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Abstract In recent years, due to the proliferation of sensor netwadthasre has been a
genuine need of researching techniques for sensor data#itouand manage-
ment. To this end, a large number of techniques have emehgedtvocate
model-basedsensor data acquisition and management. These technigaes u
mathematical models for performing various, day-to-daks¢danvolved in man-
aging sensor data. In this chapter, we survey the statileséitt techniques for
model-based sensor data acquisition and management. Wé\sidiscussing
the techniques for acquiring sensor data. We, then, digtesapplication of
models in sensor data cleaning; followed by a discussion atetrbased meth-



ods for querying sensor data. Lastly, we survey model-basstiods proposed
for data compression and synopsis generation.

Keywords:  model-based techniques, data acquisition, query prowggssata cleaning, data
compression.

1. Introduction

In recent years, there has been tremendous growth in thegdatrated
by sensor networks. Equivalently, there are pertinentriiggcies proposed in
recent literature for ef ciently acquiring and managingiser data. One im-
portant category of techniques that have received signi etention are the
model-based techniques. These techniques use mathdmatidels for solv-
ing various problems pertaining to sensor data acquistioth management.
In this chapter, we survey a large number of state-of-theradel-based tech-
nigues for sensor data acquisition and management. Madelebtechniques
use various types of models: statistical, signal procgssiegression-based,
machine learning, probabilistic, or time series. These efsderve various
purposes in sensor data acquisition and management.

It is well-known that many physical attributes, like, amiiieemperature or
relative humidity, vary smoothly. As a result of this smauths, sensor data
typically exhibits the following properties: (a) it is camtous (although we
only have a nite number of samples), (b) it has nite energyitis band-
limited, (c) it exhibits Markovian behavior or the value atime instant de-
pends only on the value at a previous time instant. Most mbdséd tech-
niques exploit these properties for ef ciently performingrious tasks related
to sensor data acquisition and management.

In this chapter, we consider four broad categories of sedata manage-
ment tasks: data acquisition, data cleaning, query proggsand data com-
pression. These tasks are pictorially summarized in theskaymple shown
in Figure 1.1. From Figure 1.1, it is interesting to note howirgle type
of model (linear) can be used for performing these variosksta For each
task considered in this chapter, we extensively discussugrwell-researched
model-based solutions. Following is the detailed disarssin the sensor data
management tasks covered in this chapter:

m Data Acquisition: Sensor data acquisition is the task responsible for
ef ciently acquiring samples from the sensors in a senstwaokk. The
primary objective of the sensor data acquisition task ist&@iraenergy
ef ciency. This objective is driven by the fact that most sers are
battery-powered and are located in inaccessible locaf{egs, environ-
mental monitoring sensors are sometimes located at highdas and
are surrounded by highly inaccessible terrains). In tlegdiure, there
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Figure 1.1: Various tasks performed by models-based techniques. (&)-to
prove acquisitional ef ciency, a function is tted to the st three sensor val-
ues, and the remaining values (shown dotted) are not adjirece they are
within a threshold , (b) data is cleaned by identifying outliers after tting a
linear model, (c) a query requesting the value at tifhean be answered us-
ing interpolation, (d) only the rst and the last sensor \ealkan be stored as
compressed representation of the sensor values.

are two major types of acquisition approaches: pull-bagetl mush-
based. In the pull-based approach, data is only acquiredssrade ned
frequency of acquisition. On the other hand, in the pustedapproach,
the sensors and the base station agree on an expected bebangbrs
only send data to the base station if the sensor values ddwigih such
expected behavior. In this chapter, we cover a represeatatillection
of model-based sensor data acquisition approaches [2,71216] 18,
27, 28, 41, 66].

m Data Cleaning: The data obtained from the sensors is often erroneous.

Erroneous sensor values are mainly generated due to tbevial rea-

sons: (@) intermittent loss of communication with the senfm sen-
sor's battery is discharged, (c) other types of sensorreslufor exam-
ple, snow accumulation on the sensor, etc. Model-basedagipes for
data cleaning often use a model to infer the most probabksosemlue.

Then the raw sensor value is marked erroneous or outliee ifatv sen-
sor value deviates signi cantly from the inferred sensduga Another
important approach for data cleaning is known as declaaata clean-
ing [32, 46, 54]. In this approach, the user registers S®&-tjueries
that de ne constraints over the sensor values. Sensorvaemarked
as outliers when these constraints are violated. In additichese meth-
ods, we also discuss many other data cleaning approacheg3323,

21, 52, 65]

m  Query Processing: Obtaining desired answers, by processing queries

is another important aspect in sensor data managementislohépter,



we discuss the most signi cant model-based techniques derygpro-

cessing. One of the objectives of these techniques is tepsogueries
by accessing/generating minimal amount of data [64, 5]. &llbadsed
methods that access/generate minimal data, and also harsdieg val-

ues in data, use models for creating an abstraction layartbeesen-
sor network [18, 33]. Other approaches model the sensoesdly a
hidden Markov model (HMM), associating state variableshi® ¢ensor
values. It, then, becomes ef cient to process queries dwestate vari-
ables, which are less in number as compared to the sensasvi]

Furthermore, there are approaches that use dynamic plisbabnod-

els (DPMs) for modeling spatio-temporal evolution of thes® data
[33, 29]. In these approaches, the estimated DPMs are usepiéoy

processing.

m Data Compression:It is well-known that large quantity of sensor data
is being generated by every hour. Therefore, eliminatirdumeancy
by compressing sensor data for various purposes (likeagtorquery
processing, etc.) becomes one of the most challenging.tddkslel-
based sensor data compression proposes a large humbehmifjtezs,
mainly from the signal processing literature, for this tfsk72, 22, 53,
7]. Many approaches assume that the user provides an agdtwand,
and based on this bound the sensor data is approximatedtingso
compressed representations of the data [24]. A large nuwaitbether
techniques exploit the fact that sensor data is often aige] thus, this
correlation can be used for approximating one data stredmamiother
[24, 67, 49, 3].

This chapter is organized as follows. In Section 2, we deheefreliminar-
ies that are assumed in the rest of the chapter, followed ligcassion of im-
portant techniques for sensor data acquisition. In Se@jore survey model-
based sensor data cleaning techniques, both on-line anidardviodel-based
guery processing techniques are discussed in Section 4editio8 5, model-
based compression techniques are surveyed. At the endprs6atontains a
summary of the chapter along with conclusions.

2. Model-Based Sensor Data Acquisition

In this section, we discuss various techniques for modséthasensor data
acquisition. Particularly, we discuss pull- and push-Hasensor data acquisi-

1We usemodel-base@ndmodel-driverinterchangeably.
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tion methods. In general, model-based sensor data a¢guitgchniques are
designed for tackling the following challenges:

Energy Consumption: Obtaining values from a sensor requires high amount
of energy. In contrast, since most sensors are batterysgolwthey have lim-
ited energy resources. Thus, a challenging task is to miairtiie number of
samples obtained from the sensors. Here, models are usedlémting sen-
sors, such that user queries can be answered with reasaleacy using
the data acquired from the selected sensors [2, 17, 16, 27, 28

Communication Cost: Another energy-intensive task is to communicate the
sensed values to the base station. There are, therefoerakewodel-based
techniques proposed in the literature for reducing the comaoation cost, and
maintaining the accuracy of the sensed values [41, 18, §6, 12

Table 1.1:Summary of notations.
Symbol  Description

S Sensor network consisting of senseyswherej = (1;:::;m).
Sj Sensor identi er for a sensor 8.
Vij Sensor value observed by the sengoat timet;, such thav; 2 R.
Vi Row vector of all the sensor values observed at timsuch that; 2 R™.
Vi Random variable associated with the sensor vajue
2.1 Preliminaries

We start by describing our model of a sensor network and kstaiy the
notation that is utilized in the rest of the chapter. The sengtwork consid-
ered in this chapter consists of a set of stationary sef®ergs;jjl1 j mg.
The value sensed by a sensprat timet; is denoted a¥; , which is a real

identi ers. In certain cases the sampling interval couldupéform, that is,
ti+1 t; is same for all the values ®f 1. In such cases, the time stantps
become irrelevant, and it is suf cient to use only the inddwr denoting the
time axis.

In this chapter, we assume a scenario where the sensorseatéonenvi-
ronmental monitoring. We assume that all the sensors aréoniog/sensing
only one environmental attribute, such as, ambient tenllpmazaAs discussed
in Section 1, we assume that the environmental attribute weitor is suf-
ciently smooth and continuous. If necessary for renderthg discussion
complete and convenient, we will introduce other attribubeing monitored
by the sensors. But, in most cases, we restrict ourselvesing only ambient

2We useambient temperaturandtemperatureéinterchangeably.
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Figure 1.2: Database table containing the sensor values. The posititreo
sensors; is denoted agx; ; y;). Since the sensors are assumed to be stationary,
the position can also be stored using a foreign-key relshignbetweers; and
(xj;Y;). But, for simplicity, we assume that tlsensor _values table isin

a denormalized form.

temperature. Figure 1.2 shows a conceptual representsttbe sensor values
in a form of a database table, denotedassor _values .

2.2 The Sensor Data Acquisition Query

Sensor data acquisition can be de ned as the processesatingr@and con-
tinuously maintaining theensor _values table. In existing literature, nat-
urally, many techniques have been proposed for creatingramntaining the
sensor _values table. We shall discuss these techniques brie y, desagibin
their important characteristics and differences with pteehniques. We use
the sensor data acquisition query shown in Query 1.1 foudisng how dif-
ferent sensor data acquisition approaches process suana Query 1.1 is a
query that triggers the acquisition of ten sensor vaiye$rom the sensors;
at a sampling interval of one second. Moreover, Query 1.theégypical sen-
sor data acquisition query that is used by many methods fating sensor
data.

SELECTs;, vj FROMsensor _values SAMPLE INTERVALls FOR 10s

Query 1.1:Sensor data acquisition query.

2.3 Pull-Based Data Acquisition

Broadly, there are two major approaches for data acquisitfull-based
and push-based (refer Figure 1.3). In the pull-based satetaracquisition
approach, the user de nes the interval and frequency of aagaisition. Pull-
based systems only follow the user's requirements, andsem$or values as
de ned by the queries. For example, using ®&MPLE INTERVAlLclause
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Figure 1.3: Push- and pull-based methods for sensor data acquisition.

base station user

of Query 1.1, users can specify the number of samples anddheency at
which the samples should be acquired.

In-Network Data Acquisition. This approach of sensor data acqui-
sition is proposed by TinyDB [45, 44, 43], Cougar [69] and Aif68]. These
approaches tightly link query processing and sensor dapaisiton. Due to
the lack of space, we shall only discuss TinyDB in this sutigec

TinyDB refers to its in-network query processing paradiggdequisitional
Query ProcessingdACQP). Let us start by discussing how ACQP processes
Query 1.1. The result of Query 1.1 is similar to the table shawrigure 1.2.
The only difference, as compared to Figure 1.2, is that theltref Query 1.1
containsl0 m rows. The na've method of executing Query 1.1 is to simul-
taneously poll each sensor for its value at the samplingvateand for the
duration speci ed by the query. This method may not work dodirhited
range of radio communication between individual sensodstla@ base station.

Data Acquisition using Semantic Overlays:TinyDB proposes a tree-based
overlay that is constructed using the senshrd his tree-based overlay is used
for aggregating the query results from the leaf nodes to dloé mode. The
overlay network is especially built for ef cient data acsition and query pro-
cessing. TinyDB refers to its tree-based overlay networ8amantic Routing
Trees(SRTs). A SRT is constructed by ooding the sensor networthwtie
SRT build requestThis request includes the attribute (ambient tempergture
over which the SRT should be constructed. Each segsawhich receives
the build request, has several choices for choosing itspaa) if s; has no
children, which is equivalent to saying that no other sehssrchoses; as its
parent, thers; chooses another sensor as its parent and sends its curiuent va
vjj to the chosen parent inparent selection messagar (b) if s; has children,

it sends a parent selection message to its parent indictiiengange of am-
bient temperature values that its children are coveringaddition, it locally
stores the ambient temperature values from its childremgabgth their sensor
identi ers.



Next, when Query 1.1 is presented to the root node of the SRIrwards
the query to its children and prepares for receiving theltesiAt the same
time, the root node also starts processing the query lo¢adfer Figure 1.4).
The same procedure is followed by all the intermediate ssriadhe SRT. A
sensor that does not have any children, processes the quetfpravards the
value ofvj; to its parent. All the collected sensor valugs are nally for-
warded to the root node, and then to the user, as a result ajuiigy. This
completes the processing of the sensor data acquisitialy (Qeery 1.1). The
SRT, moreover, can also be used for optimally processingeggtjon, thresh-
old, and event based queries. We shall return to this pdiet ila Section 4.1.

SELECT §, Vj
FROMsensor_values

Via

Figure 1.4: Toy example of a Semantic Routing Tree (SRT) and Acquisdtion
Query Processing (ACQP) over a sensor network with ve sems®otted
arrows indicate the direction of query response. A giversgeappends its
identi er s; and valuevjj to the partial result, which is available from its sub-
tree.

Multi-Dimensional Gaussian Distributions. The Barbie-Q

(BBQ) system [17, 16], on the other hand, employs multiateriGaussian
distributions for sensor data acquisition. BBQ maintaimati-dimensional

Gaussian probability distribution over all the sensorsinData is acquired
only as much as it is required to maintain such a distributfeansor data ac-
quisition queries specify certain con dence that they isgin the acquired
data. If the con dence requirement cannot be satis ed, theore data is
acquired from the sensors, and the Gaussian distributiarpdsated to sat-
isfy the con dence requirements. The BBQ system models émsar values
using a multi-variate Gaussian probability density fumect(pdf) denoted as

probability for each possible assignment of the sensoregalyi. Now, let us
discuss how the BBQ system processes Query 1.1.
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In BBQ, the inferred sensor value of senspr at each timd;, is de ned
as the mean value of; , and is denoted ag; . For example, at timg,, the
inferred sensor values of the ambient temperaturevare/i2;:::;Vim. The
BBQ system assumes that queries, like Query 1.1, provideitedional con-
straints: (i) error bound, for the valuesvj , and (ii) the con dencel
with which the error bound should be satis ed. Admittedlyese additional
constraints are for controlling the quality of the querypasse.

Suppose, we already have a pdf before the rst time instancéhen the
con dence of the sensor valug; is de ned as the probability of the random
variableVs; lying in betweenv; andvyj + , and is denoted a3(Vy 2
[vij vy + ]). Ifthe con dence is greater thah , then we can provide
a probably approximately correct value for the temperatwithout spending
energy in obtaining a sample from senspr On the other hand, if a sensor's
con dence is less tharl , then we should obtain one or more samples
from the sensor (or other correlated sensors), such thataimelence bound
is satis ed. In fact, it is clear that there could be potelimany sensors for
which the con dence bound may not hold.

As a solution to this problem, the BBQ system proposes a proeeto
chose the sensors for obtaining sensor values, such thebthéence bound
speci ed by the query is satis ed. First, the BBQ system skgffirom all the
sensorsS at timety, then it computes the con dendsg; (S) that it has in a
sensors; as follows:

Bj(S)= P(Vy 2 [vyy vy + Jiva); (1.1)

time t,;. Second, for choosing sensors to sample, the BBQ systens jpose
optimization problem of the following form:

min So); 1.2
So SandB(S,) 1 :C( o) (1.2)

whereS, is th%subset of sensors that will be chosen for sampg,) and
B(Sp) = JS%J 520 B;j (S) are respectively the total cost (or energy re-
quired) and average con dence for sampling sen$y:s Since the problem
in Eg. (1.2) is NP-hard, BBQ proposes a greedy solution teestilis prob-
lem. Details of this greedy algorithm can be found in [17]. &ecuting the
proposed greedy algorithm, BBQ selects the sensors forlsamghen it up-

These mean values represent the inferred values of thersaatgonet;. This
operation when performed ten times at an interval of onergkgenerates the
result of the sensor data acquisition query (Query 1.1).
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2.4 Push-Based Data Acquisition

Both, TinyDB and BBQ, are pull-based in nature: in theseesystthe cen-
tral server/base station decides when to acquire sensgs/ibm the sensors.
On the other hand, in push-based approaches, the sensamsmatusly decide
when to communicate sensor values to the base station Figige 1.3). Here,
the base station and the sensors agree on an expected bajfabie sensor
values, which is expressed as a model. If the sensor valuéstelérom their
expected behavior, then the sensors communicate only thateie values to
the base station.

PRESTO. The Prelictive Stadage (PRESTO) [41] system is an example
of the push-based data acquisition approach. One of the angirments that
PRESTO makes against pull-based approaches is that due paoilthstrategy,
such approaches will be unable to observe any unusual oestiteg patterns
between any two pull requests. Moreover, increasing thefraquency for
better detection of such patterns, increases the overatfgrconsumption of
the system.

The PRESTO system contains two main components: PREST@praxd
PRESTO sensors. As compared to the PRESTO sensors, the PRE®es
have higher computational capability and storage ressur@ée task of the
proxies is to gather data from the PRESTO sensors and to agseres posed
by the user. The PRESTO sensors are assumed to be batteeyepoand
remotely located. Their task is to sense the data and tranistaiPRESTO
proxies, while archiving some of it locally on ash memory.

Now, let us discuss how PRESTO processes the sensor datsitoqu
query (Query 1.1). For answering such a query, the PRESTRga@lways
maintain a time-series prediction model. Speci cally, FIRE) maintains a
seasonal ARIMA (SARIMA) model [60] of the following form fagach sen-
sor:

Vi =VionitViow ViLoptei1r &L+t &L (L3

where and are parameters of the SARIMA mode, are the prediction
errors and. is known as the seasonal period. For example, while mongori
temperaturel. could be set to one day, indicating that the current temperat
(vij ) is related to the temperature yesterday at the same ting ;) and a
previous time instant;  1);). In short, the seasonal periddallows us to
model the periodicity that is inherent in certain types dbda

In the PRESTO system the proxies estimate the parameteh® aghodel
given in Eq. (1.3), and then transmit these parameters toidhudl PRESTO
sensors. The PRESTO sensors use these models to prediensoe galue;
and only transmit the raw sensor valjeto the proxies when the absolute dif-
ference between the predicted sensor value and the rawsahse is greater
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than a user-de ned threshold This task can be summarized as follows:
jvi %> transmitv; to proxy. (1.4)

The PRESTO proxy also provides a con dence interval for gaeuicted
value it computes using the SARIMA model. Like BBQ (refer i@t 2.3.0),
this con dence interval can also be used for query procgsssince it rep-
resents an error bound on the predicted sensor value. $itilBBQ, the
PRESTO proxy queries the PRESTO sensors only when the desinredence
interval, speci ed by the query, could not be satis ed witietvalues stored at
the PRESTO proxy. In most cases, the values stored at thg peoxbe used
for query processing, without acquiring any further valtresn the PRESTO
sensors. The only difference between PRESTO and BBQ is RRESTO
uses a different measure of con dence as compared to BB@hémuetails of
this con dence interval can be found in [41].

Ken. For reducing the communication cost, the Ken [12] framework
employs a similar strategy as PRESTO. Although there is alkégrence be-
tween Ken and PRESTO. PRESTO uses a SARIMA model; this madgl o
takes into account temporal correlations. On the other hided uses a dy-
namic probabilistic model that takes into account spatidl @mporal correla-
tions in the data. Since a large quantity of sensor data izleded spatially,
and not only temporally, Ken derives advantage from suctispamporal cor-
relation.

The Ken framework has two types of entitisszk andsource Their func-
tionalities and capabilities are similar to the PRESTO pramd the PRESTO
sensor respectively. The only difference is that the PRESdi@or only rep-
resents a single sensor, but a source could include moreotimsensor or a
sensor network. The sink is the base station to which theoseatuesy;; are
communicated by the source (refer Figure 1.3).

The fundamental idea behind Ken is that both, source and sialntain
the same dynamic probabilistic model of data evolution. §wece only com-
municates with the sink when the raw sensor values devigtenoea certain
bound, as compared to the predictions from the dynamic pititac model.
In the meantime, the sink uses the sensor values predictdelmodel.

As discussed before, Ken uses a dynamic probabilistic ntbdélconsid-
ers spatio-temporal correlations. Particularly, its dyiaprobabilistic model
computes the following pdf at the source:

z

(1.5)
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This pdf is computed using the observations that have besmmcmicated
to the sink; the values that are not communicated to the siakgamored by
the source, since they do not affect the model at the sink.t,dach sensor
contained in the source computes the expected sensor &hgkqg. (1.5) as
follows:

Z
Vi+nj = Ve P(Visn 15 Viiey m)dVisnn f10dViaym: (1.6)

The source does not communicate with the sinkvifiy);  Vi+1j] <
where is a user-de ned threshold. If this condition is not satid,ehe source
communicates to the sink the smallest number of sensors;adueh that the
threshold would be satis ed. Similarly, if the sink does neteive any sensor
values from the source, it computes the expected sens@sugliy ; and uses
them as an approximation to the raw sensor values. If thersitgives a few
sensor values form the source, then, before computing theceed values, the
sink updates its dynamic probabilistic model.

A Generic Push-Based Approach. The last push-based approach
that we will survey is a generalized version of other pusseblaapproaches
[38]. This approach is proposed by Silbersteinal. [61]. Like other push-
based approaches, the base station and the sensor netnexloagn expected
behavior, and, as usual, the sensor network reports vahlgsvben there is a
substantial deviation from the agreed behavior. But, entither approaches,
the de nition of expected behavior proposed in [61] is moeagric, and is not
limited to a threshold.

In this approach a sensor can either be an updater (one whiresaer
forwards sensor values) or an observer (one who receivemisgalues). A
sensor node can be both, updater and observer, dependingetherit is on
the boundary of the sensor network or an intermediate nolde updaters and
the observers maintain a model encoding functign and a decoding function
f gec. These model encoding/decoding functions de ne the agbeddvior of
the sensor values. The updater uses the encoding functesrctale the sensor
valuevj; into a transmission messagg, and transmits it to the observer.

The observer, then, uses the decoding functigQ to decode the message
gj and constructy; . If the observer nds thav; has not changed signi -
cantly, as de ned by the encoding function, then the obgdre@smits aull
symbol. Anull symbol indicates that the sensor valueigppressedy the
observer. Following is an example of the encoding and degptiinctions
[61]: (

= Vi ; if ive Vo i > '
fenc(Vij ;Vig) = i I i9 JVij i9 )

1.7
gj = null ; otherwise. (1.7)
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i 1 t0i; ifg; 6 null ;

. 1.8
VR if gj = null (1.8)

faec(Qi % 1)) =

In the above example, the encoding functiep, computes the difference be-
tween the model predicted sensor valug and the raw sensor valwg . Then,
this difference is transmitted to the observer only if it isger than , other-
wise thenull symbol is transmitted. The decoding functiibf. decodes the
sensor valug; 1 using the messagg .

The encoding and decoding functions in the above examplauaposefully
chosen to demonstrate how théhreshold approach can be replicated by these
functions. More elaborate de nitions of these functiondieh are used for
encoding complicated behavior, can be found in [61].

3. Model-Based Sensor Data Cleaning

A well-known characteristic of sensor data is that it is utaia and erro-
neous. This is due to the fact that sensors often operatedigitharged batter-
ies, network failures, and imprecision. Other factorshsas |low-cost sensors,
freezing or heating of the casing or measurement devicepagation of dirt,
mechanical failure or vandalism (from humans or animalsye affect the
quality of the sensor data [31, 73, 23]. This may cause a skt prob-
lem with respect to data utilization, since application;ygierroneous data
may yield unsound results. For example, scienti c appimat that perform
prediction tasks using observation data obtained fromlaea less-reliable
sensors may produce inaccurate prediction results.

To address this problem, it is essential to detect and doeresneous val-
ues in sensor data by employid@ta cleaning The data cleaning task typi-
cally involves complex processing of data [71, 30]. In madar, it becomes
more dif cult for sensor data, since true sensor valuesesponding to erro-
neous data values are generally unobservable. This hasdeukw approach —
model-based data cleaningn this approach, the most probable sensor values
are inferred using well-established models, and then ahesrare detected by
comparing raw sensor values with the corresponding irdesemsor values. In
the literature there are a variety of suggestions for mbdskd approaches for
sensor data cleaning. This section describes the key misai&proposed by
these approaches, particularly focusing on the modelsingbd data cleaning
process.

3.1 Overview of Sensor Data Cleaning System

A system for cleaning sensor data generally consists offmjor compo-
nents: user interface, stream processing engine, anomaly deteatw data
storage(refer Figure 1.5). In the following, we describe each comgd.
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Figure 1.5: Architecture of sensor data cleaning system.

User Interface: The user interface plays two roles in the data cleaning goce
First, it takes all necessary inputs from users to perforta dkeaning, e.g.,
name of sensor data and parameter settings for models. &dberresults of
data cleaning, such as “dirty' sensor values captured bgribenaly detector,
are presented using graphs and tables, so that users camcatether each
candidate of such dirty values is an actual error. The cordrresults are then
stored to (or removed from) the underlying data storage daenadized views.

Anomaly Detector: The anomaly detector is a core component in sensor data
cleaning. It uses models for detecting abnormal data vallé® anomaly
detector works in online as well as of ine mode. In the onlmede, whenever

a new sensor value is delivered to the stream processingertjie dirtiness

of this value is investigated and the errors are Itered agtantly. In the

of ine mode, the data is cleaned periodically, for instanmece per day. In the
following subsections, we will review popular models useddnline anomaly
detection.

Stream Processing EngineThe stream processing engine maintains stream-
ing sensor data, while serving as a main platform where tier atystem com-
ponents can cooperatively perform data cleaning. The alyaegector is typ-
ically embedded into the stream processing engine, it nsmyla implemented

as a built-in function on database systems.

Data Storage: The data storage maintains not only sensor values, butlaso t
corresponding cleaned data, typically in materializedvsie This is because
applications on sensor networks often need to repeatedigrpedata cleaning
over the same data using different parameter settingsdantidels, especially
when the previous parameter settings turn out to be inapiptegdater. There-
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fore, it is important for the system to store cleaned datatalohse views with-
out changing the original data, so that data cleaning caretfermed again at
any point of time (or time interval) as necessary.

3.2 Models for Sensor Data Cleaning

This subsection reviews popular models that are widely usdide sensor
data cleaning process.

Regression Models. As sensor values are a representation of physical
processes, it is naturally possible to uncover the follgnimoperties: conti-
nuity of the sampling processes and correlations betwefératit sampling
processes. In principle, regression-based models exgilbér or both of these
properties. Speci cally, they rst compute the dependefigym one variable
(e.g., time) to another (e.g., sensor value), and then denshe regression
curves as standards over which the inferred sensor valsielerd he two most
popular regression-based approaches use polynomial aebly€lev regres-
sion for cleaning sensor values.

Polynomial Regression: Polynomial regression nds the best- tting curve
that minimizes the total difference between the curve aot esaw sensor value
vj attimet;. Given a degred, polynomial regression is formally de ned as:

Vi =ct 1 tit o+ gt (1.9)

Polynomial regression with high degrees approximate divea series with
more sophisticated curves, resulting in theoretically eraszcurate description
of the raw sensor values. Practically, however, low-degagnomials, such
as constantd = 0) and linear § = 1), also perform satisfactorily. In addition,
low-degree polynomials can be more ef ciently constructsdcompared to
high-degree polynomials. A (weighted) moving average rhdg is also
regarded as a polynomial regression.

Chebyshev RegressionChebyshev regression is another popular model class
for tting sensor values, since they can quickly computerregatimal approx-
imations for given time series. Suppose that time vatugary within a range
[min(t;); max(t;)]. We, then, obtain normalized time valugsvithin a range

[ 1;1], by using the following transformation functidn(t;) and its inverse
transformation functioh (9 as follows:

max(t;) + min( t;) 2 _
2 max(tj) min(t;)’
_ max(tj) min(t;) max(ti) + min( t;)
f )= +t° 5 + 5 :

ft)= t

(1.10)

(1.11)
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Figure 1.6: Detected anomalies based on 2-degree Chebyshev regression

Next, given a degred, Chebyshev polynomial is de ned as:
vi = f (cos@d cos (f (ti)))):

Figure 1.6 illustrates a data cleaning process using deyyi€bebyshev
polynomials. Here, the raw sensor values are plotted as greeves, while
the inferred values, obtained by tting a Chebyshev polyrads) are overlaid
by black curves. The anomaly points are then indicated bytiaerlying red
histograms as well as red circles.

Probabilistic Models. In sensor data cleaning, inferring sensor val-
ues is perhaps the most important task, since systems gadétect and clean
dirty sensor values by comparing raw sensor values with ¢tmeesponding
inferred sensor values. Figure 1.7 shows an example of tiaectEaning pro-
cess using probabilistic models. At timie= 6, the probabilistic model infers

window. The expected valug; (e.g., the mean of the Gaussian distribution in
the future) is then considered as the inferred sensor vahusehsos; .

Next, the anomaly detector checks whether the raw sensae vgl resides
within a reasonably accurate area. This is done in orderdclctvhether the
value isnormal For instance, th@ range can cover 99.7 % of the density
inthe gure, wherevg; is supposed to appear. Thus, the data cleaning process
can consider thatg; is not an error. At; = 7, the window slides and now
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anomaly detector nds/7 resides out of the error boun@ ( range) in the
inferred probability distribution, and is identi ed as ananaly [57].

° probability |
distribution inferred anomaly
r_:; No Vo
= expected value\\A? !
o i ! R |
} V ‘ . I I
Ve T e o Vi o ° VWP
| 3 SRS i
sliding window </ 3 i
time ‘
=7

Figure 1.7: An example of data cleaning based on a probabilistic model.

A vast body of research work has utilized probabilistic mMeder comput-
ing inferred values. Th&alman lter is perhaps one of the most common
probabilistic models to compute inferred values corredpanto raw sensor
values. The Kalman lter is a stochastic and recursive d#iring algorithm
that models the raw sensor valug as a function of its previous value (or
state)vi; 1); as follows:

Vi = Avii g + Bui+ w;

whereA andB are matrices de ning the state transition from tibpe; to time
t;, u; is the time-varying input at timg, andw; is the process noise drawn
from a zero mean multi-variate Gaussian distribution. B} [éhe Kalman Iter

is used for detecting erroneous values, as well as inteafgsating missing
sensor values. Jaigt al. [29] also use the Kalman lter for ltering possible
dirty values.

Similarly, Elnahrawy and Nath [21] proposed to use Bayesbtiem to es-
timate a probability distributior;; at timet; from raw sensor valueg; , and
associate them with an error model, typically a normal itistron. Built on
the same principle, a neuro-fuzzy regression model [52] abelief propa-
gation model based on Markov chains [13] were used to ideatibmalies.
Tranet al. [65] propose a method to infer missing or erroneous valu&sHiD
data. All the techniques for inferring sensor values alsabénquality-aware
processing of sensor data streams [36, 37], since infeerdos values can
serve as the bases for indicating the quality or precisich@faw sensor val-
ues.
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Outlier Detection Models. An outlier is a sensor value that largely
deviates from the other sensor values. Obviously, outiedtion is closely
related to the process of sensor data cleaning. The od#igetion techniques
are well-categorized in the survey studies of [51, 8].

In particular, some of the outlier detection methods focnssensor data
[59, 71, 15]. Zhanget al. [71] offer an overview of such outlier detection
techniques for sensor network applications. Deligiarsakal. [15] consider
correlation, extended Jaccard coef cients, and regressased approximation
for model-based data cleaning. Shetral. [59] propose to use a histogram-
based method to capture outliers. Subramareaai. [62] introduce distance-
and density-based metrics that can identify outliers. lditaah, the ORDEN
system [23] detects polygonal outliers using the triantgalavireframe surface
model.

3.3 Declarative Data Cleaning Approaches

From the perspective of using a data cleaning system, stipga declar-
ative interface is important since it allows users to easdgtrol the system.
This idea is re ected in a wide range of prior work that prop®sSQL-like
interfaces for data cleaning [32, 46, 54]. These proposals tomplicated
mechanisms of data processing or model utilization fromuers, and facili-
tate data cleaning in sensor network applications.

More speci cally, Jefferyet al. [31, 32] divide the data cleaning process
into ve tasks: Point, Smooth, Merge, ArbitratandVirtualize These tasks are
then supported within a database system. For example, thestfzment in
Query 1.2 performs anomaly detection within a spatial gieby determining
the average of the sensor values from different sensoreisdme proximity
group. Then, individual sensor values are rejected if threyoaitside of one
standard deviation from the mean.

As another approach, Raat al. [54] focus on a systemic solution, based
on rewriting queries using a set of cleansing rules. Spetlyc the system
offers the rule grammar shown in Figure 1.8 to de ne and etevarious data
cleaning tasks. Unlike the prior relational database agugres, May eldet al.

DEFINE [rule name]
ON [table name]
FROM [table name]

CLUSTER BY [cluster key]
SEQUENCE BY [sequence key]

AS [pattern]
WHERE [condition]
ACTION [DELETE | MODIFY | KEEP]

Figure 1.8: An example of anomaly detection using a SQL statement.
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SELECTspatial _granule, AVG(temp)
FROMlata s [Range By 5 min]
(SELECTspatial _granule, avg(temp) as avg,
stdev(temp) as stdev
FROMlata [Range By 5 min]) as a
WHERR.spatial  _granule = s.spatial _granule
ANDa.avg + (2 +a.stdev) < s.temp
ANDa.avg - (2 +a.stdev) > s.temp

Query 1.2:An example of anomaly detection using a SQL statement.

[46] model data as a graph consisting of nodes and links. ,Tthey, provide
an SQL-based, declarative framework that enables datarevimespecify or
discover groups of attributes that are correlated, andyagiptistical methods
that validate and clean the sensor values using such depsese

4. Model-Based Query Processing

In this section we elaborate another important task in get&ta manage-
ment — query processing. We primarily focus on in-netword aentralized
guery processing approaches. We consider different quasiguming the sen-
sor network described in Section 2.1, and then discuss holwagagproach pro-
cesses these queries. In Section 2, however, we followegpmoach where
we chose a singe query (i.e., Query 1.1) and demonstratediifi@nent tech-
nigues processed this query. On the contrary, in this sgatie chose different
queries for all the approaches, and then discuss theseamba® along with
the queries. We follow this procedure since, unlike Sec#ipine assumptions
made by each query processing technique are different. , Thukighlight-
ing the impact of these assumptions and simplifying theudision, we select
different queries for each approach.

4.1 In-Network Query Processing

In-network query processing rst builds an overlay netwd@ike, the SRT
discussed in Section 2.3.0). Then, the overlay network &gl dgr increasing
the ef ciency of aggregating sensor values and processirgries. For in-
stance, while processing a threshold query, parent nodekstise query to the
child nodes only when the query threshold condition overlajth the range of
sensor values contained in the child nodes, which is storétki parent node's
local memory.

Consider the threshold query given in Query 1.3. Query lgBests the
sensor identi ers of all the sensors that have sensed a tetype greater than
10 C at the current time instance. Before answering this queeyassume
that we have already constructed a SRT as described in 8&c#drefer Fig-
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ure 1.4). Query 1.3 is sent by the root node of the SRT to itsliem that are
a part of the query response. The child nodes check whetbesetfisor value
they have sensed is greater tHANC. If the sensor value is greater thah C
at a child node, then that child node appends its sensori igletat the query
response. The child node, then, forwards the query to itdreim and waits
for their response. Once all the children of a particularenbdve responded,
then that node forwards the response of its entire sub-trees fparent. In
the end, the root node receives all the sensor identisprthat have recorded
temperature greater thd® C.

SELECTs; FROMsensor values WHERE; > 10 C ANDtj == NOW()

Query 1.3:Return the sensor identi ers; wherev;; > 10 C.

4.2 Model-Based Views

The MauveDB [18] approach proposes standard database [4i8Jvas an
abstraction layer for processing queries. These views amtained in a form
of a regression model; thus they are calteddel-basediiews. The main ad-
vantage of this approach is that the model-based view candrementally
updated as fresh sensor values are obtained from the serfsathermore,
incremental updates is an attractive feature, since sudhtep are computa-
tionally ef cient.

Before processing any queries in MauveDB, we have to rsatga model-
based view. The query for creating a model-based view is shio@uery 1.4.
The model-based view created by this query is cdRedModel . RegModel
is a regression model in which the temperature is the dependeiable and
the sensor positio(x; ; y;) is an independent variable (refer Figure 1.9). Note
thatRegModel is incrementally updated by MauveDB. At timgvalues from
sensorssi, Sz and at timet, the value from sens@; are respectively used to
update the view. The view update mechanism exploits thetfiattregression
functions can be updated. Further details regarding thatepdechanism can
be found in [18].

CREATE VIEWRegModelAS FIT v OVERK?;xy;y2; x;y
TRAINING_DATA SELECT;;y;;vj FROMsensor _values
WHERE& >t start ANDti <t end

Query 1.4:Model-based view creation query.

Once this step is performed many types of queries can beatedlwsing
the RegModel view. For instance, consider Query 1.5. MauveDB evaluates
this query by interpolating the value of temperature at etkrvals on the
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x- and y-axis; this is similar to database view materialma{19]. Then the
positions(x;y) where the interpolated temperature value is greater 102G
are returned.

Admittedly, although updating the model-based view is &, but for
processing queries the model-based view should be matedaht a certain
xed set of points. This procedure produces a large amounefhead when
the number of independent variables is large, since it diiaally increases
the number of points where the view should be materialized.

SELECTX;y FROMRegModelWHERE > 10 C

Query 1.5:Querying model-based views.

4.3 Symbolic Query Evaluation

This approach is proposed by the FunctionDB [64] system.cfamDB,
like MauveDB, also interpolates the values of the dependaridble, and then
uses the interpolated values for query processing.

As discussed before, the main problem with value interpmiais that the
number of points, where the sensor values should be intggublincrease dra-
matically as a function of the number of independent vaeisbAs a solution
to this problem, FunctionDB symbolically executes therl{éor example, the
WHERElause in Query 1.5) and obtains feasible regions of thepeiddent
variables. These feasible regions are the regions thatdat¢he exact response
to the query, at the same time contain a signi cantly low nemdf values to
interpolate. FunctionDB evaluates the query by interjfrdatalues only in
the feasible regions, followed by a straightforward evéuaof the query.

model-based

views \0‘ L %0
2

10

model-based *°
views are 0 :>
continuously U
t

time
updated

e --SENsOrs O -- sensor values

Figure 1.9: Example of theRegModel view with three sensorfRegModel
is incrementally updated as new sensor values are acquired.
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Moreover, FunctionDB treats the temperature of the segsas a contin-
uous function of timef; (t), instead of treating it as discrete values sampled
at time stampg;. An example of a query in the FunctionDB framework is
given in Query 1.6. This query returns the time valtidsetweentg,: and
teng Where the temperature of the sensgis greater thad0 C. Note that the
time valuest are not necessarily the time stantpsvhere a particular sensor
value was recorded.

SELECTt WHERE:(t) > 10 CANDt >t stat ANDt<t eng GRID t 1s

Query 1.6:Continuous threshold query.

For de ning the values of the time axigor any continuous variable), Func-
tionDB proposes th&RID operator. Th&RID operator speci es the interval
at which the functiori 1(t) should be interpolated between tig,; andteng.
For instanceGRID t 1s indicates that the time axis should be interpolated
at one second intervals between timg, andteng. TO process Query 1.6,
FunctionDB rst symbolically executes th&HERElause and obtains the fea-
sible regions of the time axis (independent variable). Theing theGRID
operator, it generates time stanifysin the feasible regions. The sensor value
is interpolated at the time stamp$ using regression functions. Lastly, the
query is processed on these interpolated values, and tanepsT® T,
where the temperature is greater tli&nC are returned.

4.4 Processing Queries over Uncertain Data

In this form of query processing the assumption is that sedata is in-
herently uncertain. This uncertainty can arise due to uarfactors: loss of
calibration over time, faulty sensors, unsuitable envinental conditions, low
sensor accuracy, etc. Thus, the approaches that treat skxtacas uncertain,
assume that each sensor value is associated with a randdgbleaiand is
drawn from a distribution. In this subsection, we discusse such methods
that model uncertain data by either a dynamic probabilistadel or a static
probability distribution.

Dynamic Probabilistic Models. Dynamic probabilistic models
(DPMs) are proposed for query processing in [33, 29]. Thesdats continu-
ously estimate a probability distribution. The estimateabability distribution
is used for query processing. Mainly, there are two types odels that are
frequently used for estimating dynamic probability distitions: particle |-
ters and Kalman lters. Particle lters are generalizedrfoof Kalman lters.
Since we have already discussed Kalman lters in Section I3e2e we will
focus on particle ltering.
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Consider a single sensor, ssy, the particle Itering approach [4], at each
time instant;, estimates and storgsveighted tuple$ (w ; v); 15 (wh;vh)g,
where the weightv}; denotes the probability of} being the sensor value of
the sensos; at timet;, and so on. An example of particle ltering is shown in
thepf _sensor _values table in Figure 1.10.

Now, consider Query 1.7 that requests the average temperai(Gyvij; )
between timeg¢ andteng. TO evaluate this query, we assume that we already
have executed the particle Itering algorithm at each tim&ance; and have
created thef _sensor _values table. We, then, perform the following two
operations:

1. For each timeil:betweertstan andteng, We compute the expected tem-
peratureviy = [, wl; vl;. The formal SQL syntax for computing

the expected values using the_sensor _values table is as follows:

P
SELECTt;; [, wl; vl; FROMof _sensor values WHERE; >
tstart ANDt| <tend GROUP B\V|

2. The nal result is the average of all g, that we computed in Step 1.

optimal number of particlep, keeping in mind a particular scenario and type
of data [4].

SELECTAVQVi1) FROM _sensor _values WHERE>1t sat ANDt <t eng

Query 1.7:Compute the average temperature between tige andteng.

/\
] 6 [S)x ]y [p|W|w
10100 1({34|72|1 |1.1|0.1
10100 1(34|72| 2 |3.0(0.6
10100 1(34|72|3 |52|0.3
2101:.05| 2|52|85| 1 [3.1|04
2 01:05| 2 52|85 |2 (79]0.3
2101:.05| 2|52|85| 3 [6.4|0.3

Figure 1.10: Particle Iltering storesp weighted sensor values for each time
instance;.
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Static Probabilistic Models. Chenget al. [9-11] model the sen-
sor value as obtained from an user-de ned uncertainty rarig@ example,
if the value of a temperature sensorls C, then the actual value could vary
betweenl3 C and17 C. Furthermore, the assumption is that the sensor value
is drawn from a static probability distribution that has gap over the uncer-
tainty range.

Thus, for each senssf we associate an uncertainty range betwigeand
ujj , in which the actual sensor values can be found. In additiepdf of the
sensor values of sensgris denoted agjj (v). Note that the pdf has non-zero
support only betweeh; anduj . Consider a query that requests the average
temperature of the sens@gands; at timet;. Since the values of the sensors
s; ands; are uncertain in nature, the response to this query is a pdftdd
aspavg(v). This pdf gives us the probability of the sensor valubeing the
averagepayg(V) is computed using the following formula:

Z min (uiy 1,5)
Pavg(V) = pir(y)pi2(v  x)dx: (1.12)

max (lity ujy)

Naturally, Eq. (1.12) becomes more complicated when thexarany (and
not only two) sensors involved in the query. Additional detabout handling
such scenarios can be found in [9].

4.5 Query Processing over Semantic States

The MIST framework [5] proposes to use Hidden Markov ModeisMs)
for deriving semantic meaning from the sensor values. HMMNsvaus to
capture the hidden states, which are sometimes of moresttidran the actual
sensor values. Consider, as an example, a scenario wheserikersS are
used to monitor the temperature in all the rooms of a buildi@gnerally, we
are only interested to know which rooms are hot or cold, raiten the actual
temperature in those rooms. We, then, can use a two-state Mithvistates
Hot (denoted a$l ) andCold (denoted a€) to continuously infer the semantic
states of the temperature in all the rooms.

Furthermore, MIST proposes an in-network index structarenfdexing the
HMMs. This index can be used for improving the performanceuedry pro-
cessing. For instance, if we are interested in nding themmedhat areHot
with probability greater tha®:9, then the in-network model index can ef -
ciently prune the rooms that are surely not a part of the qtesgonse. Due
to the lack of space, we shall not cover the details of indexstraction and
pruning. We encourage the interested reader to read ttosvialy paper [5].



A Survey of Model-Based Sensor Data Acquisition and Manageent 25

4.6 Processing Event Queries

Event queries are another important class of queries thgiraposed in the
literature. These queries continuously monitor for a patéir event that could
probably occur in sensor data. Consider a setup consistiRgr i sensors in
a building. An event query could monitor an event of a persaeréng a room
or taking coffee, etc. Moreover, event queries can also tstezed, not only
to monitor a single event, but a sequence of events that greriemt to the
user. Again, due to space constraints, we shall not coveofing event query
processing approaches in detail. The interested readefeised to the prior
works on this subject [55, 65, 68, 45].

5. Model-Based Sensor Data Compression

Recent advances in sensor technology has resulted in thiekatity of a
multitude of (often privately-held) sensors. Embeddedssgnfunctionality
(e.g., sound, accelerometer, temperature, GPS, RFID,ietcow included in
mobile devices, like, phones, cars, or buses. The large audailthese devices
and the huge volume of raw monitored data pose new challeiogssistain-
able storage and ef cient retrieval of the sensor data siseaTo this end, a
multitude of model-based regression, transformation dteting techniques
have been proposed for approximation of sensor data stredims section
categorizes and reviews the most important model-baseaqipes towards
compression of sensor data. These models often exploibgeatporal cor-
relations within data streams to compress the data withertaio error norm;
this is also known atossy compressionMoreover, several standard orthog-
onal transformation methods (like, Fourier or wavelet $farm) reduce the
amount of storage space required by reducing the dimen#joofdata.

Unlike the assumptions of Section 2, where we assumed arseeswork
consisting of several sensors, here we assume that we or@alsngle sensor.
We have dropped the several sensors assumption to simpdifgdtation and
discussion in this section. Furthermore, we assume thaahsor values from
the single sensor are in a form ofdata stream Let us denote such a data
stream as a sequence of data tugtess; ), wherev; is the sensor value at time
ti.

5.1 Overview of Sensor Data Compression
System

The goal of the sensor data compression system is to appatiensen-
sor data stream by a set of functions. Data compression oethat we are
going to study in this section permit the occurrence of agipnation errors.
These errors are characterized by a speci ¢ error norm.hEuriore, a stan-
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dard approach to sensor data compression is to segmenttthstozam into
data segmenis&nd then approximate each data segment, so that a spe@rc er
norm is satis ed. For example, if we are considering the norm, then each
sensor value of the data stream is approximated within @m baund .

Let us assume that we haie segments of a data stream. We denote these

segments asg’; g% :::;g¢, where g approximates the data tuples
((t1;ve); ooy (tigs vip)), while gk, wherek = 2;:::; K, approximates the data
items ((ti, ,+1;Vi, ,+1)(ti, +25Vie +1)5:005 (Lo vi ). Similar to [20],

we distinguish between two classes of the segments usegpooxdamation,
namely connected segmengd disconnected segmentsn connected seg-
ments, the ending point of the previous segment is the gapoint of the
new segment. On the contrary, in disconnected segmentapfireximation
of the new segment starts from the subsequent data item gtrébeam. Discon-
nected segments offer more approximation exibility andynhead to fewer
segments; however, for linear approximation [35], theyessitate the storage
of two data tuples (i.e., start tuple and end tuple) per degangnt, as opposed
to connected segments.

Since functions are employed for approximating data se¢snenly the ap-
proximated data segments are stored in the database drudtéee raw sensor
values of the data stream [64, 50]. A schema for linear setgnepresented in
[64], consisting of a table, referred to BanctionTable , where each row
represents a linear model with attributgsrt _time , end _time , slope
andintercept (i.e., base) of the segment. In case of connected segments
[20], theend _time attribute can be omitted.

A more generic schema for storing data streams, approxihigtenultiple
models was proposed in [50] that consists of one tabégymentTable ) for
storing the data segments, and a second t&elélTable ) for storing the
model functions, as depicted in Figure 1.11. A tuple of B@gmentTable
contains the approximation data for a segment in the timervat
[start _time ,end_time] . The attributdd stands for identi cation of the
model that is used in the segment. The primary key inSagmentTable
is thestart _time , while in theModelTable itisid . When, both, lin-
ear and non-linear models are employed for approximatefh, _value is
the lowest raw sensor value encountered in the segmentjgirid _value
is the highest raw sensor value encountered in the segmenthid case,
start _time , end_time ,left _value andright _value de ne a rect-
angular bucket that contains the values of the segment.

The attributemodel _params stores the parameters of the model associ-
ated with the model identi eiid . For example, regression coef cients are
stored for the regression model. The attribatedel _params has variable
length (e.g.,VARCHARTI VARBINARYdata types in SQL) and it stores the
concatenation of the parameters or their compressed spati®n, by means
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Figure 1.11:The database schema for multi-model materialization.

of standard lossless compression techniques (refer 8ee) or by a bitmap
coding of approximate values, as proposed in [3]. Each tuplle Mod-
elTable corresponds to a model with a particuthrandfunction . The at-
tributefunction  represents the name of the model and it maps to the names
of two user de ned functions (UDFs) stored in the databagde Tst function
implements the mathematical formula of the model, and tlcerse function
implements the inverse mathematical formula of the modelny. Both the
UDFs are employed for answering value-based queries. \Whwlerst func-

tion is used for value regeneration over xed time stepso(akferred to as
gridding), the second function is used for solving equations.

5.2 Methods for Data Segmentation

In [34], the piecewise linear approximation algorithms eategorized in
three groups: sliding window, top-down and bottom-up. Tidirgy window
approach expands the data segment as long as the data tuglias bottom-up
approach rst applies basic data segmentation employiegstiding window
approach. Then, for two consecutive segments, it calGlaierging cost in
terms of an approximation error. Subsequently, it mergessdgments with
the minimum cost within the maximum allowed approximatioroe and up-
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dates the merging costs of the updated segments. The prendssvhen no
further merging can be done without violating the maximurpragimation
error. The top-down approach recursively splits the stresmtwo segments,
S0 as to obtain longest segments with the lowest error uhtiegments are
approximated within the maximum allowed error.

Among these three groups, only the sliding window approahhbe used
online, but it employs look-ahead. The other two approagesform better
than the sliding window approach, but they need to scan &, deence they
cannot be used for approximating streaming data. Basedi®woliservation,
Keoghet al. [34] propose a new algorithm that combines the online psings
property of the sliding window approach and the performawicéne bottom-
up approach. This approach needs a prede ned buffer lenfjthe buffer is
small, then it may produce many small data segments; if tiietda large, then
there is a delay in returning the approximated data segniEm. maximum
look-ahead size is constrained by the maximum allowed deddween data
production and data reporting or data archiving.

5.3 Piecewise Approximation

Among several different data stream approximation tealesq piecewise
linear approximation has been the most widely used [34, B8cewise lin-
ear approximation models the data stream with a separaarlinnction per
data segment. Piecewise constant approximation (PCApaippates a data
segment with a constant value, which can be the rst valudefsegment (re-
ferred to as the cache lIter) [47], the mean value or the med&ue (referred
to as poor man's compression - midrange (PMC-MR) [39]).

In the cache lter, for all the sensor values in a segmghtthe following
condition should be satis ed:

Vie 1+p  Vig 41 < forp=1;:::;ik; (1.13)

where is the maximum allowed approximation error according to lthe
norm. Also, for PMC-Mean and PMC-MR the sensor values in ansegg
should satisfy the following condition:

lmpaoi(k Vi, 14p lrrg)inikvik wp 2 (1.14)
Furthermore, for PMC-Mean, the approximation value for segment is

given by the mean value of the sensor values in segaferBut, for PMC-MR
it is given as follows:

maxi p iy Vig +p  MiN1 p iy Vi q4p
> :
The data segmentation approach for PMC-MR is illustratdeigoire 1.12.
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Figure 1.12:Poor Man's Compression - MidRange (PMC-MR).

Moreover, the linear lIter [34] is a simple piecewise linegpproximation
technique in which the sensor values are approximated Img@&btnnecting the
rst and second point of the segment. When a new data tupleatdoe approx-
imated by this line with the speci ed error bound, a new seghiestarted. In
[20], two new piecewise linear approximation models weigpsed, namely
SwingandSlide that achieve much higher compression compared to the cache
and linear lters. We brie y discuss the swing and slide t&ebelow.

Swing and Slide Filters. The swing lter is capable of approximating
multi-dimensional data. But, for simplicity, we descrilte algorithm for one-
dimensional data. Given the arrival of two data tugliesvi) and(ty; v,) of
the rst segment of the data stream, the swing Iter mainsainset of lines,
bounded by an upper line! and a lower lind®. u! is de ned by the pair
of points (t1;v1) and(to;vo + ), while 11 is de ned by the pair of points
(t1;v1) and(to;v2 ), where is the maximum approximation error bound.
Any line segment between! andI! can represent the rst two data tuples.
When (t3; v3) arrives, rst it is checked whether it falls within the linds,
ul. Then, in order to maintain the invariant that all lines \witthe set can
represent all data tuples so fét, (respectivelyu!) may have to be adjusted
to the higher-slope (respectively lower-slope) line dalrigy the pair of data
tuples((ty;v1); (ta;va ) (respectively((ty; v1); (t3;va+ ))). Lines below
this newl! or above this newa! cannot represent the data tugte; vs). The
segment estimation continues until the new data tuple altsof the upper
and lower lines for a segment. The generated line segmetitdocompleted
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Itering interval is chosen so as to minimize the mean squamrer for the
data tuples observed in that interval. As opposed to the dlier (described
below), in the swing lter the new data segment starts from ¢éimd point of
the previous data segment.

In the slide lIter, the operation is similar to the swing kebut upper
and lower linesu and| are de ned differently. Speci cally, aftetq;v1)
and (t,; v,) arrive, ut is de ned by the pair of data tupled1; vy ) and
(t2;vo+ ), whilel!is de ned by(t;vi+ )and(to;vo ). After the arrival
of (t3;v3), I* (respectivelyu!) may need to be adjusted to the higher-slope (re-
spectively lower-slope) line de ned bitj;v; + );(ts; vz )) (respectively
((ti; v );(ta;va + ), wherei 2 [1;2]. The slide Iter also includes a
look-ahead of one segment, in order to produce connectenesdg instead of
disconnected segments, when possible.

Palpanagt al. [48] employamnesic functionand propose novel techniques
that are applicable to a wide range of user-de ned approtimgaunctions.
According to amnesic functions, recent data is approxichatih higher ac-
curacy, while higher error can be tolerated for older dataand Faloutsos
[70] suggested approximating a data stream by dividingtd ggual-length
segments and recording the mean value of the sensor vahtdalthwithin the
segment (referred to as segmented means or as piecewisgaiggapproxi-
mation (PAA)). On the other hand, adaptive piecewise comstaproximation
(APCA) [6] allows segments to have arbitrary lengths.

Piecewise Linear Approximation. The piecewise linear approx-
imation uses the linear regression model for compressitg steeams. The
linear regression model of a data segment is given as:

Vi = s tj+ b; (1.15)

wherebands are known as the base and the slope respectively. The differe
betweenv; andt; is known as the residual for timg. For tting a linear
regression model of Eq. (1.15) to the sensor vales tj 2 [ty;te], the
ordinary least squares (OLS) estimator is employed. The &ftighator selects
bands such that they minimize the following sum of squared redi&lua

Xe
RSS(b; 9 = Vi (s ti+ b))%
ti=tp
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Thereforebands are given as:

Xe t| tb+ te

— 2 .
b= P @ tb+te)t_ Vi,
Bl tEh 2 /A (1.16)
o Vit te
s= :

Here, the storage record of each data segment of the dasanstensists of
([tp; te]; by 9), where[ty; te] is the segment interval, arglandb are the slope
and base of the linear regression, as obtained from Eq.)(1.16

Similarly, instead of the linear regression model, a poigia regression
model (refer Eg. (1.9)) can also be utilized for approximgiteach segment
of the data stream. The storage record of the polynomiakssgsn model is
similar to the linear regression model. The only differeiscthat for the poly-
nomial regression model the storage record contains paessne;;::.:; ¢
instead of the parametelpsands.

54 Compressing Correlated Data Streams

Several approaches [14, 42, 24] exploit correlations antfigrent data
streams for compression. The GAMPS approach [24] dynalyianti es
and exploits correlations among different data segmertstaen jointly com-
presses them within an error bound employing a polynonmad-approxima-
tion algorithm. In the rst phase, data segments are indiglty approximated
based on piecewise constant approximation (speci calyy BMC-Mean de-
scribed in Section 5.3). In the second phase, each data segsrapproxi-
mated by a ratio with respect to a base segment. The segnmergddoy the
ratios is called the ratio segment. GAMPS proposes to sterdase segment
and the ratio segment, instead of storing the original de¢ggnent. The idea
here is that, in practice, the ratio segment is at and thmeetan be signi -
cantly compressed as compared to the original data segment.

Furthermore, the objective of the GAMPS approach is to ifleatset of
base segments, and associate every data segment with aelgasens such
that the ratio segment can be used for reconstructing tlzesggiment within a
L, error bound. The problem of identi cation of the base segménposed
as afacility location problem. Since this problem is NP-hard, a polynomial-
time approximation algorithm is used for solving it, and ¢uoing the base
segments and the assignment between the base segmentseasegiaents.

Prior to GAMPS, Deligiannakigt al. [14] proposed the self-based regres-
sion (SBR) algorithm that also nds a base-signal for corspiay historical
sensor data based on spatial correlations among diffeagatsireams. The
base-signal for each segment captures the prominent ésatfithe other sig-
nals, and SBR nds piecewise correlations (based on linegresssion) to the



32

base-signal. Lirt al. [42] proposed an algorithm, referred to as adaptive linear
vector quantization (ALVQ), which improves SBR in two way®:it increases
the precision of compression, and (ii) it reduces the badthwdionsumption by
compressing the update of the base signal.

55 Multi-Model Data Compression

The potential burstiness of the data streams and the ermdirced by
the sensors often result in limited effectiveness of a simgbdel for approxi-
mating a data stream within the prescribed error bound. éAwkedging this,
Lazaridiset al. [39] argue that a global approximation model may not be the
best approach and mention the potential need for using praulthodels. In
[40], itis also recognized that different approximationdats are more appro-
priate for data streams of different statistical propsrti€he approach in [40]
aims to nd the best model approximating the data streamddasdhe overall
hit ratio (i.e., the ratio of the number of data tuples tting the mottethe total
number of data tuples).

Papaioannoet al. [50] aim to effectively nd the best combination of dif-
ferent models for approximating various segments of treastrregardless of
the error norm. They argue that the selection of the mosti&itmodel de-
pends on the characteristics of the data stream, namelybatstiness, data
range, etc., which cannot be always knosvpriori for sensors and they can
even be dynamic. Their approach dynamically adapts to theepties of the
data stream and approximates each data segment with thauitatie model.
They propose a greedy approach in which they employ multipbelels for
each segment of the data stream and store the model thaveshie high-
est compression ratio for the segment. They experimenpatiyed that their
multi-model approximation approach always produces feweual data seg-
ments than those of the best individual model. Their apgraauld also be
used to exploit spatial correlations among different ladties from the same
location, e.g., humidity and temperature from the saméosiaty sensor.

5.6 Orthogonal Transformations

The main application of the orthogonal transformation apphes has been
in dimensionality reduction, since reducing the dimenaiityyimproves per-
formance of indexing techniques for similarity search irgécollections of
data streams. Typically, sequences of xed length are magpepoints in
an N -dimensional Euclidean space; then, multi-dimensionakss methods,
such as R-tree family, can be used for fast access of thoséspdince, se-
guences are usually long, a straightforward applicatioth@fbove approach,
which does not use dimensionality reduction, suffers frariggmance degra-
dation due to the curse of dimensionality [56].
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The process of dimensionality reduction can be describddliasvs. The
original data stream or signal is a nite sequence of real@alor coef cients,
recorded over time. This signal is transformed (using aisp&@ansforma-
tion function) into a signal in a transformed space. To ahdimensionality
reduction, a subset of the coef cients of the orthogonatdfarmation are se-
lected as features. These features form a feature spaceh vehsimply a
projection of the transformed space. The basic idea is tooappate the orig-
inal data stream with a few coef cients of the orthogonahgirmation; thus
reducing the dimensionality of the data stream.

Discrete Fourier Transform (DFT). The Fourier transform is the
most popular orthogonal transformation. It is based on thmple observa-
tion that every signal can be represented by a superposifisine and cosine
functions. The discrete Fourier transform (DFT) and digcossine transform
(DCT) are ef cient forms of the Fourier transform often usadapplications.
The DFT is the most popular orthogonal transformation ang ws&t used in

X1
Xy = e 2wl (1.17)

j=0

The original signal can be reconstructed by the inversei€ouansform oiX ,
which is given by:

Xt

Xj = X e? wi: (1.18)
k=0
In [1], Agrawal et al. suggest using the DFT for dimensionality reduction

of long observation sequences. They argue that most rewlsignly require
a few DFT coef cients for their approximation. Thus similgirsearch can be
performed only over the rst few DFT coef cients, insteadtbie full observa-
tion sequence. This provides an ef cient and approximaketiem to the prob-
lem of similarity search in high-dimensional spaces. Thsg the Euclidean
distance as the dissimilarity measure.

Discrete Wavelet Transform. Wavelets can be thought of as a
generalization of the Fourier transform to a much largerilfaf functions
than sine and cosine. Mathematically, a wavelet is a functig de ned on
the real number®, which includes an integer translation kyalso called a
shift, and a dyadic dilation (a product by the powers of twopwn as stretch-
ing. The functions jx play a similar role as the exponential functions in the
Fourier transform: jx form an orthonormal basis for tHe?(R) space. The
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L2(R) space consists of all the functions whasenorm is nite. Particularly,
the functions j , wherej andk are integers are given as follows:

(=272 @t k) (1.19)

Similar to the Fourier transform, by using the orthonormadib functions
ik » We can uniquely express a functibn2 L2(R) as a linear combination
of the basis functionsjy as follows:
X
f = <f; ik > ik (1.20)
k2z

R
where< f;g > = fgdxis the usual inner product of two functions in
L2(R).
The Haar wavelets are the most elementary example of wavdleé mother
wavelet for the Haar wavelets is the following function:

8
21 if 0<t< 05
"0 otherwise

Ganesaret al. [26, 25] proposed in-network storage of wavelet-based sum-
maries of sensor data. Recently, discrete wavelet trams(DWT) was also
proposed in [53, 7] for sensor data compression. For sadiErstorage and
querying, they propose progressive aging of summariesaatidharing tech-
niques.

Discussion. The basis functions of some wavelet transforms are non-
zero only on a nite interval. Therefore, wavelets may beyoable to cap-
ture local (time dependent) properties of the data, as @uptwsFourier trans-
forms, which can capture global properties. The computatief ciency of
the wavelet transforms is higher than the Fast Fourier foams(FFT). How-
ever, while the Fourier transform can accurately approtenagbitrary signals,
the Haar wavelet is not likely to approximate a smooth fuorctiising few
features.

The wavelet transform representation is intrinsically pded with approx-
imating sequences whose length is a power of two. Using wielith se-
guences that have other lengths require ad-hoc measutesethee the -
delity of the approximation, and increase the complexityhaf implementa-
tion. DFT and DCT have been successfully adapted to incrextheamputa-
tion [72]. However, as each DFT/DCT coef cient makes a glafmntribution
to the entire data stream, assigning less signi cance t@#st data is not ob-
vious with these transformations.
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5.7 Lossless vs. Lossy Compression

While lossless compression is able to accurately recartsthe original
data, lossy compression techniques approximate datarstre@hin a certain
error bound. Most lossless compression schemes perfornstegs in se-
guence: the rst step generates a statistical model forrbpatidata, and the
second step uses this model to map input data to bit sequeddesse bit
sequences are mapped in such a way that frequently encedrdata will
produce shorter output than infrequent data. Generalgsericompression
schemes include DEFLATE (employed by gzip, ZIP, PNG, etc2\W (em-
ployed by GIF, compress, etc.), LZMA (employed by 7zip). Tnenary en-
coding algorithms used to produce bit sequences are Hufftodimg (also
used by DEFLATE) and arithmetic coding. Arithmetic codinthi&ves com-
pression rates close to the best possible, for a particialistical model, which
is given by the information entropy. On the other hand, Haffncompression
is simpler and faster but produces poor results.

Lossless compression techniques, however, are not adefquad number
of reasons: (a) as experimentally found in [39], gzip lossleompression
achieves poor compression (50%) compared to lossy teobmidb) lossless
compression and decompression are usually more commatyiantensive
than lossy techniques, and (c) indexing cannot be emplayedréhived data
with lossless compression.

6. Summary

In this chapter, we presented a comprehensive overvieweoVvdhous as-
pects of model-based sensor data acquisition and manageRrenarily, the
objectives of the model-based techniques are ef cient datguisition, han-
dling missing data, outlier detection, data compressiata dggregation and
summarization. We started with acquisition techniques TiknyDB [45], Ken
[12], PRESTO [41]. In particular, we focused on how acqusdil queries are
disseminated in the sensor network using routing trees [A#n we surveyed
various approaches for sensor data cleaning, includinghpatial-based [73],
probabilistic [21, 63, 52, 65] and declarative [31, 46].

For processing spatial, temporal and threshold queriegjetaled query
processing approaches like MauveDB [18], FunctionDB [@&ticle lter-
ing [33], MIST [5], etc. Here, our primary objective was tondenstrate how
model-based techniques are used for improving variouscespéquery pro-
cessing over sensor data. Lastly, we discussed data caigrdechniques,
like, linear approximation [34, 39, 48], multi-model apgrmations [39, 40,
50] and orthogonal transformations [1, 22, 53, 7].
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All the methods that we presented in this chapter were modséd. They
utilized models — statistical or otherwise — for describiagmplifying or ab-
stracting various components of sensor data acquisitidmeamagement.
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