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Abstract. In this paper we describe an approach for conceptual user
modeling as realized in the OySTER meta web search engine. Instead of
collaboratively modeling user interests we use web document classifica-
tions in order to describe individual user models. Information relevance
is expressed with respect to an underlying ontology of text categories.
Logic expressions over semi-lattices are interpreted as horn clauses—
thus allowing to prove different levels of interestingness. Furthermore,
this approach presents a well-defined learning problem for inductive logic
programming which yields inspectable user models that include sets of
interest aspects. By using both explicit positive and negative feedback
for both interest and explicit dis—interest we can use few examples to
generate a larger set of labeled data for the learning task.

1 Introduction

Adaptive information retrieval has become a key discipline ever since the amount
of information has exploded with the advent of the world wide web. Since individ-
ual user modeling on such huge domains is a tough topic, adaptivity in so—called
recommender systems mainly is achieved by collaborative user modeling.
Nevertheless, individual user modeling can be carried out provided suitable feed-
back. Syskill&Webert, [15], is a recommender system that consists of a meta
search engine which for each result offers the opportunity to give explicit feed-
back. Feedback is used to build an individual user model that contains sets of
boolean key word vectors. Using trained Bayesian classifiers, web documents are
recommended with respect to the user model.

The WebWatcher (see [1,6,7]) is a more unobtrusive approach to the same do-
main. Without explicit feedback, links are recommended during a web browsing
session. Browsing behavior is recorded in order to build a user model, again con-
sisting of word vectors that have been derived using TFIDF. Collaborative user
modeling is performed using reinforcement learning. The Personal WebWatcher
is a system for web page recommendation based upon individual user modeling
techniques, [9].

The Ontobroker was a first attempt to define a structured part of the world wide
web which allows for content based information retrieval, relying on manually
added meta information about a web document’s content, [4]. But, the Onto-
broker did not allow for user adaptive information retrieval. A further step into



this direction is the WebKB project, where from a part of the world wide web
its underlying structure and information content is extracted by methods of in-
ductive logic programming in order to yield a clear description of web document
contents and relations, [3].

In the intersection of those approaches, we defined the adaptive meta search
engine OySTER.

2 Adaptive Web Search within OySTER

OySTER is a meta search engine for the world wide web. (http://mir.cl-ki.
uni-osnabrueck.de/oyster/; a more pictorial overview is given in [14]).

It is realized as a multi agent system which allows for an any-time response
behavior: Regardless to the current state of responding search services, wrap-
pers or classifiers, the best match to the submitted search query is presented
first, followed by an ordered list of all other results. Currently, search results
can be ordered with respect to an arithmetic relevance measure (depending on
search engine result ranks) and document types and/or categories. Ordering with
respect to the user model currently is performed offline.

Instead of defining collaborative user models that are based on word frequen-
cies, we classify web documents with respect to document type and category
ontologies. Thus, any document d is represented by a pair

(1) C(d) = (t:p,(c1:p1,¢2:p2,C3:p3))

with a type ¢ and categories ¢; of decreasing confidence values p;.
Presupposing perfect classifiers, we forget about words contained in d and work
on the classification data instead. This motivates the very high idea behind
OySTER: Given sufficient evidence for a user’s interest, that is a set of conceptual
descriptions with relevance feedback f according to some interest aspect a

(2) su:{<c(d)/fa>z|le-[}/

one should be able to induce a user model as a hypothesis which describes the
user’s interest:

(3) M, = C(d) iff u is interested in d with respect to aspect a
The second idea is that given explicit models of what the user is interested in
(M;}) and what he is not interested in (M, ), each again consisting of different

aspects, can be used to prove (or reject) assertions about whether some document
d might be interesting or not, [13,12].

3 Learning User Models by Inducing Logic Programs

In our approach, a user model is represented in terms of document categories.



The category hierarchy has been handcrafted for describing the computer science
academic sub—part of the web (parts of it are described in [14]). The category
classifiers were developed in course of a student’s project, Bikini.!

The document type classifier works on regular expressions on document URLSs,

[5]-

3.1 Representing User Models and Feedback Data

In order to be able to induce user models, we also need a suitable representation
according to the learning algorithm.

In a more more pictorial view, the document category hierarchy is a tree. Nev-
ertheless, inheritance on concept hierachies used for describing interests is not
an easy matter: Interest in a category ¢ does not neccessarily imply interest in
category ¢', where ¢ subsumes ¢’ (¢ C ¢'). The reverse case does not hold either;
though interest in ¢’ ”supports” interest in ¢ and interest in ¢ can be ”explained”
through interest in ¢’. Therefore, we use a representation of our hierarchies based
upon entailment and taking into account beforementioned drawbacks in the sec-
tion about using user models for filtering.

Thus, the document category hierarchy is represented as a set of Horn clauses
which models inheritance through entailment:?

cat_..._cs(X,D) :-
cat_..._cs_programming(X,C), genthresh(C,D).
cat_..._cs_programming(X,D) :-
cat_..._cs_programming_languages(X), genthresh(C,D).
cat_..._cs_programming_languages(X,D) :-
cat_..._cs_programming_languages_procedural (X), genthresh(C,D).

Similary, document classification data as required by the sample specification in
(1) is represented as facts:

type_..._publication_researchpaper(urlid_5121,68).
cat_..._intelligence_machine_learning_symbolic(urlid_5121,92).
cat_..._intelligence_machine_learning_subsymbolic(urlid_5121,20). [...]

User Models. Now, an user model is a 'set of subtrees’, where each subtree either
represents the user’s interest or explicit dis—interest. More formally, the user
model M, consists of a pair of sets (M,F, M, ) and each set consists of Horn
clauses describing aspects. Since a user can be interested in several, distinct
topics—say, machine learning and diving—describing the user’s interest by a

! Bikini is an user adaptive news reader, [2]. The classifiers are simple vector space
classifiers, where n-gram vectors (i.e. phrase vectors) have been generated by a kind
of a boot-strapping method: To each category we collected a small set of "key—
phrases”. Each subset of those sets was sent to the meta—search engine and relevant
words were extracted from the result documents by a TFIDF measure.

2 The gentresh predicate penalizes generalization during the induction process by
demanding varying class membership values.



category that tries to unify those two aspects would lead to very bad results. In
general, M, contains clauses like

p-interest.u(a,d,r) : —

4 type_t1 (da tcl): -y type_tn, (da 2% )a
(4)
cat_ci(d,ccr), ..., cat__cp, (d, ccn.),

Y

thresh(V;,91), ..., thresh(V,,, J,).

where u is the user id, a the aspect id and d the document id under consideration.
Document types (t;) and categories (c;) are assigned confidence values ¢c; and
ccj, respectively. Finally, thresholds can be defined in order to require a certain
value Vi, (one of {tci, ..., tcy,, cc1, ..., tep, }) to be greater than a certain boundary
Jy. Currently, thresh is realized by the two relations < and >.

User Feedback. Initially, we are given feedback (ratings f € {—2,1,0,1,2}) for a
set of documents d; which is interpreted as feedback with respect to categories.
In our system, we simulated such samples by a randomized distribution over
a set of centroids in the category hierarchy based upon a asymmetric distance
measure ¢. The distance measure §(n,m) used is asymmetric; it is defined by the
sum of costs from n (up) to ! and from I (down) to m, where [ is the least upper
bound of n and m and generalization (up) and specialization steps (down) are
penalized differently.? This approach might be questionable but actually yielded
feedback which very much resembled real data (including "nasty” users). A part
of sample is displayed with respect to the underlying category in figure 1.4 User
feedback is both stored as factual knowledge and examples for our learning task
(note, that a single feedback event concerning a document is used to generate
examples for both p_interest and n_interest; this method can be expanded
to multiple aspects as well):

p-interest_88(urlid_5232, 20). :- p_interest_88(urlid_5234, 20).
:— n_interest_88(urlid_5232, 20). n_interest_88(urlid_5234, 20).

3.2 Induction of User Models

Interpreting feedback f as a 'noisy subset’ of the user’s interest J = (I, I7),
we want to accurately approximate J. Given the document type and category

% The closer we get to the leaves, the cheaper are the edges (this is motivated by
growing similarity in those classes; leaf siblings like symbolic machine learning and
subsymbolic machine learning are closer to each other than top-level siblings like
linguistics and computer science). Furthermore, longer generalization paths need to
be penalized stronger than shorter ones. Thus, d(n, m) # §(m,n) for two categories
n and m of different depth. In our category hierarchy, this means that user modeling
is less related to symbolic machine learning than vice versa.

Note, that the visualization veils some important information: Each feedback entry

(indicated by square brackets) for a category c corresponds to a feedback event
(which is given with respect to URLs), where the most confident classification of
the URL was c. Nevertheless, the same URL also contributes to feedback data with
respect to the two other classes which is not displayed here.
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(Truncated example)

Fig. 1. Relevance feedback for documents with respect to categories.

hierarchies and URL classifications as background knowledge X, we want to
induce a hypothesis h using a sample {(C(d), fa),|i € I} such that:

(5) Y Uh E p-interestu(a,d,r) iff I*t(d) =1
Y Uh =n_interest.u(a,d,r) iff I~(d)

For h, several restrictions apply: We know the argument structure of the clause
head and the set of possible body clauses thus yielding a strong bias in terms of
so—called mode—declarations

The learning set includes 10,000 URLs which were randomly assigned category
and type classifications.® For each of the ten users we generated feedback. In
order to simulate feedback, for each user up to three centroids on the category
hierarchy were chosen randomly; feedback was generated using a d—distorted
distribution around those centroids. For each centroid per user, 200 evidences
were generated.

Induction of User Models. Using Progol 4.4 (see [10, 11] and following) we induce
a sequence of hypotheses describing the user’s interest based upon the sample.
Progol 4.4 is based on the inverse entailment method: From background knowl-
edge X and examples E a set of ground literals msc is deduced, the conjunction

® This method guarantees that our input data is noisier than one would expect it in
real world samples.



of which is true in all models of X A E. Then, a hypothesis can be induced by
searching for h | gmsc. As an example, consider figure 1. The rules induced on
the underlying feedback data are:®

p-interest_88(A,B) :-
cat__top_science_computer_science_programming_languages(A,B).

n_interest_88(A,B) :-
cat__top_science_linguistics(A,B).

n_interest_88(A,B) :-
cat__top_science(A,B),
cat__top_science_computer_science_artificial_intelligence(A,C).

Those three rules covered ten evidences all together. From other samples more
complex rule sets like those in figure 2 have been derived. User 90 seems to

p_interest_90(A,B) :-
cat__top_science_computer_science(A,B),
cat__top_science_computer_science_[ai] _machine_learning(4,C),
C>56.

p_interest_90(A,B) :-
type__top_publication(A,C),
cat__top_science(A, B).

p-interest_93(A,B) :-
cat__top_science_computer_science_programming(A,B),
cat__top_science_computer_science_artificial_intelligence(A,C).

n_interest_93(A,B) :-
cat__top_science_computer_science_programming(A,B),
cat__top_rec_sports_water_scuba_diving(A,C).

n_interest_93(A,B) :-
cat__top_science(A,B),
cat__top_science_computer_science_operating_systems_dos(A,C).

Fig. 2. Rules describing a user’s interest

be interested in any ’'publication’-like document about ’science’. Furthermore,
any document about ’‘computer science’ and ’machine learning’ is relevant, if
the confidence for ‘machine learning’ is at least 57. User 93 is interested in
‘programming’ if it coincides with ’artificial intelligence’—but definitely is not
interested in documents about 'diving computers’ or 'DOS’.

We have generated different feedback sets for ten simulated users, where for two
feedback sets Progol did not deliver any compressing rule at all. 7 Results are

6 Note, that the predicates used here do not take into account multiple aspects a of
the user’s interest; i.e. the predicate is missing one argument.

" In the first case this was due to a nearly equally distributed feedback. In the second
case, we exceeded the search depth limit.



p-interest n_interest
user | cov  acc rp(cp) cov  acc ra(ca) | time

88 |93.8% 722%  1(2)| 65.6% 26.1% 2(8) |207”
92 |51.7% 52.4%  1(2)| 57.1% 29.5% 4(15) |4°07”
93 |41.6% 57.8% 3(12)| 32.2% 26.8% 4(12) |7'54”

r; is the number of rules induced for the target i; c; is the number of facts
(i.e. evidences) that are covered by the rules.

Note, that accuracy and coverage are computed only with respect to rules
which actually compressed the sample; remaining rules covering only single
evidences are not taken into account.

Table 1. Coverage & accuracy of induced rules

shown in table 1. The feedback given by user 88 is shown in figure 1. His in-
terested was modeled by a single centroid (located in the ’procedural program-
ming’ tree). Most negative feedback was given in the category linguistics
which formed a very clear image. Accordingly, only three rules were induced
which deliver a considerable high coverage and accuracy for p_interest. Since
n_interest is modeled by low § values instead of special centroids, the training
data is unspecific and rather noisy.

A growing number of centroids chosen within the feedback simulation function
corresponds to multiple aspects in a user’s interest. Since multiple aspects were
not covered in the first test series, results are rather bad (the image becomes
blurred): User 92’s interest was simulated using two centroids that were both
located in the upper levels of the ontology’s ’science’ part thus yielding a rather
uniform distribution of positive feedback with average noise of negative feedback.
The large numbers of rules for n_interest can be explained by the noisy negative
feedback of the large positive field which also might explain the slightly better
result for accuracy of n_interest. Most important is the dramatic decrease
in coverage and accuracy of p-interest, though the latter one can be easily
explained by inducing only one rule which subsumed the ’linguistics’ branch and
left out the whole branch of ’computer science’ (containing approximately 70%
of all positive feedback).

Finally, user 93, whose interest was defined by three centroids, showed worst
results. Seven rules were induced, three for p_interest, four for n_interest.
Nevertheless, the induced rules showed interesting results (see figure 2).

A first conclusion shows that for increasing number of interest topics (as sim-
ulated by growing number of centroids for the feedback function), coverage de-
creases since compressing rules need to be more precise—thus generalizing too
carefully. The bad values for n_interest are due to our simulation of negative
feedback (see conclusion).



Improvements. Most of the rules that were not taken into account in the last
section are rules which yield no compression, but nevertheless carry valuable
information. For example, user 93’s interest in a certain URL yielded a most
specific clause as shown in figure 3. Such clauses could easily be generalized

p_interest_93(A,B) :-
type__top_publication_publishedbook(A,C),
cat__top_science(A,D),
cat__top_science_[cs] (A,E),
cat__top_science_[cs]_[ai] _machine_learning_learning_theory(A,F),
cat__top_science_[cs]_[ai] _machine_learning(A,G),
cat__top_science_[cs] _programming(A,H),
cat__top_science_[cs] _programming_languages_functional_lisp(A,I),
cat__top_science_[cs] _programming_languages_functional(4,J),
cat__top_science_[cs] _programming_languages_procedural_perl (A,K),
cat__top_science_[cs] _programming_languages_procedural(4,L),
cat__top_science_[cs] _programming_languages(A,M),
cat__top_science_[cs]_[ai] (A,N),
C>67, F>71, G>46, I>7, K>75, L>50, N>21.

Fig. 3. A non—compressing rule

by a information gain guided literal dropping method (as a kind of inverted Foil
method, see [16]). The rule set S generated by Progol can be roughly divided into
two sets of compressing rules C' and redundant rules R.® Thus, for each rule r €
R we recursively drop least informative pairs of literals (I(_, ¢;), thresh(c,9))
yielding more general rules r' € R'.? Since coverage increases with each step, the
process is stopped if the information content of the whole rule ' drops below
a predefined value. In a second step, we delete rules from R’ until acc(R' U C)
reaches a lower bound and output H = R' U C as a final hypothesis.

4 Content Based Filtering with Logic Programs

In traditional meta search engines, results are aggregated and ordered using an
arithmetic measure that integrates over result ranks as delivered by the utilized
search engines. OySTER additionally offers conceptual ordering—where the re-
sults are ordered by document categories. Furthermore, the use of user models
allows for an individual content based filtering of search results.

& Rules in R are called redundant since they have the same expressive power as the
fact they were generated by. But since the encoding length of the rule is much
greater than the length of the example, they are discarded. Thus, R is replaced by
the examples E and the output hypothesis H = C U E is of less complexity than s.

A similar technique will help in identifying aspects: sudden leaps in decreasing in-
formation gain while literal dropping suggest a border crossing.



Proving Relevance of Web Documents. Given a user model M,,, relevance actu-
ally can be proven: If there is a subset P,/ C M} such that P, s p p-interest(d),
u is interested in d according to the user model. The same holds for disinterest
and a program P, C M, .

Taking aspects into account again, documents can be of different levels of inter-
estingness, too: Given a document d, for which P} (a) tsip p-interest(a,d),
we have shown, that d is relevant to u with respect to a. If, however, the proof
fails, and there is different aspect a', for which p_interest(a’,d), d is still of
some interest. The notion of ”some” can be quantified by trying to classify the
search query ¢ and computing 6(C(q),C(d)). Finally, if there is no a, such that
relevance of d can be proven, it is likely to say that d is not interesting. However,
d definitely is not interesting if there is some aspect @ for which M (a) |= C(d).
Furthermore, any successful proof of PT C M," or P(a)™ C M, (of which there
might several) has a certain length. The minimum number of resolution steps
used for a proof thus can be interpreted as a quality measurement, which can
be improved by d—weighed resolution steps in literal proofs.

5 Conclusion & Prospects

Results as described in this paper are based on a very pessimistic simulation
of user feedback. The pessimistic approach is realized by growing numbers of
centroids (thus simulating different aspects) and by defining negative centroids
through § distances to positive centroids (which explains bad results for n_interest
in table 1). Further evaluation will show, whether accuracy increases with a more
optimistic simulation of feedback. Noisy data about negative interest on the other
hand, corresponds to the general user’s behavior of giving only sparse negative
feedback. Finally, pessimistic simulations suggest a better performance of the
system using real world data.

Current work on user model induction. As already pointed out, we will enhance
the quality of user models by taking into account redundant clauses and apply-
ing the literal dropping method to search for better compressing rules. The user
model induction component will be completed by a module for user aspect de-
tection which will further improve the accuracy of the user models (see footnote
9). Final results are expected by March 2001.

Further development of OySTER. The traditional meta search functionality of
the search engine will be soon enhanced by a query refinement procedure which
will use additional search terms that are derived from the user models. Concern-
ing the user model induction process, we will have to automate the process and
include the filtering process based upon detached Prolog proofs into the search
engine interface. Secondly, we need more empirical data on real users for reliable
statistics about whether the theoretical improvement of search results actually
corresponds to a better performance from the user’s point of view. Finally, we
will integrate the Bikini wrapper inducing component, as e.g. described in [8]
and, of course, we need to redesign the user feedback functionality.
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