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Abstract

In the leader election problem,n players wish to elect a random leader. The difficulty is that some coalition of
players may conspire to elect one of its own members. We adoptthe perfect information model: all communication is
by broadcast, and the bad players have unlimited computational power. Protocols proceed in rounds: though players
are synchronized between rounds, within each round the bad players may wait to see the inputs of the good players.
A protocol is called resilient if a good leader is elected with probability bounded away from 0.

We give a simple, constructive leader election protocol that is resilient against coalitions of size�n, for any� < 1=2. Our protocol takeslog� n+O(1) rounds, each player sending at mostlog n bits per round. For any constantk, our protocol can be modified to takek rounds and offer resilience against coalitions of size�n=(log(k) n)3, where� is a small enough constant andlog(k) denotes the logarithm iteratedk times. This is constructive fork � 3.
The primary component of the above protocols is a new collective sampling protocol: for a setS of large enough

(polynomial) size, this protocol generates an elements 2 S in a single round so that for any subsetT � S, Pr[s 2T ] � jT j jSj��(1��) for a constant� > 0.



1 Introduction

This paper is about three related problems which arise naturally in the study of distributed computing: leader election,
collective sampling, and collective coin-flipping. We begin with a discussion of coin-flipping, since this is perhaps the
most basic of the three.

In a distributed computing environment common random bits may be required. Collective coin-flipping is the
problem of obtaining such bits if some processors are faulty. If people are behind the processors, the faults may be
malicious; this is the case, for example, when coin flips are needed to gamble over the Internet [HS97]. Following
Ben-Or and Linial [BL90], we assume that faults may be malicious, that all communication is by broadcast, and that
the sender of every message is known with certainty. Processors may broadcast messages simultaneously.

The simplest method forn processors, calledplayers, to generate a collective random bit is as follows. A suitable
function f : f0; 1gn ! f0; 1g is chosen in advance. Then each player broadcasts a randomri 2 f0; 1g, and the
collective random bit is taken to ber = f(r1; : : : ; rn).

We allow a subsetB � [n] of bad players to collude to bias the resulting bit. In particular, they may not choose theirri’s randomly. One obtains different models depending on whether the distributed environment is synchronous and
whether the bad players’ computational power is limited. This paper focuses on the most difficult of these possibilities.

In a synchronous environment, the players cannot see other players’ choices forri. Thus, PARITY will output a
perfectly unbiased bit if even one player is honest. On the other hand, our model assumes an asynchronous environ-
ment: although messages are supposed to be sent in parallel,they may be sent in any order. Therefore, the bad players
may wait to see the honest players’ choices before they act. In this case, PARITY is foiled by just one bad player.

If the bad players’ computational power is restricted to polynomial-time, then the players can use cryptography to
communicate with each other privately (assuming sufficiently strong cryptography). The resulting problem is related
to Byzantine agreement. To avoid relying on unproven assumptions and to obtain the strongest possible results, our
model allows unlimited computational power for the bad players. This is called theperfect information model, and
was first introduced in the context of collective coin-flipping by Ben-Or and Linial [BL90].

A functionf is calledresilient if it gives rise to a robust coin-flipping protocol:

Definition 1. A family of functionsfn : f0; 1gn ! f0; 1g, n = 1; 2; : : : , is calledb(n)-resilient if there exists
 > 0
such that for alln andB � [n] with jBj � b(n), regardless of the strategy of the players inB,
 � Pr[fn(r1; : : : ; rn) = 1] � 1� 
:
Thus, for example, MAJORITY is cpn-resilient, for any positivec. The most resilient functions known were shown to
exist by Ajtai and Linial (there are non-constructive partsto their proof):

Theorem 1 ([AL93]). There exists a family of functions which is�n= log2 n-resilient, for a small enough positive
constant�.

There is also a lower bound:

Theorem 2 ([KKL88]). If b(n) = !(n= logn), then no family of functions isb(n)-resilient.

In order to achieve larger resilience, we enrich the class ofprotocols under consideration, allowing the protocols to last
manyroundsand allowing players to send many bits in each round. Each round is asynchronous: within a round, the
bad players may wait to see the communication of the good players. Between rounds, the processors are synchronized.
The notion of resilience is extended in a natural way to this multi-round scenario.

We now broaden the discussion to include leader election protocols. In this case, the protocol is supposed to pick
a uniformly randomleaderamong then processors. Resilience is then defined as follows:

Definition 2. A leader election protocol is calledb(n)-resilient if there is a constant
 < 1 which upper bounds the
probability that any coalition of sizeb(n) can elect one of its own members.

Note that if there is ak-round leader election protocol, then there is ak+1-round coin-flipping protocol with the same
resilience: in the last round the leader may flip the coin.

One example of a leader election protocol is thebaton passingprotocol. Initially, player 1 holds the baton. In
each round, the player holding the baton passes it to a playerwho has not yet held the baton. The last player to hold
the baton is called the leader. Saks [Sak89] showed that if the honest players toss the baton randomly (among those
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Source Resilience Rounds Constructive? Bits/Round (Each Player)

[Sak89] O( nlog n ) n Yes logn
[AN93] O(n) nO(1) Yes 1( 13 � �)n n No 1
[BN] ( 12 � �)n n No 1

[CL95] O(n) (logn)O(1) Yes 1
[ORV94] O(n) O(logn) Yes nO(1)( 12 � �)n O(logn) No nO(1)
[Zuc97] ( 12 � �)n O(logn) Yes logn

THIS PAPER ( 12 � �)n log�(n) +O(1) Yes lognO � n(log(k) n)3� k Fork � 3 logn
Figure 1: Historical summary.

players who have not yet touched the baton), this protocol is�n= logn-resilient for a small enough positive constant�.
Saks also observed that no protocol can bedn=2e-resilient (see [BN] for a proof).

The last decade has witnessed remarkable improvement in ourunderstanding of this problem, culminating in con-
structive,O(logn)-round protocols which are�n-resilient [ORV94, Zuc97] for any fixed� < 1=2. The historical
summary in Figure 1 briefly charts this progress. We present aconstructive leader election protocol requiring onlylog� n+O(1) rounds to achieve�n-resilience, for any� < 1=2. This protocol can be modified to yield improved con-
stant round protocols, offering�n=(log(k) n)3-resilience ink rounds for a small enough constant�. This is constructive
for k � 3.

These protocols rely on a new protocol forcollective sampling. The collective sampling problem is a generalization
of the problems discussed above: the objective of acollective sampling protocol forS is to produce an elements 2 S
in a suitably robust fashion. Typically, the setS varies with the number of players (as in the leader election problem),
and a collective sampling protocol forS guarantees that for every target subsetT � S, Pr[s 2 T ] is suitably small.

Goldreich, Goldwasser, and Linial [GGL91] introduced the collective sampling problem, and demonstrated a
collective sampling protocol for which Pr [s 2 T ] � (jT j= jSj)1�c�(B)
where�(B) is the fraction of corrupt players andc > 0 is some constant. This is optimal up to the constantc. Note
that such a bound onPr[s 2 T ] gives a “negligibility property”: ifjT j=jSj = o(1) thenPr[s 2 T ] = o(1).

Their protocol has a couple of disadvantages. First,�(B) has to be a small enough constant (less than1=c). Second,
their protocol takes many rounds, consisting oflog jSj metarounds where each metaround consists of a polynomial
number of sequential calls to a collective coin-flipping subroutine.

Here we remove these disadvantages, and give a one-round protocol achievingPr [s 2 T ] � jT jjSj��(1��(B))
for some� > 0 and large enough polynomialjSj. The running time is polynomial injSj, unlessjSj � 2n, in which
case a simple algorithm running in time linear inlog jSj will suffice. Although our bound onPr[s 2 T ] is useful for
any�(B) < 1, it doesn’t yield the negligibility property. Observe, however, that it is unrealistic to achieve their bound
in one-round: if this were possible, then takingjT j = 1 andjSj = 2 would yield a one round collective coin-flipping
protocol.

We note that subsequent to our work, Feige [Fei] gave a simpler leader election protocol requiring the same
number of rounds as ours. Although he discusses sampling under the term selection, his work does not appear to offer
a comparable collective sampling protocol.

Finally, we remark that if the bad players’ computational power were restricted to polynomial-time, and if suf-
ficiently strong cryptography exists, then the Byzantine agreement protocol of Feldman and Micali [FM97] may be
used to achieve anb(n� 1)=3c-resilient leader election protocol that takes a constant number of expected rounds.
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The paper is organized as follows. In Section 2 we present thenecessary background; in Section 3 we present
the one-round collective sampling protocol; in Section 4 wepresent the leader election protocol; and in Section 5 we
present constant-round variants of these protocols.

2 Preliminaries

We denote the setf1; : : : ; ng by [n]. The logarithm base 2 is denotedlogn and the natural logarithmlnn. In general,
we ignore rounding errors when their effect is insignificant.

Two combinatorial constructions shall be instrumental in the development of our protocol: a “balanced” poly-
logarithmic set system and a hitting set for combinatorial rectangles. These are introduced below inx2.1 andx2.2. As
a final preparatory step,x2.3 is devoted to bounding a class of recurrence relations related to the protocol.

2.1 Balanced Set Systems and Committee Sampling via Extractors

A paradigm appearing frequently in the leader election literature is the recursive application of “committee” selection.
Briefly, the description of then-player protocol includes a collection of (overlapping) committees of then players,
each of sizen0 � n. A collective sampling protocol is invoked to select a committee from this collection, which
removes from consideration all players but those in the selected committee. The remaining players then carry out then0-player protocol to elect the final leader. Assuming that some� fraction of the players are corrupt, a natural property
to desire on the part of this family of committees is that regardless of which subset of the players are corrupt, very
few of the committees have much more than a� fraction of corrupt members. If the sampling protocol we apply is
suitably robust, we can then recurse on an appropriately balanced collection of players. Specifically, the committees
we use shall have the properties outlined in Definition 4, below.

Definition 3. A subsetB � [n] hasdensity�(B) = jBj =n. A subsetC � [n] is calledB-saturatedif jC \ Bj �(�(B) + 1= logn) jCj.
Definition 4. Cn � 2[n] is abalanced set systemif

1. 8C 2 Cn; jCj = (logn)O(1),
2. for anyB � X , the number ofB-saturated committees isO(n1:1).
As one would expect, a random collection ofnO(1) such sets can easily be shown to satisfy the above properties

with high probability, proving existence. We need an explicit construction, which is supplied by extractor constructions
(see [Nis96] for a survey of extractors and their applications). We restate the extractor construction we need in our
framework, making use of the observation that if there is a balanced set system of sizef(n) andg(n) � f(n), then
there is one of sizeg(n).
Theorem 3 ([Zuc97]). For all polynomial-time computable functionsg : N ! N with g(n) = nO(1), there is a
polynomial-time constructible family of balanced set systems of sizeg(n).
2.2 Hitting Sets for Combinatorial Rectangles

For a setS (such as the set of committees described above), our collective sampling protocol forS associates elements
of S with members of a sparse “hitting set” for combinatorial rectangles, defined below.

Definition 5. A combinatorial rectangleR in [a]d is a cross productR = R1 � � � � � Rd; with eachRi � [a]. The
volumeof such a set is vol(R) = a�d �Qi jRij.
Definition 6. An (a; d; �)-hitting setis a setH � [a]d which intersects every combinatorial rectangle of volume at
least�. When the universe is understood, such a set will be referredto as an�-hitting set.

An easy probabilistic proof shows that there exist(a; d; �)-hitting sets of sizedln(2)ad=�e. A constructive solution
is offered by Linial, et. al., who prove the following theorem:

Theorem 4 ([LLSZ97]). There exists an(a; d; �)-hitting set of cardinality poly(log(d)a=�) constructible in time
poly(ad=�).

4



2.3 A Lemma about Poly-logarithmic Decay

In order to avoid logarithms of negative numbers, we define iterated logarithms as follows. Forn � 1 andk 2 N,log(k) n = (1 if log(k�1) n < 2;log�log(k�1) n� otherwise,

with log(0) n = n. Then, forn � 1, definelog�(n) to be the smallest natural numberk for which log(k) n = 1. We
will need the following lemma:

Lemma 5. Let T : N ! N be a function given by the recurrence relation:T (n) = (t0 for n � nT ;1 + T (f(n)) for n > nT ;
for a functionf = (logn)O(1) and constantst0 andnT . ThenT (n) < log� n+O(1).
Proof. Choosec so thatf(n) < b(logn)cc for all sufficiently largen. For convenience, assume thatc > 2. Then,
definingS(n) as S(n) = (s0 for n � nS ;1 + S(b(logn)cc) for n > nS ;
there is an appropriate choice of the constantsnS ands0 so thatS is well defined and, for alln 2 N, T (n) � S(n).
For convenience assume thatnS > c4c. Now, forn � 1 andk 2 N defineL(k)(n) so thatL(k)(n) = (1 if L(k�1)(n) < 2;�(logL(k�1)(n))c� otherwise,

with L(0)(n) = n. ThenS(n) = s0 + L�(n), whereL�(n) is the smallestk for whichL(k)(n) � nS . We prove by
induction onk thatL(k)(n) � (c4 log(k) n)c. The base casek = 0 is immediate. Assuming the inequality forL(k)(n),
we have L(k+1)(n) = j�logL(k)(n)�ck � hc log�c4 log(k) n�ic=�4c log c+ c log(k+1) n�c � �c4 log(k+1) n�c ;
sincec > 2. Recalling thatnS > c4c, the lemma follows.

3 A One Round Collective Sampling Protocol

We now turn our attention to the collective sampling problem. The sampling protocol below is the combinatorial core
of the leader election protocol of Section 4.

Theorem 6. There is a constantc > 0 such that for anyS of size at leastnc there is a one round collective sampling
protocol forS so that for allT � S, Pr[s 2 T ] � jT j jSj�(1��(B))=c :
Furthermore, this protocol runs in time polynomial injSj andn. WhenjSj � 2n a naive protocol can achieve this
bound, withc � 2, in time linear inlog jSj.
Proof. First we describe the naive protocol for largejSj. SupposejSj = 2sn for some integers. Then associateS
with f0; 1gsn, have each player outputs random bits, and concatenate the bits of the players. It is easy to check that
this achieves the desired bound withc = 1. In case2sn < jSj < 2(s+1)n we may have some players flips bits and
others flips+ 1; this achieves the bound forc = 1 + �(B)=s.
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We now turn to the more difficult case of smallerS. Assume thatjSj < 2n. Our starting idea is due to [ORV94]:
each player eliminates a random�((log jSj)=n) fraction ofS. The lexicographically least element (say) that remains
is the selected element. This protocol ensures that with high probability no element ofT remains. Unfortunately, this
would allow the bad players to eliminate every element ofS.

Our key idea is to restrict the possible subsets ofS that a player may eliminate. Below we give a method for this
which prevents the players from eliminating all ofS.

We shall associateS with the elements of a�-hitting setH in [a]n, for appropriately selected� > 0 anda. For an
elements 2 S, we let~h(s) 2 H denote the element ofH associated withs. With such an association, the protocol
proceeds as follows. Each playeri broadcasts a randomri 2 [a], which removes from consideration all elementss 2 S for whichh(s)i = ri. The lexicographically least element inR = fs : 8i; h(s)i 6= rig
is then the element selected fromS.

Fixing a subsetT of S, we must then insure that

1. if jT j is small enough, then the probability thatT \R 6= ; is small, and

2. R is non-empty.

Observe that if � � (1� 1a)n = vol(f~v 2 [a]n : 8i; vi 6= rig);
thenH contains an element of any set of formf~v 2 [a]n : 8i; vi 6= rig, so that item 2 is guaranteed. Focusing now
on item 1, notice that for anyt 2 T , Pr[t 2 R] � (1� 1a )(1��(B))n
since the honest players select theirri uniformly in [a].

The statement of the theorem now follows by judicious selection of the parametersa and�. Specifically, we shall
be interested in the case when� < 1=n anda < n, so that the association ofS with H requires thatjSj � ��c �
poly(a��1 logn) for a constantc determined by Theorem 4. Assume thatc � 2. Satisfaction of item 2 above demands
that� � (1� 1a )n. So assign jSj� 1c = � = (1� 1a )n: (1)

Observe now that Pr[9t 2 T \ R] � jT j (1� 1a)(1��(B))n � jT j jSj�(1��(B))c ;
as desired. Finally, we observe that an acceptable value ofa is induced by equation (1):a�1 = 1� � 1n = 1� e ln �n = 1� e� lnjSjcn
so that a�1 > ln jSjcn � 12 � ln jSjcn �2 = !� 1n�
and hencea = o(n) (recall thatjSj � n); similarly, sincejSj < 2n,a�1 < ln jSjcn � ln 2c
and hencea > 2 (recall thatc � 2), as desired.
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4 The Leader Election Protocol

The protocol we present below is recursive, each step discarding all but a small committee of players. The base case
invokes the following result of Boppana and Narayanan:

Theorem 7 ([BN]). For every� < 12 , there is a leader election protocol resilient against coalitions of size�n.

Although this is non-constructive in general, we need the result only for a specific (constant) valuen0 so that the
protocol can, of course, be found by exhaustive search (trying all possible protocols and strategies for the bad players).
Feige [Fei] has observed that sincen0 is constant, at this stage one can in fact use a simple one-round protocol in lieu
of Theorem 7.

Our protocol selects a committee of size(logn)O(1) in a single round, so we focus on functionsfn : Xn ! nC � [n] : jCj � (logn)O(1)o
whereX is some appropriately selected domain.

Lemma 8. For all� < 1, there is a polynomial-time computable family of functionsfn : Xn ! nC � [n] : jCj � (logn)O(1)o
so that for any setB � [n] of size at most�n, the probability that for a random setting of the variables outsideB,
some setting of the variables ofB produces aB-saturated committeef(x1; : : : ; xn) is at mostO(1=n). The setX
can be taken to bef0; 1glogn.

Proof. Let cs be the constant guaranteed by Theorem 6 and setc > (2:1)cs1�� . From Theorem 3, there is a balanced
set systemC of subsets of[n] of sizenc. Applying the one round collective sampling protocol of Theorem 6, the
probability that aB-saturated committee is selected is at mostO(n1:1)(n� c(1��)cs ) = o� 1n�
by our choice ofc.
Theorem 9. For all� < 12 , there is alog� n+ O(1) round leader election protocol resilient against coalitions of size�n.

Proof. We apply Lemma 8 recursively until the resulting number of players is at mostn0, a suitable constant to be
chosen later. We then apply Theorem 7. Lemma 5 shows that thisprotocol does indeed terminate inlog� n + O(1)
rounds.

Fix � < 12 . There are two types of error to control. First, there is�̂(n), the maximum possible resulting fraction of
bad players when the protocol begins withn players (�n of which are corrupt), assuming only unsaturated committees
were chosen at each step. Then �̂(n) � �̂((logn)O(1)) + 1= logn:
By choosingn0 large enough, we can ensure that�̂(n) is bounded away from12 for all n, which is what we need to
apply Theorem 7.

Second, there is the errorE(n) that, withn starting players, aB-saturated committee is chosen somewhere in the
recursion. This error satisfies E(n) � E((logn)O(1)) +O(1=n):
This can be made arbitrarily small by choosingn0 large enough. In fact, we only need it to be less than 1, since we
ensure that conditional on reachingn0 players with all unsaturated committees, there is a constant probability that the
protocol given by Theorem 7 will select a good leader.
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5 Constant Round Protocols

The requirement that the fraction of corrupt players,�, be (a constant) less than1=2 manifests itself only in the base
case of the above leader election protocol. Indeed, the recursive committee selection process (i.e. Lemma 8) is well
behaved for any� < 1. Returning momentarily to the collective sampling problem, this observation induces ak-round
collective sampling protocol, fork = O(1), withPr [s 2 T ] � jT jjSj�(1���o(1))c0
assuming thatjSj � �log(k�1) n�c0 for an appropriate constantc0 > 0 (recall that the protocol of Section 3 required

that jSj � nc). Sampling in a set of this size is achieved by selecting, ink � 1 rounds, a committeeC of players for
which with high probability� jC\BjjCj < �(B) +O � 1logn�, and� jCj � jSj 1c , wherec is the constant of Theorem 6,

and then applying the protocol of Section 3. The error in thisprotocol is dominated by the error in the last round.
In similar fashion, coupling Lemma 8 with the�n=(logn)2-resilient functions of Ajtai-Linial (see Theorem 1,

above), we now presentk-round leader election protocols which, for small enough�k > 0, are �kn=(log(k) n)3-
resilient.

5.1 The Functions of Ajtai-Linial and Sub-linear Coalitions

Definition 7. Let f : f0; 1gn ! f0; 1g be a boolean function on variablesfx1; : : : ; xng. The influenceof a setS � fx1; : : : ; xng onf , writtenIf (S), is the probability that the function is undetermined by a random setting of the
variables outsideS.

Ajtai and Linial [AL93] have shown the existence of a family of functions for which the influence of any set of�n=(logn)2 variables isO(�). As the base case of our constant round constructions, we need a family of functions
for which the influence of any set of�n=(logn)3 variables isO(�= logn). A simple adaptation of the proof in [AL93]
shows that the functions they construct also enjoy this property. For completeness, we briefly outline their construction
adapted to the case we need. We also provide a streamlined proof of one portion of their result.

Theorem 10 (Adapted from [AL93]). There is a sequence of boolean functionsfn onn = 1; 2; : : : variables, having
expectation12 +o(1), such that for anyc > 2 and� > 0, for any large enoughn, the influence of any set of�n=(logn)c
variables isO ��=(logn)c�2�. The time to construct such a function deterministically isnO(n2).
Proof. For a positive integerb, let n be the smallest multiple ofb for which

�1� 2�b�nb � ln 2n . Thenb = logn �2 log logn + o(1) and
�1� 2�b�nb � ln 2n �1� (lnn)2n �

. For such a pairb; n, letP be the collection of all partitions

of f1; : : : ; ng into classes of sizeb. The collection of sequencesP = (P 1; : : : ; Pn) with eachP i 2 P is denoted~P . DefiningM to be the collection of all mappingsm : f1; : : : ; ng ! f0; 1g, the collection of all sequencesm = (m1; : : : ;mn) with eachmi 2M is denoted~M. Finally, forP 2 ~P andm 2 ~M, letf = fP;m be the functionf(x1; : : : ; xn) = ^1�i�n _1�j�n=b ^k2P ij (xk = mi(k));
whereP ij denotes thejth class of the partitionP i. For convenience, letf i(x1; : : : ; xn) = _1�j�n=b ^k2Pij(xk = mi(k)):

8



Definition 8. A partitionP 2 P and a setB � f1; : : : ; ng are said tomatchif for each1 � k � b, the number of
classesPj of P with jB \ Pj j � k does not exceed2k nb�bk�� jBjn �k! :

Notice that if the partitionP is selected randomly, then the probability that a certainPj contains more thank
elements ofB is at most

�bk�� jBjn �k, whence the expected number of suchPj is at mostnb �bk� � jBjn �k.

The proof proceeds in four steps:

1. For allP, and almost allm, the expectation offP;m is 12 + o(1).
2. For almost allP and every setB � f1; : : : ; ngwith jBj = �n=(logn)c, the number of partitionsP i inP failing

to matchB is less thann=(logn)!(1).
3. There is a constant�0 > 0 so that for any partitionP i in P and anymi 2 M, the influence of any setB � f1; : : : ; ng with jBj � �0n=(logn)2 onf i is at most1n .

4. If P i andB match then the influence ofB onf i isO ��=(n(logn)c�2)�.
Steps 1 and 3 are exactly Propositions 5.4 and 5.1 of [AL93].

Proof of Step 4.(cf. Proposition 5.2 of [AL93].) Fixf i, given byP i andmi, and a matching setB. Notice that an
assignment to the variables outside ofB leavesf i undetermined only when

1. everyP ij not meetingB contains a variablexk for whichxk 6= mi(k), and

2. for someP ij , meetingB, the assignment completely agrees withmi.
These two events are independent. The probability of event 1is at most(1� 2�b)nb �jBj � � ln 2n �1� bjBjn = O� 1n� :

Now focus on event 2. For a fixed classP ij with
��P ij \B�� = k, the probability thatxs = mi(s) for all s 2 P ij nB

is 2k�b. SinceP i matchesB, the probability of event 2 is bounded above byX1�k�b 2knb�bk�� jBjn �k 2�(b�k) = nb2b "�1 + 4 jBjn �b � 1# � nb2b �exp�4 jBj bn �� 1� :
Recalling thatb = logn� 2 log logn+ o(1), we haveb2b � (1� o(1)) nlogn so that the above sum isO� �(logn)c�2� :
Anticipating the proof of step 2, we record Azuma’s inequality for discrete martingales.

Definition 9. A martingaleis a sequenceX1; X2; : : : ; Xn of real valued random variables for whichE [Xi+1 j Xi] =Xi.
Theorem 11 (Azuma’s Inequality, [Hoe63, Azu67]).LetX1; : : : ; Xn be a martingale withjXi �Xi�1j � 1. ThenPr �Xn � E [Xn] > �pn� � e��22 :

See [AS92,x7] for a general discussion of discrete martingales and a proof of Azuma’s inequality.
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Proof of Step 2.For convenience fix a specific partitionP i and consider the uniform probability space on subsetsB
of f1; : : : ; ng of size �nlogc n . LetEk be the event that���j : ��P ij \ B�� � k	�� � 2knb �bk�� jBjn �k :
ThenPr[P i matchesB] = 1�Pr[[kEk] � 1�Pk Pr[Ek]. As observed earlier, the expected number ofPj containing

more thank elements ofB is less thannb �bk� � jBjn �k. Then, focusing our attention on thosek � plogn, an application

of Markov’s inequality shows thatPr[Ek] � 2�k = (logn)�!(1).
Suppose now thatk � plogn. LetX1; : : : ; Xn be indicator random variables given byXp = 1 iff p 2 B. Then

defineY1; : : : ; Ynb�1 so that Yj = (1 if
��P ij \B�� � k;0 otherwise.

and setY =Pj Yj . Our goal is to demonstrate strong tail bounds on the random variableY . Finally, for0 � p � n
define Zp = E [Y j X1; : : : ; Xp]:
ThenZ0 = E [Y ] is a constant random variable andZn = Y . Notice that, by definition,E [Zp+1 j Zp] = Zp, so that
theseZp form a martingale. Furthermore,jZp+1 � Zpj � 1, the proof for which we defer for a moment. In this case,
application of Azuma’s inequality yieldsPr [Ek] � Pr"Y � E [Y ] � �2k � 1� "nb�bk�� jBjn �k##� Pr hZn � E [Zn] � �2k � 1�n1�o(1)i� exp�2k � 14 n1�o(1)� = 1log!(1) n;
since the quantityc2knb �bk� � jBjn �k is at leastn1�o(1).

Then
Pk Pr[Ek] = (logn)�!(1), and an application of Markov’s inequality shows that with probability1 � o(1)

the number ofP i which do not matchB is less thann(logn)�!(1).
We return to the proof thatjZp+1 � Zpj � 1. It sufficies to show that for any~x = (x1; : : : ; xp) 2 f0; 1gp,jE [Y j Xi = xi(i � p); Xp+1 = 1]� E [Y j Xi = xi(i � p); Xp+1 = 0]j � 1: (2)

The only interesting case is whenwt(~x) < jBj. We establish (2) by observing that it holds under further conditioning.
In particular, for both conditioned probability spaces in (2), we think of first choosing a uniformly random setB0 ofjBj � wt(~x) � 1 elements fromfp+ 2; : : : ; ng to add toB. WhenXp+1 = 1, this condition determinesB; whenXp+1 = 0, the last element ofB is a random element fromfp+ 2; : : : ; ng n B0. Conditioned on any suchB0, then,
the resultingY ’s can differ by at most 1, as we wanted.

In [AL93], the above theorem is established forc = 2.
A function satisfying the conditions in the theorem can be found in timenO(n2). This follows from two observa-

tions. First,
���~P��� � (n!)n, and

��� ~M��� = 2n2
, so the number of possible functions isnO(n2). Second, a function can be

tested for the desired property in exponential time.

5.2 Constant Round Leader Election Protocols

With Theorem 10 in hand, it is not difficult to show that there exist one round leader election protocols resilient against
coalitions of sizeO(n=(logn)3):
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Lemma 12. There exists a family of functionsgn : Xn ! [n] so that for any set of variablesB of size �n(logn)3 , the
probability that for a random setting of the variables outsideB, there is a completion so thatF (~x) 2 B is O(�). The
setX can be taken to bef0; 1gk, for k = O(logn).
Proof. Consider the probability distribution where each~xi = xi1 : : : xik is selected independently and uniformly at
random inf0; 1g8 logn. SetYj = fn(x1j ; x2j ; : : : ; xnj) wherefn are the functions of Theorem 10. This is a sequence
of independent12 + o(1) biased bits. To correct the biases, we use von Neumann’s trick [vNe51]: collecting them into
pairs,Z1 = (Y1; Y2); Z2 = (Y3; Y4); : : : , consider the stringN(Z1)N(Z2) : : : N(Z4 logn) whereN(a; b) = 8><>:1 if a = 1; b = 0;0 if a = 0; b = 1;� if a� b = 0;
and� denotes the empty string. ThenPr[N(Yi; Yi+1) = 1] = Pr[N(Yi; Yi+1) = 0] = 14 + o(1):
Applying Chebyshev’s inequality, we see that with probability 1 � o(1), this sequence of independent and unbiased
values has length at leastdlogne. When this sequence is long enough, the firstdlogne bits are used to produce a valuev in [n], which is the value ofgn on these~xi. Otherwisegn(~xi) = 1. The mapping� from f0; 1gdlogne to [n] used to
inducev can be chosen so that8B � [n]; ����1(B)�� � 2 jBj.

Fix a collection of variablesB of size at most �n(logn)3 . Notice thatPr[gn(~x1; : : : ; ~xn) 2 B] � 2�(B) + o(1) =o(1). From the bound of Theorem 10, the probability that a random~xi; i 62 B, results in a function which is non-
constant on the variables ofB is at mostk �O(�= logn) = O(�), which establishes the lemma.

N.b. It is in fact true thatE [fn] = 12 + o( 1logn ), so that one can avoid “correcting” the bias of theseYi, resulting in

functionsgn : f0; 1glogn ! [n].
Using this as a base case, the next result gives ak-round leader election protocol resilient against coalitions of size�n(log(k) n)3 .

Theorem 13. For k 2 N, there is�k > 0 for which there is ak round leader election protocol resilient against
coalitions of size�kn=(log(k) n)3. This is constructive fork � 3.

Proof. The first k � 1 rounds are given by the protocol of Lemma 8. The last round is given by the protocol of
Lemma 12. The errors are handled as in Theorem 9.

6 Open Question

An outstanding open question is whether there exists a constant round leader election protocol resilient against linear-
sized coalitions. It is unknown even whether there is such a one round protocol.
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