
Secure Group Communications Using Key Graphs�Chung Kei Wong Mohamed Gouda Simon S. LamDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712-1188fckwong,gouda,lamg@cs.utexas.eduAbstractMany emerging applications (e.g., teleconference, real-timeinformation services, pay per view, distributed interactivesimulation, and collaborative work) are based upon a groupcommunications model, i.e., they require packet deliveryfrom one or more authorized senders to a very large numberof authorized receivers. As a result, securing group commu-nications (i.e., providing con�dentiality, integrity, and au-thenticity of messages delivered between group members)will become a critical networking issue.In this paper, we present a novel solution to the scal-ability problem of group/multicast key management. Weformalize the notion of a secure group as a triple (U;K;R)where U denotes a set of users, K a set of keys held by theusers, and R a user-key relation. We then introduce keygraphs to specify secure groups. For a special class of keygraphs, we present three strategies for securely distribut-ing rekey messages after a join/leave, and specify protocolsfor joining and leaving a secure group. The rekeying strate-gies and join/leave protocols are implemented in a prototypegroup key server we have built. We present measurementresults from experiments and discuss performance compar-isons. We show that our group key management service, us-ing any of the three rekeying strategies, is scalable to largegroups with frequent joins and leaves. In particular, theaverage measured processing time per join/leave increaseslinearly with the logarithm of group size.1 IntroductionMost network applications are based upon the client-serverparadigm and make use of unicast (or point-to-point) packetdelivery. Many emerging applications (e.g., teleconference,real-time information services, pay per view, distributed in-teractive simulation, and collaborative work), on the otherhand, are based upon a group communications model. Thatis, they require packet delivery from one or more authorizedsender(s) to a large number of authorized receivers. In theInternet, multicast has been used successfully to provide an�Research sponsored in part by Texas Advanced Research Pro-gram grant no. 003658-063 and by NSA INFOSEC University Re-search Program grant no. MDA 904-94-C-6106. Experiments wereperformed on equipment procured with National Science Foundationgrant no. CDA-9624082.
To appear in Proceedings of ACM SIGCOMM '98, Septem-ber 2-4, 1998, Vancouver, Canada.

e�cient, best-e�ort delivery service to large groups [6]. Weenvision that deployment of network applications requiringgroup communications will accelerate in coming years.While the technical issues of securing unicast commu-nications for client-server computing are fairly well under-stood, the technical issues of securing group communicationsare not. Yet group communications have a much greater ex-posure to security breaches than unicast communications. Inparticular, copies of a group communication packet traversemany more links than those of a unicast packet, thereby cre-ating more opportunity for tra�c interception. We believethat securing group communications (i.e., providing con�-dentiality, integrity, and authenticity of messages deliveredbetween group members) will become a critical issue of net-working in the near future.Conceptually, since every point-to-multipoint communi-cation can be represented as a set of point-to-point commu-nications, the current technology base for securing unicastcommunications can be extended in a straightforward man-ner to secure group communications [9, 10]. However, suchan extension is not scalable to large groups.For a more concrete illustration of this point, we outlinea typical procedure for securing unicast communications be-tween a client and a server. Initially, the client and servermutually authenticate each other using an authenticationprotocol or service; subsequently, a symmetric key is cre-ated and shared by them to be used for pairwise con�den-tial communications [4, 17, 19, 22]. This procedure can beextended to a group as follows: Let there be a trusted groupserver which is given membership information to exercisegroup access control. When a client wants to join the group,the client and group server mutually authenticate using anauthentication protocol. Having been authenticated and ac-cepted into the group, each member shares with the groupserver a key,1 to be called the member's individual key. Forgroup communications, the group server distributes to eachmember a group key to be shared by all members of thegroup.2For a group of n members, distributing the group keysecurely to all members requires n messages encrypted withindividual keys (a computation cost proportional to groupsize n). Each such message may be sent separately via uni-cast. Alternatively, the n messages may be sent as a com-bined message to all group members via multicast. Eitherway, there is a communication cost proportional to group1In this paper, key means a key from a symmetric cryptosystem,such as DES, unless explicitly stated otherwise.2It is easy to see that sharing a group key enables con�dentialgroup communications. In addition to con�dentiality, authenticityand integrity can be provided in group communications using stan-dard techniques such as digital signature and message digest. We willnot elaborate upon these techniques since the focus of this paper iskey management.1



size n (measured in terms of the number of messages or thesize of the combined message).Observe that for a point-to-point session, the costs ofsession establishment and key distribution are incurred justonce, at the beginning of the session. A group session, onthe other hand, may persist for a relatively long time withmembers joining and leaving the session. Consequently, thegroup key should be changed frequently. To achieve a highlevel of security, the group key should be changed after everyjoin and leave so that a former group member has no accessto current communications and a new member has no accessto previous communications.Consider a group server that creates a new group keyafter every join and leave. After a join, the new group keycan be sent via unicast to the new member (encrypted withits individual key) and via multicast to existing group mem-bers (encrypted with the previous group key). Thus, chang-ing the group key securely after a join is not too much work.After a leave, however, the previous group key can no longerbe used and the new group key must be encrypted for eachremaining group member using its individual key. Thus wesee that changing the group key securely after a leave in-curs computation and communication costs proportional ton, the same as initial group key distribution. That is, largegroups whose members join and leave frequently pose a scal-ability problem.The topic of secure group communications has been in-vestigated [1, 2, 8, 15]. Also the problem of how to dis-tribute a secret to a group of users has been addressed inthe cryptography literature [3, 5, 7, 18]. However, with theexception of [15], no one has addressed the need for frequentkey changes and the associated scalability problem for a verylarge group. The approach proposed in Iolus [15] to improvescalability is to decompose a large group of clients into manysubgroups and employ a hierarchy of group security agents.1.1 Our approachWe present in this paper a di�erent hierarchical approach toimprove scalability. Instead of a hierarchy of group securityagents, we employ a hierarchy of keys. A detailed compari-son of our approach and the Iolus approach [15] is given inSection 6.We begin by formalizing the notion of a secure group asa triple (U;K;R) where U denotes a set of users, K a setof keys, and R � U �K a user-key relation which speci�eskeys held by each user in U . In particular, each user is givena subset of keys which includes the user's individual key anda group key. We next illustrate how scalability of group keymanagement can be improved by organizing the keys in Kinto a hierarchy and giving users additional keys.Let there be a trusted group server responsible for groupaccess control and key management. In particular, the serversecurely distributes keys to group members and maintainsthe user-key relation.3 To illustrate our approach, con-sider the following simple example of a secure group withnine members partitioned into three subgroups, fu1; u2; u3g,fu4; u5; u6g, and fu7; u8; u9g. Each member is given threekeys, its individual key, a key for the entire group, and akey for its subgroup. Suppose that u1 leaves the group, theremaining eight members form a new secure group and re-quire a new group key; also, u2 and u3 form a new subgroupand require a new subgroup key. To send the new subgroup3In practice, such a server may be distributed or replicated toenhance reliability and performance.

key securely to u2 (u3), the server encrypts it with the indi-vidual key of u2 (u3). Subsequently, the server can send thenew group key securely to members of each subgroup by en-crypting it with the subgroup key. Thus by giving each userthree keys instead of two, the server performs �ve encryp-tions instead of eight. As a more general example, supposethe number n of users is a power of d, and the keys in Kare organized as the nodes of a full and balanced d-ary tree.When a user leaves the secure group, to distribute new keys,the server needs to perform approximately d logd(n) encryp-tions (rather than n � 1 encryptions).4 For a large group,say 100,000, the savings can be very substantial.1.2 Contributions of this paperWith a hierarchy of keys, there are many di�erent waysto construct rekey messages and securely distribute themto users. We investigate three rekeying strategies, user-oriented, key-oriented and group-oriented. We design andspecify join/leave protocols based upon these rekeying stra-tegies. For key-oriented and user-oriented rekeying, whichuse multiple rekey messages per join/leave, we present atechnique for signing multiple messages with a single digitalsignature operation. Compared to using one digital signa-ture per rekey message, the technique provides a tenfold re-duction in the average server processing time of a join/leave.The rekeying strategies and protocols are implemented ina prototype group key server we have built. We performedexperiments on two lightly loaded SGI Origin 200 machines,with the server running on one and up to 8,192 clients on theother. From measurement results, we show that our groupkey management service, using any of the rekeying strategieswith a key tree, is scalable; in particular, the average serverprocessing time per join/leave increases linearly with thelogarithm of group size. We found that the optimal key treedegree is around four. Group-oriented rekeying provides thebest performance of the three strategies on the server side,but is worst of the three on the client side. User-orientedrekeying has the best performance on the client side, butworst on the server side.The balance of this paper is organized as follows. InSection 2, we introduce key graphs as a method for speci-fying secure groups. In Section 3, we present protocols forusers to join and leave a secure group as well as the threerekeying strategies. In Section 4, we present a technique forsigning multiple rekey messages using a single digital sig-nature operation. Experiments and performance results arepresented in Section 5. A comparison of our approach andthe Iolus approach is given in Section 6. Our conclusionsare in Section 7.2 Secure GroupsA secure group is a triple (U;K;R) where� U is a �nite and nonempty set of users,� K is a �nite and nonempty set of keys, and� R is a binary relation between U and K, thatis, R � U � K, called the user-key relation ofthe secure group. User u has key k if and only if(u; k) is in R.4A similar observation was independently made in [20] at aboutthe same time as when this paper was �rst published as a technicalreport [21].2



Each secure group has a trusted group server responsible forgenerating and securely distributing keys in K to users inthe group.5 Speci�cally, the group server knows the user setU and the key set K, and maintains the user-key relationR. Every user in U has a key in K, called its individual key,which is shared only with the group server, and is used forpairwise con�dential communication with the group server.There is a group key in K, shared by the group server andall users in U . The group key can be used by each user tosend messages to the entire group con�dentially.2.1 Key graphsA key graph is a directed acyclic graph G with two typesof nodes, u-nodes representing users and k-nodes represent-ing keys. Each u-node has one or more outgoing edges butno incoming edge. Each k-node has one or more incomingedges. If a k-node has incoming edges only and no outgoingedge, then this k-node is called a root. (A key graph canhave multiple roots.)Given a key graph G, it speci�es a secure group (U;K;R)as follows:i. There is a one-to-one correspondence between Uand the set of u-nodes in G.ii. There is a one-to-one correspondence between Kand the set of k-nodes in G.iii. (u; k) is in R if and only if G has a directed pathfrom the u-node that corresponds to u to the k-node that corresponds to k.
k3

u3 u4

k4k1 k2

u1 u2

k12 k234

k1234

u-nodes

k-nodes

Figure 1: A key graph.As an example, the key graph in Figure 1 speci�es thefollowing secure group:U = fu1; u2; u3; u4gK = fk1; k2; k3; k4; k12; k234; k1234gR = f (u1; k1), (u1; k12), (u1; k1234),(u2; k2), (u2; k12), (u2; k234), (u2; k1234),(u3; k3), (u3; k234), (u3; k1234),(u4; k4), (u4; k234), (u4; k1234) g 2Associated with each secure group (U;K;R) are two func-tions, keyset() and userset (), de�ned as follows:keyset(u) = f k j (u; k) 2 R guserset(k) = f u j (u; k) 2 R gIntuitively, keyset(u) is the set of keys that are held by user5Note that individual keys may have been generated and securelydistributed by an authentication service and do not have to be gen-erated by the group server.

u in U , and userset (k) is the set of users that hold key kin K. For examples, referring to the key graph in Figure 1,we have keyset(u4) = fk4; k234; k1234g and userset(k234) =fu2; u3; u4g.We generalize the de�nition of function keyset() to anysubset U 0 of U , and function userset () to any subset K0 ofK, in a straighforward manner, i.e., keyset(U 0) is the set ofkeys each of which is held by at least one user in U 0, anduserset(K0) is the set of users each of which holds at leastone key in K0.When a user u leaves a secure group (U;K;R), everykey that has been held by u and shared by other usersin U should be changed. Let k be such a key. To re-place k, the server randomly generates a new key knew andsends it to every user in userset(k) except u. To do so se-curely, the server needs to �nd a subset K0 of keys suchthat userset (K0) = userset(k) � fug, and use keys in K0to encrypt knew. To minimize the work of rekeying, theserver would like to �nd a minimal size set K0. This sug-gests the following key-covering problem: Given a securegroup (U;K;R), and a subset S of U , �nd a minimum sizesubset K0 of K such that userset(K0) = S. Unfortunately,the key-covering problem in general is NP-hard [21].2.2 Special classes of key graphsWe next consider key graphs with special structures forwhich the key covering problem can be easily solved.Star: This is the special class of a secure group (U;K;R)where each user in U has two keys: its individual key and agroup key that is shared by every user in U .6Tree: This is the special class of a secure group (U;K;R)whose key graph G is a single-root tree. A tree key graph(or key tree) is speci�ed by two parameters.� The height h of the tree is the length (in numberof edges) of the longest directed path in the tree.� The degree d of the tree is the maximum numberof incoming edges of a node in the tree.Note that since the leaf node of each path is a u-node, eachuser in U has at most h keys. Also the key at the root of thetree is shared by every user in U , and serves as the groupkey. Lastly, it is easy to see that star is a special case oftree.Complete: This is the special class of a secure group(U;K;R), where for every nonempty subset S of U , thereis a key k in K such that userset(k) = S. Let n be thenumber of users in U . There are 2n � 1 keys in K, one foreach of the 2n � 1 nonempty subsets of U . Moreover, eachuser u in U has 2n�1 keys, one for each of the 2n�1 subsetsof U that contains u. Since U is a subset of U , there is a keyshared by every user in U which serves as the group key.The total number of keys held by the server and thenumber of keys held by a user are presented in Table 1 wheren is the size of U . In particular, in the case of a complete keygraph, each user needs to hold 2n�1 keys which is practicalonly for small n. Note that the number of keys in a keytree is dh�1d�1 � dd�1n when the tree is full and balanced (i.e.n = dh�1).6This is the base case where no additional keys are used to improvescalability of group key management.3



Class of key graph Star Tree CompleteTotal number of keys n+1 dd�1n 2n�1Number of keys per user 2 h 2n�1Table 1: Number of keys held by the server and by eachuser.3 Rekeying Strategies and ProtocolsA user u who wants to join (leave) a secure group sends a join(leave) request to the group server, denoted by s. For a joinrequest from user u, we assume that group access control isperformed by server s using an access control list provided bythe initiator of the secure group.7 A join request initiates anauthentication exchange between u and s, possibly with thehelp of an authentication server. If user u is not authorizedto join the group, server s sends a join-denied reply to u.If the join request is granted, we assume that the sessionkey distributed as a result of the authentication exchange[17, 22] will be used as the individual key ku of u. To simplifyprotocol speci�cations below, we use the following notations, u : authenticate u and distribute kuto represent the authentication exchange between server sand user u, and secure distribution of key ku to be sharedby u and s.After each join or leave, a new secure group is formed.Server s has to update the group's key graph by replacingthe keys of some existing k-nodes, deleting some k-nodes (inthe case of a leave), and adding some k-nodes (in the caseof a join). It then securely sends rekey messages containingnew group/subgroup keys to users of the new secure group.(A reliable message delivery system, for both unicast andmulticast, is assumed.) In protocol speci�cations below, wealso use the following notationx! y : zto denote� if y is a single user, the sending of message z fromx to y;� if y is a set of users, the sending of message z fromx to every user in y (via multicast or unicast).In the following subsections, we �rst present protocols forjoining and leaving a secure group speci�ed by a star keygraph. These protocols correspond to conventional rekey-ing procedures informally described in the Introduction [9,10]. We then consider secure groups speci�ed by tree keygraphs. With a hierarchy of group and subgroup keys, rekey-ing after a join/leave can be carried out in a variety ofways. We present three rekeying strategies, user-oriented,key-oriented, and group-oriented, as well as protocols forjoining and leaving a secure group.3.1 Joining a star key graphAfter granting a join request from user u, server s updatesthe key graph by creating a new u-node for u and a newk-node for ku, and attaching them to the root node. Server7The authorization function may be o�oaded to an authorizationserver. In this case, the authorization server provides an authorizeduser with a ticket to join the secure group [16, 23]. The user submitsthe ticket together with its join request to server s.

s also generates a new group key kU0 for the root node,encrypts it with the individual key ku of user u, and sendsthe encrypted new group key to u. To notify other usersof the new group key, server s encrypts the new group keykU0 with the old group key kU , and then multicasts theencrypted new group key to every user in the group. (SeeFigure 2.)(1) u! s : join request(2) s, u : authenticate u and distribute ku(3) s : randomly generate a new group key kU0(4) s! u : fkU0gku(5) s! U : fkU0gkUFigure 2: Join protocol for a star key graph.
k1 k2

u1 u2

k3

u3

k123

���
���
���
���
���

���
���
���
���
���

k1 k2

u1 u2 u4

k4k3

u3

1234k

����
����
����
����
����
����

����
����
����
����
����
����

u4 joins

u4 leavesFigure 3: Star key graphs before and after a join (leave).For example, as shown in Figure 3, suppose user u4 wantsto join the left secure group in the �gure, and it is allowedto join. After server s changes the group key from k123 to anew key k1234, server s needs to send out the following tworekey messages.s! fu1; u2; u3g : fk1234gk123s! u4 : fk1234gk4For clarity of presentation, we have assumed that rekeymessages contain new keys only and secure distributionmeans that the new keys are encrypted just for con�den-tiality. In our prototype implementation, rekey messageshave additional �elds, such as, subgroup labels for new keys,server digital signature, message integrity check, timestamp,etc. (See [21] for rekey message format.)3.2 Leaving a star key graph(1) u! s : f leave-request gku(2) s! u : f leave-granted gku(3) s : randomly generate a new group key kU0(4) for each user v in U except user u dos! v : fkU0gkvFigure 4: Leave protocol for a star key graph.After granting a leave request from user u, server s up-dates the key graph by deleting the u-node for user u andthe k-node for its individual key ku from the key graph.Server s generates a new group key kU0 for the new securegroup without u, encrypts it with the individual key of eachremaining user, and unicasts the encrypted new group keyto the user. (See Figure 4.)4



��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

1-9

k-node x

k123 k456 k789

2k1 k k4 k5 k6 k7 k8 k9

u9u8u7u6u5u4u3u2u1

k

k-node x 1

0

3k

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

leaves9 u 9u joins

1-8

k-node x

k123 k456 k78

2k1 k k4 k5 k6 k7 k8

u8u7u6u5u4u3u2u1

k

k-node x 1

0

3k

Figure 5: Key trees before and after a join (leave).3.3 Joining a tree key graphAfter granting a join request from u, server s creates a newu-node for user u and a new k-node for its individual key ku.Server s �nds an existing k-node (called the joining point forthis join request) in the key tree and attaches k-node ku tothe joining point as its child.To prevent the joining user from accessing past commu-nications, all keys along the path from the joining point tothe root node need to be changed. After generating newkeys for these nodes, server s needs to securely distributethem to the existing users as well as the joining user. Forexample, as shown in Figure 5, suppose u9 is granted tojoin the upper key graph in the �gure. The joining point isk-node k78 in the key graph, and the key of this k-node ischanged to k789 in the new key graph below. Moreover, thegroup key at the root is changed from k1�8 to k1�9. Usersu1; : : : ; u6 only need the new group key k1�9, while usersu7; u8, and u9 need the new group key k1�9 as well as thenew key k789 to be shared by them.To securely distribute the new keys to the users, theserver constructs and sends rekey messages to the users. Arekey message contains one or more encrypted new key(s),and a user needs to decrypt it with appropriate keys in or-der to get the new keys. We next present three di�erentapproaches to construct and send rekey messages.User-oriented rekeying. Consider each user and the subsetof new keys it needs. The idea of user-oriented rekeyingis that for each user, the server constructs a rekey messagethat contains precisely the new keys needed by the user, andencrypts them using a key held by the user.For example, as shown in Figure 5, for user u9 to jointhe upper secure group in the �gure, server s needs to send

the following three rekey messages.s! fu1; : : : ; u6g : fk1�9gk1�8s! fu7; u8g : fk1�9; k789gk78s! u9 : fk1�9; k789gk9Note that users u1; : : : ; u6 need to get the new group keyk1�9. There is no single key that is shared only by u1; : : : ; u6.However, key k1�8 can be used to encrypt the new key k1�9for u1; : : : ; u6 without security breach since users u7 and u8will also get this new group key from another rekey message.User-oriented rekey messages can be constructed as fol-lows. For each k-node x whose key has been changed, sayfrom k to k0, the server constructs a rekey message by en-crypting the new keys of k-node x and all its ancestors (uptothe root) by the old key k. This rekey message is then sentto the subset of users that need precisely these new keys. Ei-ther unicast or subgroup multicast may be used.8 Moreover,one rekey message is sent to the joining user which containsall of the new keys encrypted by the individual key of thejoining user.This approach needs h rekey messages. Counting thenumber of keys encrypted, the encryption cost for the serveris given by1 + 2 + : : :+ h� 1 + h� 1 = h(h+1)2 � 1.Key-oriented rekeying. In this approach, each new key isencrypted individually (except keys for the joining user).For each k-node x whose key has been changed, say from kto k0, the server constructs two rekey messages. First, theserver encrypts the new key k0 with the old key k, and sendsit to userset (k) which is the set of users that share k. All ofthe original users that need the new key k0 can get it fromthis rekey message. The other rekey message contains thenew key k0 encrypted by the individual key of the joininguser, and is sent to the joining user.As described, a user may have to get multiple rekey mes-sages in order to get all the new keys it needs. For example,as shown in Figure 5, for user u9 to join the upper securegroup in the �gure, server s needs to send the following fourrekey messages. Note that users u7; u8; and u9 need to gettwo rekey messages each.s! fu1; : : : ; u8g : fk1�9gk1�8s! u9 : fk1�9gk9s! fu7; u8g : fk789gk78s! u9 : fk789gk9Compared to user-oriented rekeying, the above approachreduces the encryption cost of the server from h(h+1)2 �1 to2(h�1), but it requires 2(h�1) rekey messages instead of h.To reduce the number of rekey messages, all of the rekeymessages for a particular user can be combined and sent asone message. Thus, server s can send the following threerekey messages instead of the four rekey messages shownabove.s! fu1; : : : ; u6g : fk1�9gk1�8s! fu7; u8g : fk1�9gk1�8 ; fk789gk78s! u9 : fk1�9; k789gk9The join protocol based upon this rekeying strategy ispresented in Figure 6. Steps (4) and (5) in Figure 6 spec-ify how the combined rekey messages are constructed anddistributed by server s.Using combined rekey messages, the number of rekeymessages for key-oriented rekeying is h (same as user-8A rekey message can be sent via multicast to a subgroup if amulticast address has been established for the subgroup in addition tothe multicast address for the entire group. Alternatively, the methodin [13] may be used in lieu of allocating a large number of multicastaddresses for subgroups. See Section 7 for more discussion.5



oriented rekeying) while the encryption cost is 2(h � 1).From this analysis, key-oriented rekeying is clearly betterfor the server than user-oriented rekeying. (This conclusionis con�rmed by measurement results presented in Section 5.)(1) u! s : join request(2) s, u : authenticate u and distribute ku(3) s : �nd a joining point and attach ku,let xj denote the joining point, x0 the root,and xi�1 the parent of xi for i = 1; : : : ; j,let Kj+1 denote ku,and K0; : : : ; Kj the old keys of x0; : : : ; xj ,randomly generate new keys K00; : : : ; K0j(4) for i = 0 upto j dolet M = fK00gK0 ; : : : ; fK0igKis! (userset (Ki)� userset(Ki+1)) : M(5) s! u : fK00; : : : ; K0jgkuFigure 6: Join protocol for a tree key graph (key-orientedrekeying).Group-oriented rekeying. In key-oriented rekeying, eachnew key is encrypted individually (except keys for the join-ing user). The server constructs multiple rekey messages,each tailored to the needs of a subgroup. Speci�cally, theusers of a subgroup receive a rekey message containing pre-cisely the new keys each needs.An alternative approach, called group-oriented, is for theserver to construct a single rekey message containing all newkeys. This rekey message is then multicasted to the en-tire group. Clearly such a rekey message is relatively largeand contains information not needed by individual users.However, scalability is not a concern because the messagesize is O(logd(n)) for group size n and key tree degree d.The group-oriented approach has several advantages overkey-oriented and user-oriented rekeying. First, there is noneed for subgroup multicast. Second, with fewer rekey mes-sages, the server's per rekey message overheads are reduced.Third, the total number of bytes transmitted by the serverper join/leave request is less than those of key-oriented anduser-oriented rekeying which duplicate information in rekeymessages. (See Section 5 and Section 7 for a more thoroughdiscussion on performance comparisons.)For example, as shown in Figure 5, for user u9 to jointhe upper secure group in the �gure, server s needs to sendthe following two rekey messages; one is multicasted to thegroup, and the other is unicasted to the joining user.s! fu1; : : : ; u8g : fk1�9gk1�8 ; fk789gk78s! u9 : fk1�9; k789gk9The join protocol based upon group-oriented rekeying ispresented in Figure 7. This approach reduces the numberof rekey messages to one multicast message and one unicastmessage, while maintaining the encryption cost at 2(h� 1)(same as key-oriented rekeying).(1) - (3) (same as Figure 6)(4) s! userset(K0) : fK00gK0 ; : : : ; fK0jgKj(5) s! u : fK00; : : : ; K0jgkuFigure 7: Join protocol for a tree key graph (group-orientedrekeying).

3.4 Leaving a tree key graphAfter granting a leave request from user u, server s updatesthe key graph by deleting the u-node for user u and the k-node for its individual key from the key graph. The parentof the k-node for its individual key is called the leaving point.To prevent the leaving user from accessing future com-munications, all keys along the path from the leaving pointto the root node need to be changed. After generating newkeys for these k-nodes, server s needs to securely distributethem to the remaining users. For example, as shown in Fig-ure 5, suppose u9 is granted to leave the lower key graph inthe �gure. The leaving point is the k-node for k789 in thekey graph, and the key of this k-node is changed to k78 inthe new key graph above. Moreover, the group key is alsochanged from k1�9 to k1�8. Users u1; : : : ; u6 only need toknow the new group key k1�8. Users u7 and u8 need toknow the new group key k1�8 and the new key k78 sharedby them.To securely distribute the new keys to users after a leave,we revisit the three rekeying strategies.User-oriented rekeying In this approach, each user gets arekey message in which all the new keys it needs are en-crypted using a key it holds. For example, as shown inFigure 5, for user u9 to leave the lower secure group in the�gure, server s needs to send the following four rekey mes-sages.s! fu1; u2; u3g : fk1�8gk123s! fu4; u5; u6g : fk1�8gk456s! u7 : fk1�8; k78gk7s! u8 : fk1�8; k78gk8User-oriented rekey messages for a leave can be con-structed as follows. For each k-node x whose key has beenchanged, say from k to k0, and for each unchanged child yof x, the server constructs a rekey message by encryptingthe new keys of k-node x and all its ancestors (upto theroot) by the key K of k-node y. This rekey message is thenmulticasted to userset(K).This approach requires (d � 1)(h � 1) rekey messages.The encryption cost for the server is given by(d� 1)(1 + 2 + : : :+ h� 1) = (d�1)h(h�1)2 .Key-oriented rekeying In this approach, each new key isencrypted individually. For example, as shown in Figure 5,for user u9 to leave the lower secure group in the �gure,server s needs to send the following four rekey messages.s! fu1; u2; u3g : fk1�8gk123s! fu4; u5; u6g : fk1�8gk456s! u7 : fk1�8gk78 ; fk78gk7s! u8 : fk1�8gk78 ; fk78gk8The leave protocol based upon key-oriented rekeying ispresented in Figure 8. Step (4) in Figure 8 speci�es how therekey messages are constructed and distributed to users.Note that by storing encrypted new keys for use in dif-ferent rekey messages, the encryption cost of this approachis d(h � 1), which is much less than that of user-orientedrekeying. The number of rekey messages is (d � 1)(h � 1),same as user-oriented rekeying.Group-oriented rekeying. A single rekey message is con-structed containing all new keys. For example, as shown inFigure 5, for user u9 to leave the lower secure group in the�gure, server s needs to send the following rekey message:6



(1) u! s : f leave-request gku(2) s! u : f leave-granted gku(3) s : �nd the leaving point (the parent of ku),remove ku from the tree,let xj+1 denote the deleted k-node for ku,xj the leaving point, x0 the root,and xi�1 the parent of xi for i = 1; : : : ; j,randomly generate keys K00; : : : ; K0jas the new keys of x0; : : : ; xj(4) for i = 0 upto j dofor each child y of xi dolet K denote the key at k-node yif y 6= xi+1 then dolet M = fK0igK ; fK0i�1gK0i ; : : : ; fK00gK01s! userset (K) : MFigure 8: Leave protocol for a tree key graph (key-orientedrekeying).let L0 denote fk1�8gk123 ; fk1�8gk456 ; fk1�8gk78let L1 denote fk78gk7 ; fk78gk8s! fu1; : : : ; u8g : L0; L1Note that for a leave, this single rekey message is aboutd times bigger than the rekey message for a join, where d isthe average degree of a k-node.The leave protocol based upon group-oriented rekeyingis presented in Figure 9. This approach uses only one rekeymessage which is multicasted to the entire group, and theencryption cost is d(h� 1), same as key-oriented rekeying.(1) - (3) (same as Figure 8)(4) for i = 0 upto j dolet fz1; : : : ; zrg be the set of the children of xilet J1; : : : ; Jr denote the keys at z1; : : : ; zrlet Li denote fK0igJ1 ; : : : ; fK0igJrs! userset (K00) : L0; : : : ; LjFigure 9: Leave protocol for a tree key graph (group-orientedrekeying).3.5 Cost of encryptions and decryptionsAn approximate measure of the computational costs of theserver and users is the number of key encryptions and de-cryptions required by a join/leave operation. Let n be thenumber of users in a secure group. For each join/leave op-eration, the user that requests the operation is called therequesting user, and the other users in the group are non-requesting users. For a join/leave operation, we tabulate thecost of a requesting user in Table 2(a), the cost of a non-requesting user in Table 2(b), and the cost of the server inTable 2(c). These costs are from the protocols describedabove for star and tree key graphs, and from [21] for com-plete key graphs. (Key-oriented or group-oriented rekeyingis assumed for tree key graphs.)For a key tree, recall that d and h denote the degreeand height of the tree respectively. In this case, for a non-requesting user u, the average cost of u for a join or a leaveis less than dd�1 which is independent of the size of the tree(derivation in [21]).Assuming that the number of join operations is the sameas the number of leave operations, the average costs peroperation are tabulated in Table 3 for the server and a userin the group.

(a) the requesting userStar Tree Completejoin 1 h�1 2nleave 0 0 0(b) a non-requesting userStar Tree Completejoin 1 dd�1 2n�1leave 1 dd�1 0(c) the serverStar Tree Completejoin 2 2(h�1) 2n+1leave n�1 d(h�1) 0Table 2: Cost of a join/leave operation.cost Star Tree Completecost of the server n=2 (d+ 2)(h� 1)=2 2ncost of a user 1 d=(d� 1) 2nTable 3: Average cost per operation.From Table 3, it is obvious that complete key graphsshould not be used. On the other hand, scalable group keymanagement can be achieved by using tree key graphs. Notethat for a full and balanced d-ary tree, the average servercost is (d+2)(h� 1)=2 = (d+2)(logd(n))=2. However, eachuser has to do slightly more work (from 1 to dd�1 ). For d = 4,a user needs to do 1:33 decryptions on the average insteadof one. (It can be shown that the server cost is minimizedfor d = 4, i.e., the optimal degree of key trees is four.)4 Technique for Signing Rekey MessagesIn our join/leave protocols, each rekey message contains oneor more new keys. Each new key, destined for a set of users,is encrypted by a key known only to these users and theserver. It is possible for a user to masquerade as the serverand send out rekey messages to other users. Thus if userscannot be trusted, then each rekey message should be digi-tally signed by the server.We note that a digital signature operation is around twoorders of magnitude slower than a key encryption using DES.For this reason, it is highly desirable to reduce the number ofdigital signature operations required per join/leave. If eachrekey message is signed individually, then group-orientedrekeying, using just one rekey message per join/leave, wouldbe far superior to key-oriented (user-oriented) rekeying,which uses many rekey messages per join/leave.Consider m rekey messages, M1; : : : ;Mm, with messagedigests, di = h(Mi) for i = 1; : : : ;m, where h() is a securemessage digest function such as MD5. The standard way toprovide authenticity is for the server to sign each messagedigest (with its private key) and send the signed messagedigest together with the message. This would require mdigital signature operations for m messages.We next describe a technique, implemented in our pro-totype key server, for signing a set of messages using justa single digital signature operation. The technique is basedupon a scheme proposed by Merkle [14].Suppose there are four messages with message digestsd1; d2; d3, and d4. Construct message D12 containing d1and d2, and compute message digest d12 = h(D12). Simi-larly, construct message D34 containing d3 and d4, and com-pute message digest d34 = h(D34). Then construct message7



key tree one signature per rekey msg one signature for all rekey msgsdegree 4 msg size (byte) proc time (msec) msg size (byte) proc time (msec)join leave join leave ave join leave join leave aveuser 263.1 233.8 76.7 204.6 140.6 312.8 306.9 13.6 17.1 15.3key 303.0 270.9 76.3 203.8 140.1 352.8 344.0 13.1 15.9 14.5group 525.5 1005.7 11.9 12.0 11.9 525.5 1005.7 11.9 12.0 11.9Table 4: Average rekey message size and server processing time (n=8192, DES, MD5, RSA)
0

0.5

1

1.5

2

2.5

3

3.5

4

32 64 128 256 512 1024 2048 4096 8192

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

group size

user-oriented
key-oriented

group-oriented

10

11

12

13

14

15

16

32 64 128 256 512 1024 2048 4096 8192

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

group size

user-oriented
key-oriented

group-oriented

(a) with encryption only (b) with encryption and signatureFigure 10: Server processing time per request vs group size (key tree degree 4).D1�4 containing d12 and d34, and compute message digestd1�4 = h(D1�4). The server signs message digest d1�4 withits private key. The server then sends the signed messagedigest, sign(d1�4), together with D1�4, D34, and M4 to auser that needs M4.The user veri�es, by �rst decrypting sign(d1�4), thatd1�4 = h(D1�4). Subsequently, the user veri�es that d34in D1�4 is equal to h(D34), and also d4 in D34 is equal toh(M4), which assures thatM4 was indeed sent by the server.The above example can be easily extended to m messagesin general.The bene�ts of this technique for signing rekey messagesare demonstrated in Table 4 for both key-oriented and user-oriented rekeying. (Note that it is not needed by group-oriented rekeying which uses one rekey message per join/leave.) The average rekey message size per join/leave isshown, as well as the server's processing time per join/leave(ave denotes the average of average join and leave process-ing times). The experiments were performed for an initialgroup size of 8192, with DES-CBC encryption, MD5 mes-sage digest, and RSA digital signature (512-bit modulus).Additional details of our experimental setup can be foundin Section 5. With the technique for signing rekey mes-sages, the processing time reduction for key-oriented anduser-oriented rekeying is about a factor of ten (for exam-ple, 14.5 msec versus 140.1 msec in the case of key-orientedrekeying). There is however a small increase (around 50-70bytes) in the average rekey message size.5 Experiments and Performance ComparisonsWe have designed and constructed a prototype group keyserver, as well as a client layer, which implement join/leaveprotocols for all three rekeying strategies in Section 3 andthe technique for signing rekey messages in Section 4.We performed a large number of experiments to evaluate

the performance of the rekeying strategies and the techniquefor signing rekey messages. The experiments were carriedout on two lightly loaded SGI Origin 200 machines runningIRIX 6.4. The machines were connected by a 100 MbpsEthernet. The group key server process runs on one SGImachine. The server is initialized from a speci�cation �lewhich determines the inital group size, the rekeying strat-egy, the key tree degree, the encryption algorithm, the mes-sage digest algorithm, the digital signature algorithm, etc.A client-simulator runs on the other SGI simulating a largenumber of clients. Actual rekey messages, as well as join,join-ack, leave, leave-ack messages, are sent between indi-vidual clients and the server using UDP over the 100 MbpsEthernet. Cryptographic routines from the publicly avail-able CrytoLib library are used [11].For each experiment with an initial group size n, theclient-simulator �rst sent n join requests, and the serverbuilt a key tree. Then the client-simulator sent 1000 join/leave requests. The sequence of 1000 join/leave requests wasgenerated randomly according to a given ratio (the ratio was1:1 in all our experiments to be presented). Each experi-ment was performed with three di�erent sequences of 1000join/leave requests. For fair comparisons (between di�erentrekeying strategies, key trees of di�erent degrees, etc.), thesame three sequences were used for a given group size. Theserver employs a heuristic that attempts to build and main-tain a key tree that is full and balanced. However, since thesequence of join/leave requests is randomly generated, it isunlikely that the tree is truly full and balanced at any time.To evaluate the performance of di�erent rekeying strate-gies as well as the technique for signing rekey messages, wemeasured rekey message sizes (in bytes) and processing time(in msec) used by the server per join/leave request. Specif-ically, the processing time per join/leave request consists ofthe following components. First, the server parses a request,traverses the key graph to determine which keys are to beupdated, generates new keys, and updates the key graph.8



key tree rekey msg size (byte) no. of rekey msgsdegree 4 per join per leave per join per leaveave min max ave min max ave min max ave min maxuser 312.8 196 552 306.9 228 412 7.00 6 7 19.02 18 20key 352.8 212 616 344.0 244 476 7.00 6 7 19.02 18 20group 525.5 356 564 1005.7 968 1076 1.00 1 1 1.00 1 1key tree rekey msg size (byte) no. of rekey msgsdegree 8 per join per leave per join per leaveave min max ave min max ave min max ave min maxuser 287.3 196 496 285.9 228 356 5.00 4 5 29.01 28 30key 319.3 212 544 314.3 244 404 5.00 4 5 29.01 28 30group 464.5 284 492 1293.1 1256 1364 1.00 1 1 1.00 1 1key tree rekey msg size (byte) no. of rekey msgsdegree 16 per join per leave per join per leaveave min max ave min max ave min max ave min maxuser 274.0 180 452 282.4 244 344 4.00 3 4 46.01 45 47key 302.0 196 492 306.6 260 384 4.00 3 4 46.01 45 47group 427.8 248 456 1869.1 1832 1940 1.00 1 1 1.00 1 1Table 5: Number and size of rekey messages, with encryption and signature, sent by the server (initial group size 8192)Second, the server performs encryption of new keys and con-structs rekey messages. Third, if message digest is speci�ed,the server computes message digests of the rekey messages.Fourth, if digital signature is speci�ed, the server computesmessage digests and a digital signature as described in Sec-tion 4. Lastly, the server sends out rekey messages as UDPpackets using socket system calls.9The server processing time per request (averaged overjoins and leaves) versus group size (from 32 to 8192) is shownin Figure 10. Note that the horizontal axis is in log scale.The left �gure is for rekey messages with DES-CBC encryp-tion only (no message digest and no digital signature). Theright �gure is for rekey messages with DES-CBC encryption,MD5 message digest, and RSA-512 digital signature. Thekey tree degree was four in all experiments. We concludefrom the experimental results that our group key manage-ment service is scalable to very large groups since the pro-cessing time per request increases (approximately) linearlywith the logarithm of group size for all three rekeying strate-gies. Other experiments support the same conclusion for keytree degrees of 8 and 16.The average server processing time versus key tree de-gree is shown in Figure 11. These experimental results illus-trate three observations. First, the optimal degree for keytrees is around four. Second, with respect to server process-ing time, group-oriented rekeying has the best performance,with key-oriented rekeying in second place. Third, signingrekey messages increases the server processing time by anorder of magnitude (it would be another order of magnitudemore for key-oriented and user-oriented rekeying without aspecial technique for signing multiple messages). The lefthand side of the �gure is for rekey messages with DES-CBCencryption only (no message digest and no digital signature).The right hand side of the �gure is for rekey messages withDES-CBC encryption, MD5 message digest, and RSA-512digital signature. The initial group size was 8192 in theseexperiments.9The processing time is measured using the UNIX system callgetrusage() which returns processing time (including time of sys-tem calls) used by a process. In the results presented herein, theprocessing time for a join request does not include any time used toauthenticate the requesting user (i.e., step (2) in the join protocolsof Figure 6 and Figure 7). We feel that any authentication overheadshould be accounted for separately.

key tree rekey msg size (byte) no. of rekeydegree 4 per join per leave msgs perave ave join/leaveuser 209.3 237.4 1key 227.9 256.0 1group 525.5 1005.7 1key tree rekey msg size (byte) no. of rekeydegree 8 per join per leave msgs perave ave join/leaveuser 200.0 242.0 1key 217.2 259.2 1group 464.5 1293.1 1key tree rekey msg size (byte) no. of rekeydegree 16 per join per leave msgs perave ave join/leaveuser 197.8 246.7 1key 214.3 263.2 1group 427.8 1869.1 1Table 6: Number and size of rekey messages, with encryp-tion and signature, received by a client (initial group size8192)Table 5 presents the size and number of rekey messagessent by the server. Note that group-oriented rekeying uses asingle large rekey message per request (sent via group mul-ticast), while key-oriented and user-oriented rekeying usemultiple smaller rekey messages per request (sent via sub-group multicast or unicast).10 Note that the total numberof bytes per join/leave transmitted by the server is muchhigher in key-oriented and user-oriented rekeying than ingroup-oriented rekeying.Table 6 presents the size and number of rekey messagesreceived by a client. Only the average message sizes areshown, because the minimum and maximum sizes are thesame as those in Table 5. Note that each client gets exactlyone rekey message for all three rekeying strategies. For key-oriented and user-oriented rekeying, the average messagesize is smaller than the corresponding average message sizein Table 5. The is because the average message size here10The experiments reported herein were performed with each rekeymessage sent just once by the server via subgroup multicast.9



0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

10

12

14

16

18

20

22

24

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

(a) per join with encryption only (d) per join with encryption and signature

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

10

12

14

16

18

20

22

24

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

(b) per leave with encryption only (e) per leave with encryption and signature

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

10

12

14

16

18

20

22

24

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

(c) per request with encryption only (f) per request with encryption and signatureFigure 11: Server processing time vs key tree degree (initial group size 8192).was calculated over all clients, and many more clients re-ceived small rekey messages than clients that received largerekey messages. The results in this table show that group-oriented rekeying, which has the best performance on theserver side, requires more work on the client side to processa larger message than key-oriented and user-oriented rekey-ing. The average rekey message size on the client side is thesmallest in user-oriented rekeying.From the contents of rekey messages, we counted andcomputed the average number of key changes by a client
per join/leave request, which is shown in Figure 12. Thetop �gure shows the average number of key changes versusthe key tree degree, and the bottom �gure shows the averagenumber of key changes versus the initial group size of eachexperiment. Note that the average number of key changes bya client is relatively small, and is very close to the analyticalresult, d=(d� 1) shown in Table 3 in Section 3.

10



1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12 14 16

nu
m

be
r 

of
 k

ey
 c

ha
ng

es

key tree degree

n = 1024
n = 2048
n = 4086
n = 8192
analysis

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

32 64 128 256 512 1024 2048 4096 8192

nu
m

be
r 

of
 k

ey
 c

ha
ng

es

group size

tree degree is 4
tree degree is 8

tree degree is 16

Figure 12: Number of key changes by a client per request.6 Related WorkThe scalability problem of group key management for alarge group with frequent joins and leaves was previously ad-dressed by Mittra with his Iolus system [15]. Both Iolus andour approach solve the scalability problem by making use ofa hierarchy. The similarity, however, ends here. The systemarchitectures are very di�erent in the two approaches. Wenext compare them by considering a tree hierarchy with asingle root (i.e., a single secure group).Iolus's tree hierarchy consists of clients at the leaves withmultiple levels of group security agents (agents, in short)above. For each tree node, the tree node (an agent) and itschildren (clients or lower-level agents) form a subgroup andshare a subgroup key. There is no globally shared group key.Thus a join and leave in a subgroup does not a�ect othersubgroups; only the local subgroup key needs to be changed.Our tree hierarchy consists of keys, with individual keysat leaves, the group key at the root, and subgroup keyselsewhere. There is a single key server for all the clients.There are no agents, but each client is given multiple keys(its individual key, the group key, and some subgroup keys).In comparing the two approaches, there are several issuesto consider: performance, trust, and reliability.Performance. Roughly speaking, since both approachesmake use of a hierarchy, both attempt to change a O(n)problem into a O(log(n)) problem where n denotes groupsize. They di�er however in where and when work is per-formed to achieve secure rekeying when a client joins/leavesthe secure group.Secure rekeying after a leave requires more work thanafter a join because, unlike a join, the previous group key

cannot used and n rekey messages are required (this is re-ferred to in [15] as a 1 does not equal n type problem).This is precisely the problem solved by using a hierarchy inboth approaches.The main di�erence between Iolus and our approach is inhow the 1 a�ects n type problem [15] is addressed. In ourapproach, every time a client joins/leaves the secure group arekeying operation is required which a�ects the entire group.Note that this is not a scalability concern in our approachbecause the server cost is O(log(n)) and the client cost isO(1).In Iolus, there is no globally shared group key with theapparent advantage that whenever a client joins/leaves asubgroup only the subgroup needs to be rekeyed. However,for a client to send a message con�dentially to the entiregroup, the client needs to generate a message key for en-crypting the message and the message key has to be securelydistributed to the entire group via agents. Each agent de-crypts using one subgroup key to retrieve the message keyand reencrypts it with another subgroup key for forwarding[15].That is, most of the work in handling the 1 a�ects ntype problem is performed in Iolus when a client sends amessage con�dentially to the entire group (rather than whena client joins/leaves the group). In our approach, most ofthe work in handling the 1 a�ects n type problem is per-formed when a client joins/leaves the secure group (ratherthan when a client sends messages con�dentially to the en-tire group).Trust. Our architecture requires a single trusted entity,namely, the key server. The key server may be replicatedfor reliability/performance enhancement, in which case, sev-eral trusted entities are needed. Each trusted entity shouldbe protected using strong security measures (e.g. physicalsecurity, kernel security, etc.). In Iolus, however, there aremany agents and all of the agents are trusted entities. Thusthe level of trust required of the system components is muchgreater in Iolus than in our approach.Reliability. In Iolus, agents are needed to securely forwardmessage keys. When an agent fails, a backup is needed.It would appear that replicating a single key server (in ourapproach) to improve reliability is easier than backing up alarge number of agents.117 ConclusionsWe present three rekeying strategies, user-oriented, key-oriented and group-oriented and specify join/leave proto-cols based upon these strategies. For key-oriented and user-oriented rekeying, which use multiple rekey messages perjoin/leave, we present a technique for signing multiple mes-sages with a single digital signature operation. Compared tousing one digital signature per rekey message, the techniqueprovides a tenfold reduction in the average server processingtime of a join/leave.The rekeying strategies and protocols are implementedin a prototype group key server we have built. From mea-surement results of a large number of experiments, we con-clude that our group key management service using any ofthe three rekeying strategies is scalable to large groups withfrequent joins and leaves. In particular, the average serverprocessing time per join/leave increases linearly with the11Craig Partridge observed that agents can be implemented in ex-isting �rewalls and derive their reliability and trustworthiness fromthose of �rewalls.11



logarithm of group size. We found that the optimal key treedegree is around four.On the server side, group-oriented rekeying provides thebest performance, with key-oriented rekeying in secondplace, and user-oriented rekeying in third place. On theclient side, user-oriented rekeying provides the best per-formance, with key-oriented rekeying in second place, andgroup-oriented rekeying in third place. In particular, for avery large group whose clients are connected to the networkvia low-speed connections (modems), key-oriented or user-oriented rekeying would be more appropriate than group-oriented rekeying.We next consider the amount of network tra�c gener-ated by the three rekeying strategies. With group-orientedrekeying, a single rekey message is sent per join/leave viamulticast to the entire group, the network load generatedwould depend upon the network con�guration (local areanetwork, campus network, wide area Internet, etc.) andthe group's geographic distribution. With key-oriented anduser-oriented rekeying, many smaller rekey messages are sentper join/leave to subgroups. If the rekey messages are sentvia unicast (because the network provides no support forsubgroup multicast), the network load generated would bemuch greater than that of group-oriented rekeying.It is possible to support subgroup multicast by themethod in [13] or by allocating a large number of multi-cast addresses, one for each subgroup that share a key inthe key tree being used. A more practical approach, how-ever, is to allocate just a small number of multicast addresses(e.g., one for each child of the key tree's root node) and usea rekeying strategy that is a hybrid of group-oriented andkey-oriented rekeying. It is straightforward to design sucha hybrid strategy and specify the join/leave protocols. Fur-thermore a hybrid approach, involving the use of some Iolusagents at certain locations, such as �rewalls, may also beappropriate.Lastly, the reader may wonder why we use key graphs tospecify a secure group even though key trees are su�cientfor scalable management of a group key. This is because weare constructing a group key management service for appli-cations that require the formation of multiple secure groupsover a population of users and a user can join several securegroups. For these applications, the key trees of di�erentgroup keys are merged to form a key graph [12].AcknowledgementWe thank Craig Partridge for his constructive comments inshepherding the �nal revision of this paper.References[1] Tony Ballardie. Scalable Multicast Key Distribution,RFC 1949, May 1996.[2] Tony Ballardie and Jon Crowcroft. Multicast-Speci�cSecurity Threats and Counter-Measures. In ProceedingsSymposium on Network and Distributed System Secu-rity, 1995.[3] Shimshon Berkovits. How to Broadcast a Secret. InD.W. Davies, editor, Advances in cryptology, EURO-CRYPT '91, volume 547 of Lecture Notes in ComputerScience, pages 535{541. Springer Verlag, 1991.[4] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten,R. Molva, and M. Yung. The KryptoKnight family oflight-weight protocols for authentication and key distri-bution. IEEE/ACM Transactions on Networking, 3(1),February 1995.

[5] Guang-Huei Chiou and Wen-Tsuen Chen. SecureBroadcasting Using the Secure Lock. IEEE Transac-tions on Software Engineering, 15(8):929{934, August1989.[6] Stephen E. Deering. Multicast Routing in Internet-works and Extended LANs. In Proceedings of ACMSIGCOMM '88, August 1988.[7] Amos Fiat and Moni Naor. Broadcast Encryption.In Douglas R. Stinson, editor, Advances in cryptology,CRYPTO '93, volume 773 of Lecture Notes in Com-puter Science, pages 480{491. Springer Verlag, 1994.[8] Li Gong. Enclaves: Enabling Secure Collaboration overthe Internet. IEEE Journal on Selected Areas in Com-munications, pages 567{575, April 1997.[9] H. Harney and C. Muckenhirn. Group Key ManagementProtocol (GKMP) Architecture, RFC 2094, July 1997.[10] H. Harney and C. Muckenhirn. Group Key ManagementProtocol (GKMP) Speci�cation, RFC 2093, July 1997.[11] J. B. Lacy, D. P. Mitchell, and W. M. Schell. CryptoLib:cryptography in software. In Proceedings of USENIX:4th UNIX Security Symposium, October 1993.[12] Simon S. Lam and Chung Kei Wong. Keystone: AGroup Key Management Service. Work in progress,Department of Computer Sciences, The University ofTexas at Austin.[13] Brian Neil Levine and J.J. Garcia-Luna-Aceves. Im-proving Internet Multicast with Routing Labels. InProceedings of International Conference on NetworkProtocols, 1997.[14] Ralph C. Merkle. A Certi�ed Digital Signature. InAdvances in Cryptology - CRYPTO '89, 1989.[15] Suvo Mittra. Iolus: A Framework for Scalable SecureMulticasting. In Proceedings of ACM SIGCOMM '97,1997.[16] B. Cli�ord Neuman. Proxy-Based Authorization andAccounting for Distributed Systems. In Proceedings of13th International Conference on Distributed Comput-ing Systems, pages 283{291, May 1993.[17] Jennifer G. Steiner, Cli�ord Neuman, and Je�rey I.Schiller. Kerberos: An Authentication Service for OpenNetwork Systems. In USENIX Winter Conference,pages 191{202, February 1988.[18] D.R. Stinson. On Some Methods for UnconditionallySecure Key Distribution and Broadcast Encryption.Designs, Codes and Cryptography, (12):215{243, 1997.[19] J.J. Tardo and K. Alagappan. SPX: Global authentica-tion using public key certi�cates. In Proceedings of 12thIEEE Symposium on Research in Security and Privacy,pages 232{244, May 1991.[20] Debby M. Wallner, Eric J. Harder, and Ryan C. Agee.Key Management for Multicast: Issues and Architec-tures. Working draft, National Security Agency, July1997.[21] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam.Secure Group Communications Using Key Graphs.Technical Report TR 97-23, Department of ComputerSciences, The University of Texas at Austin, July 1997.[22] Thomas Y.C. Woo, Raghuram Bindignavle, ShaowenSu, and Simon S. Lam. SNP: An interface for securenetwork programming. In Proceedings of USENIX'94Summer Technical Conference, June 1994.[23] Thomas Y.C. Woo and Simon S. Lam. Designing a Dis-tributed Authorization Service. In Proceedings IEEEINFOCOM '98, San Francisco, March 1998.12


