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Abstract

Domain Models [8, 9, 25] have long been used as a basis for software development and reuse.
We present a specialized, simplified domain model that has been used for system testing in industry
as the framework for a system testing approach we call Application Domain Based Testing. Sleuth,
a test suite generation tool, is based on this concept. We report on the domain analysis, the domain
model components, and industrial experience of reusing domain models and tests generated with
Sleuth.
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1 Introduction

System test is typically the last step before release or beta-test of a software product. Sys-

tem tests examine a software product against requirements and specifications [7, 20]. Many

testers also derive tests primarily from user manuals. When software development is based

on a domain model, the software could be tested using the domain model specification and

the specifics of the user interface [3, 4]. To analyze, design, and implement a system, de-

velopers need detailed domain model specifications, well defined abstractions, and rules for

extending the domain model into new problem domains. In contrast, system testers may not

need all features of the domain model and therefore could rely on a subset, especially since

system testing is usually black box. In addition, when the objective is to merely generate

system level tests rather than automate both test generation as well as validation of exe-

cuted tests, the domain model can be further simplified, as it will not need information for

test validation.
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This chapter explores the use of a simplified domain analysis technique and domain

model as a framework for system testing. The domain model describes semantics of the

application that are relevant for testing. It also captures user interface specifics, such as

command language syntax or a formal, syntactic model of the GUI [35]. We propose a

domain analysis technique and an associated domain model for testing software and soft-

ware/hardware systems with a command language interface. The technique was also ap-

plied to a transaction processing system [36] to show that it is suitable for testing telecom-

munication systems and databases, as well. The purpose of the specialized domain model

is to generate tests for a domain while accommodating a flexible set of test objectives. Test

objectives are taken into account by building test subdomains and by adding test criteria

rules to the test case generation method.

Application Domain Based Testing addresses the need of software testers for a tool that

supports their thought processes. Test generation addresses three levels of abstraction: the

process level (i.e., how the target software commands are put together into scripts to achieve

high level tasks), the command level (i.e., which specific commands are included in the

scripts), and the parameter level (i.e., particular parameter values used in command tem-

plates).

The next section describes approaches used in software testing. Section 3 introduces a

mass storage device which was used in an extensive empirical study of application domain

based testing. Section 4 presents an explanation of the domain analysis for testing purposes,

the components of the resulting domain model, and a model of the domain capture process.

The application domain model (including the syntax) is the information the test generation

tool uses to generate tests. Section 5 explains the test generation process. Section 6 presents

a brief look at the test generation tool, Sleuth [39], and the methods it employs [41]. One

of the purposes of domain models is their reuse potential. This is no different when a do-

main model is used for testing. Section 7 explores the reuse potential of this approach to
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system testing and relates case study data from an industrial application at Storage Tech-

nology Corporation (StorageTek). Reuse occurred at two levels, the domain level and the

test suite level. Conclusions summarize our experiences with this system testing approach

to date and point to open research questions in the area.

2 System Testing Approaches

For systems with a command language interface, system tests consist of sequences of com-

mands to test the system for correct behavior. Similarly, transaction based or request ori-

ented systems can be tested by generating transactions or requests. Traditionally, test au-

tomation for both command language and transaction based systems is based on a variety

of grammars or state machine representations.

2.1 Grammar-based Test Generation

Grammar based test generation represents each command using a grammar, generates sen-

tences (commands) from the grammar, and runs the list of commands as the test case (for

early work see [32, 5]). When generating a test case from a context free grammar, the gener-

ator has to decide which grammar productions to use and which choices within a production

to select in deriving terminal symbols (the test case).

2.1.1 Generation Assuring Production Coverage

Purdom [32] resolves this through test criteria rules: Each production in the grammar is

used at least once. In addition, the algorithm prefers short sentences when there is choice.

In generating sentences, the algorithm uses two types of information,� the production rule to use next on any of the nonterminals so that the shortest terminal

string can be derived; and� the production rule to use next to introduce a nonterminal that also ensures that the

shortest sentence is derived which uses that nonterminal in its derivation.
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Grammar Example sentences
1. S !< E > i+i
2. < E >!< E > + < T > (i+i) " i
3. < E >!< T > i " i
4. < T >!< P >"< T > (i) " i+i
5. < T >!< P >
6. < P >! ( < E > )
7. < P >! i

Table 1: Context free grammar and sample derivations[32]

The left column of table 1 shows an example of a simple grammar for arithmetic ex-

pressions [13]. S is the start symbol, < E >, < T >, and < P > are nonterminals, i, +,", (, ) are terminal symbols. The right column shows possible derivations. The last is the

one that would be derived with Purdom’s algorithm [32]. It is also the only sentence needed

to fulfill his testing criterion, as it uses all productions of the grammar. Purdom used this

method to test parsers.

2.1.2 Attribute Grammars

When using grammars for test case generation, we also need to address command language

semantics ([6, 11, 15, 23]. One way to do this is to use attribute grammars for test case

generation ([15], [40]). The syntax and semantics of the command language are encoded

as grammar productions. Test case generation is a single stage algorithm.

Duncan and Hutchison [15] used an attributed, context-free grammar to formally de-

scribe classes of inputs and outputs based on a design description for the purpose of gen-

erating large classes of test inputs and expected outputs. Test cases should be semantically

meaningful. As in other grammar-based approaches, the basic syntax is given in the form of

an EBNF (e. g. table 1). To this basic grammar, Duncan and Hutchison [15] add additional

information to capture sematic rules and expected output. Attributes incorporate context-

sensitive information, such as relationships between parameters of a command language
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(non-terminals of the grammar). When processing attributes, designators assign values to

attributes. They are expressed as individual values, ranges, or boolean conditions. Guards

are boolean expressions used in attribute processing. They can involve inherited attributes

of a left-hand side nonterminal, synthesized attributes of symbols to the left of the predicate

in a production rule, or the value of the current terminal and any of its synthesized attributes.

Also associated with the right-hand side of grammar productions are action routines.

They produce the expected output associated with the generated test input (the sentence de-

rived using the grammar). This is called grammar output value. In effect, the attributed

grammar provides a partial specification of the system under test. This specification can

get quite complex. Not surprisingly, this approach had scaling problems and thus could not

be used for large systems [22]. As systems to be tested become more complex, the gram-

mars do, too. This limits performance, but also means that for the average system tester

these grammars are difficult to write and maintain and that the generation process does not

follow the test engineers’ thought processes, particularly in terms of testing goals and re-

finement of these goals at successive levels of abstraction.

In addition, heuristics need to be defined to guide the generation process during sentence

derivation in the choice of productions and attributes. Duncan and Hutchison [15] consider

this an open problem related to grammar based test generation.

1. testcase! [#N in 0..MAX N] @init sort input(N)
2. sort input(N)! fN: [#j in 1..MAXBUCKETS] ‘‘element’’(J)

@put terminal(J)g ‘‘end input’’ @put end

Table 2: Attributed test grammar for sort program [15]

Table 2 shows an example of an attributed grammar to test a sort routine [15]. In the

first production, # N is a designator (used for choosing the length of the vector to be se-

lected, the in clause specifies the choices for this selection. @init is the action routine

that initializes the expected output (zero for all possible value buckets). sort input is
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the nonterminal derived in this production. It is associated with the attribute (N) bound

through the designator. The second production transforms this attributed nonterminal into

the unsorted list by generating N elements in the range of 1..MAXBUCKETS. As each value

is generated, the action routine @put terminal puts it into the appropriate value bucket.

Then the terminal string end input is generated and the action routine @put end uses

the knowledge of how many elements are in each value bucket to generate the sorted list

(the expected output).

2.2 State Machine Based Test Generation

Transaction based systems and state transition aspects of some other systems have been

tested using state machine representations [12, 16]. Test generation based on a finite state

machine representation includes Transition tour [26], W-method [12], and partial W-method

[16], the Distinguishing sequence method [18], and the Unique-input-output method [34].

Their objective is to detect output errors based on state transitions driven by inputs. Not all

methods can guarantee finding all transfer errors (i. e. when an incorrect state is reached).

Finite State machine based test generation has been used to test a variety of applications,

including lexical analyzers, real-time process control, protocols, data processing, and tele-

phony.

We use the W-method [12] to illustrate this approach to test generation. The W-method

assumes a minimal finite state machine with a finite set of states, all of which are reachable,

and a fixed initial state. Test sequences consist of two parts p 2 P and z 2 Z. P is the set of

all partial paths through the finite State machine (including the empty path). P is determined

by constructing a test tree. The distinguishing set Z is based on the characterization setW of the design underlying the Finite State machine. W consists of input sequences that

distinguish between every pair of states in the minimal automaton. Sequences in Z consist

of a sequence of characters from the input alphabet of the Finite State machine that can be

as long as the difference in states between the design and the minimal Finite State machine.
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They end with a character from W . The resulting test sequences (and the associated outputs

according to the Finite State machine) are executed and the Finite State machine output is

compared to the actual output. Test sequences can detect output or transfer errors, given

some restrictions on the number of states in the implementation. The partial W-method [16]

improves over the W-method by reducing the length of the test suite. It does so by reducing

the characterization set W to subsets Wi for specific states i.
State machine representations work well for generating sensible sequences of command

types, but become cumbersome for generation of both sequencing as well as command de-

tails of systems with large and intricate command languages.

2.3 Frequency-based Test Generation

Automatic generation, whether based on grammars or state machines, requires making choices

during the traversal of the representations. The choices are due to ambiguities as well as the

purposeful inclusion of options in the representation. Choice is directed by incorporating

selection rules of various types. As mentioned earlier, Purdom [32] integrates “coverage

rules” for grammar productions to reduce choice. Maurer [27, 28] uses probabilistic con-

text free grammars that are enhanced by selection rules including permutations, combina-

tions, dynamic probabilities, and Poisson distribution. The following is an example of a

production that includes frequency rules for value selection:
bnumber! %32bit
bit: 31:1, 1:0

This production states that when deriving from the nonterminal bnumber the nonter-

minal bit is generated 32 times. When choosing a terminal value for each nonterminal

bit, the value 1 is to be chosen 31 times more often than the value 0. Like [15], Maurer

[27, 28] also allows action routines to compute expected output of the test.

In all these methods, selection is based on making choices relating to the representation

of the command language or state machine.
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2.4 Partition Testing

Alternatively, one can argue that choices should be made depending on the functional char-

acteristics of the system. Functional testing according to [30] uses heuristic criteria related

to the requirements. Each requirement is identified, related to a (set of) commands, and

valid, boundary, and invalid cases are tested. So are heuristically determined combinations

of commands. The method is manual.

2.4.1 Goodenough and Gerhart [17]

Goodenough and Gerhart [17] suggest partitioning the input domain into equivalence classes

and selecting test data from each class. In this approach, we divide possible input values into

equivalence classes based on common effect. It is enough to test one input from each class.

Classes can be subdivided further by including other criteria, such as executing the same

portion of the code, or being part of the same algorithm, although this is no longer black-

box testing as it would include knowledge of how functions are designed and implemented.

2.4.2 Category-Partition Testing

Category-partition testing [2, 31] accomplishes this by analyzing the specification, identify-

ing separately testable functional units, categorizing each function’s input, and finally parti-

tioning categories into equivalence classes. Category partitioning starts with the functional

specification, then goes through a series of decompositions of items and inputs related to the

specifications to the level of individual subprograms to be tested. The first level of decom-

position identifies functional units (e. g. a top level user command). The next step identifies

parameters and environment conditions that affect functional behavior. Next, careful read-

ing of the specification identifies categories of information that characterize each parameter

and environment condition. Each category is partitioned into distinct choices (possible set

of similarly treated values). These choices form the partition classes. Choices can be an-

notated with constraints to model relationships between categories. While the analysis is
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manual, a generator tool produces test cases from these (constrained) partitions. To avoid

too many error test cases, choices can be marked [error], in which case they do not get

selected, unless error recovery testing is a test objective. Others can be marked [singl]

to avoid combining them with choices from other categories.

Category Choice
pattern size many characters
quoting pattern is quoted
embedded blanks several
embedded quotes one
file name good file name
no. of occurrences in file exactly one
pattern occurences on one
target line

Table 3: Example test categories and choices [31]

Table 3 [31] shows an example of a test case with choices identified for a command that

looks for patterns in a file. The left column identifies the category, the right identifies the

choice selected for the category. Substituting values for each choice produces the test input.

Richardson et al. [33] consider these approaches manual, leaving test case selection

completely to the tester through document reading activities. Further, partition-testing as

a testing criterion does not guarantee that tests will actually uncover faults [19, 38, 45].

From a practical standpoint, a better approach is to combine different test generation meth-

ods with a variety of testing criteria. Examples are to combine exhaustive generation of

some commands or parameter values with probabilistic or combinatorial criteria for others,

which requires flexible command generation methods.

2.5 AI Methods in Test Generation

2.5.1 Planner-based Test Generation

So far, few approaches to system testing use artificial intelligence methods. The most rel-

evant is Howe et al. [21] which uses an AI Planning system (UCPOP) to generate system
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tests (black box testing).

The planner generates test cases in three steps: generate a problem description, create a

plan to solve the problem, and translate the plan into test case notation. These three steps

correspond to three modules: preprocessor, planner and postprocessor.

The preprocessor develops a problem description based on user directions. The problem

description consists of a problem name, domain knowledge, an initial state and a goal state.

The problem name is generated automatically. The domain knowledge describes the com-

mand language semantics. The initial and goal states define the specific needs of a particular

test case.

The preprocessor incorporates knowledge about how command language operations re-

late to changes in the state of the system. The user indicates how many of the different types

of operations should be included in the plan. Based on knowledge of the test domain, the

preprocessor creates an initial state and goal state description that would require using the

indicated commands. The initial state also includes information about system configura-

tion and initial state information. The configuration information is taken directly from the

knowledge base and the initial status information is randomly generated from the problem

constraints.

The planner constructs a plan to transform the initial state into the goal state. If a plan

cannot be found within a set amount of time, the planner fails. In this case, the preprocessor

generates different initial and goal states that satisfy the user’s requirements. The postpro-

cessor translates from plan representation to command language syntax. The transformation

is purely syntactic and straightforward.

Table 4 summarizes representation of Domain Knowledge in the AI Planner.

The results are encouraging, in that the planner was able to come up with novel tests.

Generation speed and with it scale up are an issue. Possible further work to remedy that

include investigation of hierarchical planning methods or subsumption as in CLASP [14].
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Domain Knowledge Planner Representation

Command Sequencing Rules Operator preconditions
Parameter Binding Operator effects
Command Language Syntax Operators : One operator for each “path” in a

command.
Postprocessor : Translates Planner output into
Command Language Syntax.

Command Preconditions Operator preconditions
Command Postconditions Operator effects
Parameter Constraint Rules Preprocessor : Initial State Generator

Preprocessor : Goal Generator
Preprocessor: supporting data structures

(within same command) Operator preconditions

Table 4: Domain Knowledge and AI Planner Representation [21]

2.5.2 CLASP[14]

CLASP uses terminological plan-based reasoning to generate test scenarios and test scripts.

This approach combines plan based reasoning with regular expression processing. Sub-

sumption helps to manage large collections of plans. CLASP implements a general ap-

proach for both plan synthesis and plan recognition, testing is only one of its possible appli-

cations. Consequently, it does not include any guidelines or process how to derive a CLASP

description for testing purposes.

2.5.3 KITTS

KITSS [24] is a knowledge-based translation system for converting informal English sce-

nario descriptions of desired system behavior (informal test descriptions) into formal exe-

cutable test scripts. Its premise is that language used in informal test scenarios is not re-

ally standard English, but a stylized technical subdialect and thus amenable to automated

or at least machine assisted natural language processing. In doing so, the translation sys-

tem must also bridge abstraction gaps between the goal-oriented intent of the testers when

writing informal test scenarios, and the specifics required in executable scripts. In addi-
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tion, informal scenarios can have other problems such as missing steps, hidden or implied

effects, underspecification, missing initialization and boundary conditions, and erroneous

statements. KITSS includes a knowledge base describing telephony testing. Converting the

English scenario into intermediate form (WIL) is accomplished with an adaptive statistical

parser and a rule-based phrase converter. The statistical chart parser computes probabilities

to rank alternatives due to grammatical ambiguity. User input adapts the parser to learn and

define previously unknown language constructs.

Scenario understanding and analysis is done on the intermediate representation (WIL)

with the aid of a coarse black-box simulation of a telephone switch, a telephone domain

theory, and a library of typical phone usage patterns. Table 5 shows an example of a test

scenario as written by the tester and the corresponding WIL language statement (Kelly and

Jones [24] do not provide the corresponding executable test script).

scenario place calls to station B3 and D1 and
make them busy

WIL Busy-out station B3
Busy-out station D1

Table 5: Behavior scenario and corresponding WIL statement

This is a viable technique for translating some English documents into an intermediate

language and from there into executable test scripts. This technique requires that relevant

information in English is available. It also requires building a domain theory of the ap-

plication that is fairly sophisticated. It does not handle graphical descriptions like syntax

diagrams.

Following a similar philosophy, Zeil and Wild [46] describe a method for refining test

case descriptions into actual test cases by imposing additional constraints and using a knowl-

edge base to describe entities, their refinements, and relationships between them. This is

considered useful for test criteria that yield a set of test case descriptors which require fur-

ther processing before usable test data can be achieved.
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Figure 1: Automated Cartridge System with Three LSMs [37]

2.5.4 Neural Nets

Automated test case generation can easily generate tens of thousands of tests, particularly

when random or grammar based methods are chosen. Running them takes time. To avoid

running test cases that are not likely to reveal faults, a neural net has been successfully

trained as a filter ([1]). After a subset of generated tests has been run, results indicate whether

or not the test revealed a fault. The neural net is trained on test case measurements as inputs

and test results (severity of failure) as output. This is then used to filter out test cases that

are not likely to find problems. The results are encouraging for guiding testing.

3 Industrial Application - Robot Tape Library

System testing based on a domain model has many applications. Experience with this test-

ing approach spans a wide range of application domains. They include: mass storage de-

vices at StorageTek (HSC, IXFP, Snapshot), a database query/update system for cable tele-

vision and generation of SQL code, USWEST’s personal voice messaging system [36] and

a spacecraft command and data handling application [43].

StorageTek produces several mass storage devices for mainframes and distributed work-

station environments. Access to the mass storage devices is through a command language.

System administrators use commands to configure the mass store, set up volume libraries,
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and control device access. End-users access data, set up personal volume libraries, and

configure their storage through command line requests. The Automated Cartridge System

(ACS), a mass store for tape cartridges, and its Host Software Component (HSC) serve as

the primary example [37].

The ACS maintains magnetic tape cartridges in multi-sided “silos” called Library Stor-

age Modules (LSM). Each tape holds 350 megabytes. The ACS product line offers several

LSM sizes ranging from small (6 feet tall, 8 feet diameter) to large (7 feet tall, 12 feet di-

ameter) models. Inside the largest LSM, storage panels on inner and outer walls contain up

to 6000 cells for tape cartridges. System operators enter and eject tapes through a Cartridge

Access Port (CAP). A vision-assisted robot moves tapes inside the LSM. The robot effector

houses a bar code reader, an optical vision system, and gripper sensors. All three sensors

are used to identify tapes, pick up tapes, place them in cells, mount them in tape transports

(tape drives), dismount tapes, and move them to/from the CAP. Control hardware for the

LSM and robot and tape transports are housed outside the LSM. Tape transports are high

speed tape drives that transfer data to/from the tapes. Figure 1(a) shows a single LSM with

tape drives, access port, and control unit.

One Automated Cartridge System supports from one to sixteen silos. Figure 1(b) presents

a top-down look at an ACS with three LSMs. Tapes move between LSMs through pass-

through-ports. The silos in an ACS can be physically arranged in a variety of ways. Figure

2 shows some of the possible configurations of five LSMs. The ACS and its components

are controlled through a command language interface called the Host Software Component

(HSC). Each HSC supports from one to sixteen ACS systems. HSC commands manipu-

late cartridges, set the status of various components in the system, and display status in-

formation to the operator’s console. The command language consists of 30 commands and

45 parameters. Typical customers for mass storage systems like the ACS include financial

institutions, Internal Revenue Service, Social Security Administration, spacecraft ground

station operators, and weather researchers.
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Figure 2: Possible Physical Configurations of Five LSMs

4 Building the Domain Model

Depending on whether the software to be tested already exists or is still under development,

two possible ways exist to analyze a domain for system test: A Priori Domain Analysis and

Reverse Engineering Domain Analysis. A Priori Domain Analysis develops the domain

model as part of the functional specification phase of software development. Reverse Engi-

neering Domain Analysis on the other hand, assumes that the software and its user manuals

or functional specifications exist and develops the domain model based on that information.

A Priori Domain Analysis starts with domain objects, object attributes, their relation-

ships, their actions, and rules for proper action sequencing (cf. Table 6). The last step is

to represent the command language syntax. Syntax and some of the system specific values

are the only parts of the application description that change between systems. Table 6 in-

dicates this by separating command language syntax from the remainder of the model with

a double bar. Reverse Engineering Domain Analysis develops the domain model starting

with the syntax, adding semantic elements at each step, abstracting the objects and their be-

havior. Since many testers develop their tests after the software exists, rather than with the

functional specifications, the latter is used more often.

These domain models for testing are simplified versions of a complete domain model

that could be used for software development. When syntax information is included, one
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Table 6: Steps in A Priori Domain Analysis

Analysis Step Model Component, data fields

Identify objects object list for object glossary
name, description

Characterize object elements Object element glossary
name, definition, values, representation

Associate object elements with objects Object glossary entries for associated object elements by type
parameter: attribute, mode state
nonparameter: event, state
Object element glossary entry for associated object

Determine actions and action classes Action table
on objects and object elements command name, object elements necessary

Object glossary
list of commands using an object
Script class table
class name, list of command names

Identify relationships between objects Object hierarchy
Determine constraint rules Object element inheritance rules
for object element values Intracommand rules
Identify pre/post-conditions for actions Scripting rules

Object element value binding rules

Command language syntax EBNF or syntax diagrams

could also consider them very rudimentary functional specifications with just enough in-

formation to generate semantically meaningful tests. In and by themselves, these domain

models do not prescribe any specific testing criteria. This is intentional as system testers

use a variety of strategies during a testing cycle. Thus a domain model for testing should

be flexible and adaptable to a variety of testing objectives, from functional to load testing.

Separating the domain model from how it is used during test generation provides this flex-

ibility. The domain model provides the framework for what is to be tested, test criteria ap-

plied during test generation determine how testing is to be done.

4.1 A Priori Domain Analysis

Table 6 shows the steps in the a priori domain analysis. The first step identifies physical

and logical objects in the problem domain. Following Object Oriented Analysis/Design

(OOA/OOD), analysts apply a variety of methods to identify objects [10]. The analyst can

use any of the existing OOA approaches to identify objects. The difference between OOA/OOD

and this approach is in the level of detail and the type of operation. Application domain

models for testing do not need as much information as is necessary for implementation.
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Table 7: Objects in the Robot Tape Library Domain

Object Abbreviation Description

Host Software Component HSC Operating system software used to control
the robot tape library.

Documentation On line documentation.
Console Operator’s console.
Automated Cartridge System ACS A collection of one or more LSMs.
Scratch Pool Set of scratch cartridges.
Library Management Unit LMU Commands robot.
Library Storage Module LSM A single “silo” where cartridges are stored.
Cartridge Storage medium.
Control Data Set CDS Contains volume information about all

cartridges.
Playground Reserved area for cartridges during

LSM initialization.
Pass Through Port PTP Access door between LSMs.
Tape Transport Tape drive that reads/writes cartridges.
Panel Racks located inside an LSM. Used for

cartridge storage.
Cartridge Access Port CAP A special door to enter and retrieve

cartridges.
Pass Through Port Column A column of cartridge locations on the PTP.
Row A row of cartridge locations on a panel.
Column A column of cartridge locations on a panel.
CAP Row A row of cartridge locations on a CAP.
CAP Column A column of cartridge locations on a CAP.

This specialized domain analysis for testing focuses on requirements documentation and

its further analysis for object identification. 1 Consider the StorageTek HSC-ACS robot

tape library. Cartridge tapes, tape drives, and tape silos are objects germane to this appli-

cation domain. Objects included in the model control or manipulate the application, or are

obvious parts of the system. Table 7 shows a list of all objects for the HSC-ACS domain.

Next, object elements define qualities and properties of the object. Object elements are

similar to the concept of object attributes in OOA/OOD [10]. Object attributes and object

elements differ in the amount of information that is described, because test generation does

not need as much information about an object when compared to the amount of information

needed for implementation. Object elements often identify an object, its state or operating

mode, or its value. These attributes may be user controllable or not. In the first case, they

will eventually become parameters in the command language; in the latter, they describe

the effect of system operation on objects (events, states). This gives rise to the concept of1When functional specifications are available, the command language has already been specified and the reverse engi-
neering domain analysis described below is appropriate.
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Figure 3: Object Element Classification

object element types. Application domain analysis classifies object elements into one of five

mutually exclusive categories as shown by the leaf nodes in Figure 3.

The first level of classification determines whether the object element is controllable by

the user or needed to submit requests to the system. These object elements will eventually

be parameters of the application’s command language. Object elements related to command

language parameters can be parameter attributes, mode parameters, or state parameters. A

parameter attribute uniquely identifies an object. Mode parameters set operating modes for

the system under test. State parameters hold state information for the object. For example,

an operating mode may be “verbose” or “quiet”. A parameter state may be “tape drive A

and B operational, use of C and D reserved”.

Object elements which, while crucial for describing system operation, are neither con-

trollable nor immediately visible to the user, are classified as nonparameters. They can be

important for test case generation. A nonparameter event is an event caused by the dynam-

ics and consequences of issuing a sequence of commands. A nonparameter state is state

information that cannot be controlled through the command language. For example, a tape

silo may become full as a consequence of system operation. We neither set a tape silo to

full with a command, nor do we need to use the state of the tape silo in a command. At

the same time, one cannot load any more tapes into a full tape silo. This affects test gener-

ation. For example, for testing regular system operation, generating further tape loads after
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Table 8: Parameter Attributes in the Robot Tape Library Domain

Object Attribute-id Explanation

Host Software Component host-id Host identifier
Documentation msg-id Message identifier
Console console-id Console identifier
Automated Cartridge System acs-id ACS name
Scratch Pool subpool-name name for set of scratch tapes
Library Management Unit station LMU name
Library Storage Module lsm-id LSM name
Cartridge volser cartridge name
Control Data Set dsn data set name
Playground playgnd-cc name of playground column
Pass Through Port ptp-id Pass Through Port name
Tape Transport drive tape drive identifier
Panel pp panel number
Cartridge Access Port cap-id CAP name
Pass Through Port Column ptp-cc identifier for pass through port column
Row rr row number
Column cc column number
CAP Row cap-rr CAP row number
CAP Column cap-cc CAP column number

the silo is full does not serve a purpose. On the other hand, when testing error recovery, one

would want to generate further loads into a full silo.

Table 8 shows all object elements of the parameter attribute type for each object in the

Table 9: Mode Parameters in the Robot Tape Library Domain

Object Mode Explanation

Host Software Component baltol scratch redistribution level
comp-name HSC component for which tracing is enabled/disabled
deferred deferred mount processing
dismount on tape dismount: automatic or manual deletion of volume

from control data set
entdup automatic or manual deletion of duplicate volume
float new home cell possible on tape pass through or not
full-journal operating mode when journal becomes full
inittime time interval between checks of number of scratch cartridges
initwarn threshold for warning when scratch pool becomes low
maxclean maximum number of cleans allowed
mount-msg whether to scroll messages on operator screen
output upper or lower case
scratch automatic or manual selection of scratch volume
sectime second time interval for checking when scratch pool is low
secwarn second warning level for low scratch pool
viewtime time to focus camera
vol-watch whether to give warning message when mounting library vol-

ume on non-library device
Automated Cartridge System acs-scr-threshold set threshold for scratch pool on an acs

acs-subpool-threshold set threshold for subpool on an acs
Scratch Pool subpool-threshold set threshold for tapes in scratch pool
Library Storage Module lsm-scr-threshold set threshold for scratch tapes in LSM

lsm-subpool-threshold set threshold for tapes in subpool on LSM
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Table 10: State Parameters in the Robot Tape Library Domain

Object State Explanation

Host Software Component autoclean HSC automatic tape transport cleaning on or
off

gdg-sep Unit affinity separation for GDG chains
separation Unit affinity separation
service-level basic or full
specvol whether transports are available when no non-

library drives exist
zeroscr whether device selection is restricted

Cartridge Access Port prefvlu preference for CAP
Library Management Unit lmu-status up or down
Library Storage Module lsm-status online or offline

Table 11: Object Glossary Entry for the LSM Object

Object LSM

Description Library Storage Module - A single tape “silo”
Commands DISPLAY MODify MOVE VIew Warn
Parameter Attribute lsm-id
Mode Parameter lsm-subpool-threshold

lsm-scr-threshold
State Parameter lsm-status
Nonparameter Event lsm-full
Nonparameter State

HSC-ACS. Table 9 gives a subset of possible user controllable operating modes. Table 10

lists possible types of new states for objects of the HSC-ACS that can be set by the user.

Finally, Table 11 lists an object glossary entry for the LSM object with all object element

entries relevant for this object.

The next step associates object elements with possible values in the domain. These val-

ues may have to be restricted further for particular system configurations and setups for the

software under test. A glossary stores detailed information about each object element. An

automated test generation tool must know the range of values for each element, the rep-

resentation of each object element, and the default set of values for each object element.

This information is needed for parameter value selection during test case generation. Table

12 shows representative entries from the Object Element Glossary for the StorageTek HSC

command language. For a complete object element glossary refer to [29].

The next step in the domain analysis is to show relationships between the objects. These
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Table 12: Entries from the HSC-ACS Object Element Glossary

Element Name

lsm-id
Full Name Library Storage Module (LSM) Identifier
Definition Names an Instance of an LSM within an ACS
Type parameter attribute
Values 000: : :FFF
Object LSM
Representation Range

maxclean
Definition Number of times a cleaning cartridge is used

before ejecting
Type mode parameter
Values 10: : :100
Object HSC
Representation Range

lmu-status
Definition Status of the Library Management Unit (LMU)
Type state parameter
Values UP j DOWN
Object LMU
Representation Enumeration

journal-full
Definition A dynamic event that results when the system

journals become full
Type nonparameter event
Values NOT-FULL j FULL
Object HSC
Representation Enumeration

drive-status
Definition Status of a tape transport (tape drive)
Type nonparameter state
Values BUSY j AVAILABLE
Object Tape Transport
Representation Enumeration

relationships are captured in an object hierarchy. The relationships take the form of a struc-

tural, or “part-of”, hierarchy because the structural relationships indicate parts of the objects

[10]. For test generation, the main interest in object relationships is in how related objects

affect possible values for their object elements. This is captured with rules about object el-

ement values. The rules take the form of object element constraint rules where the choice

of one object element value constrains the choices for another. The StorageTek HSC-ACS

domain provides a good example for constructing an object hierarchy (Figure 4 shows the

complete Object Hierarchy for this application with objects (bubbles), object elements (in-

side the bubble), relationships and constraints (arrows)). 2 Consider the ACS object. Each2The figure lists object elements for all but the highest level HSC object because these did not fit nicely into the dia-
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Figure 4: StorageTek Object Hierarchy

ACS supports up to sixteen LSMs, and this structural relationship is shown in the figure as

an arrow from the ACS object to the LSM object. Each LSM contains panels, tape drives,

cartridge access ports, etc. Arrows from the LSM to each object denote this structure. An-

notations on the arcs denote parameter constraint rules. For instance, the choice of an ACS

(i.e., a specific acs-id value) constrains choices for the LSM (i.e., possible lsm-id values).

The specific choices depend on the physical configuration (e. g. the number of LSMs in an

ACS and how they are interconnected). Figure 4 shows that this domain has 10 such inher-

itance rules. The exact specification of the rule can depend on the specific system configu-

ration and parameter value syntax.

Table 13 contrasts the general rules of figure 4 with the specific rules used for an actual

physical configuration of a robot tape library used by the system testing group at StorageTek

to test HSC version 1.2. Figure 5 shows the hardware configuration of the HSC described

in Table 13 (except for panels, rows, and columns to avoid clutter in the figure).

gram. HSC has 26 object elements. The majority are mode parameters. HSC modes set various operating modes of the
HSC software.
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Table 13: Example Parameter Inheritance Rules for Robot Tape Library

General rule Domain Values Configuration-specific rule Configuration-specific values

acs-id ! lmu-id ACS=f00..FFg None acs-id2f00,01g
LMU=f000..FFFg lmu-id2f0D0,0D1,0CC,

0CD,0CE,0CFg
acs-id ! lsm-id LSM=f000..FFFg acs-id=00 ! lsm-id 2 f000,001g lsm-id2f000,001,010g

acs-id=01 ! lsm-id 2 f010g
lsm-id ! ptp-id PTP=f0..7g lsm-id=000 ! ptp-id 2 f0g ptp-id2f0g

lsm-id=001 ! ptp-id 2 f0g
lsm-id ! drive DRIVE=f000..FFFg lsm-id=000!drive2 fA10,A14,A20,A25,A29,A2Cg drive2fA10,A14,A17,A20,A25,

lsm-id=001!drive2 fA10,A14,A20,A25,A29,A2Cg A29,A2C,A2F,A32,A36g
lsm-id=010!drive2 fA17,A32,A36,A2Fg

lsm-id ! pp PP=f00..19g lsm-id=000 ! pp 2 f04,07,10,14,18g pp2f00..19g
lsm-id=001 ! pp 2 f00,05,10,15,19g
lsm-id=010 ! pp 2 f02,08,10,12,15g

lsm-id ! cap-id CAP=f000..FFFg lsm-id=000 ! cap-id 2 f000g capid2f000,001,010g
lsm-id=001 ! cap-id 2 f001g
lsm-id=010 ! cap-id 2 f010g

pp ! rr RR=f00..14g pp2f00..04g ! rr 2 f00..04g rr=f00..14g
pp2f05..10g ! rr 2 f05..09g
pp2f11..19g ! rr 2 f10..14g

pp ! cc CC=f00..19g pp2f00..04g ! cc 2 f00..04g cc=f00..14g
pp2f05..10g ! cc 2 f05..09g
pp2f11..19g ! cc 2 f10..14g

cap-id ! cap-rr CAP-RR=f00,01g None cap-rr2f00,01g
cap-id ! cap-cc CAP-CC=f00..06g None cap-cc2f00..06g

LSM 000 LSM010

PTP0

LSM001

A10

A25

A29

A2C

A20

A14

A17

A36

A32

A2F

ACS 00 ACS01

CAP000

CAP001

CAP010

Figure 5: Hardware Configuration for the HSC described in Table 13

In some cases no rule was necessary, because the physical configuration allowed all val-

ues, or the architecture was the same (e. g. same layout of cartridge access port columns

and rows for both cartridge access ports). The rightmost column gives the values used for
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the constrained object element of each rule. These values reflect subsets of all potential val-

ues by taking into account the set-up of the test environment (in this case the system was

tested using actual hardware rather than a simulator and the values reflect this installation).

Next, domain analysis identifies actions on objects. These actions usually manifest them-

selves in commands of a command language for the application. We usually start by asking

What can one do with this object? Which other objects are involved? What are desirable

actions for this application domain? For example, one would want to mount tapes into a

tape drive of a specific silo, move tapes between silos, etc. This provides a list

of possible actions and the objects involved in them. Table 14 provides such a list for the

HSC-ACS domain. For use in subsequent references, the left column gives the name of the

action as it is specified in the HSC release 1.2. command language. 3.
An action may only need some of the object elements associated with an object, so it

is important to identify which of these object elements are necessary. Table 15 gives an

example of the object elements associated with some of the HSC-ACS actions. This step

provides object glossaries and a set of actions with object elements needed to perform the

action. Table 11 shows an example of an object glossary entry for the LSM object. Table 16

illustrates an action table entry using the CLean action. Similar actions can be grouped and

collectively referred to as action classes. For example, Table 17 groups all commands that

perform setup operations for the HSC-ACS into a Set-Up class, all commands that inform

of status and display information into a Display class. Actions that perform useful work

are members of the Action class. Classes need not be disjoint. The Any class contains

all commands.

The next step is to look at each individual action and determine whether the object el-

ements associated with it have to satisfy value constraints for sensible operation. An ex-

ample of such a rule is “don’t copy a file to itself” which requires the names of the files3The upper case letters in a command name indicate required syntax, the lower case letters are optional; e. g. CL or
CLEAN denote the same command
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Table 14: HSC Release 1.2 Command Descriptions

Command Name Description

ALLOC Changes the Host Software Component (HSC) allocation options.
CAPPref Assigns a preference value to one or more cartridge access ports (CAPs)
CDs Enable / Disable copies of the control data set
CLean Schedules the cleaning cartridge to be mounted on a library controlled transport
DISMount Directs the Library Storage Module (LSM) to dismount a cartridge
DRAin Terminates and ENter command
EJect Directs the robot to take cartridges from a Library Storage Module (LSM) and places them into a car-

tridge access port (CAP) where they can be removed by an operator
ENter Used to place cartridges into a Library Storage Module (LSM) through a cartridge access port (CAP)

while operating in automatic model
Journal Used to establish the action taken by the Host Software Component (HSC) if both journals fill to ca-

pacity before a control data set backup or a journal off-load is executed
LOad Used to query the status of the current tape transport activity
MNTD Set options on how the Host Software Component (HSC) processes the mounting and dismounting of

library volumes
MODify Places a Library Storage Module (LSM) online or offline to all hosts
MONITOR Initiates monitoring of cartridge move requests from the programmatic interface
Mount Directs the robot to mount a volume onto a specified library controlled transport
MOVe Directs the robot to move cartridges to selected destinations within the same Library Storage Module

(LSM) or to any LSM within an Automated Cartridge System (ACS)
OPTion Used to set or change general purpose options of the HSC
RECover Allows the operator to recover the resources owned by a host that becomes inoperable
RELease Used to free an allocated cartridge access port (CAP)
RETry Applies only to the JES3 environment. It enables the user to restart HSC/JES3 initialization without

restarting the HSC address space component
SCRparm Dynamically modifies the scratch warning thresholds and interval values for the host on which the com-

mand is issued
SENter Used to schedule the enter of a single cartridge using a cartridge access port (CAP) that is currently

allocated for ejecting cartridges
SET Used to activate / deactivate various functions within the HSC
SRVlev Used to specify the service level at which the Host Software Component (HSC) operates
STOPMN Terminates the monitoring of cartridge move requests received from the programmatic interface
SWitch Used in dual Library Management Unit (LMU) configuration to reverse the roles of the master and

standby LMUs
TRace Enables / Disables tracing of events for selected Host Software Components (HSCs)
UEXIT Permits you to invoke your own processing routines at particular points during HSC processing
Vary Places physical Library Management Unit (LMU) stations online, offline, or standby
VIew If video monitors are attached to the LSM, the VIew command enables the operator to visually inspect

internal components of the LSM using the robot’s cameras
Warn Used to establish the scratch warning threshold values

in the copy command to be different. These types of rules are called intracommand rules.

An intracommand rule specifies constraints between object element values that hold during

the execution of an individual action. Constraints that are currently possible have the form

precondition!constraintor (no precondition)constraint. Aprecondition

can be an equality or inequality constraint of two or more object elements associated with an

action. If the precondition is true, the constraint must hold. A constraint states value

constraints for the affected object elements in terms of equalities or inequalities. While a
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Table 15: Object elements associated with selected commands

Command Name Object Elements

ALLOC acs-id
CAPPref Host-id, acs-id
CDS dsn
CLean drive-id, host-id
Dismount volser, drive-id, host-id
Display acs-id, command-name, host-id, lsm-id, console-name, subpool-name, volser
Drain cap-id
Eject volser, cap-id, acs-id, subpool-name, vol-count
Enter acs-id, cap-id
Modify lsm-id
monitor console-name
Mount volser, drive-id, host-id, subpoolname
Move lsm-id, pp, rr, cc, volser
Recover host-id
Release cap-id
Scrparm initwarn, inittime, secwarn, sectime, baltol
Senter cap-id
Vary lmu-id

Table 16: Action Table Entry for CLEAN

Command name CLEAN

Objects drive, host
Object elements drive-id

drive-range
drive-list
host-id

Intra-command rule none

Table 17: Script Classes for the StorageTek HSC Domain

Script Class Commands

Any Alloc Commpath Eject Mntd Move Retry Srvlev
Cappref Dismount Enter Modify Option Scrparm Switch
Cds Display Journal Monitor Recover Senter Trace
Clean Drain Load Mount Release Set Uexit

Mode Cappref Clean Mntd Option Set Trace Warn
Cds Journal Monitor Scrparm Stopmn Uexit

Set-Up Alloc Journal Option Srvlev Trace Cappref Mntd
Scrparm Stopmn Uexit Commpath Modify Set Switch
Vary

Action Alloc Display Enter Move Retry Commpath Drain
Load Recover Senter Dismount Eject Mount Release
View
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Figure 6: State Transition Diagram: MOUNT-DISMOUNT Script Rule

richer set of constraint operators is theoretically possible (relational operators to describe

possible relationships between object element values), we have yet to encounter a need for

them in practice.

The HSC-ACS domain only has one intra-command rule (for the MOVE command). It

prohibits moving a series of tapes within the same panel. It is written as (Flsm=Tlsm)! Fpanel 6= Tpanel, meaning if source LSM (Flsm) and target LSM (TLSM) are the

same, then the source panel (Fpanel) and target panel (Tpanel) must be different.

The next element of analysis concerns dynamic behavior rules for sensible application

behavior in the domain. Preconditions identify the conditions that must hold before a com-

mand representing an action can execute. Postconditions list the conditions that are true

after it executes. Preconditions define required state or mode for an action to be meaning-

ful. For example, a specific tape must have been entered into a tape silo before it can be

moved around or removed. They also may further constrain valid parameter values through

parameter binding. Postconditions state effects on object elements and influence future ac-

tion sequences or parameter value selection. We represent these conditions in the form of

script or behavior rules and parameter binding rules.

Scripts can be visualized as state transition diagrams (Figure 6) or regular expressions.

For example, the script rule in figure 6 could be represented as [MOUNT Any* DISMOUNT].
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Table 18: Script Rule: Parameter Value Selection

Rule Description

p* Choose any valid value for p
p Choose a previously bound value for p
p- Choose any except a previously bound value for p

Table 19: Example Script Rules with Parameter Binding

Command Name Script Rule

Mount/Dismount MOUNT [tape-id*] [drive-id*] <n/any> DISMOUNT [tape-id] [ drive-id]
Enter/Drain ENTER [cap-id*] <n/any> DRAIN [cap-id]

Once action sequencing has been defined, the sequence can be annotated with value se-

lection rules for parameters as shown in Table 18. The first rule, p*, states that the value for

parameter p can be selected from any valid choice as long as it fulfills inheritance constraint

rules. The second rule, p, restricts the value of parameter p to a previously bound value. The

third rule, p-, denotes that parameter p can be selected from any valid choice except for the

currently bound value of p. To illustrate, the MOUNT - DISMOUNT sequence is annotated

with script parameter selection rules.

MOUNT tape-id* drive-id*
Any*
DISMOUNT tape-id drive-id

This rule states that the tape-id and drive-id values can be selected from any valid choice

for the MOUNT action while the DISMOUNT action must use the previously bound value for

the tape-id and the drive-id parameters. (The tape mounted in a drive must be dismounted

from the same drive).

Table 19 shows script rules for the HSC-ACS domain with parameter binding. 4 At this

point in the analysis, we still have not defined any syntax. Except for parameter value re-

striction in inheritance rules, all information is independent of the actual command language

chosen. This makes it possible to associate different related or competing products with the4For practical reasons we let testers set n so as to give them more control in how many commands can be generated as a
maximum between the two required commands.
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current domain models by mapping object elements to command language parameters, ac-

tions to commands, and object element value sets to parameter value sets, and to identify to

which degree the domain rules for object element values, action rules, and behavior rules

manifest themselves in the command language. For test generation, we use the syntax of

the command language as well as the domain model that represents the semantics of the ap-

plication. The advantages of building such a domain model early in the development are:

(1) The model can be reviewed early in the life cycle; (2) The model can guide command

language development; and (3) One can complete the model further so that it will be use-

ful for development purposes. Thus testers and developers will know early on what will be

tested.

4.2 Reverse Engineering a Domain Model

The use of a domain model for testing is not restricted to software that was built using do-

main analysis or reusable components. Frequently, system testers need to test a system

against a user manual. In this case the command syntax is given and they reverse engineer

the application domain model for testing purposes. Figure 7 shows the process by which a

domain is captured. This process is represented in the navigator utility of the domain man-

agement system component of Sleuth ([41]), a tool that supports application domain based

testing. The following explanation refers to the navigator utilities in Figure 6 in parentheses

to explain the relationship between domain capture and the navigator tool.

We start with the syntax of the language (SDE), then extract parameters (OEE) and group

them into objects (OTE). Each parameter in the command language is categorized accord-

ing to the object it influences. This classification provides a first cut of the objects and their

properties. To illustrate this process, consider Figure 8. Two HSC commands from the robot

tape library have parameters that relate to three domain objects Cartridge, Tape Trans-

port, and HSC. This groups parameters by related object. For a complete grouping see
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Figure 7: Process for Reverse Engineering a Domain Model
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Transport HSC

CLean {<drive-id> | <drive-range> | ( <drive-list> )} [<host-id>]

DISMount {, | <volser>} <drive-id> [<hostid>]

Cartridge

Figure 8: HSC Object and Object Element Analysis

Figure 4 in which each bubble represents an object and the parameters in the bubble its ob-

ject elements. The object elements for the HSC object are mostly mode parameters and are

listed separately in Table 9.

Next, each object element is classified by defining its object element type. We also have

to identify possible parameter values for each object element (PVE). In Sleuth, objects con-

sist of object elements and relate to each other. Relationships between objects produce the

object hierarchy (OHE) (cf. Figure 4). Arcs in the hierarchy are annotated with parameter

constraint rules (PRE). Next we identify whether parameters of single commands constrain
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each other (ICE) (refer back to the rule for the MOVE command discussed earlier). Last, we

determine scripting rules and parameter binding rules (SRE). They are equivalent to those

found in the apriori domain analysis (cf. Table 19).

Sleuth also allows sets of commands to be grouped together (SCE) as action classes (e.

g. Action versus Display types of commands). Scripting rules may involve such classes of

commands. The steps are the same as in the a priori analysis. Results for the HSC-ACS are

in Table 17. This completes the domain model. Again, we have a language dependent and

a language independent part of the model.

5 Test Generation Process

The domain model of Section 4 serves as an abstract representation of the system under

test. To make the domain model useful requires a process to automatically generate test

cases based on that abstraction. The process must also consider testing strategies and test

criteria used during system test, and couple domain analysis and the domain model with test

generation. We base this test generation process on the results of observing a team of system

testers in industry. We investigated (1) How they tested their products, (2) The steps in their

testing process, (3) Needs for test automation, and (4) Desirable features of an automated

test generator.

Figure 9 shows the input and output for each step in the test generation process. The do-

main modelDv0 captures the syntax and semantics of version v of the system under test. The

zero subscript identifies the domain model as the starting point from which all other mod-

els are derived (for example those representing a competing software product by a differ-

ent manufacturer). For instance, DHSC1:20 denotes the StorageTek HSC Release 1.2 domain

model.

The domain model is a persistent description of the software. It represents the default

description from which test suites are generated. A domain model is needed for each new

domain and every time a domain changes significantly. All testers share the domain model
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Figure 9: Test Generation Process Model

to provide a consistent view of the system under test. Sometimes test objectives call for

test cases generated directly from Dv0. Such tests represent “valid” sequences of commands

that follow all syntax and rules defined in Dv0 . Currently, Sleuth captures the domain model

using a reverse engineering process. Figure 7 shows the utilities which correspond to the

domain capture activities.

Often, testers want to test a particular system configuration or a particular feature. To

achieve this, they build a test subdomain TSDvj . The subscript j identifies the specific sub-

domain created, and the superscript identifies the version of the system under test. Test sub-

domains may be a subset or a superset of the original domain model. A subset restricts the

parameters and commands generated in a test case. For example, TSDHSC1:2CAP is the Car-

tridge Access Port (CAP) Test Subdomain for HSC Release 1.2. In this test subdomain,

only the following commands are turned on (activated and thus can be generated): Action

class: Drain, Eject, Enter, Release, Senter. In addition, the set-up com-

mands Vary and SRVLEVmust be turned on to ensure that the LMU’s are on-line, and the

service level is FULL (a precondition to the Action class commands of this test subdomain).

A superset of the domain model allows greater freedom in test generation by turning

rules off (script rules, intracommand rules, or parameter inheritance rules). This is impor-

tant for testing error checking and recovery features of applications. For example,should

one want to test erroneous use of the CAP, one can turn off all rules for Action and Set-Up
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commands. Test suites generated for this test subdomain would try to eject tapes that have

never been entered into the silo, and use devices that are either not on-line or not at the re-

quired service level. Test criteria also drive the creation of test subdomains. To illustrate,

after changes to a system, regression testing rules [42] prescribe how to build a regression

testing subdomain. In this case, the test criteria define what parts of the (modified) system

must be regression tested, leading to the formation of a regression test subdomain.

Sleuth provides a set of utilities to customize domain models into test subdomains. Table

20 summarizes them.

Domain Model Component Utility Purpose

commands activate, deactivate define scope of test
script rules activate, deactivate, edit test valid, erroneous sequences
intracommand rules activate, deactivate, edit test valid, invalid single commands
syntax edit syntax model syntactically incorrect commands

edit branch frequencies control test emphasis
parameter values edit reduce set, add new (invalid) values
parameter inheritance rules activate, deactivate, edit test valid versus invalid operation

Table 20: Utilities to Build Test Subdomain

Test Generation takes information from the test subdomain and directives from the tester

to generate test suites, T vj�k(k = 1; 2; 3; : : : ; ). For instance, THSC1:2CAP�10 denotes test #10

generated from the CAP subdomain for HSC Release 1.2. Test directives include� generate n commands of class or type c: This is the basic test generation directive.

n is the number of commands to generate, c is either the name of a command (like

Move or Drain), or the name of a script class (like Action in Table 17).� recall archived test suites: This enables use of legacy test suites, or tests generated by

other means. It makes using Sleuth flexible, particularly with regards to other tools.� merge several test suites: This is used to simulate parallel requests from various sources

where appropriate.

A test suite is the result of the test generation. It contains test scripts, test templates, and

test cases. Test scripts are lists of command names. Test templates are lists of commands
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with place holders for parameters. A test case is a list of executable commands. Test scripts,

test templates and test cases are generated in three phases. This decision was made to allow

reuse of tests at various levels of specificity. In the first phase, test directives are interpreted

and the test script is generated taking scripting rules into consideration. The second stage

creates a command template by selecting a specific instance of each command in the script.

Parameters remain as place holders. The third phase uses parameter binding rules, intra-

command rules, and parameter inheritance constraints to create a fully parameterized list

of executable commands.

In the development of the test generation module of Sleuth, we experimented with a va-

riety of generation approaches, including context free grammars [32], attribute grammars

[15, 40], probabilistic grammars [27, 28], and AI Planning Systems [21]. All of these have

their advantages and disadvantages. Our selection criteria were that the methods selected

should� show adequate performance for industrial use (scale up). This disqualified the AI tech-

nique for the moment. We are, however, working on improving its performance, since

a pilot study [21] showed that the Planner generated some innovative tests to achieve

test goals.� make changes to the domain model easy to deal with when testing subdomains are

formed. Unlike some other sentence generation problems, our test generation prob-

lem encounters frequently changing grammars, if grammars are used. Those changes

should not require the user to manipulate the grammar rather, the test tool should per-

form this. The initial version of Sleuth [40] was based on attribute grammars. Empir-

ical evidence suggested that while automated algorithms to percolate domain model

changes into the grammar are, of course feasible, they were needlessly complex. The

same was true for probabilistic grammars, and, we suspect, for some of the other ap-

proaches discussed in section 2.
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As a result, we settled on a combination approach with different generation mechanisms

for the scripting, template, and parameter value phases of test generation:� Phase 1: Commands are randomly selected from the set of currently allowable com-

mands (those that are part of the current testing subdomain and possible with respect

to scripting rules). The precise distribution can be influenced by the user to model op-

erational profiles. Scripting rules are activated when a command is selected for gen-

eration that is part of a scripting rule.� Phase 2: This phase generates a command template for each command chosen in phase

1. Command templates can be thought of as one path through a command’s syntax

diagram. For every branch point in the syntax diagram, the generator makes a choice

dictated by user definable frequencies (default: uniform).� Phase 3: This stage selects the actual parameter values for each command. The test

generator must fulfill all constraints: parameter binding from the scripting phase, in-

tracommand rules, and parameter inheritance rules. The generator uses set operations

(on parameter values) to compute the possible values at a particular point in the gen-

eration and then selects one of the values. If the set is empty, the generator chooses

from a user defined alternate set. Users often choose this set to contain a single value

of ‘?’ to alert them that their domain model has a fault, because the constraint was not

satisfiable. A generation log provides information on how a particular set of values

was chosen.

6 SLEUTH Test Generation Example

Sleuth supports all stages of application domain based testing. It provides utilities to capture

the domain model through the reverse engineering process described in section 3.2. Figure

7 identifies the utilities for the domain capture activities. The Specification pull-down menu
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Figure 10: Sleuth Main Window

in Figure 10 provides access to these utilities. The Configuration pull-down menu accesses

the utilities of Table 20 to build test subdomains.

Sleuth acts as a test tool generation engine in that it uses the domain model to build a

customized test generator for that domain. Every domain model thus results in a different

test generator, making Sleuth capable of handling a wide range of application domains.

Test generation uses the current test subdomain (the default is the full domain model)

as the basis for generating tests. Test generation follows the three stage approach described

earlier. Figure 10 represents these three stages in the three panels of the main window la-

beled “scripting”, “commands”, and “parameters”. The scripting stage generates a list of

command names. The user gives Sleuth high level test generation directives such as “gen-

erate 100 MOVE commands” (@100\MOVE). The scripting rules cause Sleuth to generate

the necessary additional commands to make the 100 MOVE commands meaningful (e. g.,

system setup, entering of enough tapes). The tester does not have to worry about this since

the domain model ensures generation of command sequences that represent valid system

operation. The tester saves the list of commands (the script) using the export button. The
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generate button starts the second phase of test generation.

Table 21 shows results of generating 20 commands in the first stage using the StorageTekDHSC1:20 domain model. Command #1, SRVLEV, ensures the correct service level before

the test begins. ENTER is used to insert tapes into the ACS through the CAP door. This en-

sures a known set of tapes. In the first stage, Sleuth applied all scripting rules. For instance,

the ENTER command requires a corresponding DRAIN command. Command #2 issues an

ENTER command and Sleuth generated an appropriate DRAIN (command #20). Similarly,

tape mounts and dismounts must be sequenced because tapes must be mounted before dis-

mounting. Sleuth generated two MOUNT-DISMOUNT sequences in commands #6-#15 and

#9-#18.

Table 21: Sleuth Stage 1 Test Generation

Line
Num Command Name Description

1 SRVLEV System Set Up
2 ENTER Enter Tapes for the Test
3 RECOVER
4 MONITOR
5 JOURNAL
6 MOUNT Mount First Tape
7 CLEAN
8 CAPPREF
9 MOUNT Mount Second Tape
10 UEXIT
11 MOVE Move tapes inside the ACS
12 SWITCH
13 JOURNAL
14 SCRPARM
15 DISMOUNT Dismount Second Tape
16 DISPLAY
17 LOAD
18 DISMOUNT Dismount First Tape
19 EJECT
20 DRAIN

The command template stage takes the list of commands and creates a command tem-

plate for each command by selecting a path through the command’s syntax diagram.5 To

archive the suite of command templates, the tester clicks on the export button underneath5Sleuth allows command syntax to be represented and edited as syntax diagrams. Branches are associated with selection
frequencies
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Table 22: Sleuth Stage 2 Test Generation

Line
Num Command Template

1 SRVLEV FULL
2 ENTER [cap-id] SCRatch
3 RECOVER [host-id]
4 MONITOR PGMI ,L= [console-name]
5 JOURNAL FULL = ABEND
6 MOUNT [drive] SUBpool ( [subpool-id] )
7 CLEAN [drive-id] [host-id]
8 CAPPREF [prefvlue] 001
9 MOUNT [volser] [drive]
10 UEXIT [nn-id] Load =LSLUX [uexit-id] ,Enabled
11 MOVE Flsm([lsm-id]) Panel([pp]) Row([rr-ls]) TLsm([lsm-ls]) TPanel([pp])
12 SWITCH Acs [acs-id]
13 JOURNAL FULL = Continue
14 SCRPARM
15 DISMOUNT [volser-id] [drive-id] [host-id]
16 DISPLAY COMMPath
17 LOAD SLSMDQR
18 DISMOUNT [drive-id] [host-id]
19 EJECT VOLSER ([volser-ls])
20 DRAIN [cap-id]

the command panel. Clicking on the generate button between the command and parame-

ter panel (cf. Figure 10) starts the last phase of test generation. Table 22 shows the results

of generating command templates for the commands in Table 21. Parameters are shown as

place holders using square brackets.

In the third phase, parameter values are selected based on the current system configu-

ration taking into account parameter inheritance rules, intracommand rules, and parameter

binding. The tester saves the command suite by clicking on the export button. Table 23

shows the final test case for our example. Note that CAP 000 used to enter tapes in com-

mand #2 is released by DRAIN in command #20. Likewise, the MOUNT-DISMOUNT com-

mand sequences of commands #6-#15 and #9-#18 select the appropriate tape drives and

tape id. For command #11, Sleuth applied the intra-command rule for the MOVE command

mentioned earlier.

Sleuth can be used for functional testing of specific commands (the test subdomain in-

cludes the specific command to be tested and possibly other commands required due to

scripting rules). Frequencies ensure that all syntactic options in a command are exercized,
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Table 23: Sleuth Stage 3 Test Generation

Line
Num Commands

1 SRVLEV FULL
2 ENTER 000 SCRatch
3 RECOVER MVSH
4 MONITOR PGMI ,L=MVSH
5 JOURNAL FULL=ABEND
6 MOUNT A2F SUBpool (EVT180)
7 CLEAN A10 MVSE
8 CAPPREF 9 001
9 MOUNT EVT280 A14
10 UEXIT 10 Load=LSLUX 11 ,Enabled
11 MOVE Flsm(001) Panel(00) Row(02,03,04) TLsm(001) TPanel(15)
12 SWITCH Acs 00
13 JOURNAL FULL=Continue
14 SCRPARM
15 DISMOUNT EVT180 A2F MVSE
16 DISPLAY COMMPath
17 LOAD SLSMDQR
18 DISMOUNT A14 MVSE
19 EJECT VOLSER (EVT180,EVT280)
20 DRAIN 000

provided that enough instances of the command are generated. The user can also define fre-

quencies such that test generation is biased towards specific options in a command (e. g. it

may be desirable during regression testing to test modified parts of a command more often

than unchanged parts).

The metrics pull-down menu provides access to domain model usage information, i. e.

how often which part of the domain model was used during test generation. This informa-

tion is analogous to a coverage analyzer for white-box testing. The measures report on how

often commands, rules, branches, and values have been used during test generation.

System testing is supported by using the complete domain model and instructing Sleuth

to generate a certain number of commands (we have seen system testers generate hundreds

to thousands of commands on Monday morning and execute and evaluate the results for the

remainder of the week). The domain model makes sure that dynamic behavior gets tested

realistically. User controlled frequencies force a desired operational profile. Error recov-

ery in the midst of regular operation can be tested by defining a testing subdomain through

intentionally breaking scripting rules, intracommand rules, or parameter inheritance rules,

39



or by defining invalid parameter values, thus forcing erroneous behavior.

In our empirical observations of system testers over the last four years, we have seen that

testers restrict the domain model to a testing subdomain for a variety of reasons: test focus

(e. g. testing a new type of tape drive controlled by the HSC), exclusion of commands that

are undesirable for some reason (e. g. when a tester wants to run tests over night, excluding

commands that would require (human) operator intervention is desirable), testing a specific

type of workload, etc.

7 Reuse Scenarios and Experiences

Testing based on an application domain model offers two types of reuse capabilities: Do-

main Reuse and Test Case Reuse. Domain Reuse refers to the amount of domain reuse pos-

sible when testing different systems in closely related or overlapping application domains.

Test case reuse relates to the amount of reuse for a test case under various circumstances.

7.1 Domain Reuse

Complete Domain Reuse occurs when testers use an existing domain model with no change

or modification to generate test cases for a new system or release. For example, IBM re-

leased MVS 5.1.1, a new version of the MVS operating system. StorageTek used theDHSC2:0:10
domain model and its associated test subdomains to test HSC’s operation with the new re-

lease. No changes were made to the domain model. Testers saved significant time by re-

calling and generating test cases very quickly.

Partial Domain Reuse can be classified as to which portions of the domain model have to

change and as to the extent of such change. Reuse is greater when fewer parts of the model

require changes and the extent of changes is small. Syntax and parameter value sets are most

prone to change. They are the least general to a domain and depend on an actual application.

Partial domain reuse was found in three test situations: (1) Testing Competing Systems, (2)

Test Varying System Configurations, and (3) Testing Successive System Releases.
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Testing competing systems can reuse all parts of a domain model except for syntax and

possibly parameter value files. An example of such a situation are two competing tape stor-

age systems, StorageTek’s HSC and IBM’s 3594 and 3495 tape library systems. Testers

used theDHSC2:0:10 domain model as a basis for creating theDIBM35940 domain model. Since

their physical configurations vary, most changes to the domain model occurred in the pa-

rameter value definitions and parameter inheritance rules. On the other hand, the command

syntax of the two systems had a large intersection. Therefore, the testers were able to reuse

many of the command syntax descriptions from the HSC domain.

Second, we built a domain model for testing ACSLS (the UNIX environment version

of HSC) running on competing workstations, Sun Microsystem Sparc and Hewlett Packard

9000. The ACSLS software was derived from the HSC system. Therefore, the DHSC2:X0
domain model was reused to create the DACSLS�X0 domain models. The functionality of

the IBM and the Unix systems are the same, but the command language and some of the

parameter value files are different due to the variations in naming conventions on those plat-

forms. In this example, the changes to the parameter definitions and the command syntax

are minimal so domain models DACSLS�SunOS0 and DACSLS�HPUX0 are almost identical.

One can also use the domain model to identify to which degree competing systems have

the same features (which portions of the domain model are needed in both systems; we com-

pare objects, object elements and actions).

Testing Varying System Configurations of the same version of a system is a frequent test-

ing task. At the same time, it only requires modifying the parameter value files and some

parameter inheritance constraint rules if they relate to configuration–relevant values. The

HSC provides an example for such a situation. A specific tape silo configuration (ACS)

can connect one to sixteen silos. These configurations influence the LSM, tape transport,

pass through port, panel, cell row/column, and cartridge access port objects. Specifically,

they affect which values are valid for LSM identifiers. Parameter inheritance constraints

also change, because the specific connections between silos affect what panels, rows and
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columns are available for tape storage. To test the wide variety of system configurations,

testers would load the appropriate domain model and modify it for each configuration. For

example, TSDHSC2:0:1Single defines a test subdomain for a single silo configuration for the HSC

2.0.1 domain. TSDHSC2:0:1Three defines a three LSM configuration.

Testing Successive System Releases provides another opportunity for domain model reuse.

The domain model for the previous release is used as a basis for the new domain model. We

reused domain models for successive releases of HSC 1.2, 2.0, and 2.0.1. The first step com-

pared command syntax diagrams for HSC 1.2 and HSC 2.0. Twenty-six commands required

modifications to the syntax diagrams in the form of new keywords and new branches or

command options. Similarly, the tester identified and updated the commands that changed

between HSC 2.0 and 2.0.1. Five commands required keyword and option updates. It was

also necessary to update the parameter value files for the hardware configurations. The

tester changed the parameter files for the following parameters (cf. Table 8): lsm-id, acs-id,

drive, dsn, volser, station, cap-id, host-id and subpool-name.

To illustrate the nature of changes to a domain model between versions in more detail,

consider one of the key enhancements between HSC1.2 and HSC2.0. StorageTek modified

the ACS hardware to support multiple Cartridge Access Ports (CAP). This hardware mod-

ification initiated changes to the command line interface, HSC2.0. Specifically, it modified

all commands in the Action script class that included the cap-id parameter (See Sec-

tion 4). Modifications included adding an option to the syntax diagrams to allow either a

cap-id or a list of cap-id’s.

At the parameter value level, there are changes in the cap-id format. The format pro-

vides backward compatibility to old CAP configurations and new functionality to the new

CAP doors. HSC2.0 appends a ‘‘:00’’ or ‘‘:01’’ to each cap-id (f000: : :FFFg).

The first extension denotes an “old” CAP while the second designates the new CAP hard-

ware.
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Table 24: Domain Reuse Example

Num HSC 1.2 HSC 2.0

1 SRVLEV FULL SRVLEV FULL
2 OPTION REPATH (Yes)
3 OPTION EJLimit (9999)
4 ENTER 000 SCRatch ENTER 001:00 SCRatch
5 RECOVER MVSH RECOVER MVSH
6 MONITOR PGMI ,L=MVSH MONITOR PGMI ,L=MVSH
7 JOURNAL FULL=ABEND JOURNAL FULL=ABEND
8 MOUNT A2F SUBpool (EVT180) MOUNT A36 SUBpool (EVT2)
9 CLEAN A10 MVSE CLEAN A2F MVSE
10 CAPPREF 9 001 CAPPREF 4 000:00
11 MOUNT EVT280 A14 MOUNT EVT297 A29
12 UEXIT 10 Load=LSLUX 11 ,Enabled UEXIT 04 Load=LSLUX 02 ,Enabled
13 MOVE Flsm(001) Panel(00) Row(02,03,04) MOVE Flsm(000) Panel(18) Row(10)

TLsm(001) TPanel(15) TLsm(000) TPanel(14)
14 SWITCH Acs 00 SWITCH Acs 00
15 JOURNAL FULL=Continue JOURNAL FULL=Continue
16 SCRPARM SCRPARM
17 DISMOUNT EVT180 A2F MVSE DISMOUNT EVT297 A29 MVSH
18 DISPLAY COMMPath DISPLAY COMMPath
19 LOAD SLSMDQR LOAD SLSMDQR
20 DISMOUNT A14 MVSE DISMOUNT A36 MVSE
21 EJECT VOLSER (EVT180,EVT280) EJECT VOLSER (EVT297)
22 DRAIN 000 DRAIN 001:00
23 EJECT SCRTCH (010:01) VOLCNT (99)

In addition, the new CAP doors can eject up to 9999 tapes in oneEJECT command. Pre-

viously, HSC1.2 allowed a maximum of 100 tapes per EJECT command. This was a minor

change to a parameter value file. HSC2.0 also introduced a new system set up command:

OPTION. This command specifies cap-id’s to eject tapes when a CAP is unavailable. It

also sets limits on how many tapes to eject. We included this command in theSETUP script-

ing class.

Table 24 compares HSC1.2 test generation with HSC2.0. We added the new command

OPTION and set frequencies to ensure that Sleuth generated the updated command syntax

and parameter value choices. The new OPTION commands in lines #2 and #3 show how

new features can be added to an existing domain model when changes call for new script-

ing rules - in this case the new commands are part of the SETUP class. Command #3 also

reflects the change in the maximum number of tapes ejected. In several commands, the new

cap-id syntax is evident (e.g., 4,10,22, and 23).
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Reuse Stage Reuse Possibility

Regression Testing
Command Syntax Change

Reuse Script New Software Release
Stress Test
Creating new test scripts
Operating System Version
Regression Testing
Domain Specification Change

Reuse Command Domain Configuration Change
Template Hardware Configuration Change

Stress Test
Creating new command templates
Parameter Value Change
Regression Testing

Reuse Test Case Re-run Test Case
Creating new test cases
Stress Test

Table 25: Domain Based Testing - Reuse Applications

7.2 Test Case Reuse

Test Case Reuse is the process of recalling and using a previously archived test case. The

three stage test generation offers three types of reuse possibilities: tests are reusable as scripts,

suites of command templates and suites of commands. Table 25 shows a list of possible

reuse applications at all three levels of test case generation. Many of these were suggested

by the test engineers at StorageTek. From this list we identified three reuse scenarios: (1)

Successive Software Releases, (2) Multiple System Configurations, and (3) Varying Test

Case Construction. The following provides an overview of each class and describes how

the test engineers at StorageTek use Sleuth to reuse archived tests. Even though the ex-

amples presented here are specific to the tape library, it is reasonable to assume that other

systems will have similar reuse needs.� Scenario #1 - Successive Software Releases

Between releases, the command language may change. New commands may be added,

obsolete commands may be deleted, and command syntax may be modified. In some cases,

a new release may influence rules like intra-command rules or parameter constraint rules.

At StorageTek, test engineers use HSC commands to generate tests for the robot tape li-

brary. These tests can be archived and recalled at all three stages of test case generation. For
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Table 26: Test Case Reuse - Successive Software Releases

Archived
Script HSC 1.2 HSC 2.0
enter-tapes.s Template Template

MODIFY MODIFY CAP [cap-id]) ONline MODIFY CAP [cap-ls] ONline
CAPPREF CAPPREF [prefvlue] 000 CAPPREF [prefvlue] [cap-ls]
ENTER ENTER [cap-id] SCRatch ENTER 000:00 SCRatch
DRAIN DRAIN [cap-id] DRAIN ([cap-ls])

example, when a new release of the software is issued, archived test cases can be recalled

at the Scripting level for reuse. Once the script is recalled, a command template can be

generated using the updated command syntax and semantic rules. Each command template

can be used to generate tests for a wide variety of hardware configurations. StorageTek re-

quires software to be upward compatible from release to release. Therefore, test cases that

ran without incident on one release should run without incident on the new release. Sleuth

provides utilities to recall test suites for this simple form of regression testing.

This same reuse scenario can be used for testing applications on all its platforms and

operating systems on which they are supposed to run. There may be many common com-

mands with slight differences between the languages. For example, some commands may

be needed for one operating system and not another. Using this same scenario, test cases

can be recalled at the Scripting level, and new tests can be generated for various operat-

ing system versions. Since all test suites are identical at the Script level, we build uniform,

comparable test suites for a variety of releases and platforms.

Table 26 shows an example of reusing the archived script enter-tapes.s. In the ta-

ble, the script is used to generate command templates for HSC1.2 and HSC 2.0. The script

could also be used for HP-UX OS, SunOS, HSC2.0.1, and IBM3594 domains. The utiliza-

tion of archived scripts is typically very high. One script can generate a wide variety of

command templates. In turn, each command template can generate several test cases.� Scenario #2 - Multiple System Configurations

The set of valid parameter values represents a configuration of the problem domain. It

represents a configuration of logical objects or physical devices.
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The StorageTek robot tape library hardware can be configured in many ways. To test

these configurations, testers execute tests on a Library Management Unit (LMU) simulator

or on actual ACS hardware. ACS hardware can be configured in many ways. Testing on

the actual hardware explores timing problems or real-time processing faults. Each ACS

configuration needs a separate set of parameter value files and parameter constraint rules.

For this scenario, tests will be reused at the Command Template level. Upon recalling a

command template, test cases can be regenerated based on the new configuration. Hence,

a single command template can generate a test case for different configurations. This saves

generation time, but more importantly, it makes test cases uniform and comparable because

they test “the same thing.” Table 27 shows how a single archived command template can

be reused to generate test cases for multiple hardware configurations. In this example, the

number of LSM’s, tape drives, and tape volumes were changed in Hardware Configuration

1 and Hardware Configuration 2.

Table 27: Test Case Reuse - Multiple System Configurations

Archived
Template HSC 1.2 HSC 1.2
mount-tapes.ct Configuration 1 Configuration 2

ENTER [cap-id] ENTER 002 ENTER 011
MOUNT [drive] ([volser-id] ) MOUNT A10 (EVT185) MOUNT A2F (EVT297)
LOAD SLSLDQR LOAD SLSLDQR LOAD SLSLDQR
DISMOUNT [volser-id] [drive-id] DISMOUNT EVT185 A10 DISMOUNT EVT297 A2F
DRAIN [cap-id] [cap-id] DRAIN 002 DRAIN 011� Scenario #3 - Test Case Construction

Often testers find a particular list of commands is good at detecting a certain error. Test

engineers may also have a set of commands putting the system in a particular state before

running a test case. It should be easy to recall such test cases and to include them in a new

test suite. In Sleuth, this reuse scenario spans all three stages of test generation. A new test

case can be constructed from a set of “building blocks.” One script might be included to

put the system in a particular state, another might present a workload to the system, and

a third might reuse a test that has been successful for a particular type of fault. Command
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templates can be included to create a larger test sequence. Finally, archived test cases can be

included for a regression test. To support test case construction, Sleuth provides a directive

to include archived scripts, command templates, and test cases.

8 Conclusions and Further Work

We presented an approach to describe an application domain for testing purposes and showed

the ways in which reuse of a domain model has been fruitful. While manual generation of

test cases from such a domain model is of course possible, its benefits are much greater when

the domain model is coupled with an automated test generator. Sleuth is a test generator that

bases test generation on a model of the application domain. It has been in use at StorageTek

for several years. While building a domain model is clearly an effort, the potential for do-

main and test case reuse was realized for the test scenarios we encountered during practical

use.

How good is this method? In a recent case study [44] comparing testing with and with-

out this method for a 12 week test cycle, we found that with domain based testing, the tester

found about 3.5 times as many errors. Post-release incidence rate (tracked for 12 months

after release) for the Sleuth-tested version was about 30% lower. This gives us great con-

fidence that testing based on a specialized model of the application domain not only offers

significant opportunities for reuse of test artifacts, but also provides an effective and effi-

cient testing environment.

Further work is ongoing to answer a variety of questions and tester needs. The domain

model currently does not represent full system state. Adding this capability is desirable as

it makes the model more complete. On the other hand a fully complete model would in

effect be a simulator. Just how much state information is necessary is an open question.

Validating test results is still manual. We are working on adding test oracle information to

the domain model. This requires new analysis steps to determine the nature of the oracle.
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We also need to examine this method with existing domain analysis and domain models for

software reuse [3, 4].

Currently, the application of the domain model is restricted to applications with a com-

mand or transaction language as a user interface. Extending the approach to testing systems

with a graphical user interface would require mapping actions, objects, and object elements

into GUI concepts like push buttons, toggles, text fields, basic or option menus, etc. as an

additional component of the model. Syntactic representation describes the precise ways of

activating these constructs (e. g. via Xrunner code).

Finally, we are in the process of automating test subdomain generation based on test

objectives and to develop testing criteria specific to testing against an application domain

model.

Application domain based testing and Sleuth have been in operation in an industrial sys-

tem testing group for over four years. Results support its usefulness in practice, indicating

that even a relatively simple model can go a long way in improving system testing.
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