I de-scribe here are similar to but not quite the same as the \dynamical recognizers" that Pol-lack (1991), Blair and Pollack (to appear), and Moore (to appear) examine. All of thesedynamical computing devices have in common that they perform their computations ina real-valued space and involve iterative computations (a function is repeatedly appliedto its own output). Pollack takes the tack of training his machines on reasonable-lookingtasks and analyzing their behavior in order to get clues to the kinds of computation theyare performing. Blair and Pollack combine this approach with the kind of bottom upcomputational analysis developed by Crutch�eld and Young (1990), in which one triesto �t various �nite-state devices to an unknown machine in order to detect in�nite-state computation. Moore examines his dynamical recognizers from the standpoint of



3their computing power and produces an elaboration of the Chomsky hierarchy involvingmany new language classes. Moore 1996 demonstrates context free generative capacityfor one class of his Dynamical Recognizers by a method that is similar to the methodwhich I describe in Section 2 below. The work I describe here complements both thecomplexity-detection approach and the complexity-classsi�cation approach. Although Ido not study learning mechanisms, I show explicitly how to parameterize in�nite-statedynamical automata so that they emulate particular context-free grammars. Moreover,I show how the dynamical automaton framework (and, implicitly, the dynamical recog-nizer framework) allows us to situate formal languages in metric spaces (spaces in whichdistances can be measured between points). Such language-spaces look especially usefulfor addressing the exibility problem noted above.0.3 Neural networksThe robustly exible connectionist devices (neural networks) to which Smolensky 1990refers are, in fact, a rather varied collection of formal models. In this section, I describethose features of them which I make use of here. They have in common that their inven-tion was inspired by research in neurobiology. They typically involve �nite collections ofsimilar computing units which receive and send information to each other along chan-nels called connections. The connections are associated with scalars called weights. Theunits have activation values, ai which are computed as function, f , of a weighted sumof the activations on units they are connected to, where the weight associated with theactivation of unit ai by unit aj is the weight, wij on the connection running from unit jto unit i (Equation (1)). ai = f( NXj=1ajwij) (1)The activation function, f , is typically a threshold function likef(x) = (10 x > �x � �) ; � 2 R (2)or one of its continuous analogs, for example, the sigmoid,f(x) = 11 + e�x (3)Sometimes the activation function is linear (f(x) = kx for k 2 R). Usually, when peopletalk about a linear activation function they mean the case k = 1.Networks with second-order connections are sometimes studied as well. In thiscase, the activation of one unit, k serves to specify the weight, wijk on a connection



4between two other units (j to i). In the work described here, I make use of restrictedform of second-order connection: gating. If a gating unit is su�ciently activated, itallows (or alternatively, blocks) transmission of activation along a connection betweentwo other units.An early cause for pessimism about the usefulness of neural computing units withthreshold activation functions was the observation (Minsky and Papert, 1988[1969])that they could only compute linearly separable boolean functions. A linearly separableboolean function on a real valued vector space, Rn, has value 1 for all points on one sideof some subspace of dimension n� 1 and 0 for all points on the other side (i.e., a linearsubspace separates the 1s from the 0's) . Examples of linear separable functions on bitvectors are the operations AND, OR, and NOT .The early pessimism about using threshold units in computers was replaced byoptimism in the 1980s on account of the realization that there are e�ective learningalgorithms for functions computed across multiple layers of semi-linear units (e.g. thebackpropagation algorithm|Werbos 1974; Rumelhart et al., 1986). This made it possibleto automate to some extent the problem of decomposing a function into a succession oflinearly separable mappings from one layer to the next.More recently, the optimism has been tempered again, by the realization that ourunderstanding of the mechanisms of neural network learning is very low-level. Essen-tially, it consists of some elaborations on the method of gradient descent learning, inwhich a poor solution to a problem is turned into a good one by making incrementalimprovements in response to di�erent constraints on the task. This method can go along way, but it tends to falter in complex domains (including the more complex gram-mar classes discussed above). In order to handle these domains, it appears that we needto have some additional insight into how neural devices are capable of solving complexproblems.This realization, in combination with the fact that incremental learning devicestend to be especially sensitive to the statistics of their environment has led many re-searchers to turn to statistical learning theory (e.g., Vapnik, 1995). One result has beenthat for problems in which one knows that the data have been drawn from a particularclass of statistical distributions, it is possible to design the network and learning proce-dure in such a way that the activations of the outputs are guaranteed to converge onthe probabilities of the outputs given the inputs (e.g., Rumelhart, et al., 1995; Bishop,1995).Helpful as the realizations have been, they have only slightly improved our un-derstanding of how neural mechanisms might handle complex tasks, in part becauseour understanding of the high-order statistical models needed for such domains is stillquite limited. This might be a cause, after so many ups and downs, for terminal pes-simism, but there has been surprisingly little attention paid directly to the problem ofrepresentation. If we can achieve a better understanding of how complex neural devices



5might represent solutions to complex tasks, it may well make it easier to design learningdevices that can discover these solutions. Therefore, in this paper, I do not addressthe problem of learning at all, but focus on a representation problem that has been apersistent challenge: representing arbitrary constituent structures with a context freegrammar.The idea is to design a device that represents such grammars in a way that buildson the strengths of neural computing. For example, it will not do, as Pollack (1987)notes, to implement context free grammars by using a distinct unit for every symbolon the stack (a localist representation of the stack). This would require the number ofunits to grow without bound, and would draw on none of the analogizing capabilitiesof distributed representations. Nor will it be particularly helpful to design a neuralrecognizer that models precisely the class of context-free grammars, no more, no less.Such a faithful implementation would have all the weaknesses of the symbolic prototype.A neural context free grammar is not of much interest unless it tells us something newabout the nature of computation.0.4 Previous workIn fact, the problem of �nding a neurally reasonable representation for constituentstructures and/or context-free grammars has been taken up many times. Several priorprojects contain helpful ideas which I make use of here. Most of the proposals lackappeal not because the models don't have interesting new properties, but because theyare not explored thoroughly enough to reveal these properties.One strand of research focuses directly on using neural networks to recognize orgenerate complex languages. Another strand is more representationally oriented in thatit focuses on the encoding of constituent structures in neural devices. I'll review thelanguage recognizers �rst.0.4.1 Language recognition with neural networksPollack (1987) suggests the essence of the proposal I make here in his \Neuring Machine",a connectionist version of the Turing Machine. The device uses two units with in�niteprecision to keep track of the two ends of the Turing Machine's in�nite tape. The digitsof the real-valued activations of these units correspond to successive symbols on thetape. Thus the model uses geometric scaling (multiplication by a constant contractionfactor) to pack an unbounded amount of information into a bounded activation value. Idescribe a similar machine in more detail in Section 1.1.For the multiplication operations, Pollack uses gating units, which, as I notedabove are a variety of second-order unit. Siegelmann and Sontag (1991) redo Pollack'sfeat using only �rst-order connections. However, neither they nor Pollack show how a



6Turing machine embedded in connectionist machinery does anything di�erent from itssymbolic counterpart.Sun et al. (1990a, b) propose a neural network pushdown automaton with astack that is \external" in the sense that it uses distinct memory blocks in a symbolicmachine to store the contents of the stack. The interesting thing about this model isthat it represents the stack contents as a real-valued vector, which allows it to learnstack representations from data by gradient descent. The results are promising in thatthe network successfully learned to recognize the language of balanced parentheses anda few similarly simple languages. The authors are able to analyze each trained networkand map its states to those in an isomorphic symbolic machine. However, they do notreport on the learning of more complex languages. Nor do they explore the generalcomputational properties of their mechanism, and hence do not reveal much about howit di�ers from its symbolic counterparts.Kremer (1996) analyzes a number of types of neural networks with respect to theircomputational power, referring, again, to the Chomsky Hierarchy, thus helpfully relatingneural architectures to known symbolic devices in a very systematic and comprehensiveway. The proofs of formal equivalence, however, rely on hooking together pieces ofconnectionist machinery to simulate pieces of symbolic devices, and thus fail to revealuseful di�erences.0.4.2 Constituent structure representation with neural networksSeveral projects have been concerned with studying constituent structures in connec-tionist devices.Pollack (1990) describes RAAMs (Recursive Auto-AssociativeMemories), a methodof representing binary branching trees in a �xed-width vector of activations. The centraldevice is a three-layer auto-associator which maps two separate vector representationsfor sequences of constituents to themselves via a hidden layer of half their combinedlength. This compression mechanism can be used iteratively to compile a �xed widthrepresentation for an entire tree. Moreover, the hidden-to-output mapping in the de-vice can be used to recursively expand a tree representation back into its constituentsymbols. Pollack notes that RAAMs can be thought of as recognizing the languages ofstrings which they successfully compress and uncompress. He �nds them recognizingcertain �nite languages and showing signs of generalizing to constituent combinationsthat are not in the training set but their generalization ability is quite weak. Despitetheir weak generalization ability, RAAMs might turn out to provide some useful newinsights if the principles by which they compress representations could be elucidated.However, no analysis of these principles has yet been provided.Smolensky, in various writings (Smolensky 1988; Smolensky 1990; Smolensky et al.1992; Legendre et al. 1993; Prince and Smolensky 1993), has eloquently articulated the



7motivations for studying the relationship between symbolic and subsymbolic (connec-tionist) devices. In Smolensky (1990) and Smolensky et al. (1992), he and his colleaguespropose tensors (or tensor products) as a formal model of this relationship. The tensorproduct of two vectors, ~u and ~v is the matrix T de�ned by Tij = uivj where xi is theith entry of vector ~x. Smolensky shows how tensor products can be used to address thevariable binding problem for neural networks: how can multiple assignments of valuesto variables be stored in a �xed-width vector? The idea is to interpret one vector inthe tensor as a variable and the other as a value. If certain conditions are met, then anumber of such variable-value tensors can be added together without loss of information.Smolensky et al. describe a method of capitalizing on the variable-binding capabilities oftensor products to encode tree structures: iterated tensors of variable-denoting vectorsidentify positions in a tree structure; these can be combined (again, by tensor product)with value-denoting vectors to identify symbols at nodes; sums of such \phrasal" and\terminal" node tensors encode entire trees. Smolensky et al. (1992) note that suchtree-descriptions can be used to encode context free grammars by de�ning a \harmony"function on their constituent tensors in such a way that only those trees that are well-formed with respect to a particular grammar have a total harmony in excess of some�xed threshold value.Smolensky (1990)'s analysis of the graceful degradation in performance of the basicvariable-binding tensors under the superimposition of many variable-value tensors is anappealing con�rmation of the assertion that we can gain some advantages by seekingconnectionist solutions to symbolic problems. The grammar encoding mechanism, on theother hand, is unhappily cumbersome because it requires the size of the storage vector togrow exponentially with the depth of the tree. Also, the harmony-assignment method ofde�ning well-formed trees does not seem interestingly di�erent from a symbolic grammar.For example, the framework of harmony-based grammar seems well-suited to modelingsubtle di�erences among the grammaticality judgments that people assign to naturallanguage sentences, but the mechanism proposed by Smolensky et al. (1992) only doesthis in a long-known-to-be-inaccurate way: counting ill-formed nodes. On the otherhand, the use of iterated functions to keep track of recursive structures very useful.Plate (1994; 1995), to be discussed, and I, in Section 2, both propose ways of usingiterated functions to encode tree structures with zero growth in the size of the storagevector.Plate (1994; 1995) introduces holographic reduced representations (HRRs) whichuse circular convolution to solve the variable binding problem for vector-space computers.Closely related to Smolensky's tensor product, the circular convolution, ~z of vectors, ~uand ~v, all of length n, is given by zi = n�1Xi=0 vkui�kwhere the subscripts are computed modulo n. Circular convolution can be thought of



8as a way of adding together various groups of entries in a tensor product in a way thatkeeps the dimension of the product equal to the dimension of its input vectors. As aresult, superposition memories using circular convolution saturate more quickly thantensor products, and vectors of very high dimension (thousands of units) must be usedto encode relatively few patterns. Nevertheless, the method supports the compressionof tree structures into �xed-width vectors which are somewhat more analyzable thanPollack's RAAMs. Plate works with vectors of random bits, which are likely to benearly orthogonal to one another when their dimension is high, and provides an analysisof the saturation properties, also showing appealingly graceful degradation. One analysisshows that, in the processing of tree structures, one can interpret a partially completedbackgrounded constituent as noise added to the salient representation of the constituentcurrently being processed. In this sense, HRRs also pick up on Pollack (1987)'s scalingtechnique for backgrounding information, which I make use of too. Plate does not explorethe possibility of designing the representation vectors deterministically (rather than byusing a random variable). This approach might allow one to construct more capaciousHRR memories and gain more insight into their novel representational properties.Elman (1991) studies a simple recurrent network (SRN) trained on the task ofpredicting words generated by a natural-language-like context free grammar. Althoughhe does not analyze the computational power of the resulting machine, he providesexamples of loop-shaped state space trajectories corresponding to constituents. This isa useful idea which I make use of below: since a constituent in a context free grammar canbe thought of as a process which makes a relatively minor adjustment in the processor'sstate, it is natural to implement constituents in a metric space model using cycles ornear-cycles (i.e., loops or near-loops). Wiles and Elman (1995) and Rodriguez (1995)study related networks which I discuss in more detail in Section 1.1.Pollack (1991) de�nes a Dynamical Recognizer as a device,M = (Z;�;
; G)where Z � Rk is a vector space of states, � is a �nite input alphabet, �1; �2; : : : ; �n,
 is a set of transformations, !�i : Rk ! Rk corresonding to the symbols in �, andG : Z ! f0; 1g is a \decision" function. The recognizer always starts in a particularstate, called zk(0). It processes a string of symbols �s1�s2�s3 : : : �sk one symbol at atime, performing transformation !i when symbol �i is processed. If G is 1 when thelast symbol has been presented, the machine accepts the string, otherwise it rejects it.Pollack shows how a particular, trainable neural network with recurrent connections canbe interpreted as a dynamical recognizer and he studies its behavior when it is trainedon small samples of sentences from �nite state languages that Tomita (1982) inventedfor testing learning machines. He �nds that although it is trained on a �nite numberof strings, the network appears to be converging on an in�nite-state device (modulo thelimited precision of its implementation). Pollack argues that the limiting machine is an



9in�nite state device by providing evidence that its distinct states form a fractal|thatis, a set in which similar structures occur at arbitarily small scales.The dynamical automata I discuss below di�er from Pollack's dynamical recogniz-ers only in that they permit the choice of function associated with a given symbol tobe nonunique and contingent upon the current position in the state space. Instead oftraining dynamical devices and studying their behaviors, I design them explicitly to haveparticular behaviors. Although this leaves learning out of the picture and removes someof the appealing mystery associated with simulative investigations, it provides insightinto the principles around which in�nite-state computations may be organized. Thus itis a useful complement to Pollack's work.0.5 OverviewThere is a recurring theme in these research projects: iterative computations with func-tions that scale their input allow one to encode in�nite state devices in a bounded,�nite-dimensional representation space. In the remainder of the paper, I formalize thisidea and study its implications. The iterative scaling is associated with fractals, which Iuse in the design of example dynamical automata in Section 1. In Section 2, I discuss asubset of dynamical automata which correspond to the class of context free languages.Section 3 shows how these dynamical context free grammars provide a new, more nat-ural way of representing context-free grammars in neural devices. Section 4 shows howthe dynamical automata framework reveals important relationships between computa-tional devices which are invisible from the symbolic perspective. Section 5 discusses theusefulness of these �ndings.1. Examples of dynamical automata.In this section, I introduce fractals and dynamical automata informally. Section 2 pro-vides a corresponding formal treatment.A fractal is a set of points which is self-similar at arbitrarily small scales. Theclassic example is the Cantor set. Consider the following in�nite series of sets. The �rstset in the series is the interval [0, 1]. The next is the result of removing the middle thirdof this interval, namely, the set [0, 1/3] [ [2/3, 1]. The next is the result of removingthe middle thirds of each of the contiguous intervals in the previous set. This process isrepeated inde�nitely. The set which is the limit of this process is called the Cantor Set.The Cantor set is \self-similar at arbitrarily small scales" in the following sense.We associate the points in the set with their coordinates on the real number line. Thefunction f(x) = 13nx + x0 maps the original set in a 1-1 fashion onto a segment of the



10Figure 1: The Sierpinski triangle.
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original set for various values of x0 and all n 2 N .1 Thus, the Cantor Set containsarbitrarily small copies of itself.It is worth noting that, under the de�nition just given, many other less exotic setsare also fractals. For example, the line segment [0, 1] is a fractal; the real number line isa fractal; the geometric series, f 1rn : n 2 Ng is a fractal. The bounded fractals are moreuseful for forming realistic implementations, so I'll focus on them here.Fractals can also exist in multiple dimensions. The Sierpinski Triangle (Figure (1))is a simple generalization of the Cantor set. One can think of the Sierpinski triangle asthe limit of the process of successively removing the \middle quarter" of a triangle toproduce three new triangles.The next two subsections investigate some ways of using the recursive structure offractals to keep track of computational processes.1N denotes the non-negative integers: 0, 1, 2, 3, etc.



11Figure 2: A neural network for parenthesis balancing.���A���P ���QwL = 12 ���z wR = 2�L �R���L ���R1.1 A simple case: parenthesis balancingPollack (1991) noted that a very simple arti�cial neural device could recognize the lan-guage of balanced parentheses|the language in which left parentheses always precedecorresponding right parentheses.2 He describes a machine along the lines of that shownin Figure 2.Initially, the activation of unit z is 1. If a left parenthesis is presented, the networkactivates unit L which has the e�ect of allowing transmission of activation along theconnection labeled wL = 1=2. Similarly, if a right parenthesis is presented, the networkactivates unit R which allows transmission of activation along the connection labeledwR = 2. With each presentation of a symbol, z updates according to the rule z(t+1) =f(Pi wiai) = f(wL � z(t) +wR � z(t)) = either f(wL � z(t)) or f(wR � z(t)). The activationfunction f(x) is equal to x for x 2 [0; 2] and equal to 2 for x > 2. Unit P is a thresholdunit which becomes active if z > 0:75. Unit Q is a self-reinforcing threshold unit whichis initially inactive but becomes active and stays active if z ever exceeds 1.5. Unit A isa threshold unit which computes P AND :Q. Note that unit A becomes activated atthe end of any string in which right parentheses follow and match left parentheses.During the processing of grammatical strings, the activations of the z unit lie on2Moore (to appear) refers to this language as the Dyck Language.



12the geometric series fractal, f 12n : n 2 Ng. In essence, this unit is simply a counter whichkeeps track of how many right parentheses are required to complete the string at anypoint. Although one could also use the set of non-negative integers, N , to perform thesame function, the use of the bounded fractal permits the neural device to work withunits of bounded activation.This simple example thus provides an indication of how fractal objects are usefulin forming neural recognizers for in�nite-state languages.Wiles and Elman (1995) study a backpropagation network that is trained on theclosely-related language, lnrn. The model is presented with a sequence from (lnrn)�where n is randomly chosen from f1,: : : , 11g at each iteration. The task of the modelis to predict successor symbols at each point. Note that the model will be e�ectivelyrecognizing the language, lnrn, if it initially predicts just l, then predicts both l and runtil an r occurs, then predicts just r until an appropriate number of rs have occurred,and returns, at this point, to predicting just l again. After many training episodes withdi�erent initial weight settings, Wiles and Elman found one network which generalizedthe pattern up to n = 18 (i.e. it performed as though it were recognizing lnrn forn 2 f1; : : : ; 18g).Rodriguez et al. (to appear) noted that networks like Wiles and Elman's canbe viewed as nonlinear dynamical systems. They analyzed the corresponding linearsystems which closely approximated the behavior of the nonlinear systems and foundthat the computation of lnrn was organized around a saddle point: when the networkwas receiving a string of l's, it was iterating the map associated with the stable manifoldof the saddle point|in e�ect it was computing successive values of x(t) = t0e�kt for somepositive k and t = 0; 1; 2; 3; : : :; when it was receiving the corresponding string of r'sit was iterating the map associated with the unstable manifold (same situation exceptk < 0 and the points are spread out along a di�erent axis). With equally spaced valuesof t, the exponential equation x(t) = t0e�kt generates points on a geometric series fractal.Thus again, a parenthesis balancer is using geometric series fractals for its computation,this time along two di�erent dimensions (the distinction between dimensions is a handyway of distinguishing the l and r states).These two examples have shown how a particular type of fractal is useful formodeling parenthesis-balancing languages. This is helpful, but it is a very simple case.In the next section, I show how the same principles can be extended to a more complexcase.1.2: A more complex fractal grammar.The grammar shown in Table 1 is a context free grammar.This grammar generates strings in the standard manner: the start symbol, \S" isreplaced with the string of symbols \A B C D" (in accord with rule 1a) or by no symbol



13Table 1: Grammar 1.Rule 1a. S ! A B C DRule 1b. S ! �Rule 2a. A ! aRule 2b. A ! a SRule 3a. B ! bRule 3b. B ! b SRule 4a. C ! cRule 4b. C ! c SRule 5a. D ! dRule 5b. D ! d S(in accord with Rule 1b); if the former, then each of the symbols \A", \B", \C", and\D" is replaced with a string of symbols according to an appropriate rule. The processhalts when the string contains no symbols that are recursively de�ned (no capital lettersymbols, in this case). Rule 1b, where � denotes the empty string, is included as aconvenience|it gives the grammar the option of generating the empty string. Examplesof strings generated by Grammar 1 are:(1) a b c d(2) a a b c d b c d(3) a b c a a b c d b c d d(4) a b c d a b c d a b c dNote that this grammar generates center-embedded structures (egs. (2) and (3)) toarbitrary depth. Thus its language is among those context free languages which cannotbe generated by �nite state machines.A pushdown automaton for this grammar's language would need to keep trackof each \abcd" string that has been started but not completed. For this purpose itcould store a symbol corresponding to the last letter of any partially completed string



14Figure 3: An indexing scheme for selected points on the Sierpinski triangle. The pointsare the analogues of stack states in a pushdown automaton. The label on each pointlists the stack with the top element �rst.
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on a pushdown stack. For example, if we store the symbol \A" whenever an embeddingoccurred under \a", \B" for an embedding under \b" and \C" for an embedding under\c", the stack states will be members of fA;B;Cg�.3It turns out that we can use the Sierpinski Triangle to keep track of the stack statesfor this grammar. Consider the labeled triangle in Figure 3. Note that all the labelsare at the midpoints of hypotenuses of subtriangles. The labeling scheme is organizedso that each member of fA;B;Cg� is the label of some midpoint.We de�ne a computer that recognizes the language of Grammar 1 as follows. Theessence of the computer is a pair of coordinates corresponding to a position on theSierpinski triangle. Let ~z denote this pair. For convenience, we let the initial state of3No stack symbol for \d" is needed since \d" completes the sequence \abcd".



15Table 2: State transitions for the Sierpinski version of Grammar 1.Input State changea ~z  12~z + �1=20 �b ~z  ~z � �1=20 �c ~z  ~z + � 01=2�d ~z  2 �~z � � 01=2��Table 3: Transition conditions for the Sierpinski version of Grammar 1.State Possible inputsz1 > 1=2 and z2 < 1=2 a, bz1 < 1=2 and z2 < 1=2 a, cz1 < 1=2 and z2 > 1=2 a, dz1 = 1=2 and z2 = 1=2 athe system be the midpoint of the largest hypotenuse, i.e., ~z0 = (1=2; 1=2). The state ofthe computer is updated as shown in Table 2.One can intepret Table 2 intuitively in the following way. The system performscontext-free embeddings by scaling its current state and switching origins. Initially, theorigin is (0, 0) and the current state is (1/2, 1/2). When an \a" is presented, the systemscales its current state down by a factor of two and moves the origin to (1/2, 0). Whena \b" is presented, the system assumes the current origin is (1/2, 0) and moves it backto (0, 0). When a \c" is presented, the system assumes the origin is (0, 0) and movesit to (0, 1/2). When a \d" is presented, the system moves the origin back to (0, 0) anddoubles the scale. Under these rules, the label on the current system state at each point(as per Figure 3) corresponds to the stack state of the pushdown automaton referred toearlier. This makes it possible to use the current position to predict which symbols arepossible at each point during processing. Table 3 speci�es the possibilities. If we specifythat the Sierpinski computer must start at the point (1=2; 1=2), make state transitionsaccording to the rules in Table 3 as symbols are read from an input string, and returnto (1=2; 1=2) when the last symbol is read, then the computer functions as a recognizerfor the language of Grammar 1.For illustration, the trajectory corresponding to string (3) above is shown in Figure



16Figure 4: The trajectory on the Sierpinski triangle corresponding to the string, \a b c aa b c d b c d d".
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4 (1. a is the position after the �rst symbol, an a, has been processed; 2. b is the positionafter the second symbol, a b has been processed, etc.)This section has given an intuitive feel for how context free languages can berepresented by dynamical automata. The next section formalizes the observations andprovides a convenient way of designing stacks using fractals.2. General formulation.4Distance measures and complete metric spaces provide the environment in which dy-namical automata reside. I start by introducing these basic concepts.4A summary of this discussion is provided in Tabor (submitted-b). A similar discussion is providedin Tabor (submitted-a).



17Def. A distance measure on a set X is a function d : X �X ! R which satis�es:(i) d(x; x) = 0 for all x 2 X(ii) d(x; y) = d(y; x) for all x; y 2 X(iii) d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 XDef. A metric space, (X; d) is a set X together with a corresponding distance measure,d.Def. A sequence fxng1n=1 of points in a metric space (X; d) is called a Cauchy sequenceif for any number � > 0 there exists an integer N > 0 such that if m and n are integersgreater than N then d(xn; xm) < �Def. A sequence fxng1n=1 of points in a metric space (X; d) is said to converge to a pointx 2 X if, for any number � > 0 there is an integer N such that for all n > N ,d(xn; x) < �Def. A metric space M = (X; d) is said to be complete if every Cauchy sequence in Mconverges to a point in X.Another fundamental component of a dynamical automaton is the partition:Def. A �nite partition of a space X is a set of sets, m1;m2; : : : ;mK where K 2f1; 2; 3; : : :g such that(i) mi � X for each i 2 f1; : : : ; Kg(ii) mi \mj = � for i 6= j and i; j;2 f1; : : : ; Kg(iii) SKi=1mi = XWe are now in a position to de�ne the dynamical automaton.Def. A dynamical automaton is a device, M, with the following structure:M = (X;F; P;�; IM;O; FR) (4)(1) The space, X, is a complete metric space.55In this paper, I do not use completeness in the analysis. Nevertheless, it is a convenient propertyto have for other anlayses so I build it into the framework here.



18(2) The function list, F , consists of a �nite number of functions, w1; : : : wNwhere wi : X ! X for each i 2 f1; : : : ; Ng.(3) The partition, P , is a �nite partition of X and consists of compartments,m1; : : :mK .(4) The input list is a �nite set of symbols drawn from an alphabet, �.(5) The input mapping is a three-place relation, IM : P � � � F ! f0; 1gwhich speci�es for each compartment, m, and each input symbol, s, whatfunction(s) can be performed if symbol s is presented when the system stateis in compartment m. If IM(m; s; f) = 0 for all f 2 AR then symbol scannot be presented when the system is in compartment m.(6) The machine always starts at the start state, O 2 X. If, as successivesymbols from an input string are presented, it makes transitions consistentwith the Input Mapping, and arrives in the �nal region, FR, then the inputstring is accepted.Dynamical automata in general have super-Turing computing capacity (Moore, toappear). Here I focus on a particular way of constraining them to let them emulatecontext free grammars/pushdown automata. The notion of an iterated function system,de�ned by Barnsley (1988), is useful in this regard. Barnsley employs the notion of acontraction mapping:Def. A function f : X ! X is called a contraction mapping on metric space X if thereexists 0 � k < 1 such that d(f(x); f(y)) � kd(x; y) for all x; y 2 X.He then de�nes an iterated function system as, in e�ect, a set of contractionmappings which share a space:Def. (Barnsley, 1988) An Iterated Function System (IFS) consists of a complete metricspace (X; d) together with a �nite set of contraction mappings, wn : X ! X. Thenotation for such an IFS is fX;w1; : : : ; wNg.Here, I �nd it convenient to generalize the notion by removing the requirementthat the functions be contraction mappings. Hence:Def. A Generalized Iterated Function System (GIFS) consists of a complete metric space(X; d) together with a �nite set of functions, wi : X ! X, i 2 f1; : : : ; Ng.The idea is to use the functions of an iterated function system to move around ina bounded space in the manner illustrated in Section 1. For the purpose of emulating acontext free grammar, it is essential to be able to keep track of arbitrary stack states.This implies that the system needs to be capable of following an arbitrary number ofbranching paths. To this end, I de�ne the notion of a \cascade point". First I give somepreliminary de�nitions.Def. Let S = fX;w1 : : : wNg be a GIFS. Consider a string, � = �1�2 : : : �K with�i 2 f1; : : : ; Ng for i 2 f1; : : : ; Kg. Let w� denote the composition w�1 �w�2 � : : : �w�K .



19For x0 2 X, the set C = fx 2 X : x = w�(x0) for some � 2 f1; 2; : : : Ng�g is called theorbit of x0 under S.Thus each point on the orbit of a point x0 can be reached by starting at x0 andapplying some sequence of operations from the GIFS. The orbit itself is the set of all suchpoints. The notion of orbit is perhaps more naturally applied to sets than to individualpoints (Barnsley , 1988) but there is no need to examine set orbits here so I have simplyde�ned the case in which the starting set has only one point in it.Def. Let S = fX;w1 : : : wNg be a GIFS. Let � = �1�2 : : : �K be a string in f1; : : : ; Ng�.Consider the point x = w�(x0) 2 X. The string � is called an x0-address of the point xunder S.Def. Let S = fX;w1 : : : wNg be a GIFS. Let x0 be a point in X. If every point in theorbit of x0 has a unique x0-address, then x0 is called a cascade point. In this case, theorbit, C, of x0 is called the cascade of x0. If x 2 C and x 6= x0 then the �rst symbol ofthe x0-address of x is denoted topC(x). If x = x0, we set topC(x) = �.Cascades form the essence of the mechanism to be proposed for simulating push-down automata with dynamical automata. Note that when it is associated with thefunctions of a GIFS, a cascade can be thought of as a binary branching tree of arbitrarydepth. The mechanism to be described uses each point on a cascade as a representationfor the stack contents. Cascades are a particular species of the fractals discussed in Sec-tion 1. Since I do not need to use fractals more generally, I do not de�ne them formallyhere. (See Barnsely, 1988 for a formal treatment.)It is useful to be able to identify cascade points of GIFSs. The following de�nitionand theorem help with this.Def. Let X be a metric space with GIFS S = fX;w1 : : : wNg. A set O � X is called apooling set of S if it satis�es the following:(i) wi(O) \ wj(O) = � for i; j 2 f1; : : : ng and i 6= j.(ii) Sni=1wi(O) � OThe set of points in O that are not in Sni=1wi(O) is called the crest of O.Thm 1. Let S = fX;w1 : : : wNg be a GIFS where w1; : : : ; wN are one-to-one functions.Suppose O � S is a pooling set of S and x0 is in the crest of O. Then x0 is a cascadepoint of S.Pf: This theorem claims, in e�ect, that if two identical dynamical automata follow aGIFS into a cascade and their paths diverge at some point, then they will never rejoin.I prove the theorem by assuming that rejoins are possible and deriving a contradiction.Suppose, contrary to fact, that there exists � = �1�2 : : : �J and � = �1�2 : : : �K 2f1; : : : ; ng� where w�(x0) = w�(x0) but � 6= �. Let M be equal to the minimum of J



20and K. Then there are two possibilities to consider. Either the two paths diverge beforethey come to an end or one comes to an end and the other keeps going. That is, either(i) there exists h 2 f1; : : : ;Mg such that �i = �i for i 2 f1; : : : ; h � 1g and �h 6= �h or(ii) �i = �i for i 2 f1; : : :Mg and K 6= J .Under case (i), the fact that w�(x0) = w�(x0) and the fact that w1; : : : ; wN are one-to-one imply that w��h(x0) = w��h(x0) where ��h = �h : : : �J and ��h = �h : : : �K. Butw��(h+1)(x0) 2 O and w��(h+1)(x0) 2 O by condition (ii) of the de�nition of poolingset. Therefore w��h(x0) 6= w��h(x0) by condition (i) of the de�nition of pooling set, acontradiction.Without loss of generality, we can assume that J > K in case (ii). In this case, thefact that w�(x0) = w�(x0) and the fact that w1; : : : ; wN are one-to-one imply thatw��(M+1)(x0) = x0. Condition (ii) of the de�nition of pooling set thus implies that x0 isin the complement of the crest of O. But this contradicts the assumption that x0 is inthe crest of O.Since the assumption led to a contradiction in both cases, it must be the case that � = �.2 Now we are in a position to de�ne the analogs of the operations of a pushdownautomaton.Def. Let S = fX;w1 : : : wNg be a GIFS with cascade point x0 and correspondingcascade C. Then wi : C ! C is called a push function on C.Def. Let S = fX;w1 : : : wNg be a GIFS with cascade point x0 and correspondingcascade C. Let Y = fx 2 C : topC(x) = i for i 2 f1; : : : ; Ngg. Suppose wi is invertibleon Y . Then the function f : Y ! C such that f(x) = w�1i (x) is called a pop functionon C.Def. The push, pop, and pop � push functions (composition of one pop with one push)functions C are called stack functions on C.Pursuing the analogy with a pushdown automaton, the following two de�nitionsmake it possible to keep track of changes in the control state.Def. Let S = fX;w1 : : : wng be a GIFS. Let C1 and C2 be disjoint cascades under Swith cascade points x10 and x20 respectively. Then the function f : C1 ! C2 such thatfor all x 2 C1 the x10-address of x is equal to the x20-address of f(x) is called a switchfunction. Note that f is one-to-one and onto, and hence invertible for all x0 2 C2.Def. If C1; : : : ; CK are cascades on GIFS S satisfyingCi \ Cj = � for i 6= j.(i.e., they are disjoint) and x 2 Ci for i 2 f1; : : : ; Kg then i is called the index of x withrespect to the set fC1; : : : ; CKg



21The idea, then, is to piece together stack functions and switch functions to designa machine that performs the operations of a pushdown automaton:Def. Let M be a dynamical automaton on metric space X. We say M is a push-down dynamical automaton (PDDA) if there exists a GIFS, S = fX;w1; : : : ; wNg withcascade points x10; x20; : : : ; xK0 2 X, K 2 f1; 2; 3; : : :g and corresponding cascades,C1; C2; : : : ; CK such that(i) C1; C2; : : : ; CK are disjoint.(ii) For x 2 SNi=1Ci, the partition compartment of x is determined by theconjunction of the index, i, of x and topCi(x).(iii) Letm be a compartment of the partition ofM . Each function f : m! Xin the input mapping is either a stack function, a switch function, or acomposition of the two when restricted to points on one of the cascades.(iv) The start state, O, and �nal region, FR, of M are contained in SKi=1 xi0.The next step is to show that PDDA's behave like pushdown automata and thusrecognize context free languages. Here I follow the notation of Hopcroft and Ullman(1979) for pushdown automata.Def. (Hopcroft and Ullman) A pushdown automaton (PDA) is a machine, M =(Q;�;�; �; q0; Z0; F ) where(1) Q is a �nite set of states.(2) � is a �nite alphabet called the input alphabet.(3) � is a �nite alphabet called the stack alphabet.(4) q0 2 Q is the initial state.(5) Z0 2 � is the start symbol.(6) F � Q is the set of �nal states.(7) � is a mapping from Q� (� [ f�g)� � to �nite subsets of Q� ��.We assume that a pushdown automaton, M , is associated with a string of stacksymbols called the stack. The �rst symbol in the stack string is called the top of thestack. Initially, the stack consists of just the symbol Z0 and thus Z0 is the top of thestack.We think of M as processing a string of symbols � 2 �� one symbol at a time,from left to right. It is convenient to de�ne the instantaneous description of pushdownautomaton M at each point in time as the triple, (q; w; ), where q is the current state,w is the right substring of � that has not yet been processed, and  is the current stateof the stack. For Z 2 � and �; � 2 ��, we say that (q; a�; Z�) can go to (p; w; ��) (or(q; a�; Z�) ` (p; w; ��)) if �(q; a; Z) contains (p; �). If, by a series of \go to" moves, M



22can get from (q; ��; ) to (p; �; �) upon processing the symbols of �, then we say that(q; ��; ) leads to (p; �; �). If (q0; �; Z0) leads to (p; �; ) for some p 2 F and  2 ��, thenwe say that M accepts � by �nal state. If (q0; �; Z0) leads to (p; �; �) for some p 2 Q thenwe say that M accepts � by empty stack.For convenience, I refer to the sequence of symbols on the stack at the current timeas the stack state of the PDA. I refer to the current member of Q as the control state.PDDAs are very similar in form to PDAs. The distinct cascade indices of a PDDAcorrespond to the distinct control states of a PDA. The distinct top values of each cascadein a PDDA correspond to the distinct top-of-stack symbols of a PDA. Computation ina PDDA is a matter of switching cascades and/or adding or removing symbols fromthe addresses of points. Computation in a PDA is a matter of switching control statesand/or pushing or popping the stack. The rest of the formal development in this sectionis devoted to being precise about the details of this analogy. At the end of the sectionsome examples are provided.Def. The set of �nite strings accepted by a pushdown automaton M is called thelanguage recognized by M .It turns out that the set of languages recognized by pushdown automata by �-nal state is the same as the set of languages recognized by pushdown automata byempty stack (Hopcroft and Ullman, p. 114). Therefore, if one is interested only indemonstrating language recognition equivalence, it is su�cient to show equivalence un-der recognition by �nal state, or recognition by empty stack.It is well known (Hopcroft and Ullman, pp. 115, 116) that the set of languagesrecognized by pushdown automata is precisely the set of context free languages.It will be useful to consider some simple variants on Hopcroft and Ullman's push-down automata.Def. The single in/out pushdown automata are those which satisfy the condition thatif �(q; a; Z) contains (p; ), then  is either � (a pop move), Z (no change in the stack),or Y Z for some stack symbol Y (a push move).It is easy to convert a general pushdown automaton to a single in/out pushdownautomaton by adding extra states which push symbols onto the stack in the absenceof input wherever multiple successive push moves are allowed. Moreover, the singlein/out pushdown automata are a subset of general pushdown automata. Thus the set oflanguages recognized by single in/out PDA's is precisely the set of context-free languages.Def. The ground zero pushdown automata are those which start with an empty stackand accept a string when the stack is empty and the control state, q, is among the setof �nal states, F .Given the equivalence of standard PDA's and single in/out PDAs, it is easy tosee that ground zero PDA's are also equivalent. A single in/out PDA which accepts



23string � must eventually arrive at a point where Z0 is on the stack and it pops Z0.Instead of letting the machine pop Z0 at this point, let it switch to a new state q0 wherefq0g = F . This machine recognizes the same language as the single in/out PDA butZ0 is superuous. Therefore, with some minor adjustments in the notation associatedwith the transition function, we can let the machine start and end with an empty stack.To make the reverse translation, we add another state which is only entered when theground-zero automaton is in F and its stack is empty, and make use of the equivalencebetween acceptance by �nal state and acceptance by empty stack.With these technical adjustments out of the way, it is straightforward to show thatpushdown dynamical automata (PDDA's) generate precisely the context free languages.Thm 2. The set of languages recognized by pushdown dynamical automata (PDDA's)is precisely the set of context free languages.Pf: I proceed by showing equivalence between pushdown dynamical automata andground zero pushdown automata.Part (i). (Every pushdown dynamical automaton recognizes the language of someground zero pushdown automaton).Consider the pushdown dynamical automatonMd = (X;F; P;�d; IM; x10; FR)Let the associated GIFS be S = fX;w1; : : : ; wNg with cascade points x10; x20; : : : ; xK0 2X for K 2 f1; 2; 3; : : :g and corresponding cascades, C1; C2; : : : ; CK. De�ne a corre-sponding ground zero pushdown automatonMa = (Q;�a;�; �; q; Z0; F )as follows. Because Ma is a ground zero PDA, its stack is initially empty (Z0 = �).Let �a = �d. For each cascade, Ci, if Md is on Ci, let the control state of Ma be qi.Thus de�ne Q as fqi : i 2 f1; : : : ; Kgg. Let � be f1; : : : ; Ng. Let � be de�ned asfollows. Consider x a point in SKi=1Ci. For each possible index value i 2 f1; : : : ; Kg, andeach possible value Z = topCi(x) 2 f�; 1; : : : Ng, compute the partition compartmentto which x belongs (this is possible under the de�nition of a PDDA). Let this partitioncompartment be compartment j. Examine the input mapping, IM , for rows containingj. For each such row, (j; s; f) for s 2 � and f 2 F , let � be de�ned as follows:(i) If f = wh is a push function, then let (qi; hZ) be a member of �(qi; s; Z).(ii) If f = w�1h is a pop function, then let (qi; �) be a member of �(qi; s; Z).(iii) If f is a switch function which switches from cascade i to cascade l, thenlet (ql; Z) be a member of �(qi; s; Z).



24(iv) Handle the composite functions analogously.(v) If xi0 is in the �nal region of Md, then let qi 2 F .Note that � is well-de�ned in every case because C1; : : : ; CK are disjoint cascades andMd performs its computations on their union.Let q1 be the initial state ofMa (i.e., let the initial state bear the index of the start stateof Md).For x = x10 it can be truly asserted that if the index of x is i, the state of Ma is qi,and if topCi(x) is Z, then the top of the stack of Ma is Z. Moreover, this situation ispreserved under �. Thus, if the state x, moves by legal transitions from x10 to xj0 underMd during the processing of string �, then (q0; �; �) leads to (qj; �; �) under Ma and viceversa. Thus Ma and Md recognize the same language.Part (ii). (The language of each ground zero pushdown automaton is recognized bysome pushdown dynamical automaton).This part is the reverse of the previous part, with a particular fractal speci�ed.Consider the ground zero pushdown automaton,Ma = (Q;�a;�; �; q0; F ) (5)We need to de�ne a corresponding pushdown dynamical automaton,Md = (X;F; P;�d; IM; x10; FR) (6)Suppose j � j= N , N a positive integer. Let ~en 2 RN be the vector with a 1 on dimensionn and 0's on all other dimensions. Suppose j Q j= K, K a positive integer. De�ne theGIFS, S = fRN+1;wn; n 2 f1; : : : ; Nggwhere wn(~x) =  12~x[N ]xN+1!+  12~en0 !where ~x[N ] = 0B@ x1: : :xN 1CAConsider the set C0 = f~xk0 : ~xk0 = � ~1=2k=K�; ~1=2 = 12 PNi=1 ~ei and k 2 f1; : : : ; Kgg. Thenthe members of C0 are cascade points of S. To see this, consider ~xk0 and let O be the



25open unit hypercube in the positive quadrant of RN+1 with a corner at the origin. Notethat for all ~x 2 O, the nth coordinate of wn(~x) is in the interval (1=2; 1) and the mthcoordinate of wn(~x) is in (0; 1=2) for m 6= n, m;n � N . Therefore, each wn(O) � O,and wn(O) \ wm(O) = �. Moreover, ~xk0 62 wn(O) for each n. Thus O is a poolingset of S and, by Theorem 1, xk0 is a cascade point. Moreover, the cascades C1; : : : ; CKcorresponding to x10; : : : ; xK0 are disjoint.Let the N stack states of Ma be labeled 1; : : : ; N . Assume, without loss of generality,that Z0 = 1. Let the K \�nite states" of Ma be labeled q1; : : : ; qK . Assume, withoutloss of generality, that q0 = q1.Now I de�ne the parts of Md.Let X be [0; 1]N .Let �d = �a.Let the partition P be partially speci�ed by fXn � iK for n 2 f0; : : : ; Ng and i 2f1; : : : ; Kg : Xn = (0; 12)N + 12~en for n 2 f1; : : : ; Ng and X0 = ~1=2 2 RNg. Let the indexof compartment Xn � iK be M(i;n) for i 2 f1; : : : ; Kg and n 2 f0; 1; : : : ; Ng. Note thatsince x10 is the start state of Md, Md is initially in compartment M(1;0).Build the input mapping, IM as follows.(i) If (qi; hn) is a member of �(qi; s; n) then let (M(i;n); s; wh) be a member ofIM . (push function)(ii) If (qi; �) is a member of �(qi; s; n) then let (M(i;n); s; w�1k ) be a memberof IM . (pop function)(iii) If (qi; n) is a member of �(qj ; s; n) then let (M(i;n); s; � ~xxN+1+ i�jK �) be amember of IM . (switch function)(iv) Handle the composite cases analogously.Note that s could be � (no symbol) and n could be � (empty stack) in each of thesecases.Compile F as the collection of functions that occur in the third column of IM .For each, i 2 f1; : : : ; Kg, if qi 2 F , then let xi0 be a member of FR.At the beginning of processing, when the state is q1 and top of the stack of Mais 1, the current state ~x of Md (namely, ~x10) has index 1 and topC1(~x) = �. Thus itcan be said at this point that when the state of Ma is qi and the top of the stack is Z,then the current state x of Md has index i and topCi(~x) = Z and vice versa. Moreover,the de�nition of the input mapping implies that this situation never changes during thecourse of processing a grammatical string. Thus if (q0; �; �) leads, under Ma to (qj ; �; �)for qj 2 F then the state ~x, moves by legal transitions under Ma from ~x10 to ~xj0 2 FR



26during the processing of string � and vice versa. Thus Ma and Md recognize the samelanguage. 2Examples.The remainder of this section gives some examples which show how the results abovemake it easy to design pushdown dynamical automata for various context free languages.Example 2.1. A simple dynamical automaton for balancing parentheses is givenby M = ([0; 1]; f12x; 2xg; P; fl; rg; IM; 1; f1g) (7)where the partition, P , is given byIndex Compartment1 f1g2 [0; 1)and the input mapping, IM is given byCompartment Index Symbol Function1 l x! 12x2 l x! 12x2 r x! 2xWe can use Theorem 2 to show that this dynamical automaton generates a contextfree language. First, we need to choose an appropriate iterated function system. Con-sider the GIFS, S = fR;w1 = 12xg. Note that 1 is a cascade point of S. This is evidentfrom the fact that w1 is the only function in S and that 0 < w1(x) < x for all x > 0.Now we will show that M is a PDDA under S. Let C be the cascade of the point,1. fCg satis�es condition (i) of the de�nition of a PDDA trivially since there is only onecascade. Also, for x 2 C, if topC(x) = 0 then the partition is 1 and if topC(x) = 1 thenthe partition is 2 so topC(x) alone determines the partition (condition (ii)). There arethree functions in the input mapping. The �rst, f : f1g ! R = 12x is a push functionwhen restricted to points on C. The second, f : [0; 1) ! R = 12x is similarly a pushfunction. The third, f : [0; 1) ! R = 2x is similarly a pop function. Thus condition(iii) is satis�ed. Moreover, M is initially at the cascade point, 1, its �nal region is f1g,



27so condition (iv) is satis�ed. This shows that M recognizes a context-free language.Example 2.2. A closely-related PDDA recognizes lnrn for n 2 f1; 2; 3; : : :g. LetM = ( [0; 1][0; 1]!; f 12x1x2 !; 2x1x2 + 1!; 2x1x2 !g; P; fl; rg; IM; 10!; 11!) (8)where �[a;b][c;d]� denotes the set of points �x1x2� such that x1 is in the interval [a; b] and x2 isin the interval [c; d]. Relevant parts of P are given byIndex Compartment1 �10�2 �(0;1)0 �3 �(0;1)1 �4 �11�and IM is given byCompartment Index Symbol Function1 l ~x! � 12x1x2 �2 l ~x! � 12x1x2 �2 r ~x! � 2x1x2+1�3 r ~x! �2x1x2 �Note that input mapping IM permits no moves out of the �nal state so concatenationsof sentences from lnrn are properly disallowed.In this case to establish context free language status, we consider the GIFS, S =fR2;w1 = � 12x1x2 �g. Note that x10 = �10� and x20 = �11� are both cascade points and theyhave disjoint cascades (condition (i) of the de�nition of a PDDA). Let these cascades becalled C1 and C2, respectively. Note that the partition compartment is 1 if the indexof x is 1 and topC1(x) = �. It is 2 if the index of x is 1 and topC1(x) = 1. It is 3 ifthe index of x is 2 and topC2(x) = 1. It is 4 if the index of x is 2 and topC2(x) = �.Thus the compartment is predictable from the conjunction of the index and the valueof top in every case (condition (ii)). The function �x1=2x2 � restricted to C1 is a pushfunction. The function �2x1x2 � restricted to C2 is a pop function. The function � 2x1x2+1� isequal to �2x1x2 � � � x1x2+1�, i.e., it is the composition of a switch function from C1 to C2 and



28a pop function on C2 (condition (iii)). Since, moreover, the start and end points are thecascade points of C1 and C2 respectively (condition (iv)), M satis�es the de�nition of aPDDA. Thus, M recognizes a context free language.Example 2.3. The dynamical automaton described in Section 1.2 recognizes thelanguage of Grammar 1. We can write the Dynamical Grammar of Section 1.2 in thenotation of Section 2 as follows.M = (triangle( 10!; 00!; 01!);F ; P; fa; b; cg; IM; 1=21=2!; f 1=21=2!g) (9)where triangle(x; y; z) refers to the interior and boundary of the triangle with verticesat x; y and z. The function list, F , is the list of functions given in Table 2. The partitionP is Index Compartment1 f� 1212�g2 triangle(�10�; � 120�; � 1212�)� � 1212�3 [0; 12)� [0; 12)4 triangle(� 1212�; �012�; �01�)� � 1212�and IM is given byCompartment Index Symbol Function2 b ~z  ~z � �1=20 �3 c ~z  ~z + � 01=2�4 d ~z  2 �~z � � 01=2��1 [ 2 [ 3 [ 4 a ~z  12~z + �1=20 �In this case, it makes sense to examine the GIFS, S = ftriangle(�10�; �00�; �01�);w1 =12~z; w2 = 12~z+�120�; w3 = 12~z+�012�g. The point � 1212� is a cascade point S. Theorem 1 guar-antees this as follows. The functions, wi, are all one-to-one. Consider, O, the interior oftriangle(�10�; �00�; �01�). Note that w1(O) is the interior of triangle(�10�; �00�; �012�), w2(O) isthe interior of triangle(�10�; � 120�; � 1212�), and w2(O) is the interior of triangle(� 1212�; �012�; �01�).Thus, O is a pooling set of S. Moreover, the start state of M , �1=21=2�, is in the crest of



29this set and hence is a cascade point of S. It is easy to check that M satis�es thede�nition of a PDDA: there is only one cascade so disjointness is trivial (condition (i));the partition compartment is predictable from topC(x) in every case (condition (ii)); thefunctions are all stack functions in this case and happen to be uniquely associated withthe symbols of the alphabet: a evokes a push function, d evokes a pop function, b and cevoke pop � push's (condition (iii)); the automaton starts at the cascade point and endsat it (condition (iv)). Thus M models a context free language.It is also not hard to use the proof of Theorem 2 to convert M into a pushdownautomaton. Well-known techniques (e.g., Hopcroft and Ullman, 1979, pp. 116-119) canthen be used to convert this pushdown automaton into Grammar 1.In all of these examples, the functions of the underlying GIFS's are contractionmappings. One may well wonder if cascades only arise in standard iterated functionsystems (a la Barnsley, 1988) in which all the functions are contraction mappings. Thefollowing case is an interesting counterexample.Example 2.4 Consider the GIFS, S = f[0; 1];w1; w2g where the functions aregiven by w1 = 12(1 +p1� x) (10)w2 = 12(1�p1� x) (11)Since w1 maps the interval O = (0; 1) onto (1=2; 1) and w2 maps this interval onto(0; 1=2), O is a pooling set of S. Moreover, the point 1=2 is (in) the crest of O. Thus Scan be used to record stack states over a two-symbol alphabet. However, w1 and w2 arenot contraction mappings. For example, w2(0:99)� w2(0:98) > 0:01.This example is interesting in part because w1 and w2 are the two inverses of themuch studied \logistic map", f(x) = rx(1 � x) when r = 4. The logistic map has at-tracted attention because it is a relatively simple (one-dimensional) function with chaotictrajectories (see Stogatz, 1994, for an introduction). Crutch�eld and Young (1990, 1994)analyzed f as the generator for a string � = �1�2�3 : : : where �i 2 f0; 1g for all i byconsidering fk(1=2) for k = 1; 2; 3; : : : and letting �k = 1 if fk > 1=2 and 0 otherwise.They found that when r = 3:57 : : : (the so-called \onset of chaos"), the set of initial2n-character substrings of � for n 2 N constitutes a context free language. Here, I havetaken the opposite tack: inverting a closely-related map introduces an indeterminismwhich allows us to distinguish histories and thus use the map to model arbitrary gram-mars (one instance of the inverted logistic su�ces for stacks alphabets with only twosymbols; multiple instances can be used to accomodate more stack symbols). Loosely,one can say that while Crutch�eld and Young have analyzed a chaotic map to assessthe speci�c character of its complexity, I have described a way of using the same map to



30perform a general class of computations of a similarly complex sort. Given Crutch�eldand Young's results, an interesting question is whether there is a canonical grammarassociated with each value of r for the inverse logistic map device just described. It maybe, for example, that for some languages, the corresponding inverse logistic automatonis more tolerant of imprecision in the identi�cation of the �nal region than for others. Ileave this as a question for future research.3. Implementation in a neural networkDynamical automata can be implemented in neural networks by using a combinationof signaling units and gating units. By a signaling unit, I mean the standard sort ofunit which sends out a signal reecting its activation state to other units it is connectedto. By a gating unit, I mean a unit which serves to block or allow transmission of asignal along a connection between two other units (see discussion in Section 0.3 above).All units (signalling and gating) compute a weighted sum of their inputs and pass thisthrough an activation function|either identity or a threshold (a sigmoid can be used inplace of both of these with some distortion of the computation due to the nonlinearity).The use of simple a�ne functions (~z  q~z + r) to de�ne the state changes in adynamical automaton makes for a simple translation into a network with signalling andgating units. The coe�cients q and r determine weights on connections. The connec-tions corresponding to linear terms (e.g., q) are gated connections. The connectionscorresponding to constant terms (e.g., r) are standard connections.I will illustrate a neural network implementation of the dynamical automaton whichgenerates the same set of strings as Grammar 2 (see Table 4). Grammar 2 is identicalto Grammar 1 (discussed in Section 1.2 above) except that it contains the extra rule,4c: C ! a. This rule introduces some structural ambiguity in the sense that thereare initial substrings for Grammar 2 (e.g. 'a b a') which can be generated by treesinvolving di�erent rules. Although dynamical automata handle structural ambiguity inan analagous way to the way pushdown automata do (that is, by guessing a parse assoon as the ambiguity is encountered), and thus do not o�er obvious new insights, Iam illustrating an ambiguous case here in order to make it clear what the treatment ofstructural ambiguity looks like in this framework.A neural implementation of Grammar 2 is shown in Figure 5. Table 5 speci�es theweight values and unit types. The network processes strings by representing successivesymbols as localist bit vectors on its input layer (the I units) and predicting possiblesuccessor symbols on its output layer (the O units) (Elman 1990). The units z1 and z2form the core of the network. Their values at each point in time specify the coordinatesof the current position on the Sierpinski triangle. They have multiple connections goingout of and into them. For example, z1 has three self-connecting loops, one through gate�11, one through gate �12, and one through gate �13. These gates are enabling threshold



31Table 4: Grammar 2.Rule 1a. S ! A B C DRule 1b. S ! �Rule 2a. A ! a SRule 2b. A ! aRule 3a. B ! b SRule 3b. B ! bRule 4a. C ! c SRule 4b. C ! cRule 4c. C ! aRule 5a. D ! d SRule 5b. D ! dgates in the sense that if a gate is not activated, then no signal is transmitted alongthe corresponding connection. The units Ia; Ib; Ia;c; and Id are input units. Ib, Ia;c,and Id have activation 1 when the input symbol is b, c, or d, respectively. When theinput symbol is an a, then one or the other of Ia and Ia;c takes on value 1 with equalprobability (a stochastic neuron not shown here can implement this feature). Eachinput unit interacts with the z units in two ways: it opens one gate on the self-recurrentconnections; and it transmits a weighted signal directly to each z unit. The z units takeon activations equal to the weighted sum of their inputs. Although this means that inprinciple, their activations could be unbounded, when the net is processing grammaticalstrings, all of their computations take place in the bounded region (0; 1)|this is why itworks reasonably well to use a quasi-linear (e.g. sigmoidal) activation function that isalmost linear in this region. The p units are threshold units which serve to translate thez activations into binary values. The output units, Ob through Od are threshold unitswhich respond to the p units. Unit Oa happens to need to be on all the time in thisgrammar so it has no inputs and its threshold is below 0. When an output unit is on,the letter or letters corresponding to it are interpreted as possible next words. A stringis deemed grammatical if, at each step of processing, the activated input unit is one ofthe predicted outputs from the previous step and if the network arrives at the initialstate (~z = (1=2; 1=2)) when the last word is presented.As indicated above, this network handles ambiguity in the same way that a push-down automaton does: by guessing. In the example at hand, since \a" is an ambiguoussymbol, and the guesses are evenly distributed, the network has an equal chance of
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Figure 5: Network 1. A neural implementation of Grammar 1. Square nodes denotegating units and circular nodes denote signalling units.����Oa ����Ob ����Oa;c ����Od����p1 ����p2����z1 ����z2�11 �12 �13 �21 �22 �23����Ia ����Ib ����Ia;c ����Id
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Table 5: Weights and unit types for the neural implementation of Grammar 1.Unit Type Input Weight�11 Threshold = 1=2 Ia 1�12 Threshold = 1=2 Ib; Ia;c 1�13 Threshold = 1=2 Id 1�21 Threshold = 1=2 Ia 1�22 Threshold = 1=2 Ib; Ia;c 1�23 Threshold = 1=2 Id 1z1 Linear Ia 1/2Ib -1/2z2 Linear Ia;c 1/2Id -1z1 Linear z1 via �11 1/2z1 Linear z1 via �12 1z1 Linear z1 via �13 2z2 Linear z2 via �21 1/2z2 Linear z2 via �22 1z2 Linear z2 via �23 2p1 Threshold = 1=2 z1 1p2 Threshold = 1=2 z2 1Oa Threshold = �1 | |Ob Threshold = 1=2 p1 1Oa;c Threshold = �1=2 p1 -1p2 -1Od Threshold = 1/2 p2 1



34guessing wrong and right each time it encounters an \a". Thus, we consider the lan-guage generated by the network as the set of strings that it can deem grammatical, eventhough in a given instance, it may judge any legal string \ungrammatical". Becausecontext often determines the proper interpretation of an ambiguous symbol (e.g. an\a" occuring initially can only be generated by rule 2b), it is possible to use additionalneural machinery to constrain the choice to the contextually appropriate one. In thiscase, a connection from output unit Oa;c to the stochastic neuron mentioned above canensure that a random choice is made between Ia and Ia;c on input \a" when Oa;c is onand that only Ia is activated on input \a" when only Oa is on.This section has illustrated a method of implementing dynamical automata inneural networks. The next section considers the implications of dynamical automatonstructure for the study of relationships among languages of di�erent \complexities" inthe Chomsky Hierarchy sense.4. Non context-free languages.When a dynamical automaton is con�gured as a pushdown dynamical automaton (PDDA),its functions exhibit precise symmetries in the following sense: it is essential that popoperations have the e�ect of undoing push operations exactly. One might well wonderwhat happens if one adopts a more physically realistic perspective and allows the pushand pop operations to be only approximate mirrors of one another.The result can be loss of context-freeness. But the loss is not catastrophic in thiscase. Instead, the neighboring languages in parameter space take on what one mightaptly call \mild context sensitivity".6I discuss a simple case to make this point. Consider the following parameterizedextension of the dynamical automaton for the language lnrn which was discussed inExample 2.2:M = ( [0;1)[0; 1] !; f mLz1z2 !; mRz1z2 + 1!; mRz1z2 !g; P; fl; rg; IM; 10!; f z1 � 1z2 = 1!g) (12)where mL and mR > 0, and the relevant part of P is now6I thank Jordan Pollack for drawing my attention to this \precarious" quality of context-free dy-namical recognizers, and thus motivating the investigation described in this section.



35Figure 6: M(1=2; 17=8) accepting l3r3.
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Index Compartment1 �10�2 �(0;1)0 �3 �(0;1)1 �and IM is given byCompartment Index Symbol Function1 l ~z ! �mLz1z2 �2 l ~z ! �mLz1z2 �2 r ~z ! �mRz1z2+1�3 r ~z ! �mRz1z2 �The scalars, mL (\Leftward move") and mR (\Rightward move") are parameters whichcan be adjusted to change the language the DA recognizes. Figure 6 illustrates theoperation of this dynamical automaton. When 0 < mL = m�1R < 1, M recognizes thelanguage lnrn; n 2 f1; 2; 3; : : :g.We can analyze this automaton as follows. It recognizes strings of the form lnrk, n 2f1; 2; 3; : : :g where k is the smallest integer satisfyingmnLmkR � 1Since we are only considering cases where mL > 0,



36Table 6: A context free grammar for generating lnr2n.S ! l r rS ! l S r rmkR � m�nLk � logmR m�nLk = [[�n logmR mL]]where [[x]] denotes the smallest integer greater than or equal to x.If mL is a negative integer power of mR, then the language of M can be describedwith a particularly simple context-free grammar. Example 4.1 illustrates.Example 4.1. Let mL = 14 and mR = 2. Thus k = [[�n log2 14 ]] = 2n. The languageis thus lnr2n. This language is generated by a context free grammar with only two rules(Table 6).If mL is a non-whole-number rational power of mR (or vice versa), then the re-sulting language is still context free, but its grammar is more complicated. Example 4.2illustrates a case like this.Example 4.2. Let, mL = 14 and mR = 4 56 � 3:174802. Thus k = [[1:2n]]. The languagerecognized by this particular parameterization ofM is thus A = lnr[[1:2n]]. This languageis substantially more complicated than the language of the previous example. It requiresseven rules in context free grammar format (Table 7). The number of rules grows withthe length of the cycle of the coe�cient of n.7If mL is an irrational power of mR or vice-versa, then M generates a non context-free language. We can show this using the Pumping Lemma for Context Free Languages(Hopcroft and Ullman, 1979, p. 125).Proposition. The language A = lnr[[qn]] for q irrational is not a context free language.Pf: I proceed by showing that if A = lnr[[qn]] is a context free language, then q is rational.The Pumping Lemma for Context Free Languages says that if A is a context free lan-guage, then there is a non-negative integer n such that any string � 2 A whose lengthis greater than n can be written � = uvwxy in such a way that7By the cycle of a real number q, I mean the smallest positive integer, p such that pq is an integer.



37Table 7: A context free grammar for generating lnr[[1:2n]].S ! l Ss r2S ! l2 Ss r3S ! l3 Ss r4S ! l4 Ss r5S ! l5 Ss r6Ss ! �Ss ! l5 Ss r6(i) j vx j� 1(ii) j vwx j� n(iii) for all i � 0, uviwxiy is in A.Suppose A satis�es the Pumping Lemma for n > n0. Consider a string uvwxy which canbe pumped in accord with condition (iii). Clearly, v must consist of a positive numberof l's and x must consist of a positive number of r's. Let j v j= cl and j x j= cr. Withoutloss of generality, we can assume that v is rightmost in the string of initial l's so j w j= 0.Let j u j= dl and j y j= dr. Then, by the de�nition of A we can writecri+ dr = [[q(cli+ dl)]] (13)For each i 2 N , let �i be the fractional part of q(cli+ dl). Then, by (13), we can writeq = cr(i + 1) + dr + �i+1 � (cri+ dr + �i)cl(i+ 1) + dl � (cli+ dl) = cr + �i+1 � �icl (14)But unless �i+1 = �i for all i, equation (13) is false for su�ciently large i. Therefore,q = crcl (15)Since cr and cl are integers, q is rational. 2These examples show that even one of the simplest parameterized dynamical au-tomata can emulate computing devices with a signi�cant range of complexities. Theframework also suggests an interesting new way of examining the relationships betweenformal languages: we can look at their locations in the parameter space of the dynamicalautomaton. Figure 7 shows how the simplest (two-rule) context-free languages amonganb[[�n logmR mL]] are distributed in the �rst quadrant of < mR �mL >. By adopting a
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Figure 7: The bands in the space mL �mR where the simplest (two-rule) context freelanguages reside. (Example 4.2).
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39natural metric on this space (e.g. Euclidean distance), we can talk about relationshipsbetween languages in terms of distance. On this view, each two-rule language is sur-rounded by more complex languages (both in the rule-counting sense and the Chomskyhierarchy sense). Although the grammars of the languages near each two-rule languageare substantially di�erent from its grammar in possessing large numbers of rules or re-quiring context-sensitive rules, their distributional properties are rather similar. Forexample, the language lnr[[1:01n]] di�ers from lnrn only in very long strings. If we assumethat unbiased probabilities are associated with those rows in the Input Mapping of thedynamical automaton which specify transitions out of the same compartment, then thestrings on which these two languages di�er are quite rare. In Section 5, I speculate howthis property may be useful in designing learning algorithms for dynamical automata.5. Conclusions.5.1 ReviewI have examined a particular type of computing device, the dynamical automaton, whosevariables and parameters take on real values. In contrast to other work on real-valuedautomata which focuses on complexity and tractability issues, I have emphasized theinterpretation of real-valued spaces as metric spaces and examined consequences for ourunderstanding of how computing devices are related to one another. First, I identi�ed aclass of computing devices called pushdown dynamical automata whose computation isorganized around fractals, and showed that this class corresponded to the class of contextfree grammars. I illustrated a simple method of implementing dynamical automata inneural networks. Then I examined a simple dynamical automaton with real-valuedparameters and showed how this automaton behaved like various pushdown automataunder some parameter settings and like more powerful automata under other settings.Moreover, the di�erent automata were organized in the metric space of the computer'sparameters in such a way that nearby automata in the parameter space generated similarsets of strings (in a probabilistic sense). The context free grammars with the fewest rulesoccupied disconnected regions of the parameter space. In between these were grammarswith more rules, including many non-context-free grammars.5.1 Comparison with Moore's methodMoore (to appear), studying closely related dynamical recognizers, shows that some dy-namical recognizer with piecewise linear transition and decision functions can recognizeany context free language. His result is quite similar to the second half of my Theorem2 but the two approaches both have strengths and weaknesses so it is useful to comparethem.



40Recall that a dynamical recognizer is like a dynamical automaton except that in adynamical recognizer the choice of function applied when a given symbol appears is notcontingent on the current state and acceptance or rejection is only evaluated when thelast symbol of a string has been processed.Moore uses the following functions to construct a dynamical recognizer for anycontext free grammar:Name Functionpushi �x + (1� �) impopi 1� �x� (1� �) im� = push�1i (x)Here, 1 � i � m and 0 < � � 13m+1. These 2m functions, which form a GIFS on R,can be used to simulate a pushdown stack with m symbols. The functions "pushi" and"popi" correspond to "push symbol i onto the stack" and "pop symbol i o� of the stack"respectively. It can be shown that pushdown automata generate the same languages asthe subset of them in which there are no control state changes (Hopcroft and Ullman,1979). Thus all context free languages can be generated by a device which consistssimply of a pushdown stack. Therefore, by composing pushi's and popi's appropriately,Moore's functions can be used to build a mechanism for generating any context-freelanguage.There are two technical details that need to be looked after. First, how can Moore'srecognizer detect an illegal pop, i.e., a move of the form popj� pushi where i 6= j?Second, what guarantees that each sequence of pushes and pops is uniquely associatedwith a point in R? Moore answers the �rst question but does not address the second.Conveniently, Theorem 1 can be applied to address the second.Regarding the �rst question (illegal pops), Moore's mechanism is cleverly designedto allow easy detection of illegal pops: any move or partial move of the illegal form popj�pushi makes j x j � 2 but all legal moves and partial moves keep j x j � 1. In order toallow his device to record the information about whether j x j ever exceeded 2 so thatit is available when the string as a whole has been processed, Moore introduces a newvariable, y with initial value 0 and updates y according toy  f(x; y) = max(j x j; j y j)Requiring, that y 2 [0; 1] at the end of processing a string ensures that all moves haveperformed pushdown stack operations.8 For comparison, note that a pushdown dynam-ical automaton ensures that pop moves always undo push moves by choosing a partition8The fact that pushi, popi and f are all at least piecewise linear in x and y forms the basis of Moore'sclaim that a dynamical recognizer with all piecewise linear operations can recognize any context freelanguage.



41in which the current compartment is always uniquely associated with the most recentpush move and allowing only the corresponding pop move out of that compartment.The second question, What guarantees that each sequence of pushes and pops isuniquely associated with a point in R?, can be addressed by choosing an appropriatestarting value, using Theorem 1 above as a guide. In fact, not all starting values willwork. Consider the case m = 3 and � = 1=10. If the starting value is x0 = 1, then itis easy to check that the stack states "�", "3", "33", "333", etc. all generate the samedynamical recognizer state, namely x = 1. This means the device will fail to distinguishthese stack states from each other. To avoid this problem, it su�ces to note that [0, 1]is a pooling set for the GIFS of popi's and pushi's and the set [0, 3/10) [ (4/10, 6/10)[ (7/10, 9/10) is its crest. Thus any x0 in this set will give rise to unique locations forall stack states.5.2 Avenues worth exploringSeveral interesting questions are raised by the results described here.Fleshing-out of Chomsky Hierarchy Relationships. The current proposal to or-ganize languages in a metric space seems, at �rst glance, to di�er substantially fromstandard complexity-based approaches. However, a close look at the example of Section4 suggests that the relationship between the current results and the complexity-basedresults may be one of augmentation rather than revision. In particular, the overarchingcontrast between context free languages and non-context-free languages is preserved inthis metric space example as a contrast between machines with a rational versus anirrational parameter. Two further questions are also worth exploring: (i) Is there anatural way, in the dynamical automaton framework, of de�ning precisely the recur-sively enumerable languages, or of de�ning a set of recursively enumerable languageswhich contains a set of context free languages as a proper subset? (ii) Do all dynami-cal automata map standard complexity classes onto independently motivated parameterclasses?Approximations of In�nite Machines. Just as the irrational numbers can be viewedas the limits of in�nite series of rationals, so the non context-free devices in the modelof Section 4 can be viewed as limits of in�nite series of context-free devices. A similaridea has been explored by Crutch�eld and Young (1990) and Crutch�eld (1994). Theseauthors analyze a particular indexed context free grammar as the limit of an in�niteseries of increasingly complex �nite-state devices. They project from their results anapproach to signal analysis in which one studies the growth in size of successive machineapproximations at one level on the Chomsky Hierarchy in order to �nd out if a jump toa machine at a higher level is warranted. However, they only explore the case in whichbigger and bigger �nite state devices approximate a context free device. The currentresults may thus be useful in extending their method to transitions between higher levels.



42Finding all CFLs. The cascade-based analysis makes it possible to identify certaindynamical automata in a parameterized dynamical automaton family which generatecontext free languages. However, it doesn't necessarily characterize all context freelanguage generators in a particular family. A case in point is the generator described inSection 4: only the simplest two-rule grammars follow a single cascade throughout theircomputations. It would be desirable to generalize the analysis so that one could identifythe entire set of context-free language generators in a given dynamical computing system.Universality. I have been promoting parameterized dynamical automata as a betterway of organizing formal languages than various systems stemming from the Chomskyhierarchy. There is one sense in which the Chomsky hierarchy is more appealing asan organizational tool: it is nearly machine-independent, and thus very universal. Thedynamical automaton spaces I de�ne depend on the particular parameterized automatonunder study, and do not provide a way of organizing all languages that can be generatedusing a �nite alphabet. Nevertheless, it is interesting to consider the possibility thatthere might be a privileged set of functions which serves as the basis for a generalautomaton space to which all dynamical automata can be related. Such a frameworkmight be useful for studying processes which involve incremental search over a very widerange of devices|e.g., evolution, signal identi�cation.Neural Networks. Certain kinds of neural networks are real-valued computers.As computing mechanisms, neural networks are interesting because they are closelyassociated with general theories of learning, and because they are sensitive to statisticalproperties of their environment and thus can operate well even in a noisy world. Despitetheir appealing properties, however, it is hard to get neural networks to learn complexfunctions like those above the �nite state level on the Chomsky hierarchy. Although weknow how to program neural networks to implement Turing machines as well as other,less powerful symbolic devices (e.g., Siegelmann and Sonntag, 1991; Kremer, 1996),the implementations have not particularly taken advantage of the special strengths ofneural representations. Instead they have largely been remakes of computers we alreadyknow how to build using standard machinery. The current work o�ers a new line onthis problem. As shown in Section 3, dynamical automata are easily implemented incertain kind of recurrent neural networks. Because the implementation is based on themetric structure of the representation space and metric relationships are fundamentalto neural network learning and statistical sensitivity, the proposed representation maybe an especially useful one for improving the performance of learning networks on hardsymbolic problems. I develop this point more in the next paragraph.Learning. A natural approach to language learning is to think of it as a process ofmaking small adjustments in a grammar in order to improve predictive accuracy. Thisapproach requires us to de�ne what constitutes a \small adjustment", i.e., to de�nesimilarity among grammars. Using standard symbolic formalisms, it is hard to chooseamong the myriad ways one might go about de�ning similarity among grammars, espe-cially if the grammars are in�nite-state devices. We can examine the number of rules
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