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Abstract

In the leader election problem, players wish to elect a random leader. The difficulty is ttmahs coalition of
players may conspire to elect one of its own members. We d@tlegterfect information model: all communication is
by broadcast, and the bad players have unlimited compuotdtfmower. Protocols proceed in rounds: though players
are synchronized between rounds, within each round the lagens may wait to see the inputs of the good players.
A protocol is called resilient if a good leader is electedhiyptobability bounded away from 0.

We give a simple, constructive leader election protocot thaesilient against coalitions of sizén, for any
B < 1/2. Our protocol taketog™ n+O(1) rounds, each player sending at miogtn bits per round. For any constant
k, our protocol can be modified to takerounds and offer resilience against coalitions of sizg(log*) n)?, where
¢ is a small enough constant ahg*) denotes the logarithm iteratédtimes. This is constructive fdr > 3.

The primary component of the above protocols is a new callesampling protocol: for a s&t of large enough
(polynomial) size, this protocol generates an elermseat.S in a single round so that for any sub&etc S, Pr[s €
T) < |T|1S|”**~ for a constanty > 0.



1 Introduction

This paper is about three related problems which arise atyun the study of distributed computing: leader election
collective sampling, and collective coin-flipping. We begiith a discussion of coin-flipping, since this is perhayes th
most basic of the three.

In a distributed computing environment common random bigg ioe required. Collective coin-flipping is the
problem of obtaining such bits if some processors are falltgeople are behind the processors, the faults may be
malicious; this is the case, for example, when coin flips aeded to gamble over the Internet [HS97]. Following
Ben-Or and Linial [BL90], we assume that faults may be malisi that all communication is by broadcast, and that
the sender of every message is known with certainty. Procgessay broadcast messages simultaneously.

The simplest method for processors, calleplayers to generate a collective random bit is as follows. A suiabl
function f : {0,1}" — {0,1} is chosen in advance. Then each player broadcasts a randem{0, 1}, and the
collective random bit is taken to be= f(r1,... ,7,).

We allow a subseB C [n] of bad players to collude to bias the resulting bit. In paitaic, they may not choose their
r;'s randomly. One obtains different models depending on térethe distributed environment is synchronous and
whether the bad players’ computational power is limitedisaper focuses on the most difficult of these possibilities

In a synchronous environment, the players cannot see olimgens’ choices for;. Thus, RRITY will output a
perfectly unbiased bit if even one player is honest. On themttand, our model assumes an asynchronous environ-
ment: although messages are supposed to be sent in pdtedieinay be sent in any order. Therefore, the bad players
may wait to see the honest players’ choices before theymdthid case, RRITY is foiled by just one bad player.

If the bad players’ computational power is restricted toypoimial-time, then the players can use cryptography to
communicate with each other privately (assuming suffityesttong cryptography). The resulting problem is related
to Byzantine agreement. To avoid relying on unproven assiompand to obtain the strongest possible results, our
model allows unlimited computational power for the bad play This is called theerfect information modebnd
was first introduced in the context of collective coin-flipgiby Ben-Or and Linial [BL9O0].

A function f is calledresilientif it gives rise to a robust coin-flipping protocol:

Definition 1. A family of functionsf,, : {0,1}" — {0,1}, n = 1,2,..., is calledb(n)-resilientif there existsy > 0
such that for allk and B C [n] with | B| < b(n), regardless of the strategy of the playerdBin

v < Pr[fu(re,...,rn) =1 <11,

Thus, for example, MJORITY is cy/n-resilient, for any positive. The most resilient functions known were shown to
exist by Ajtai and Linial (there are non-constructive paatsheir proof):

Theorem 1 ([AL93]). There exists a family of functions which is:/ log® n-resilient, for a small enough positive
constant.

There is also a lower bound:
Theorem 2 ([KKL88]). If b(n) = w(n/logn), then no family of functions i8(n)-resilient.

In order to achieve larger resilience, we enrich the claggatfocols under consideration, allowing the protocolsi |
manyroundsand allowing players to send many bits in each round. Eachdd@iasynchronous: within a round, the
bad players may wait to see the communication of the goodepgaBetween rounds, the processors are synchronized.
The notion of resilience is extended in a natural way to thidgtinound scenario.

We now broaden the discussion to include leader electiotopods. In this case, the protocol is supposed to pick
a uniformly randomeaderamong then processors. Resilience is then defined as follows:

Definition 2. A leader election protocol is callddn)-resilientif there is a constany < 1 which upper bounds the
probability that any coalition of siz&(n) can elect one of its own members.

Note that if there is &-round leader election protocol, then there fs-a1-round coin-flipping protocol with the same
resilience: in the last round the leader may flip the coin.

One example of a leader election protocol is Haon passingprotocol. Initially, player 1 holds the baton. In
each round, the player holding the baton passes it to a plalyethas not yet held the baton. The last player to hold
the baton is called the leader. Saks [Sak89] showed thag ihtimest players toss the baton randomly (among those



| Source | Resilience | Rounds [ Constructive?] Bits/Round (Each Player)

[Sak89] O(ﬁ) n Yes logn
[AN93] O(n) nOM Yes 1
(2 —en n No 1
[BN] (3 —en n No 1
[CL95] O(n) (logn)©™) Yes 1
[ORV94] O(n) O(logn) Yes nOM
(L—en O(logn) No nOM
[Zuc97] (5 —en O(logn) Yes logn
THIS PAPER (3 —en log™(n) + O(1) Yes logn
0 (gt

k Fork > 3 logn

Figure 1: Historical summary.

players who have not yet touched the baton), this protocel idog n-resilient for a small enough positive constant
Saks also observed that no protocol carjhg2]-resilient (see [BN] for a proof).

The last decade has witnessed remarkable improvement imal@rstanding of this problem, culminating in con-
structive,O(log n)-round protocols which argn-resilient [ORV94, Zuc97] for any fixed < 1/2. The historical
summary in Figure 1 briefly charts this progress. We presarestructive leader election protocol requiring only
log* n+ O(1) rounds to achievgn-resilience, for any < 1/2. This protocol can be modified to yield improved con-
stant round protocols, offerir@/(log(k) n)3-resilience ink rounds for a small enough constanfhis is constructive
for k > 3.

These protocols rely on a new protocol tmilective samplingThe collective sampling problem is a generalization
of the problems discussed above: the objective ajliective sampling protocol fa$ is to produce an elemeste S
in a suitably robust fashion. Typically, the sewaries with the number of players (as in the leader electioblem),
and a collective sampling protocol férguarantees that for every target subiBet S, Pr[s € T is suitably small.

Goldreich, Goldwasser, and Linial [GGL91] introduced ttalective sampling problem, and demonstrated a
collective sampling protocol for which

Pr[s € T] < (IT|/]S))' =P

wherep(B) is the fraction of corrupt players ard> 0 is some constant. This is optimal up to the constariote
that such a bound oPr[s € T] gives a “negligibility property”: if|T'|/|.S| = o(1) thenPr[s € T] = o(1).

Their protocol has a couple of disadvantages. Fir6B) has to be a small enough constant (less thah Second,
their protocol takes many rounds, consistindaf |S| metarounds where each metaround consists of a polynomial
number of sequential calls to a collective coin-flipping sukine.

Here we remove these disadvantages, and give a one-routad@rachieving

Pr[s € T] < |T||S|~ 0 —#(B))

for somea > 0 and large enough polynomigd|. The running time is polynomial ipS|, unless|S| > 2™, in which
case a simple algorithm running in time linearag | S| will suffice. Although our bound ofPr[s € T is useful for
anyu(B) < 1, itdoesn’tyield the negligibility property. Observe, hever, that it is unrealistic to achieve their bound
in one-round: if this were possible, then takiffg = 1 and|S| = 2 would yield a one round collective coin-flipping
protocol.

We note that subsequent to our work, Feige [Fei] gave a simeéaler election protocol requiring the same
number of rounds as ours. Although he discusses samplingr tinel term selection, his work does not appear to offer
a comparable collective sampling protocol.

Finally, we remark that if the bad players’ computationalvyeo were restricted to polynomial-time, and if suf-
ficiently strong cryptography exists, then the Byzantineeagnent protocol of Feldman and Micali [FM97] may be
used to achieve ai(n — 1)/3]-resilient leader election protocol that takes a constamiver of expected rounds.



The paper is organized as follows. In Section 2 we presenhéitessary background; in Section 3 we present
the one-round collective sampling protocol; in Section 4present the leader election protocol; and in Section 5 we
present constant-round variants of these protocols.

2 Preliminaries

We denote the s€fl, ... ,n} by [n]. The logarithm base 2 is denotkg; » and the natural logarithim n. In general,
we ignore rounding errors when their effect is insignificant

Two combinatorial constructions shall be instrumentalhia tlevelopment of our protocol: a “balanced” poly-
logarithmic set system and a hitting set for combinatogatangles. These are introduced belowarl and§2.2. As
a final preparatory ste§2.3 is devoted to bounding a class of recurrence relatidatetto the protocol.

2.1 Balanced Set Systems and Committee Sampling via Extrams

A paradigm appearing frequently in the leader electiomditare is the recursive application of “committee” selewti
Briefly, the description of the-player protocol includes a collection of (overlapping)wittees of then players,
each of sizen’ <« n. A collective sampling protocol is invoked to select a coitted from this collection, which
removes from consideration all players but those in thectetecommittee. The remaining players then carry out the
n'-player protocol to elect the final leader. Assuming thategrfraction of the players are corrupt, a natural property
to desire on the part of this family of committees is that reggss of which subset of the players are corrupt, very
few of the committees have much more thaf &action of corrupt members. If the sampling protocol we lgpp
suitably robust, we can then recurse on an appropriatebnicald collection of players. Specifically, the committees
we use shall have the properties outlined in Definition 4obel

Definition 3. A subsetB C [n] hasdensityu(B) = |B| /n. A subsetC C [n] is called B-saturatedif |C N B| >
(u(B) +1/logn) |C].

Definition 4. ¢,, C 2["! is abalanced set systeif
1. VC € ¢,,|C| = (logn)®™,
2. foranyB C X, the number of3-saturated committees (3(n'-1).

As one would expect, a random collectionréf(!) such sets can easily be shown to satisfy the above properties
with high probability, proving existence. We need an exptionstruction, which is supplied by extractor constraos
(see [Nis96] for a survey of extractors and their applicagjo We restate the extractor construction we need in our
framework, making use of the observation that if there is lafzed set system of siz&n) andg(n) < f(n), then
there is one of sizg(n).

Theorem 3 ([Zuc97]). For all polynomial-time computable functioms: N — N with g(n) = n®®), there is a
polynomial-time constructible family of balanced set syss of sizey(n).

2.2 Hitting Sets for Combinatorial Rectangles

For a setS (such as the set of committees described above), our dettesztmpling protocol fof associates elements
of S with members of a sparse “hitting set” for combinatorialtteegles, defined below.

Definition 5. A combinatorial rectangleR in [a]¢ is a cross produck = R; x --- x Ry, with eachR; C [a]. The
volumeof such a setis v¢R) = a=? - [, | Ri|.

Definition 6. An (a, d, §)-hitting setis a setH C [a]? which intersects every combinatorial rectangle of volurhe a
leasts. When the universe is understood, such a set will be reféorad anj-hitting set

An easy probabilistic proof shows that there existd, §)-hitting sets of siz€ln(2)ad/J]. A constructive solution
is offered by Linial, et. al., who prove the following thearne

Theorem 4 ([LLSZ97]). There exists ar(a, d, §)-hitting setof cardinality polylog(d)a/§) constructible in time
poly(ad/$).



2.3 A Lemma about Poly-logarithmic Decay

In order to avoid logarithms of negative numbers, we defiaeated logarithms as follows. Far> 1 andk € N,

loa®) 1 if log(kfl)n<2,
8" Vog (log(’“*l) n) otherwise,

with 1og®) n = n. Then, forn > 1, definelog*(n) to be the smallest natural numbefor whichlog® n = 1. We
will need the following lemma:

Lemmab5. LetT : N — N be a function given by the recurrence relation:

T to forn < nr,
=1
+T(f(n)) forn > nr,

for a functionf = (logn)?) and constantt, andnr. ThenT'(n) < log* n 4+ O(1).

Proof. Choosec so thatf(n) < [(logn)°| for all sufficiently largen. For convenience, assume that- 2. Then,
definingS(n) as
_)so forn < ng,
(n) = 1+ S5(|(logn)¢]) forn > ng,

there is an appropriate choice of the constansainds, so thatS is well defined and, for ath € N, T'(n) < S(n).
For convenience assume that > ¢*¢. Now, forn > 1 andk € N defineL*) (n) so that

L0 (n) = 1 if L=V (n) < 2,
|(log L*=Y(n))¢]  otherwise,

with L (n) = n. ThenS(n) = sy + L*(n), whereL*(n) is the smallesk for which L(*) (n) < ns. We prove by
induction onk that L(*) (n) < (c*log™ n)°. The base case= 0 is immediate. Assuming the inequality f6f*) (n),
we have

C

L¥EY(n) = KlogL(’“)(n))cJ < {clog <c4 log™® n)}

= (4clogc + clog(k+l) n) < (04 log(k+1) n) ,

sincec > 2. Recalling thatrs > c*¢, the lemma follows. O

3 A One Round Collective Sampling Protocol

We now turn our attention to the collective sampling probldine sampling protocol below is the combinatorial core
of the leader election protocol of Section 4.

Theorem 6. There is a constant > 0 such that for anys of size at least“ there is a one round collective sampling
protocol forS so that for allT” c S,
Prfs € T] < |T||§| - #BN/e,

Furthermore, this protocol runs in time polynomial|i andn. When|S| > 2™ a naive protocol can achieve this
bound, withe < 2, in time linear inlog | S|.

Proof. First we describe the naive protocol for largd. SupposeS| = 2*” for some integes. Then associaté
with {0, 1}°", have each player outpstrandom bits, and concatenate the bits of the players. Itdg ®acheck that
this achieves the desired bound with= 1. In case2*” < |S| < 2(s+1)" we may have some players flipbits and
others flips + 1; this achieves the bound for= 1 + u(B)/s.



We now turn to the more difficult case of smallgr Assume thatS| < 2”. Our starting idea is due to [ORV94]:
each player eliminates a randd{(log | S|)/n) fraction of S. The lexicographically least element (say) that remains
is the selected element. This protocol ensures that with pigbability no element df' remains. Unfortunately, this
would allow the bad players to eliminate every element of

Our key idea is to restrict the possible subset$ dfiat a player may eliminate. Below we give a method for this
which prevents the players from eliminating all.®f

We shall associatd with the elements of a-hitting setH in [a]™, for appropriately selectedl > 0 anda. For an
elements € S, we leth(s) € H denote the element df associated witfs. With such an association, the protocol
proceeds as follows. Each playebroadcasts a random € [a], which removes from consideration all elements
s € S forwhich h(s); = r;. The lexicographically least element in

R={s : Yi,h(s); #ri}

is then the element selected frafn
Fixing a subsef’ of S, we must then insure that

1. if |T| is small enough, then the probability tHat R # 0 is small, and
2. Ris non-empty.

Observe that if .
§<(1—=)"=vol({v € [a]" : Vi,v; #r;}),
a

then H contains an element of any set of fofii € [a]™ : Vi,v; # r;}, SO that item 2 is guaranteed. Focusing now
on item 1, notice that for anye T,
1
Pr[t € R] < (1 — —)(1-#(B)n
a
since the honest players select thgiuniformly in [a].

The statement of the theorem now follows by judicious sedaaf the parameters andd. Specifically, we shall
be interested in the case whén< 1/n anda < n, so that the association éfwith H requires thatS| > §—¢ >
poly(ad—! log n) for a constant determined by Theorem 4. Assume that 2. Satisfaction of item 2 above demands
thats < (1 — 1)". So assign

STt 5= (- Ly )

a

Observe now that 1 (1—u(B))
—(1—u(B
Pr3t € TNR] < |T|(1— =)0 #B0n <) |5~ < |
a

as desired. Finally, we observe that an acceptable valuésafhiduced by equation (1):

_ 1 Ind _In|S]
al=1_-0n=1l—en =1—¢e o

. In|s| 1 <1n|S>2 <1>
a > - = =wl|—
cn 2 cn n

and hence = o(n) (recall that/S| > n); similarly, since|S| < 27,

so that

_; _InJS| In2
a < — < —
cn c

and hence > 2 (recall thatc > 2), as desired. O



4 The Leader Election Protocol

The protocol we present below is recursive, each step disggall but a small committee of players. The base case
invokes the following result of Boppana and Narayanan:

Theorem 7 ([BN]). For everys < % there is a leader election protocol resilient againstitoak of sizefn.

Although this is non-constructive in general, we need tiseilteonly for a specific (constant) valug so that the
protocol can, of course, be found by exhaustive searcm@rgil possible protocols and strategies for the bad players
Feige [Fei] has observed that sinegis constant, at this stage one can in fact use a simple omafotocol in lieu
of Theorem 7.

Our protocol selects a committee of sidegn)°(") in a single round, so we focus on functions

fn:X”—>{CC[n] : ICIS(logn)O(l)}

whereX is some appropriately selected domain.

Lemma 8. For all 8 < 1, there is a polynomial-time computable family of functions
Fa: X" {0 cn: |0 < (logn)o(l)}

so that for any seB C [n] of size at mospin, the probability that for a random setting of the variablessae B,
some setting of the variables & produces aB-saturated committeg(zy, ... ,z,) is at mostO(1/n). The setX
can be taken to bgo, 1}1°8 7.

Proof. Let ¢, be the constant guaranteed by Theorem 6 and set%. From Theorem 3, there is a balanced
set systen® of subsets ofn] of sizen®. Applying the one round collective sampling protocol of ®hem 6, the

probability that aB-saturated committee is selected is at most

O(n* ) (n =) = o <1>

n
by our choice ot. O

Theorem 9. For all 3 < 1, there is dog* n + O(1) round leader election protocol resilient against coaltiof size

Bn.

Proof. We apply Lemma 8 recursively until the resulting number @&ygrs is at most, a suitable constant to be
chosen later. We then apply Theorem 7. Lemma 5 shows thapttbiecol does indeed terminateliog™ n + O(1)
rounds.

Fix 8 < % There are two types of error to control. First, theré(a), the maximum possible resulting fraction of
bad players when the protocol begins witiplayers (n of which are corrupt), assuming only unsaturated comnsttee
were chosen at each step. Then

B(n) < B((logn)®™) + 1/ logn.

By choosingn, large enough, we can ensure tbﬁh) is bounded away froné for all n, which is what we need to
apply Theorem 7.
Second, there is the errdi(n) that, withn starting players, 8-saturated committee is chosen somewhere in the
recursion. This error satisfies
E(n) < E((logn)®™) + O(1/n).

This can be made arbitrarily small by choosimglarge enough. In fact, we only need it to be less than 1, siree w
ensure that conditional on reaching players with all unsaturated committees, there is a cohptabability that the
protocol given by Theorem 7 will select a good leader. O



5 Constant Round Protocols

The requirement that the fraction of corrupt playetsbe (a constant) less thar2 manifests itself only in the base
case of the above leader election protocol. Indeed, thesiweucommittee selection process (i.e. Lemma 8) is well
behaved for any < 1. Returning momentarily to the collective sampling probjénis observation inducestaround
collective sampling protocol, fdt = O(1), with

17870(1))

Prls € 7] < |T]|S|™
assuming thats| > (log(’“*l) n) for an appropriate constant > 0 (recall that the protocol of Section 3 required

that|S| > n°). Sampling in a set of this size is achieved by selecting, in1 rounds, a committe€ of players for
which with high probability

o COB < u(B)+O (L) and

logn

1
o

e |C| < |S]*, wherec s the constant of Theorem 6,

and then applying the protocol of Section 3. The error in finetocol is dominated by the error in the last round.

In similar fashion, coupling Lemma 8 with the/ (logn)?2-resilient functions of Ajtai-Linial (see Theorem 1,
above), we now presertround leader election protocols which, for small enough> 0, aree;n/(log™® n)3-
resilient.

5.1 The Functions of Ajtai-Linial and Sub-linear Coalitions

Definition 7. Let f : {0,1}" — {0,1} be a boolean function on variablés, ... ,z,}. Theinfluenceof a set
S C{z,...,z,} 0N f, written I(.S), is the probability that the function is undetermined by rrdam setting of the
variables outsidé.

Ajtai and Linial [AL93] have shown the existence of a familf/fanctions for which the influence of any set of
en/(logn)? variables isO(e). As the base case of our constant round constructions, weaéemily of functions
for which the influence of any set ef./(logn)? variables isO(e/ logn). A simple adaptation of the proof in [AL93]
shows that the functions they construct also enjoy this@rypFor completeness, we briefly outline their consticti
adapted to the case we need. We also provide a streamlinefigirane portion of their result.

Theorem 10 (Adapted from [AL93]). There is a sequence of boolean functign®nn = 1, 2,. .. variables, having
expectationé— +0(1), such that for any > 2 ande > 0, for any large enough, the influence of any set e,/ (logn)©

variables isO (e/(logn)°~2). The time to construct such a function deterministically &™) .

Proof. For a positive integeb, let n be the smallest multiple df for which (1 — 277) b < 2 Thenb = logn —
2loglogn + o(1) and (1 — 27°) P> In2 (1 - %) For such a paib, n, let P be the collection of all partitions

of {1,...,n} into classes of siz&. The collection of sequencd = (P!,..., P") with eachP? € P is denoted
P. Defining M to be the collection of all mappings : {1,...,n} — {0,1}, the collection of all sequences
m = (my,...,m,) with eachm; € M is denoted\. Finally, forP € P andm € M, let f = fp m be the function

flzy,. . zn) = /\ \/ /\ (zr = m4(k)),

1<i<n 1<j<n/b ke P}

wherer denotes thegth class of the partitiod®?. For convenience, let

fran.. e =\ N (e =mi(k)).

1<j<n/b kepj.



Definition 8. A partition P € P and a seB C {1,...,n} are said tanatchif for each1l < k£ < b, the number of
classesP; of P with |B N P;| > k does not exceed

k
ok [T b @
b \k n '
Notice that if the partitionP is selected randomly, then the probability that a cerf@ircontains more thak
k k
elements of3 is at most(}) (‘nﬁ‘) , whence the expected number of sughis at most? (?) (‘nﬁ‘) .
The proof proceeds in four steps:

1. For allP, and almost alin, the expectation ofp m is % +o(1).

2. ForalmostalP and everyseB C {1,...,n} with |B| = en/(logn)¢, the number of partition£* in P failing
to matchB is less tham /(logn)« (V).

3. There is a constanrt, > 0 so that for any partitionP’ in P and anym; € M, the influence of any set
B C {1,...,n} with | B| < ¢yn/(logn)? on f’ is at mostL.

4. If P andB match then the influence @& on /% is O (¢/(n(logn)*~?)).
Steps 1 and 3 are exactly Propositions 5.4 and 5.1 of [AL93].

Proof of Step 4.(cf. Proposition 5.2 of [AL93].) Fixf?, given by P? andm;, and a matching seé8. Notice that an
assignment to the variables outsideB®feavesf’ undetermined only when

1. everyP]? not meetingB contains a variable;, for whichz; # m;(k), and

2. for someP]?, meetingB, the assignment completely agrees with

These two events are independent. The probability of evenatimost

1 biBl
(1— Q*b)%*\B\ < <ln_2> =0 (l) .
n n

Now focus on event 2. For a fixed claB$ with | P/ N B| = k, the probability that, = m;(s) forall s € P!\ B
is 2=t SinceP? matches3, the probability of event 2 is bounded above by

o\ (IBN\* W n 4|B)\" n 4|B|b
Pl Py g--m = 2 4 (g L 2121} g < 2P .
I;M b(k)(n) o |\ T =5 %P\ Ty

Recalling thab = logn — 2loglogn + o(1), we haveb2? > (1 — o(l))% so that the above sum is
€
O ——— -
((log n)”)

Anticipating the proof of step 2, we record Azuma'’s inequydior discrete martingales.

Definition 9. A martingaleis a sequencé’;, X,, ... , X,, of real valued random variables for whi@hX,, | X;] =
X;.

Theorem 11 (Azuma’s Inequality, [Hoe63, Azu67]).Let X1, ... , X,, be a martingale withX; — X, 4| < 1. Then

Pr[X, — E[X,] > \Vn] <e .

See [AS92§7] for a general discussion of discrete martingales and affgbAzuma’s inequality.



Proof of Step 2.For convenience fix a specific partitid®f and consider the uniform probability space on sub&ets
of {1,...,n} of size*2—. Let&; be the event that

log®n”
, 2n (b\ (|B|\"
G mnslz = 22 (1) (B

ThenPr[P! matchesB] = 1—Pr[Ui&x] > 1
more thark elements of3 is less thar{: (,’;) (

of Markov’s inequality shows thar[£;] < 27 = (logn) ("),
Suppose now thdt < \/logn. Let X4, ..., X,, be indicator random variables given B, = 1iff p € B. Then
defineYy,...,Y, ;-1 so that

— > Pr[€;]. As observed earlier, the expected numbePptontaining

k
%) . Then, focusing our attention on thase> /logn, an application

y, = 1 if \P;QB|zk,
0 otherwise.

and sefy’ = Zj Y;. Our goal is to demonstrate strong tail bounds on the randmableY . Finally, for0 < p <n
define
Z, =E[Y | X1,...,X,].

ThenZ, = E[Y] is a constant random variable a#g = Y. Notice that, by definitionE[Z,+.1 | Z,] = Z,, so that
theseZ, form a martingale. Furthermorg’,..1 — Z,| < 1, the proof for which we defer for a moment. In this case,

application of Azuma'’s inequality yields
Y —E[Y] > (2% — 1) lﬁ (b> (@>k
- b \k n
Pr[Z, —E[Z,] > (28 — 1) n' V]

2k —1 1
—o(1) )} _
exp( 1 n >7w(1) )

. k
since the quantitﬁ% (%) (@) is at leasta! (1),

n

Pri&;] < Pr

IN

IN

ThenY", Pr[&] = (logn)~®), and an application of Markov’s inequality shows that witblpability 1 — o(1)
the number ofP? which do not matchB is less tham (logn) (1),
We return to the proof thatZ, 1 — Z,| < 1. It sufficies to show that for any = (z1,... ,z,) € {0,1}",

[E[Y | Xi = z:(i <p), Xpp1 = 1] - E[Y | Xi = 2i(i <p), Xp11 = 0] < 1. )

The only interesting case is wheri(Z) < |B|. We establish (2) by observing that it holds under furtherditioning.
In particular, for both conditioned probability spaces ), (we think of first choosing a uniformly random st of
|B| — wt(Z) — 1 elements from{p + 2, ... ,n} to add toB. WhenX,; = 1, this condition determineB; when
Xp+1 = 0, the last element oB is a random element frofp + 2,... ,n} \ B’. Conditioned on any such’, then,
the resultingY”’s can differ by at most 1, as we wanted.

o

In [AL93], the above theorem is established for 2. .
A function satisfying the conditions in the theorem can henidin timen®(""). This follows from two observa-

tions. First,‘ﬁ‘ < (nhm, and‘ﬂl‘ = 2", so the number of possible functiongi€("*). Second, a function can be
tested for the desired property in exponential time. O

5.2 Constant Round Leader Election Protocols

With Theorem 10 in hand, it is not difficult to show that theréstone round leader election protocols resilient against
coalitions of sizeD(n/(logn)?):
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Lemma 12. There exists a family of functiong, : X™ — [n] so that for any set of variable3 of sizeﬁ, the
probability that for a random setting of the variables cilgdB, there is a completion so th&i(z) € B is O(¢). The

setX can be taken to b&0, 1}*, for k = O(logn).

Proof. Consider the probability distribution where each= z;; ... z;; is selected independently and uniformly at
random in{0, 1}8 log SetY; = fn(z1j, 225, ... ,zn;) Wheref, are the functions of Theorem 10. This is a sequence
of independeng + o(1) biased bits. To correct the biases, we use von Neumanrkqtie51]: collecting them into
pairs,Z; = (Y1,Y2), Zy = (Y3,Ys), ..., consider the stringV (Z1)N (Z3) ... N(Z4105 ») Where

1 ifa=1,6=0,
N(a,b) =40 ifa=0b=1,
A fa®b=0,

andA denotes the empty string. Then

PN (¥i, Yisn) = 1] = PrIN(Y;, Yisr) = 0] = 7 + o(1).
Applying Chebyshev’s inequality, we see that with probiébil — o(1), this sequence of independent and unbiased
values has length at leddbg n]. When this sequence is long enough, the fitsg n] bits are used to produce a value
v in [n], which is the value of,, on theser;. Otherwiseg,, (#;) = 1. The mapping from {0, 1}/'°8 "I to [n] used to
inducev can be chosen so thdB C [n],|¢ ! (B)| < 2|B.

Fix a collection of variable®3 of size at MoSty ey Notice thatPr[g,,(Z1,-.. , &) € B] < 2u(B) +o(1) =
o(1). From the bound of Theorem 10, the probability that a randmi ¢ B, results in a function which is non-
constant on the variables & is at mostt - O(e/ logn) = O(¢), which establishes the lemma.

N.b. Itis in fact true thaE[f,] = 1 + o(=2), so that one can avoid “correcting” the bias of th&seresulting in

logn

functionsg,, : {0,1}'*5™ — [n]. O

Using this as a base case, the next result givesaund leader election protocol resilient against coatisi of size

€N

(log™ )3 *

Theorem 13. For k£ € N, there ise;, > 0 for which there is a round leader election protocol resilient against
coalitions of sizes,n/(log™®) n)3. This is constructive fok > 3.

Proof. The firstk — 1 rounds are given by the protocol of Lemma 8. The last roundvisrgby the protocol of
Lemma 12. The errors are handled as in Theorem 9. O

6 Open Question

An outstanding open question is whether there exists a anhsiund leader election protocol resilient against linea
sized coalitions. It is unknown even whether there is suchearound protocol.
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