Firewalls for ATM Networks

Uwe Ellermann Carsten Benecke
DFN-FWL*
University of Hamburg
{Benecke, Ellermann} @fwl.dfn.de

Abstract

There are many differences between ATM and todays most commonly used
network technologies. New firewall architectures are required to exploit the
advantages of ATM technology and to support the high throughput available
in ATM networks.

This paper begins with a discussion of the impact of ATM on firewalls and
then introduces the idea of parallelized firewalls, which may be used in order
to achieve the high performance necessary for ATM networks.

1 Introduction

Firewalls are a widely used security mechanism in the Internet today. They
are mostly used to provide access control and audit at the border between
the public Internet and private networks, but are also used to secure critical
subnets within private networks.

ATM is another somewhat newer trend in networking today. ATM provides
a scalable high-speed network infrastructure, based on the concepts of fixed-
length cells and virtual circuits. These conceptual differences to “legacy”
networks! and the high throughput of ATM networks present both challenges
and new opportunities for firewall concepts.

*This work was funded by the DFN-Verein (Association for the promotion of a German
Research Network) and Deutsche Telekom under project number: DT10.

! In this article the term “egacy” networks is used for connectionless, shared medium

based networks without resource reservation.

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

This paper discusses ATM specific topics of firewall design for ATM networks.
General firewall issues such as security policies or implementation of firewalls
are not discussed. Detailed discussions of these subjects can be found in
[Chapman et al. 95, Cheswick et al. 94, Ellermann 94].

The following section gives a short introduction into ATM before discussing
the consequences of using ATM in conjunction with firewalls. Different ap-
proaches to integrate packet screens into “Classical IP over ATM” networks
are considered.

Section 3 presents performance measurements of the two most important
firewall components: packet screens and proxy servers. It will be shown that
the high processing requirements in both packet screens and proxy servers are
the source of a severe throughput bottleneck of firewalls in ATM networks.

Parallel protocol processing is introduced in section 4; this is one promising
solution to the need for increased firewall performance resulting from the
high scalability of ATM networks. Several concepts for parallel firewalls are
discussed.

The final section summarizes the results and closes with references to ongoing
research.

2 ATM as a challenge for firewalls

Firewalls are widely deployed to protect critical subnetworks from public
networks. While today firewalls are mostly used in networks not exceeding
throughputs of 10 Mbit/s, most sites are currently upgrading to high-speed
networks (HSN) like Fast-Ethernet, Gigabit-Ethernet or ATM. As firewalls
are, by design, “choke-points”, firewall performance is a major concern in
HSNs. In addition to the performance requirements, ATM networks also
introduce new networking concepts which require a revision of current fire-
wall concepts. This section will discuss the differences between ATM and
“legacy” networks and the resulting implications for firewalls. Performance
measurements of firewalls in an ATM network are presented in section 3.

2.1 Overview of ATM

ATM is based on the concept of fixed-length cells and virtual circuits (VC).
ATM cells are short compared to the variable-length of packets in “legacy”
networks. Each cell has a payload of 48 bytes plus a header of 5 bytes.
Unlike packets in “legacy” networks, ATM cells don’t carry source or desti-
nation addresses in their headers. Instead a so called “virtual circuit” has

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

to be established before any communication may occur between source and
destination. Cells contain identifiers which allow cells to be associated with
a virtual circuit. There are two different ways to set up a virtual circuit:

e “Permanent Virtual Circuits” (PVCs) are established by manual con-
figuration in the end-systems and in all switches along the path. This
solution is obviously restricted to rather small networks.

e “Switched Virtual Circuits” (SVCs) are initiated on demand.

The successful Internet and its protocols (IP, TCP, UDP etc.) will not be re-
placed by its ATM counterparts. Instead, ATM will be used as a fast medium
to carry Internet protocols. ATM will primarily be used for building fast
backbone networks. Only certain applications, such as videoconferencing,
require advanced ATM features such as resource reservation.

Two widespread concepts are used to transmit IP traffic over ATM networks.
“Classical IP and ARP over ATM” (CLIP) as defined by the IETF in RFC
1577 [Laubach 94] specifies an encapsulation format for TP datagrams and an
ATMARP-server for the required mapping of IP addresses to ATM addresses.
“LAN Emulation” (LANE) [ATM Forum 97] emulates “legacy” LANs and
therefore supports not only IP but also other network layer protocols such as
[PX. If only IP needs to be supported, CLIP provides better performance,
as it introduces less overhead than LANE.

2.2 Implications of ATM on firewalls

ATM networks introduce four major challenges to firewalls:

Performance: Firewalls, as already stated, are a bottleneck by design. In
order to increase security, all traffic is channeled through a small num-
ber of firewall systems. Current increase in workstation performance
cannot cope with the easy scalability of ATM networks. 622 Mbit/s or
even 1.2 Gbit/s can easily be achieved with ATM networks. Worksta-
tions cannot perform even simple filtering at these speeds.

In addition to the lack of firewalls to transfer legitimate traffic at high
speeds, various attacks can be performed much more efficiently in high-
speed networks. This is especially true for various “denial of service”
attacks, such as SYN-flooding and ICMP attacks resulting in packet
storms. Audit files created during an attack can easily grow by some
megabytes within minutes, preventing the machine collecting further
audit data after all the available audit data storage space has been

filled.

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

3

New requirements: ATM has a number of features not available in “legacy’
networks, most notably, ATM supports various “quality of service” re-
quirements; a certain bandwidth or a fixed maximum delay during
transmission can be specified individually for virtual connections in
ATM networks. No currently available firewall supports resource reser-
vation in order to keep track of these quality of service requirements.
This is currently an active research area.

New risks: ATM networks require a number of new protocols (e.g. PNNI

“Private Network-Network Interface” and ILMI “Integrated Local

Management Interface”). Even more services are necessary to sup-

port CLIP or LANE. The security implications of these protocols are

not fully understood. Before firewalls can be integrated into such an

environment, the risks associated with these new protocols must be
identified; this requires extensive research (see [Benecke et al. 98]).

Technical problems: As already described, ATM networks differ from “leg-
acy” networks in many ways. Most firewall concepts have implied as-
sumptions about the underlying network. Application layer firewalls
(proxies) are on a high level of abstraction and are therefore more
loosely coupled with the underlying network.

Packet screens, on the other hand, are usually based on the assump-
tions that every packet sent contains complete address information and
that also the services accessed can be identified in every packet. Both
assumptions are no longer valid in ATM networks. These aspects are
discussed in the following section.

2.3 Integration of packet screens into ATM networks

Packet screens filter packets based on information in the packet headers. In
“legacy” networks the address information available allows packet screens to
restrict access to certain IP addresses and to TCP or UDP services.

As ATM cells contain only 5 bytes of header and 48 bytes of payload, a packet
screen operating on every cell has only very limited information available.
IP datagrams, usually a few hundred bytes long,? must be “segmented” into
multiple cells by the sender and “reassembled” at the destination.

Classical packet screens: As packet screens operate on IP datagrams,
they have to reassemble IP datagrams from cells before filters can be applied.

2 A “Maximum Transfer Unit” (MTU) of 9180 bytes is defined for CLIP in
[Laubach 94]. An alternative MTU of up to 64 kbytes may be negotiated for a
virtual circuit.

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

Datagrams, which are allowed to be forwarded, must be segmented into cells
once again after filtering. Segmentation and reassembly is performed by
hardware on the ATM interfaces and therefore does not increase the packet
screens processing load. After cells are reassembled to IP datagrams, the
further processing of these IP datagrams does not differ from packet screens
used in “legacy” networks. The performance of this solution is analyzed in
section 3.1.

Cell screens: The reassembly and segmentation in classical packet screens
increases the transmission time, as all cells must arrive before the original
datagram can be recovered and filters can be applied. The delay can be re-
duced, if the packet screen could extract the information required for filtering
from cells, thus avoiding reassembly.

To understand how this could be implemented, a short description of the
transmission mechanisms for IP datagrams over ATM networks is required.
The CLIP protocol stack is shown in figure 1. First, a SNAP header
[Heinanen 93] is prepended to an IP datagram. The SNAP header identifies
the transmitted payload as TP. SNAP header (8 bytes) and IP datagram are
then encapsulated in an AAL-5 frame (see [Peterson et al. 96]). The AAL-5
frame has a trailer of 8 bytes. It also contains a variable number of padding
bytes to match the frame exactly into multiple 48 bytes cells. This AAL-
5 frame is segmented into cells, where the last cell of the AAL-5 frame is
marked.® All cells are then sent on the same virtual circuit across the ATM
network. ATM guarantees the ordered delivery of cells.

A cell screen can identify the last cell of an AAL-5 frame. As all cells are
delivered in order, the next cell will be the first cell of the next datagram.
This first cell contains 8 bytes of SNAP header, 20 bytes of IP header and
20 bytes of TCP header. With the complete IP and TCP (alternatively
UDP?) headers in the first cell, the packet screen has all information that
is required for filtering. If the forwarding of the datagram is allowed by the
filtering rules, the first cell and all following cells on the same virtual circuit
are forwarded until the last cell of an AAL-5 frame is found. If the datagram
must be blocked, the packet screen discards all cells up to and including the
last cell of the AAL-5 frame.

A cell screen can be implemented mainly in hardware and installed between
an external link and an internal switch.” But, as most parts of a cell screen

3 The last cell of an AAL-5 frame is marked by setting a bit in the “payload type”

field of the cell header.
4 The UDP header (8 bytes) is shorter than the TCP header, so with UDP there is
even room for 12 bytes of payload in the first cell.
“StorageTek Network Systems” markets a product called “ATLAS” which imple-
ments this concept.

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

l

TCP-Header Data
(20 Byte)

- ‘ IP layer

IP-Header
(20 Byte)

| | RFC-1483

SNAP

Transport layer

Header
(8 Byte)

‘ Adaption layer

ATM cell ATM cell ATM cell ATM layer
ATM cell ATM cell ATM cell

2
z

g Z| SNAP 1Pv4 TCP Data
@8

Jopeay
1199 W1V

5Byte 8Byte 20 Byte 20 Byte

@
@

s
@

Figure 1: Cell Screen: CLIP protocol stack

are already required in ATM switches (forwarding of cells, recognition of
the end of an AAL-5 frame and selective discard of cells®), the extension to
support the missing cells screen features is a natural one.

A cell screen imposes a shorter delay, as screening can occur after the first
cell has been received. The copy operations performed by classical packet
screens, which move whole 1P datagrams are also avoided; cell screens only
have to copy the first cell for screening, subsequent cells can be forwarded
or dropped efficiently by the switching hardware. The screening overhead
for evaluation of the filter rules is, however, the same for cell screens and
classical packet screens.

Signaling Screens: Most firewall concepts rely on a combination of one
or more packet screens and one or more bastion hosts. The bastion hosts
perform connection authentication on an application layer level. The packet
screens function is to allow the proxy servers to communicate, while pre-
venting all other communication. If another mechanism is available, which
ensures that only this legitimate communication can take place, no packet
screen is needed. For example a gateway firewall does not require a packet
screen, as it is the only machine that is connected to both internal and ex-
ternal networks.

The mechanism to discard all cells till the end of an AAL-5 frame is already imple-
mented into switches for discarding useless cells after loss of a cell.

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

In ATM networks routing and forwarding are separate tasks.” All routing
decisions are made during the setup of a virtual circuit. All data sent is
forwarded along this virtual circuit. The end systems of a virtual circuit
(sender and receiver) can be identified during connection setup before any
data is sent. By specifying rules which define which circuits may be setup
between which end systems, all traffic can be forced to be processed by a
bastion host before it enters a network on the other side of the firewall.

Current ATM switches already support a simple filtering language; its struc-
ture is similar to the filter rules of packet screens in routers. Rules can be
defined in an ATM switch to expressively allow or deny the establishment of
virtual circuits to a list of ATM addresses.® It requires only moderate effort to
define rules, that forbid the establishment of virtual circuits between internal
and external end systems except for the bastion host (see [Benecke et al. 98]).
The filter rules only have to be examined during the setup of a new virtual
circuit, there is no impact on the performance of the following communica-
tion. Obviously the bastion host must be powerful enough to support the
high bandwidth available or the traffic must be distributed among several
parallel bastion hosts as discussed in section 4.2.

3 Performance of firewalls in ATM networks

An ATM test-network was setup for performance measurements of different
firewall concepts in high-speed networks.” The following discussion summa-
rizes the results of performance measurements for the two most important
firewall components — packet screens and proxy servers. A detailed analysis of
firewall performance in ATM networks can be found in [Ellermann et al. 98].

3.1 Performance of packet screens

A workstation equipped with two ATM interfaces was used as a packet screen
for the performance measurements. The software “IP-filter” (version 3.2)°

" In IP networks routing decisions are made for every IP datagram based on the
destination IP address contained in the header of each datagram. Following IP
datagrams may travel different paths across the network.

IP addresses, TCP or UDP port numbers are not available during the setup of a
virtual circuit. For that reason signaling screens cannot filter on IP addresses used
or ports accessed.

The network consists of six Sun Ultra Sparc 1/140 (Solaris 2.6) equipped with Sun
155 Mbit/s ATM interfaces (SunATM 2.1) and two Cisco Lightstream 1010 ATM
switches.

10 ftp://coombs.anu.edu.au/pub/net/ip-filter/

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

used on the packet screen allows the specification of filter rules. The tool
“Netperf”!! repeats write calls on an already opened TCP connection for
10 seconds. The throughput is calculated by the amount of data transferred.

Comparision of theoretical and measured TCP throughput
140

T T
calculated

T

measured host to host ------- !
packet screen: O rules MM ;o /
120 - packet screen: 100 rules -~~~ i i 7 i
packet screen: 250 rules --------- V /// {

60

throughput [Mbit/s]
©
o
4
*

fi"

40 ’ At B

i

e
20 %
S
e

0 :
4 8 16 32 64 128 256 512 1024 2048 4096 8192

‘write’ size [byte]

Figure 2: Throughput over a packet screen

The figure 2 shows the achieved throughputs for three selected filter config-
urations with 0, 100 and 250 rules. As expected the performance depends
primarily on the number of filter rules configured. The calculated theoretical
maximum throughput can only be reached with write calls longer than 2048
bytes. The reason for the sharp drop of throughput for shorter write calls
is the limited packet throughput of the packet screen. In an OC-3¢ ATM
network (155 Mbit/s) almost 180,000 datagrams per second are necessary in
order to achieve the calculated theoretical maximum throughput with mes-
sage sizes below 40 bytes. While the workstations in our environment were
able to generate about 16,000 datagrams per second, the tested packet screen
reaches only about 8.000 datagrams per second. This value will be further re-
duced by adding more filter rules. As typical message sizes rarely exceed 500
bytes the expected throughput of the packet screen in a real environment will
be limited to 30-40 Mbit/s. In order to reach the calculated theoretical max-
imum throughput of 120 Mbit /s for this message size, the packet throughput
of the packet screen must be four times higher. A packet throughput of ap-
proximately 30,000 datagrams per second is necessary to reach 120 Mbit/s
with a message size of 500 bytes. These results show that the actual data
throughput is not a bottleneck, the packet throughput of the packet screen
limits the maximum throughput instead.

1 ftp://ftp.cup.hp.com/dist/networking/benchmarks/netperf/

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

3.2 Performance of proxy servers

Proxy servers control connections at application level. The processing of the
transferred data by an application process obviously requires more resources
than a check of datagrams at a packet screen. Nevertheless most firewall
concepts are based on proxy servers as better security can be achieved by
doing access control on the application level.

Despite the higher processing overhead it is also possible with proxy servers
to achieve a maximum throughput of 134 Mbit/s. But this throughput can
only be achieved for transfers of large quantities of data in large datagrams.
For more important smaller quantities of data, for instance the transfer of a
HTML page, the connection establishment time dominates the time required
for transferring the data. The connection establishment time to a server via a
standard proxy server in a LAN environment was measured to be about 0.03
seconds. The time required to transfer a message of 16 kbytes is magnitudes
lower. For that reason the time to open a connection and transfer a message
of 16 or 32 kbytes will take about 0.03 seconds, regardless of the length of
the message.

The data throughput and the increase in connection establishment time des-
ignate a more user-oriented view on proxy server performance. The number
of parallel connections is however just as important. First results show that
dependent on the type of proxy server less than 100 active connections can be
processed at the same time on a proxy server. The actual number of parallel
connections experienced in high-speed networks can be much higher. Also the
rising complexity of proxy servers (integration of virus scanner, encryption
etc.) will require a distribution among several bastion hosts.

4 Concepts for Parallel Firewalls

The throughput measurements for packet screens and proxy servers have
shown that the performance of these classical firewall concepts is not sufficient
for high-speed networks. The packet throughput of workstation-based packet
screens is too low to result in an adequate throughput for typical IP datagram
sizes. The high processing overhead of application layer firewalls such as
proxy servers result in low maximum throughputs, so that proxy servers are
perceived as a bottleneck for communication. In the following section we
start with an overview of parallel protocol processing in order to introduce
parallel firewall concepts later on.

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

4.1 Parallel Protocol Processing

It turned out that a typical workstation is unable to provide the available
throughput of a high-speed network at transport level or application level
due to a bottleneck in the protocol processing in higher layer protocols
[Zitterbart 91] such as TCP or IP. For this reason many parallel process-
ing approaches have been suggested [Woodside 91].

While the static methods all introduce some kind of pipelining in the pro-
tocol stack which differ in the achievable granularity of parallel process-
ing, the dynamic methods handle either incoming packets (packet parallelism
[Goldberg 93]) or whole connections (connection parallelism). For a discus-
sion of advantages and disadvantages of these methods see [Benecke 96].

While packet parallelism fits very well for parallel packet screens (see section
4.3) the connection parallelism is the better choice for concepts for parallel
application level firewalls.

In the following sections we will discuss how dynamic methods may be used to
improve the performance of firewalls in high-speed networks. Examples will
be used to discuss the advantages and disadvantages of different approaches.

4.2 Parallel Bastion Hosts

As most proxy servers support TCP based services and TCP is a connection-
oriented protocol the connection parallelism is a straightforward choice for
parallel application level firewalls. The load that has to be distributed among
parallel processes is the accumulated number of parallel connections a proxy
server has to handle. We will now discuss different basic approaches for
distributing the load. This will lead to parallel application level firewalls.'?

4.2.1 Static Distribution of Connections

The “load” denotes the number of open connections to a proxy server. If the
load has to be shared we need solutions for distributing these connections.

The easiest way to distribute the load is to provide a separate proxy server for
each service (e.g. HTTP, FTP,...) that has to be supported. As traffic is stat-
tcally mapped to dedicated proxy servers, measurements have to show which
proxy servers can be mapped together on a single processor (e.g. bastion

12 In the discussion of application level firewalls bastion hosts are used as an example.
In most cases these concepts are also applicable to gateway firewalls.

10

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

host) and which proxy servers should be mapped onto separate processors or
hosts.

By distributing the proxy servers among different hosts the security can also
be improved. If an intruder succeeds in attacking one bastion host, he still
has no access to other proxy servers. If on the other hand all proxy servers
are concentrated on a single bastion host, all these services can be used by
an intruder who succeeds in attacking this bastion host to proceed attacking
the guarded net. The major disadvantage of this solution is the static map-
ping of all connections to a certain service to a dedicated proxy server on
a dedicated processor. If the current traffic differs from the expected traffic
(e.g. more FTP requests than HTTP requests) the forejudged mapping may
be inefficient. This may lead to situation where a single bastion host is under
heavy load while other parallel bastion hosts are idle.

4.2.2 Dynamic Distribution of Connections

The throughput can be improved by replicating a proxy server on multiple
processors, so that connections can be dynamically mapped to replicated
pProxy servers.

Example: Round-Robin DNS

A well known example for dynamically distributed connections is a “Round
Robin” extension to DNS [Brisco 95]. All names of replicated WWW servers
which shall share the connections are registered with a CNAME for the virtual
“WWW?” server. After each lookup the DNS server rotates the list of CNAMEs.
The next client requesting the name of the “WWW?” server will receive a
different answer from the DNS server and the connections to the “WWW”
server will be distributed among the parallel servers.

We have a dynamic distribution of connections, but we still can not make
sure that this load is balanced as the distributing process does not get any
feedback about the load of the parallel proxy servers.

Example: Distribution by “meta” Proxy

The distribution of connections to the proxy servers can be improved by a
“meta” proxy. All requests are sent to this “meta” proxy which chooses one
of the parallel proxy servers to process the request. As the parallel proxy
servers may send status information to the meta proxy this choice can be
made load dependent (e.g. the proxy server with the lowest load gets the
request).

11

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

The main problem of the dynamic distribution is to find an inexpensive
(fast) algorithm that distributes the incoming connections among the parallel
bastion host. This distribution can either be centralized or decentralized.

4.2.3 Centralized vs. Decentralized Distribution

A centralized distribution may be realized by a single (meta) proxy which
distributes all incoming connections among the pool of proxy servers which
actually serve the requests. The advantage of this solution is that the meta
proxy may gather status and load statistics from the proxy servers that en-
ables a fair and balanced distribution of incoming connections. The meta
proxy may also be able to redirect requests if it detects an intrusion or fail-
ure of a bastion host. On the other hand the meta proxy has to handle all
incoming connections. It must be fast enough so that the distribution of
connections is not a bottleneck itself.

Another way to improve the throughput of centralized distribution is to make
the decision in the kernel (e.g. on the network (IP) layer). The low through-
put of proxy servers results from the fact that the proxy servers are applica-
tion level processes which receive the request via one connection and forward
it via another one. If we just want to distribute the incoming connections a
kernel level process could forward the datagrams to the bastion hosts. This
mechanism is a special case of “Network Address Translation” (NAT).

Example: Packet Screen as a Central Distributer

An example for a centralized distribution at the network level is a combina-
tion of packet screen and parallel bastion hosts.

Modern packet screens are able to map one IP address onto another (“Net-
work Address Translation” (NAT)) while they are filtering datagrams. This
can be used to distribute the datagrams to parallel bastion hosts depending
on the load of the proxy servers (see figure 3).

Measurements for a packet screen with enabled NAT show that the perfor-
mance impact of NAT is almost equal to the impact of 10-20 filter rules.
Depending on the type of traffic and the processing overhead of the proxy
servers there is a risk that the packet screen used for distribution may become
the bottleneck in this setup.

There are, however, some points to be considered. First all datagrams of one
connection have to be forwarded to the same proxy server. Secondly there
may also exist inter-connection dependencies. For example the data stream
and the control stream of an FTP session should be mapped to the same

12

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

Bastionl Bastion2 Bastion3 Bastion4

Packet Screen NAT
Load Distribution

Packet Screen NAT
Load Distribution

ATM Switch

Figure 3: Distribution by “Network Address Translation” (NAT)

proxy server. This may be implemented by forwarding all connections of a
client (represented by its IP address) to the same proxy server. On the other
hand mapping all incoming connections of the same client onto the same
proxy server may be too restrictive in some environments. For each kind
of proxy server the context information that have to be shared in order to
resolve inter-connection dependencies must be specified. The propagation of
context information enables a higher degree of parallelism among the proxy
servers.

Distribution over “native” ATM

The previous setup (figure 3) may be improved by using native ATM connec-
tions between the packet screens and the parallel bastion hosts. All parallel
bastion hosts respond to the same IP address. The packet screen does not
need to use time consuming NAT transformation on every IP datagram, it
acts as a router and simply forwards an IP datagram over one of the native
ATM connections to a bastion host instead. The route for an IP datagram
cannot be a function of the destination IP address because the IP addresses
of the bastion hosts are all the same. The path of a datagram is calculated
by the load distribution algorithm. The use of the same IP address for mul-
tiple systems usually has disastrous effects on the network. These problems
do not occur in the described setup as the bastions can only communicate
through the packet screen. Further studies have to show quantitative aspects
of performance improvements of this approach.

A decentralized distribution may be realized by the parallel proxy servers
themselves. Each proxy server inspects all incoming connections and decides
whether it is responsible for this connection.

13

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

Example: Distributed connection response

The decentralized algorithm to decide whether or not to serve a connection
may be realized as a function of the first TCP segment (indicated by the
SYN flag). This method requires that every packet can be received by all
proxy servers similar to the concept of the parallel packet screen (see section
4.3). New connections can be distributed either randomly, load dependent,
or dependent on information inside the datagram.

Another example for a decentralized distribution depends on the cooperation
between client and server:

Example: Redirecting HTTP requests

The HTTP protocol [Fielding et al. 97] enables servers to redirect requests
by sending the clients an alternative URL. This feature can be used by paral-
lel servers to balance their load. Whenever a server under heavy load receives
a request it may decide to redirect the request to a replicated server. An ob-
vious problem with this approach is a spoofing of redirect messages which
increases the risk of “man in middle” attacks.

Example: Transparent redirecting connections

Another disadvantage of the solution for HTTP is the need for an explicit
cooperation between client and server. This cooperation may be hidden by
providing a transparent connect () system call in a shared library that re-
places the standard library function. The new connect () system call tries to
open a connection. A server may accept the connection or supply the address
of an alternative server. As this redirection is hidden by the connect () call,
there is no need to change the client software. Another advantage is that
it is a generic solution. It works for all TCP based applications that use
the library replacement. Note that this solution can be build on the simple
protocol used by SOCKS [Leech et al. 96].

As a redirection of a connection increases the connection setup time, the
tradeoff between increased throughput and connection setup time has to be
taken into account. A redirection is usually only worth the increased setup
time, if a large amount of data has to be transferred. For small quantities
of data it is more efficient to process the connection without redirection and
notify the client to use an alternate proxy server for subsequent connections.
A prototype that uses the described transparent redirection for a distributed
load balancing is currently developed.

14

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

4.3 Parallel packet screening

Measurements for the performance of packet screens (figure 3.1) have shown
that a typical workstation is able to perform screening in an 155 Mbit/s
ATM network for large packet sizes only. Unfortunately the average packet
size in the Internet is much smaller. The packet throughput of the investi-
gated packet screen has to be increased about four times to reach acceptable
throughputs with smaller packet sizes.

Parallel packet screens based on the paradigm of “packet parallelism” (see
section 4.1) provide a scalable solution for high-speed networks. “Packet
parallelism” fits very well for parallel packet screens that do not care about
connection contexts. As there is no need to update any connection contexts,
any packet of any connection may be screened in parallel. Of course this is
the case for connectionless (UDP) traffic anyway.

A distributed decision about which packet screen is responsible for the filter-
ing has to be made. The additional costs for this decision must be very low
compared to the total costs of filtering. Every packet screen in the parallel
setup inspects every packet and immediately discards packets that another
screen is responsible for. The decision which packet screen is responsible
for a packet may be a function of information elements in the packets. For
example the hash value of the IP checksum may be used as an index to the
packet screen that has to examine the packet. All other packet screens may
discard the packet. Because the IP checksum is likely to differ for successive
packets this algorithm should assure an almost balanced distribution.

Example: Broadcast LAN implementation

The implementation is very simple for broadcast LANs such as Fast-Ethernet,
Gigabit-Ethernet, or FDDI. In the case of Fast-Ethernet the parallel packet
screens can be placed between two Hubs'3. The Hubs ensure that all packets
are distributed to all parallel packet screens (figure 4).

Example: ATM Implementation

As ATM networks are connection-oriented the required broadcast function-
ality must be emulated. An ATM switch can be used for a very efficient
implementation. It is possible to configure a point-to-multipoint connection
so that the switch copies all incoming cells to multiple outgoing virtual chan-
nels. This mechanism can be used to assure that all packet screens in an
ATM network receive the incoming packets.

13 A Hub is a multi-port repeater that replaces the shared medium coax wire.

15

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

Packet Screen
Drawbridge 1

Packet Screen
Drawbridge 3

Drawbridge 4

Figure 4: Parallel Packet Screen (Fast-Ethernet/Gigabit-Ethernet)

A problem arises by the increased possibility of failure due to the parallel
packet screens. By monitoring or status propagation one should make sure
that a failure is detectable so that the distributed filtering algorithm may be
adjusted to the new number of parallel packet screens. On the other hand
with failure detection there is no longer a single point of failure. If one of
the packet screens breaks down the others take over.

5 Conclusions

This paper discussed the impact of ATM on firewalls. The functional dif-
ferences between ATM and “legacy” networks means that classical firewall
concepts (for “legacy” networks) cannot be applied to ATM technology with-
out modification. These differences have a greater impact on packet screens
than application level firewalls, as they are more dependent on the underly-
ing network than application level firewalls. Three different approaches for
packet screens were introduced: classical packet screens, cells screens and
signaling screens.

The highly scalable ATM technology raises throughput problems for both
packet screens and proxy servers. This emphasizes the necessity for the
parallel firewall concepts we have introduced, which overcome the throughput
bottleneck. Parallel firewalls can provide scalable solutions for upcoming
high-speed networks.

16

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

Prototypes of parallel firewalls will be developed in further research. Other
important aspects which will have strong functional and performance impact
on firewalls are the development of “native” ATM firewalls and the integra-
tion of cryptographic mechanisms into firewall concepts.

References

[ATM Forum 97] John D. Keene, Editor. “LAN Emulation Over ATM Version 2
— LUNI Specification”. ATM Forum (AF-LANE-0084.000), July 1997.

[Benecke 96] Carsten Benecke. “Entwurf und Realisierung eines parallelen Analy-
sewerkzeuges fiir Ethernet-basierte Netze”. Universitat Hamburg, February
1996.

[Benecke et al. 98] Carsten Benecke, Uwe Ellermann.
“Securing ‘Classical TP over ATM Networks™. Proceedings of 7th USENIX
Security Symposium, January 26th-29th, 1998, San Antonio, Texas, Jan-
uary 1998. (http://www.fwl.dfn.de/eng/team/cb/eng_natm/)

[Brisco 95] Thomas P. Brisco. “DNS Support for Load Balancing”. RFC 179/,
April 1995. (ftp://ds.internic.net/rfc/rfc1794.txt)

[Chapman et al. 95] D. Brent Chapman, Elizabeth D. Zwicky. “Building Internet
Firewalls”. O’Reilly & Associates, September 1995.

[Cheswick et al. 94] William R. Cheswick, Steven M. Bellovin. “Firewalls and
Internet Security: Repelling the wily Hacker”. Addison-Wesley, 1994.

[Ellermann 94] Uwe Ellermann. “Firewalls: Isolations und Audittechniken zum
Schutz von lokalen Computer-Netzen”. DFN-Bericht Nr. 76, September
1994.

[Ellermann et al. 98] Uwe Ellermann, Carsten Benecke. “Firewalls fur
Hochgeschwindigkeitsnetze”. Deutscher Internet Kongress 1998, May 5th-
6th, 1998, Frankfurt, 1998.
(http://wuw.fwl.dfn.de/team/ue/fw/fire-hsn/)

[Fielding et al. 97] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk
Nielsen, Tim Berners-Lee. “Hypertext Transfer Protocol — HTTP/1.17.
RFC 2068, January 1997.
(ftp://ds.internic.net/rfc/rfc2068.txt)

[Goldberg 93] Goldberg, M.W. and Neufeld, G.W. and Ito, M.R. “A Parallel
Approach to OSI Connection-Oriented Protocols”. In: Pehrson, B. and
Gunningberg, P. and Pink, S. (eds.) Protocols for High Speed Networks,
111, pp. 219-232, North-Holland 1993

17

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

[Heinanen 93] Juha Heinanen. “Multiprotocol Encapsulation over ATM Adapta-
tion Layer 5”. RFC 1483, July 1993.
(ftp://ds.internic.net/rfc/rfc1483.txt)

[Laubach 94] Mark Laubach. “Classical IP and ARP over ATM”. RFC 1577,
January 1994. (ftp://ds.internic.net/rfc/rfc1b77.txt)

[Leech et al. 96] Marcus Leech, Matt Ganis, Ying-Da Lee, Ron Kuris, David
Koblas, LaMont Jones. “SOCKS Protocol Version 5”. RFC 1928, March
1996. (ftp://ds.internic.net/rfc/rfc1928.txt)

[Peterson et al. 96] Larry L. Peterson, Bruce S. Davie. “Computer Networks: A
Systems Approach”. Morgan Kaufman Publishers, 1996.

[Woodside 91] Woodside, C.M. and Franks, G. “Alternative Software Architec-
tures for Parallel Protocol Execution with Synchronous IPC”. IEEE/ACM
Transactions on Networking, Vol. 1, No. 2, pp. 178-186, April 1993

[Zitterbart 91] Zitterbart, M. “Funktionale Parallelitit in transportorientierten
Kommunikationsprotokollen”. Fortschritt-Berichte, VDI Reihe 10, Num-
mer 183, VDI-Verlag 1991

18

First published in: ‘Proceedings: INFOSEC'COM 98', June 4th-5th, 1998, Paris, France

