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t. In this paper we des
ribe an approa
h for 
on
eptual usermodeling as realized in the OySTER meta web sear
h engine. Instead of
ollaboratively modeling user interests we use web do
ument 
lassi�
a-tions in order to des
ribe individual user models. Information relevan
eis expressed with respe
t to an underlying ontology of text 
ategories.Logi
 expressions over semi{latti
es are interpreted as horn 
lauses|thus allowing to prove di�erent levels of interestingness. Furthermore,this approa
h presents a well{de�ned learning problem for indu
tive logi
programming whi
h yields inspe
table user models that in
lude sets ofinterest aspe
ts. By using both expli
it positive and negative feedba
kfor both interest and expli
it dis{interest we 
an use few examples togenerate a larger set of labeled data for the learning task.1 Introdu
tionAdaptive information retrieval has be
ome a key dis
ipline ever sin
e the amountof information has exploded with the advent of the world wide web. Sin
e individ-ual user modeling on su
h huge domains is a tough topi
, adaptivity in so{
alledre
ommender systems mainly is a
hieved by 
ollaborative user modeling.Nevertheless, individual user modeling 
an be 
arried out provided suitable feed-ba
k. Syskill&Webert, [15℄, is a re
ommender system that 
onsists of a metasear
h engine whi
h for ea
h result o�ers the opportunity to give expli
it feed-ba
k. Feedba
k is used to build an individual user model that 
ontains sets ofboolean key word ve
tors. Using trained Bayesian 
lassi�ers, web do
uments arere
ommended with respe
t to the user model.The WebWat
her (see [1, 6, 7℄) is a more unobtrusive approa
h to the same do-main. Without expli
it feedba
k, links are re
ommended during a web browsingsession. Browsing behavior is re
orded in order to build a user model, again 
on-sisting of word ve
tors that have been derived using TfIdf. Collaborative usermodeling is performed using reinfor
ement learning. The Personal WebWat
heris a system for web page re
ommendation based upon individual user modelingte
hniques, [9℄.The Ontobroker was a �rst attempt to de�ne a stru
tured part of the world wideweb whi
h allows for 
ontent based information retrieval, relying on manuallyadded meta information about a web do
ument's 
ontent, [4℄. But, the Onto-broker did not allow for user adaptive information retrieval. A further step into



this dire
tion is the WebKB proje
t, where from a part of the world wide webits underlying stru
ture and information 
ontent is extra
ted by methods of in-du
tive logi
 programming in order to yield a 
lear des
ription of web do
ument
ontents and relations, [3℄.In the interse
tion of those approa
hes, we de�ned the adaptive meta sear
hengine OySTER.2 Adaptive Web Sear
h within OySTEROySTER is a meta sear
h engine for the world wide web. (http://mir.
l-ki.uni-osnabrue
k.de/oyster/; a more pi
torial overview is given in [14℄).It is realized as a multi agent system whi
h allows for an any{time responsebehavior: Regardless to the 
urrent state of responding sear
h servi
es, wrap-pers or 
lassi�ers, the best mat
h to the submitted sear
h query is presented�rst, followed by an ordered list of all other results. Currently, sear
h results
an be ordered with respe
t to an arithmeti
 relevan
e measure (depending onsear
h engine result ranks) and do
ument types and/or 
ategories. Ordering withrespe
t to the user model 
urrently is performed o�ine.Instead of de�ning 
ollaborative user models that are based on word frequen-
ies, we 
lassify web do
uments with respe
t to do
ument type and 
ategoryontologies. Thus, any do
ument d is represented by a pairC(d) = ht : p; h
1 : p1; 
2 : p2; 
3 : p3ii(1)with a type t and 
ategories 
i of de
reasing 
on�den
e values pi.Presupposing perfe
t 
lassi�ers, we forget about words 
ontained in d and workon the 
lassi�
ation data instead. This motivates the very high idea behindOySTER: Given suÆ
ient eviden
e for a user's interest, that is a set of 
on
eptualdes
riptions with relevan
e feedba
k f a

ording to some interest aspe
t asu = fhC(d); faii ji 2 Ig;(2)one should be able to indu
e a user model as a hypothesis whi
h des
ribes theuser's interest:Mu j= C(d) i� u is interested in d with respe
t to aspe
t a(3)The se
ond idea is that given expli
it models of what the user is interested in(M+u ) and what he is not interested in (M�u ), ea
h again 
onsisting of di�erentaspe
ts, 
an be used to prove (or reje
t) assertions about whether some do
umentd might be interesting or not, [13, 12℄.3 Learning User Models by Indu
ing Logi
 ProgramsIn our approa
h, a user model is represented in terms of do
ument 
ategories.



The 
ategory hierar
hy has been hand
rafted for des
ribing the 
omputer s
ien
ea
ademi
 sub{part of the web (parts of it are des
ribed in [14℄). The 
ategory
lassi�ers were developed in 
ourse of a student's proje
t, Bikini.1The do
ument type 
lassi�er works on regular expressions on do
ument Urls,[5℄.3.1 Representing User Models and Feedba
k DataIn order to be able to indu
e user models, we also need a suitable representationa

ording to the learning algorithm.In a more more pi
torial view, the do
ument 
ategory hierar
hy is a tree. Nev-ertheless, inheritan
e on 
on
ept hiera
hies used for des
ribing interests is notan easy matter: Interest in a 
ategory 
 does not ne

essarily imply interest in
ategory 
0, where 
 subsumes 
0 (
 � 
0). The reverse 
ase does not hold either;though interest in 
0 "supports" interest in 
 and interest in 
 
an be "explained"through interest in 
0. Therefore, we use a representation of our hierar
hies basedupon entailment and taking into a

ount beforementioned drawba
ks in the se
-tion about using user models for �ltering.Thus, the do
ument 
ategory hierar
hy is represented as a set of Horn 
lauseswhi
h models inheritan
e through entailment:2
at_..._
s(X,D) :-
at_..._
s_programming(X,C), genthresh(C,D).
at_..._
s_programming(X,D) :-
at_..._
s_programming_languages(X), genthresh(C,D).
at_..._
s_programming_languages(X,D) :-
at_..._
s_programming_languages_pro
edural(X), genthresh(C,D).Similary, do
ument 
lassi�
ation data as required by the sample spe
i�
ation in(1) is represented as fa
ts:type_..._publi
ation_resear
hpaper(urlid_5121,68).
at_..._intelligen
e_ma
hine_learning_symboli
(urlid_5121,92).
at_..._intelligen
e_ma
hine_learning_subsymboli
(urlid_5121,20). [...℄User Models. Now, an user model is a 'set of subtrees', where ea
h subtree eitherrepresents the user's interest or expli
it dis{interest. More formally, the usermodel Mu 
onsists of a pair of sets hM+u ;M�u i and ea
h set 
onsists of Horn
lauses des
ribing aspe
ts. Sin
e a user 
an be interested in several, distin
ttopi
s|say, ma
hine learning and diving|des
ribing the user's interest by a1 Bikini is an user adaptive news reader, [2℄. The 
lassi�ers are simple ve
tor spa
e
lassi�ers, where n-gram ve
tors (i.e. phrase ve
tors) have been generated by a kindof a boot{strapping method: To ea
h 
ategory we 
olle
ted a small set of "key{phrases". Ea
h subset of those sets was sent to the meta{sear
h engine and relevantwords were extra
ted from the result do
uments by a TfIdf measure.2 The gentresh predi
ate penalizes generalization during the indu
tion pro
ess bydemanding varying 
lass membership values.




ategory that tries to unify those two aspe
ts would lead to very bad results. Ingeneral, M+u 
ontains 
lauses likep interest u(a; d; r) : �type t1(d; t
1); :::; type tnt(d; t
nt);
at 
1(d; 

1); :::; 
at 
n
(d; 

n
);thresh(V1; #1); :::; thresh(Vn; #n):(4)where u is the user id, a the aspe
t id and d the do
ument id under 
onsideration.Do
ument types (ti) and 
ategories (
j) are assigned 
on�den
e values t
i and

j , respe
tively. Finally, thresholds 
an be de�ned in order to require a 
ertainvalue Vk (one of ft
1; :::; t
nt ; 

1; :::; t
n
g) to be greater than a 
ertain boundary#k. Currently, thresh is realized by the two relations < and >.User Feedba
k. Initially, we are given feedba
k (ratings f 2 f�2; 1; 0; 1; 2g) for aset of do
uments di whi
h is interpreted as feedba
k with respe
t to 
ategories.In our system, we simulated su
h samples by a randomized distribution overa set of 
entroids in the 
ategory hierar
hy based upon a asymmetri
 distan
emeasure Æ. The distan
e measure Æ(n;m) used is asymmetri
; it is de�ned by thesum of 
osts from n (up) to l and from l (down) to m, where l is the least upperbound of n and m and generalization (up) and spe
ialization steps (down) arepenalized di�erently.3 This approa
h might be questionable but a
tually yieldedfeedba
k whi
h very mu
h resembled real data (in
luding "nasty" users). A partof sample is displayed with respe
t to the underlying 
ategory in �gure 1.4 Userfeedba
k is both stored as fa
tual knowledge and examples for our learning task(note, that a single feedba
k event 
on
erning a do
ument is used to generateexamples for both p interest and n interest; this method 
an be expandedto multiple aspe
ts as well):p_interest_88(urlid_5232, 20).:- n_interest_88(urlid_5232, 20). :- p_interest_88(urlid_5234, 20).n_interest_88(urlid_5234, 20).3.2 Indu
tion of User ModelsInterpreting feedba
k f as a 'noisy subset' of the user's interest I = hI+; I�i,we want to a

urately approximate I. Given the do
ument type and 
ategory3 The 
loser we get to the leaves, the 
heaper are the edges (this is motivated bygrowing similarity in those 
lasses; leaf siblings like symboli
 ma
hine learning andsubsymboli
 ma
hine learning are 
loser to ea
h other than top{level siblings likelinguisti
s and 
omputer s
ien
e). Furthermore, longer generalization paths need tobe penalized stronger than shorter ones. Thus, Æ(n;m) 6= Æ(m;n) for two 
ategoriesn and m of di�erent depth. In our 
ategory hierar
hy, this means that user modelingis less related to symboli
 ma
hine learning than vi
e versa.4 Note, that the visualization veils some important information: Ea
h feedba
k entry(indi
ated by square bra
kets) for a 
ategory 
 
orresponds to a feedba
k event(whi
h is given with respe
t to Urls), where the most 
on�dent 
lassi�
ation ofthe Url was 
. Nevertheless, the same Url also 
ontributes to feedba
k data withrespe
t to the two other 
lasses whi
h is not displayed here.



(Trun
ated example)Fig. 1. Relevan
e feedba
k for do
uments with respe
t to 
ategories.hierar
hies and Url 
lassi�
ations as ba
kground knowledge �, we want toindu
e a hypothesis h using a sample fhC(d); faii ji 2 Ig su
h that:� [ h j= p interest u(a; d; r) i� I+(d) = 1� [ h j= n interest u(a; d; r) i� I�(d) = 1(5)For h, several restri
tions apply: We know the argument stru
ture of the 
lausehead and the set of possible body 
lauses thus yielding a strong bias in terms ofso{
alled mode{de
larationsThe learning set in
ludes 10,000 Urls whi
h were randomly assigned 
ategoryand type 
lassi�
ations.5 For ea
h of the ten users we generated feedba
k. Inorder to simulate feedba
k, for ea
h user up to three 
entroids on the 
ategoryhierar
hy were 
hosen randomly; feedba
k was generated using a Æ{distorteddistribution around those 
entroids. For ea
h 
entroid per user, 200 eviden
eswere generated.Indu
tion of User Models. Using Progol 4.4 (see [10, 11℄ and following) we indu
ea sequen
e of hypotheses des
ribing the user's interest based upon the sample.Progol 4.4 is based on the inverse entailment method: From ba
kground knowl-edge � and examples E a set of ground literals ms
 is dedu
ed, the 
onjun
tion5 This method guarantees that our input data is noisier than one would expe
t it inreal world samples.



of whi
h is true in all models of � ^ E. Then, a hypothesis 
an be indu
ed bysear
hing for h j6 �ms
. As an example, 
onsider �gure 1. The rules indu
ed onthe underlying feedba
k data are:6p_interest_88(A,B) :-
at__top_s
ien
e_
omputer_s
ien
e_programming_languages(A,B).n_interest_88(A,B) :-
at__top_s
ien
e_linguisti
s(A,B).n_interest_88(A,B) :-
at__top_s
ien
e(A,B),
at__top_s
ien
e_
omputer_s
ien
e_artifi
ial_intelligen
e(A,C).Those three rules 
overed ten eviden
es all together. From other samples more
omplex rule sets like those in �gure 2 have been derived. User 90 seems top_interest_90(A,B) :-
at__top_s
ien
e_
omputer_s
ien
e(A,B),
at__top_s
ien
e_
omputer_s
ien
e_[ai℄_ma
hine_learning(A,C),C>56.p_interest_90(A,B) :-type__top_publi
ation(A,C),
at__top_s
ien
e(A, B).%---------------------------------------------------------------p_interest_93(A,B) :-
at__top_s
ien
e_
omputer_s
ien
e_programming(A,B),
at__top_s
ien
e_
omputer_s
ien
e_artifi
ial_intelligen
e(A,C).n_interest_93(A,B) :-
at__top_s
ien
e_
omputer_s
ien
e_programming(A,B),
at__top_re
_sports_water_s
uba_diving(A,C).n_interest_93(A,B) :-
at__top_s
ien
e(A,B),
at__top_s
ien
e_
omputer_s
ien
e_operating_systems_dos(A,C).Fig. 2. Rules des
ribing a user's interestbe interested in any 'publi
ation'{like do
ument about 's
ien
e'. Furthermore,any do
ument about '
omputer s
ien
e' and 'ma
hine learning' is relevant, ifthe 
on�den
e for 'ma
hine learning' is at least 57. User 93 is interested in'programming' if it 
oin
ides with 'arti�
ial intelligen
e'|but de�nitely is notinterested in do
uments about 'diving 
omputers' or 'DOS'.We have generated di�erent feedba
k sets for ten simulated users, where for twofeedba
k sets Progol did not deliver any 
ompressing rule at all. 7 Results are6 Note, that the predi
ates used here do not take into a

ount multiple aspe
ts a ofthe user's interest; i.e. the predi
ate is missing one argument.7 In the �rst 
ase this was due to a nearly equally distributed feedba
k. In the se
ond
ase, we ex
eeded the sear
h depth limit.



p interest n interestuser 
ov a

 rp(
p) 
ov a

 rn(
n) time88 93.8% 72.2% 1(2) 65.6% 26.1% 2(8) 2'07"92 51.7% 52.4% 1(2) 57.1% 29.5% 4(15) 4'07"93 41.6% 57.8% 3(12) 32.2% 26.8% 4(12) 7'54"ri is the number of rules indu
ed for the target i; 
i is the number of fa
ts(i.e. eviden
es) that are 
overed by the rules.Note, that a

ura
y and 
overage are 
omputed only with respe
t to ruleswhi
h a
tually 
ompressed the sample; remaining rules 
overing only singleeviden
es are not taken into a

ount.Table 1. Coverage & a

ura
y of indu
ed rules
shown in table 1. The feedba
k given by user 88 is shown in �gure 1. His in-terested was modeled by a single 
entroid (lo
ated in the 'pro
edural program-ming' tree). Most negative feedba
k was given in the 
ategory linguisti
swhi
h formed a very 
lear image. A

ordingly, only three rules were indu
edwhi
h deliver a 
onsiderable high 
overage and a

ura
y for p interest. Sin
en interest is modeled by low Æ values instead of spe
ial 
entroids, the trainingdata is unspe
i�
 and rather noisy.A growing number of 
entroids 
hosen within the feedba
k simulation fun
tion
orresponds to multiple aspe
ts in a user's interest. Sin
e multiple aspe
ts werenot 
overed in the �rst test series, results are rather bad (the image be
omesblurred): User 92's interest was simulated using two 
entroids that were bothlo
ated in the upper levels of the ontology's 's
ien
e' part thus yielding a ratheruniform distribution of positive feedba
k with average noise of negative feedba
k.The large numbers of rules for n interest 
an be explained by the noisy negativefeedba
k of the large positive �eld whi
h also might explain the slightly betterresult for a

ura
y of n interest. Most important is the dramati
 de
reasein 
overage and a

ura
y of p interest, though the latter one 
an be easilyexplained by indu
ing only one rule whi
h subsumed the 'linguisti
s' bran
h andleft out the whole bran
h of '
omputer s
ien
e' (
ontaining approximately 70%of all positive feedba
k).Finally, user 93, whose interest was de�ned by three 
entroids, showed worstresults. Seven rules were indu
ed, three for p interest, four for n interest.Nevertheless, the indu
ed rules showed interesting results (see �gure 2).A �rst 
on
lusion shows that for in
reasing number of interest topi
s (as sim-ulated by growing number of 
entroids for the feedba
k fun
tion), 
overage de-
reases sin
e 
ompressing rules need to be more pre
ise|thus generalizing too
arefully. The bad values for n interest are due to our simulation of negativefeedba
k (see 
on
lusion).



Improvements. Most of the rules that were not taken into a

ount in the lastse
tion are rules whi
h yield no 
ompression, but nevertheless 
arry valuableinformation. For example, user 93's interest in a 
ertain Url yielded a mostspe
i�
 
lause as shown in �gure 3. Su
h 
lauses 
ould easily be generalizedp_interest_93(A,B) :-type__top_publi
ation_publishedbook(A,C),
at__top_s
ien
e(A,D),
at__top_s
ien
e_[
s℄(A,E),
at__top_s
ien
e_[
s℄_[ai℄_ma
hine_learning_learning_theory(A,F),
at__top_s
ien
e_[
s℄_[ai℄_ma
hine_learning(A,G),
at__top_s
ien
e_[
s℄_programming(A,H),
at__top_s
ien
e_[
s℄_programming_languages_fun
tional_lisp(A,I),
at__top_s
ien
e_[
s℄_programming_languages_fun
tional(A,J),
at__top_s
ien
e_[
s℄_programming_languages_pro
edural_perl(A,K),
at__top_s
ien
e_[
s℄_programming_languages_pro
edural(A,L),
at__top_s
ien
e_[
s℄_programming_languages(A,M),
at__top_s
ien
e_[
s℄_[ai℄(A,N),C>67, F>71, G>46, I>7, K>75, L>50, N>21.Fig. 3. A non{
ompressing ruleby a information gain guided literal dropping method (as a kind of inverted Foilmethod, see [16℄). The rule set S generated by Progol 
an be roughly divided intotwo sets of 
ompressing rules C and redundant rules R.8 Thus, for ea
h rule r 2R we re
ursively drop least informative pairs of literals hl( ; 
l); thresh(
l; #l)iyielding more general rules r0 2 R0.9 Sin
e 
overage in
reases with ea
h step, thepro
ess is stopped if the information 
ontent of the whole rule r0 drops belowa prede�ned value. In a se
ond step, we delete rules from R0 until a

(R0 [ C)rea
hes a lower bound and output H = R0 [ C as a �nal hypothesis.4 Content Based Filtering with Logi
 ProgramsIn traditional meta sear
h engines, results are aggregated and ordered using anarithmeti
 measure that integrates over result ranks as delivered by the utilizedsear
h engines. OySTER additionally o�ers 
on
eptual ordering|where the re-sults are ordered by do
ument 
ategories. Furthermore, the use of user modelsallows for an individual 
ontent based �ltering of sear
h results.8 Rules in R are 
alled redundant sin
e they have the same expressive power as thefa
t they were generated by. But sin
e the en
oding length of the rule is mu
hgreater than the length of the example, they are dis
arded. Thus, R is repla
ed bythe examples E and the output hypothesis H = C [E is of less 
omplexity than s.9 A similar te
hnique will help in identifying aspe
ts: sudden leaps in de
reasing in-formation gain while literal dropping suggest a border 
rossing.



Proving Relevan
e of Web Do
uments. Given a user model Mu, relevan
e a
tu-ally 
an be proven: If there is a subset P+u �M+u su
h that P+u `SLD p interest(d),u is interested in d a

ording to the user model. The same holds for disinterestand a program P�u �M�u .Taking aspe
ts into a

ount again, do
uments 
an be of di�erent levels of inter-estingness, too: Given a do
ument d, for whi
h P+u (a) `SLD p interest(a; d),we have shown, that d is relevant to u with respe
t to a. If, however, the prooffails, and there is di�erent aspe
t a0, for whi
h p interest(a0; d), d is still ofsome interest. The notion of "some" 
an be quanti�ed by trying to 
lassify thesear
h query q and 
omputing Æ(C(q); C(d)). Finally, if there is no a, su
h thatrelevan
e of d 
an be proven, it is likely to say that d is not interesting. However,d de�nitely is not interesting if there is some aspe
t a for whi
h M�u (a) j= C(d).Furthermore, any su

essful proof of P+ �M+u or P (a)+ �M+u (of whi
h theremight several) has a 
ertain length. The minimum number of resolution stepsused for a proof thus 
an be interpreted as a quality measurement, whi
h 
anbe improved by Æ{weighed resolution steps in literal proofs.5 Con
lusion & Prospe
tsResults as des
ribed in this paper are based on a very pessimisti
 simulationof user feedba
k. The pessimisti
 approa
h is realized by growing numbers of
entroids (thus simulating di�erent aspe
ts) and by de�ning negative 
entroidsthrough Æ distan
es to positive 
entroids (whi
h explains bad results for n interestin table 1). Further evaluation will show, whether a

ura
y in
reases with a moreoptimisti
 simulation of feedba
k. Noisy data about negative interest on the otherhand, 
orresponds to the general user's behavior of giving only sparse negativefeedba
k. Finally, pessimisti
 simulations suggest a better performan
e of thesystem using real world data.Current work on user model indu
tion. As already pointed out, we will enhan
ethe quality of user models by taking into a

ount redundant 
lauses and apply-ing the literal dropping method to sear
h for better 
ompressing rules. The usermodel indu
tion 
omponent will be 
ompleted by a module for user aspe
t de-te
tion whi
h will further improve the a

ura
y of the user models (see footnote9). Final results are expe
ted by Mar
h 2001.Further development of OySTER. The traditional meta sear
h fun
tionality ofthe sear
h engine will be soon enhan
ed by a query re�nement pro
edure whi
hwill use additional sear
h terms that are derived from the user models. Con
ern-ing the user model indu
tion pro
ess, we will have to automate the pro
ess andin
lude the �ltering pro
ess based upon deta
hed Prolog proofs into the sear
hengine interfa
e. Se
ondly, we need more empiri
al data on real users for reliablestatisti
s about whether the theoreti
al improvement of sear
h results a
tually
orresponds to a better performan
e from the user's point of view. Finally, wewill integrate the Bikini wrapper indu
ing 
omponent, as e.g. des
ribed in [8℄and, of 
ourse, we need to redesign the user feedba
k fun
tionality.
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