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Abstract. The aim of this paper is the introduction of a new method for
the numerical computation of the rank of a three-way array, X ∈ R

I×J×K
, over

R. We show that the rank of a three-way array over R is intimately related
to the real solution set of a system of polynomial equations. Using this, we
present some numerical results based on the computation of Gröbner bases.
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1. Introduction

Let X ∈ RI×J×K be a tensor of order 3, sometimes named a three-way array or a
three-mode data set. A rank 1 or a decomposed tensor is

D = a ⊗ b ⊗ c, (1)

where a ∈ RI , b ∈ RJ and c ∈ RK , and ⊗ is the tensor product, sometimes named
also outer product. X can be expressed as a sum of decomposed tensors given in (1),

X =
r∑

α=1

Dα. (2)

The rank of X is defined to be the minimal integer r, see for instance Kruskal (1977,
1989). In data analysis, this implies that the rank of a three-way array is the smallest
number of components that provide a perfect fit in Candecomp/Parafac (CP), see for
instance, (Carroll and Chang, 1970, and Harshman, 1970). In statistics CP is con-
sidered a natural extension of singular value decomposition or principal components
analysis to three-way data.

There is quite a literature concerning the value of maximal rank, generic rank
or typical rank of three-way arrays in the area of statistics, algebraic complexity
theory and algebraic geometry. Some references, among others, are: Ja’ Ja’ (1979),
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Kruskal (1977, 1983, 1989), Strassen (1983), Ten Berge (1991, 2000, 2004a, 2004b),
Ten Berge and Kiers (1999), Ten Berge and Stegeman (2006), Comon and Ten Berge
(2008), Bürgisser et al (1997), Catalisano et al (2002), Friedland (2008) and Abo et
al. (2006). Friedland (2008) provides an up todate survey with some new results on
the generic rank of three-way arrays.

First, we give the following
Definition 1: A dataset is called generic if its elements are randomly generated

from a continuous distribution.
The generic and typical ranks are defined in the following way by Comon and Ten

Berge (2008): Given that the rank of I × J ×K arrays is bounded, one can partition
the arrays according to the rank values. Generic rank is defined to be true almost
everywhere; while typical ranks are associated with the rank values that occur with
positive probability. So, if there is a single typical rank, then it may be called generic
rank; that is, a generic rank is typical, but the converse is not true.

Ten Berge (2000) classified three-way arrays into three classes: very tall, tall and
compact. Let X ∈ R

I×J×K be a tensor of order 3 with I ≥ J ≥ K. The array X is
called very tall when I ≥ KJ ; X is tall when KJ − J < I ≤ KJ − 1; X is compact
when I ≤ KJ − J. The generic rank of the very tall arrays is very well known
and easiest to prove: it is KJ . Ten Berge (2000) showed that all tall three-way
arrays have generic rank I; and the tallest among the compact arrays, that is when
I = KJ − J, have typical rank {I, I + 1} . Ten Berge and Stegeman (2006) provided
some further results on the compact case. Friedland (2008) showed that: typical
rank(12×4×4) ≥12, typical rank(11×4×4) ≥11, and typical rank(I×J×K) ≥ I for
(I, J, K) = ((J−1)2+1, J, J) when J ≥ 2. These results are all based on mathematical
proofs. However, the rank computation problem has also been approached from a
numerical point of view: Comon and ten Berge (2008) and Friedland (2008) applied
Terracini’s lemma, based on the numerical calculation of the maximal rank of the
Jacobian matrix of (2), to obtain numerically the generic rank of some three-way
arrays. The numerical method based on Terracini’s lemma, when used to evaluate
rank over R, gives the generic rank when the typical rank is single-valued, and the
smallest typical rank value otherwise.

Two well known facts are: a) There is no known method to calculate the rank of a
given three-way dataset, Martin (2004, AIM tensor workshop); b) A three-way array
over R may have a different rank than the same array considered over C, (Kruskal,
1989).

We shall be concerned by the numerical computation of the rank of a three-way
array over R only.

Computationally, the most primitive approach to the numerical evaluation of the
typical rank of three-way arrays is based on the alternating least square (ALS) min-
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imization algorithm: It is to run ALS many times to convergence on many generic
three-way arrays of a given format, and to check whether or not the fit is perfect for
a given number of components. But as a referee remarked, this approach has 2 prob-
lems: First, we do not know how many three-way arrays of a given format to examine
before a valid inference can be drawn. For instance, when 100000 arrays have been
examined and all seem to have the same rank α, it does not follow that α is indeed
the generic rank for that array format. After all, a different rank may occur with an
extremely small yet positive probability. Second, the decision of when to terminate
ALS is hazardous, because even if the residual sum of squares is, say, exp(−32), this
does not prove that it is zero; in fact, it may have zero as infimum. The present paper
relieves us from both above mentioned problems: It offers a straightforward method
of determining the rank of any given array over R, based on inspection of the number
of real roots of a system of certain polynomial equations.

The real solution set of a system of polynomial equations is called semi-algebraic
set in real algebraic geometry, see Basu, Pollack and Roy (2006) or Friedland (2008).
Semi-algebraic sets are open sets and are composed of a finite union of connected
components, where each component is called a basic semi-algebraic set. The main
problem can be reformulated as: For a given tensor X over R calculate the number
of connected components where each component is characterized by a unique real
rank value. Our numerical results will shed some light on this. The numerical results
on simulated datasets will be obtained by computing the Gröbner bases using Maple
12 of the system of polynomial equations characterizing the dataset. We note that
generic datasets and random numbers are generated from integers between −99 and
99.

The paper is organized as follows. In section 2 we present the main lemma which
provides a necessary and sufficient condition that a three-way array can be expressed
as a sum of a fixed number of decomposed tensors. All results in this paper will
be based on this lemma. In section 3, we show how the lemma can be applied to
compute the rank of a generic tensor over R numerically for some cases. In section 4,
we show another application of the lemma for the computation of rank for nongeneric
particular datasets. In section 5, we show how the lemma can be applied to compute
the rank of generic I symmetric J × J arrays, named INDSCAL arrays, over R. And
finally in section 6 we conclude.

2. Main Lemma

Let X ∈ RI×J×K be a three-way dataset and 2 ≤ K ≤ J ≤ I. The lemma provides
a necessary and sufficent condition that the tensor X can be expressed as a sum of I
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decomposed tensors; that is

X =

I∑

α=1

Dα,

=

I∑

α=1

aα ⊗ bα ⊗ cα, (3)

where {aα| α = 1, ..., I} is a basis for R
I , cα ∈ R

K and bα ∈ R
J . Note that if

(3) is true, then rank(X) ≤I. We denote by Xk ∈ RI×J the kth slice in X for
k = 1, ..., K.We note that (3) can be written as

Xk =

I∑

α=1

ckαaα ⊗ bα for k = 1, ..., K,

= AD(ck)B
′ for k = 1, ..., K, (4)

where A = (a1 a2...aI) ∈ RI×I , B = (b1 b2...bI) ∈ RJ×I , C = (ckα) ∈ RK×I and
D(ck) = Diag(ck) ∈ RI×I is a diagonal matrix with diagonal elements ckα. Note that
the vector ck ∈ RI represents the kth row of C.

We consider the system of polynomial equations

s′αXk = ckαb
′

α for k = 1, ..., K and α = 1, ..., I, (5)

where {sα| α = 1, ..., I} is a basis for RI and cα ∈ RK , and bα ∈ RJ . We note that
(5) can be written as

S′Xk = D(ck)B
′ for k = 1, ..., K, (6)

where S has columns sα.

Lemma 1: (6) is a necessary and sufficient condition for (4).
Proof: Let I = AS′, then (4) is true if and only if (6) is true.

Remark 1: a) To see if (5) is true, we solve the system of polynomial equations

s′Xk = ckb
′ for k = 1, ..., K, (7)

for s ∈ RI , b ∈ RJ and c ∈ RK .
b) We note that (7) has two indeterminacies: It can be rewritten as s′

∗
Xk = ck∗b

′

∗

for k = 1, ..., K, , where for instance, s∗ = λs for any scalar λ 6= 0 , ck∗ = µck for
any scalar µ 6= 0, and b∗ = λb/µ. To eliminate these indeterminacies, hereafter, we
fix

c1 = 1 and sI = 1. (8)
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c) Theorem 2.4 of Friedland (2008) provides another characterization for (3) or
(4): It states that each slice Xk ∈ span(a1 ⊗ b1, ..., aI ⊗ bI) and the rank(X) equals
the minimal dimension of the span(a1 ⊗ b1, ..., aI ⊗ bI).

d) The necessary condition, when rank(X) =I, which was shown to be also suf-
ficient afterwards, was used many times by Ten Berge and his coworkers, Ten Berge
(2000), Ten Berge (2004a), and Ten Berge, Sidiropoulos and Rocci (2004).

3. Rank computation

We shall suppose in the sequel that X ∈ RI×J×K is a generic three-way array and 2 ≤
K ≤ J ≤ I ≤ KJ . Then we have the following well known inequality: rank(X) ≥I.
We will check if X has rank I. By the Main Lemma , the tensor X has rank I, if for
parameter vectors s ∈ RI , b ∈ RJ and c ∈ RK the system of polynomial equations
(7) subject to (8) have I real solutions (ckα, bα, sα) for α = 1, ..., I, such that the
elements of the set {sα| α = 1, ..., I} is a basis for RI ; that is, (7) with (8) has I
real isolated solutions. Let us see how can we know if this is true. The system of
polynomial equations (7) with (8) is equivalent to

s′(Xk − ckX1) = 0′ for k = 2, ..., K. (9)

So the number of equations, neq, in (9) is

neq = (K − 1)J, (10)

and the number of degrees of freedom or the number of free variables , df, is

df = (I − 1) + (K − 1), (11)

because of (8) there are (K − 1) free ck ’s and (I − 1) free si ’s.
We are interested in the study of the number of solutions of (9) over R for generic

data. We distinguish three cases named, minimal when neq = df , overdetermined
when df < neq, and, underdetermined when df > neq. We note that Abo et al.
(2006) also distinguished three cases that they named subabundant, superabundant
and equiabundant: these were used for induction purposes.

3.1. Case 1: Minimal System(neq = df). When I = (K − 1)(J − 1) + 1,
neq = df , and the system (9) is called minimal. The number of real solutions is
bounded; an upper bound is provided by Khovanskii’s theorem, see Sturmfels (2002),

Theorem 1 (Khovanskii): Consider n polynomials in n variables involving
m distinct monomials in total. The number of isolated roots in the positive orthant
(R+)n of any such system is at most 2(m

2
)(n + 1)m.
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In our case n = neq = df = (K −1)J and m = I −1+ (K −1)(I −1) = K(I −1).
The number of isolated roots in the positive orthant (R+)df of any such system is at
most 2(m

2
)(df + 1)m and m is the number of distinct monomials in the system (9).

So (9) may or may not have I real isolated solutions. In case (9) has I real isolated
solutions, then rank(X) = I; otherwise we embed it, which is discussed later on.

Example 1: I × I × 2 arrays: neq = df = I
This class of arrays is discussed in detail by Ten Berge (1991), who showed that

the typical rank of such arrays is {I, I +1}. To check if the rank of a generic I×I ×2
array is I, it suffices to solve (9), which reduces to finding the real roots of the
determinantal equation det(X2 − c2X1) = 0. If det(X2 − c2X1) = 0 has I real roots,
then rank(X) = I, otherwise rank(X) = I + 1. Simulation results for 5000 generic
3 × 3 × 2 arrays produced one real root 51.76% and 3 real roots 48.24% of the time.
So we can deduce that Pr(rank (3×3×2 array) = 3) ≈ 48.24% and Pr(rank (3×3×2
array) = 4) ≈ 51.76%.

Example 2: I × J × 3 arrays with I = 2J − 1: neq = df = 2J
a) 5 × 3 × 3 arrays: neq = df = 6. This class of arrays is also discussed in Ten

Berge (2004a), where Ten Berge showed that generic 5×3×3 arrays have either rank
5 or rank 6 with positive probability. Further, he showed that a closed form solution
for the case when the array has rank 5 corresponds to finding the number of real roots
of a sixth degree polynomial equation: if there are 6 real roots, then the array has
rank 5, otherwise its rank is 6. Table 1 displays the number of real roots obtained
by solving the system (9) for 1000 simulated generic arrays. First, we note that
the solution set of (9) always admitted 6 roots, as expected according to Ten Berge
(2004a); further, the number of real solutions is an even number or zero. Second,
Pr(rank (5 × 3 × 3 array) = 5) ≈ 6.8% and Pr(rank (5 × 3 × 3 array) = 6) ≈ 93.2%.

Table 1: Simulation results for 1000 generic 5 × 3 × 3 arrays.
real roots 0 2 4 6
counts 47 501 384 68

b) 7 × 4 × 3 arrays: neq = df = 8. Table 2 displays the number of real roots
obtained by solving the system (9) for 1000 simulated generic arrays. First, we note
that the solution set of (9) always admitted 10 roots and the number of real solutions
is an even number or zero. Second, Pr(rank (7 × 4 × 3 array) = 7) ≈ 4.2%.

Table 2: Simulation results for 1000 generic 7 × 4 × 3 arrays.
real roots 0 2 4 6 8 10
counts 16 268 456 218 40 2

c) 9 × 5 × 3 arrays: neq = df = 10. Table 3 displays the number of real roots
obtained by solving the system (9) for 1000 simulated generic arrays. First, we note
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that the solution set of (9) always admitted 15 roots and the number of real solutions
is an odd number. Second, Pr(rank (9×5×3 array) = 9) ≈ 6% and Pr(rank (9×5×3
array) = 10) ≈ 94%. This latter result follows from Ten Berge (2000, Result 5) or
see Example 5 describing tallest compact arrays, by embedding 9× 5× 3 arrays into
10 × 5 × 3 arrays.

Table 3: Simulation results for 1000 generic 9 × 5 × 3 arrays.
real roots 1 3 5 7 9 11 13
counts 34 290 404 212 51 8 1

Example 3: I × J × 4 arrays with I = 3J − 2: neq = df = 3J
Numerical computations showed that 6= (roots of 10×4×4 arrays) = 20; 6= (roots

of 13 × 5 × 4 arrays) = 35 and 6= (roots of 16 × 6 × 4 arrays) = 56. Table 4 shows
that Pr(rank (10 × 4 × 4 array) = 10) ≈ 7.8%.

Table 4: Simulation results for 1000 generic 10 × 4 × 4 arrays.
real roots 0 2 4 6 8 10 12 14
counts 2 78 284 342 216 58 14 6

Remark 2: a) To calculate a Gröbner basis for (9) in Example 2 for I×J×3 arrays
with I = 2J − 1, we used pure lexicographic order given by the following sequence
(s1, ..., sI−1, c3, c2) of the free variables. In all cases the Gröbner basis, denoted by Gβ,
consisted of (K−1)J polynomials having the following form: G1(c2) = 0, G2(c2, c3) =
poly2(c2) + c3 = 0, G3,α(c2, sα) = polyα(c2) + sα = 0 for α = 1, ..., I − 1. It is
important to note that this particular form of the Gröbner basis polynomials, Gβ,
shows that the degree of the polynomial G1(c2) = 0, denoted by degG1(c2), represents
the number of roots of the system (9). An introduction to Gröbner basis can be found
in, among others, Cox et al. (2007). Example 6 show quite in detail the Gröbner
basis application to a generic array.

b) The Maple 12 commands to do the computations in Example 2 are shown in
Appendix 1.

c) For I×I×2 arrays and I ≥ 2, det(X2−c2X1) = G1(c2) = 0, where G1(c2) = 0
is the first element of the Gröbner basis. This phenomenon will be also seen for tallest
compact arrays, see Examples 4, 5 and 6.

A reviewer noted that the right hand side of (7) is a Segre variety, which is
the image of the Segre map, Σ(K−1),(J−1). The Segre map sends an element of the
projective space P (K−1) × P (J−1) into P KJ−1. While the left hand side of (7) is a
linear space of projective dimension I−1 = (K−1)(J −1). So, (7), will represent the
intersection of the linear space with the Segre map, and the number of intersections
is the degree of the Segre variety given in (12), see for instance Harris (1992, p. 233).
This result is summarized in the following
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Theorem 2: Let I = (K − 1)(J − 1) + 1 and 2 ≤ K ≤ J ≤ I, then for generic
data the number of roots (real or complex) of the polynomial system (9) is

degG1(c2) =

(
K − 1 + J − 1

K − 1

)
. (12)

Corollary 1: For minimal systems and 3 ≤ K ≤ J ≤ I, I < degG1(c2).
Proof: Let n = J − 1 and m = K − 1. We have to show that

mn + 1 ≤
(m + n)!

n!m!
for 2 ≤ m ≤ n.

It is true for m = 2. For m ≥ 3, we have

(m + n)!

n!m!
=

[
(n + 1)

m

(n + 2)

m − 1
...

(n + m − 2)

3

] [
(n + m − 1)

2

(n + m)

1

]

≥

[
(n + m − 1)

2

(n + m)

1

]
.

So, it is sufficient to show that (n + m)(n + m− 1) ≥ 2(mn + 1), which is easily seen
to be true.

Corollary 2: The typical rank of arrays with a minimal system have more than
one rank value and the minimum attained value is I.

Proof: The rank of a generic array with a minimal system is I, if the number of
real roots of G1(c2) is greater than or equal to I; otherwise its rank is greater than I.

We note that Corollary 2 generalizes Friedland (2008), who showed that: typical
rank(I × J × K) ≥ I for (I, J, K) = ((J − 1)2 + 1, J, J) when J ≥ 2.

3.2. Case 2: Underdetermined System(df > neq). When (K − 1)(J − 1) +
2 ≤ I ≤ IJ, df > neq, and the system (9) is called underdetermined. The upper
bound for the number of isolated roots of (9) is infinity; so (9) may or may not have
I real isolated solutions: So the attained minimum bound for the rank of a generic
three-way array is, bmin = I. Before discussing two general classes studied in detail
by Ten Berge (2000), we introduce some notation.

The system (9) can be written as

s′Γ = s′ [(X2 − c2X1), (X3 − c3X1), ...,XK − cKX1] = 0′, (13)
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where the number of columns of the matrix Γ is

n colΓ = (K − 1)J, (14)

= neq;

and the number of rows of Γ is
n row Γ=I, (15)

and Γ is a matrix function of the parameters c2, ..., cK . We also define

nbil = K − 1, (16)

which represents the minimal number of ck parameters that can be specialized to
make the system of polynomial equations (13) linear. In algebraic geometry, the
replacement of variables by specific values is called specialization.

Example 4: Tall arrays: df − neq ≥ nbil
These are arrays when (K − 1)J < I ≤ KJ and I ≥ J ≥ K, whose generic rank

is I, as shown by Ten Berge (2000, Result 2). This implies that (15) > (14), that
is I > (K − 1)J, or, df − neq ≥ nbil = K − 1, where nbil is given in (16). By
assigning random values to the (K − 1)ck’s in (13), we reduce (13) to a system of
linear equations, which will have a solution for any generic data; so (13) will admit I
real and isolated solutions; from which we deduce that the generic rank of tall arrays
is I.

Example 5: Tallest compact arrays: n colΓ =n row Γ and K ≥ 3
These are arrays when I = J(K − 1), I ≥ J ≥ K and K ≥ 3. Note that we

exclude I × I × 2 arrays for I ≥ 2 discussed in Example 1. Ten Berge (2000, Results
3, 4 and 5) discussed this case.

When I = (K −1)J and K ≥ 3, it implies that (14) = (15), that is, Γ is a square
matrix. Solving (13) for ck ’s for k = 2, ..., K is equivalent to solving det(Γ) =0.

The leading monomial in det(Γ) =0 is

K∏

k=2

cJ
k . If J is an odd integer, then (13) will

have infinite number of real solutions: Assign random continuous numbers to ck ’s
for k = 3, ..., K, and solve for c2. This corresponds to Result 5 in Ten Berge (2000),
which states: When I = J(K − 1) and I ≥ J ≥ K and K ≥ 3 and J is odd, then
the typical rank is I. If J is an even integer, then (13) may have infinite number
of real solutions or finite number of real solutions or 0 real solution: For instance
for J = 4 and K = 3, the polynomial f(c2, c3) = 3c4

2c
4
3 + 1 has 0 real solution, the

polynomial f(c2, c3) = 3c4
2c

4
3 − 1 has infinite number of real and distinct solutions,

and the polynomial f(c2, c3) = 3c4
2(c

4
3 − 1) has a finite number of real solutions. Ten

Berge (2000) specifically discussed the case of 8× 4× 3 arrays, where he stated that
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typical rank of such arrays is {8, 9} and for randomly sampled data the rank of 9
is extremely rare. Similarly, Friedland(2008, Th.7.2) showed that typical rank of
12× 4× 4 arrays has more than one value. We conducted a limited simulation study
on generic 8 × 4 × 3 and 12 × 4 × 4 arrays; and each time we got I real isolated
solutions. The simulation study was done in the following way: For a generic dataset
let f(c2, c3..., cK) = det(Γ) =0; assign random values to the parameters c3..., cK , then
solve for c2. This shows that for generic data, when I = J(K − 1) and K ≥ 3 the
rank is I with very high probability. Also, see example 6.

3.3. Example 6. We consider a simulated generic dataset of size 7×4×3 having
the following three slices

X′

1 :=




[−50,−38,−98,−93,−32, 8, 44]
[−22,−18,−77,−76,−74, 69, 92]

[45, 87, 57,−72,−4, 99,−31]
[−81, 33, 27,−2, 27, 29, 67]




X′

2 :=




[99,−25, 24,−61, 31, 25, 50]
[60, 51, 65,−48,−50, 94, 10]

[−95, 76, 86, 77,−80, 12,−16]
[−20,−44, 20, 9, 43,−2,−9]




X′

3 :=




[90,−82, 29, 52, 42,−62, 22]
[80,−70, 70,−13, 18,−33, 14]
[19, 41,−32, 82,−59,−68, 16]

[88, 91,−1, 72, 12,−67, 9]




Our aim is to find the rank of X, by representing it as in (6). This dataset has
a minimal system of polynomial equations. We solve equation (9) via Gröbner basis
using the lexicograhic order (s1, s2, s3, s4, s5, s6, c3, c2). The first two polynomials of
the Gröbner basis are

G1(c2) = 0 =
−258797975083999058663603818114838724165583573114256294
−1987946767932180125365724555441379125561037244553323732*c2

−7447583055793225423658520296174635567495579387052082486*c2
2

+18477292423934054741969006645285810935999768448664319668*c3
2

+162868576676248184458245504688648649537661407605447407344*c4
2

+22324671325209561198922665813216562379249229294549244662*c5
2

−93044594774454916354246852601811640731920664188422515202*c6
2

+1034990365268175640254342731156079689724071145674294956746*c7
2

−1399215109838269848671482913176200716552825195700591390075*c8
2

+155346700794650490501115016130585172314320583287574900147*c9
2
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+645072630378953757678717001000719217821315452777261680268*c10
2

G2(c2, c3) = 0 =
23547338655791229204617338928506186026357940595072461145844743562575
17224332611787380814907080082015469486345955534220731803730371551646
24134092641462097641695580678924043455393253397537452244857196895154
46461325491822959772758622053185481177195343628678109510431558799243
57732629782484420615672656492158360322133109432630494581048689547
−3097250590883846738286889878288351798304609282451856596410303546337
36319437905844941144694584532179492363486873159383686238249006746894
40160319769886619561748249254067684300497233927857246816557510045452
29549030244795643979218209546091280718239589534262958680509337880753
427578723122948642870383378005580770133313107270509303255691909320*c2

−1903803609627374035621320978361604020106824484275906499213001947264
95672033886734748658480731859038594412417938078895776898706276221196
35127294306367325389388675757732402447319340359820738619607197620136
52879058280068724250611547838816805478213287696041214145895488077794
7039714261670007939310542108233323980869417122270525843479004885596*c2

2

+8450512390839763624967161124974667624579807298666582130379782638299
901903452364927022770162589839439882861673620370340791082608420840404
311331236303835885178287071688967159857905276468573727498262705288023
535530120799333316114432548548504549670733473680409194666521803651767
1193123383965058588912264378749348068202790932902763246688455431*c3

2

+4336608402971539347025237252135145455841035812345961936163213074515
668913809930686458789021032092183097107068630380980654723975384806834
399547265746928595076966467194028602153464501847919685450547334048541
838603267464810745721708090718604776111130817877753185112995125825196
9900571656166285598237774354646551889675112530575080545846831937*c4

2

−29667122481091026364901639098151640003965888696689225008930393424968
602525252447427436681754274345497424043473832230915504701237012993339
710812856574652111731271369111860472809751620103390836422947014561918
596742170800703187841128631115509897386033559201960217645649903785096
9895485234230652379590298859552730627182446420246826454883883689*c5

2

+8713668020397159975202209402993411331481527445489159653742816589285
782666925647284363167235229251382288691898280884602035659684679625961
618445548964513132925721174946043787600439882519732665839121162038859
547938786254023880112832091100880202921766725381340769795219852772659
31253523019517845556699435901635488455864886970958223801767254199*c6

2

−78305675171958244526488263512192141094477411091651712476670327217351
782883871707407108769516955504305407699176179301277874612313054094467
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597035177196760703985825236814433985312481352680953166404723733165962
317279471444717834466650359718509004877505793494350037939473327528086
0867972222715638415162988327352914888458003606019978160749679848*c7

2

−50522599203583621625595637115217448838607343066299095645637009117677
845425111468649945267084093503724529301981623817384478696550110017337
119404751862738670370910467517021683484411445974804570961028420156557
202505669968683614281388897157201250167813030135004835015786338672614
037510989474695713072179459238022542102052991592155908191171478*c8

2

+35315707780022362747687233745930780256946702046940375643458709883815
717091334531092687692414120601353572599659606631610854904141003914876
375870980951760199224617620310327264953286419665073175139662877717976
464011962351866981273603060052461996153251279426523988643704170224549
3505041609179506395307679350757457119876008964575838569723696328*c9

2

+26196064537923148987259844023868839991472305689605751242386858343654
158387703055190547211883116255260309881480267447955878169277786134938
237906112297170134620139058793181439502365320984021683968720825019581
715365315571505452391632141389861154616280828170929049200565639622657
40795249676124179031191642089155403460321065906554129943039359*c3

The polynomials G3,6(s6, c2) = 0, G3,5(s5, c2) = 0, ..., G3,1(s1, c2) = 0 have the
same form as G2(c2, c3) = 0 given above.

The polynomial G1(c2) = 0 has only four real roots, which are: −1.871987136,
−0.3332612900, −0.2556946431, 0.2733107997; so the rank of the dataset is greater
than 7. We embed it by joining the following vectors to the three slices: v′

1 =
(1 0 0 0), v2 = v3 = 0. The embedded dataset is Xe

1 = (X′

1 v′

1)
′, Xe

2 = (X′

2 v′

2)
′

and Xe
3 = (X′

3 v′

3)
′. The rank of the embedded dataset will be calculated by two

distinct methods.
First, for the embedded dataset we see that n colΓ =n row Γ =8, so we can cal-

culate the determinant of Γ as in Example 5, which is:
det(Γ) =0 = 111296195967997*c4

2−163212875913821*c3
2−288078435761246*c3

2*c3

+188384423078426*c2
2+139757151961919*c2

2*c3−123835533958927*c2
2*c

2
3

+3188520736473*c2+1745777654358*c2*c3+145702375007129*c2*c
2
3

+154156258186696*c2*c
3
3−30068441704134*c3−78231890782721*c2

3

−9292669314727*c3
3+24148992371016*c4

3

Following the argument in Example 5, we note that there is a slight possibility
that there will not be eight distinct values of (c̃2, c̃3) such that the det(Γ) =0, because
it is of degree 4. So, in general, following this approach of computing we can not assert
that typical rank of generic 7 × 4 × 3 arrays is {7, 7 + 1} . However, let us continue
our computation as in Example 5. We obtain the C matrix of Lemma 1,rounded to
2 decimal digits,
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C :=




[1, 1, 1, 1, 1, 1, 1, 1]
[5.68, 63.84, 0.6, 44.31, 3.49, 9.33, 3.93, 21.29]

[−38, 91,−1, 63,−23,−63,−26, 30]




where the third row of C represents the randomly generated eight c̃3 values, and
the second row represents the corresponding eight c̃2 values obtained by solving the
det(Γ) =0 after plugging the c̃3 values in it.

Now, we can obtain the S matrix of Lemma 1 by solving

s′(Xe
k − c̃kX

e
1) = 0′ for k = 2, 3 (17)

eight times: The ith column of S corresponds to the eigenvector of the matrix

Γ(c̃2i, c̃3i) associated with the unique null eigenvalue

S := 10−3×




[−6.85, −6.54, −4.89, −6.51, 7.02, 6.74, 6.97, 6.44]
[−4.02, 5.45, 8.94, 5.44, 3.85, 4.11, 3.90, 5.40]

[9.29, −5.99, 14.8, −5.97, −9.49, −9.16, −9.43, −5.91]
[−16.4, −6.87, −34.4, −6.83, 16.7, 16.2, 16.6, −6.71]

[−4.31, 0.995, −6.31, 1.01, 4.15, 4.40, 4.20, 1.08]
[−11.5, −5.37, −43.7, −5.36, 11.8, 11.4, 11.7, −5.32]
[−3.22, −6.50, −6.24, −6.50, 3.20, 3.24, 3.20, −6.52]

[−1000, −1000, −1000, −1000, −1000, −1000, −1000, −1000]




The matrix B′ = S′X1 = A−1X1 of Lemma 1 is

B := 10−2×




[1.06, −1.47, 22.7, −2.11, −1.84, −0.625, −1.61, −4.37]
[−2.25, −1.24, −171, −1.79, 3.73, 1.35, 3.30, −3.72]

[2.49, −0.077, −22.7, −0.111, −4.22, −1.48, −3.70, −0.228]
[3.85, −0.280, −69.4, −4.00, −6.39, −2.31, −5.65, −0.806]




And A′ = S−1; finally, we obtain X̃k = AD(ck)B
′ = Xk. This was numerically

verified.
A second approach to compute the matrices S, A, B and C is via the Gröbner basis

for the embedded system (17) using the lexicographic order (s1, s2, s3, s4, s5, s6, c3);
note that c2 is a free variable. The first Gröbner basis polynomial is

G1(c2, c3) = 0 = 111296195967997*c4
2−163212875913821*c3

2−288078435761246*c3
2*c3

+188384423078426*c2
2+139757151961919*c2

2*c3−123835533958927*c2
2*c

2
3

+3188520736473*c2+1745777654358*c2*c3+145702375007129*c2*c
2
3

+154156258186696*c2*c
3
3−30068441704134*c3−78231890782721*c2

3

−9292669314727*c3
3+24148992371016*c4

3,
which equals det(Γ). This shows that both approaches are identical for this par-

ticular problem.

4. Another Application of The Main Lemma

Consider nongeneric dataset of size 4 × 4 × 3
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X1 :=




[−872410, 509152,−155756, 301976]
[−669515, 355308,−105576, 215236]
[349983,−898362, 265770,−79182]

[3285,−185950, 180998, 97398]




X2 :=




[−403995, 481229, 24054, 201485]
[−243133, 337616,−4344, 94484]

[317091,−174294,−2454,−206076]
[−317457, 112640, 183938, 289254]




X3 :=




[−274447, 214327,−280750, 108851]
[−252456, 116912,−145020, 92016]
[−127464,−713802, 599526, 54318]
[−38790,−204608, 236662, 21168]




To see if the rank of X is 4, we solve the system (9) composed of 8 polyno-
mial equations in 5 variables via Gröbner basis using the pure lexicograhic order
(s1, s2, s3, c3, c2). The elements of the Gröbner basis are

G1(c2) = 0 = −266104 + 1131869c2 + 1855673c2
2 − 10091484c3

2 + 3934656c4
2;

G2(c2, c3) = 0 = 70150154675210213−61657878275323159c2−700780737688415568c2
2

+308891236767911424c3
2 + 628616789525725c3;

G3,3(c2, s3) = 0 = −79011958683266608845932181098557
+37717083374737443006703954200886c2+901077269210427745705210304730192c2

2

−390331538460948950190867958454016c3
2+1099565644871457602013702982455s3;

G3,2(c2, s2) = 0 = 39353103064214280234416428219949
−190977009897456095062042069799807c2+209064381129999539517569775784236c2

2

−57940861139941085694575004742848c3
2+5497828224357288010068514912275s2;

G3,1(c2, s1) = 0 = −29281575292540618957256320186316
−3959967531501755611631756716147c2+390527303469098244882389504161956c2

2

−165798278803217428934162052760128c3
2+1099565644871457602013702982455s1.

The polynomial G1(c2) = 0 is of degree 4 and it has four real roots, which are:
−.3369565217, .2929292929, .2962962963, 2.312500000. So the rank of the dataset is
4 by the main Lemma. Such datasets have been characterized by their defining
equations in Landsberg and Manivel (2006).

5. INDSCAL arrays

Let X ∈ R
I×J×J be a tensor of order 3,where the ith slice Xi ∈ R

J×J for i = 1, ..., I
is symmetric. INDSCAL, proposed by Carroll and Chang (1970), is a statistical
method used in psychometrics to analyse such arrays. For this reason, we shall
name such an array an INDSCAL array to distinguish it from a general three-way
array Y ∈ RI×J×K discussed above, where such a decomposition is usually named
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PARAFAC, see Harshman (1970). A rank 1 INDSCAL array or a decomposed tensor
is

D = a⊗ b⊗ b, (18)

where a ∈ RI and b ∈ RJ .
The following theoretical results are known for generic INDSCAL data X ∈

RI×J×J : a) By Zellini (1979), see also Rocci and Ten Berge (1994), if I ≥ J(J +
1)/2, then rank(X) = J(J + 1)/2. b) I × 2 × 2 and I × 3 × 3 arrays are studied by
Ten Berge, Sidiropoulos and Rocci (2004). The rank computation problem has also
been approached from a numerical point of view by Comon and ten Berge (2008),
who applied applied Terracini’s lemma, based on the numerical calculation of the
maximal rank of the Jacobian matrix of (2), to obtain numerically the generic rank
of some INDSCAL three-way arrays. The numerical method based on Terracini’s
lemma, when used to evaluate rank over R, gives the generic rank when the typical
rank is single-valued, and the smallest typical rank value otherwise.

For INDSCAL data (7) becomes

s′Xk = bkb
′ for k = 1, ..., J, (19)

for Xk ∈ RI×J , s ∈ RI and b ∈ RJ .
We note that (19) has two indeterminacies, scale and sign: It can be rewritten as

s̃′Xk = b̃kb̃
′ for k = 1, ..., J, , where for instance, s̃ = λs for any scalar λ > 0 and

b̃ = λ1/2b. The second indeterminacy is the sign indeterminacy of b : replacing b by
−b in (19) does not change the equality in (19).To eliminate both indeterminacies,
hereafter, we fix

b1 = 1. (20)

We will represent the set of solutions of (19) subject to (20) by V (Veronese
variety).

We are interested in the study of the number of solutions of (19) subject to
(20) over R for generic INDSCAL data for 2 ≤ J, I ≤ J(J + 1)/2. We distinguish
three cases named, minimal when I = 1 + J(J − 1)/2, overdetermined when I >
1+J(J −1)/2, and, underdetermined when I < 1+J(J −1)/2. The overdetermined
systems is similar to the one discussed above.

Theorem 3 (minimal system=Veronese variety): Let I = 1 + J(J − 1)/2
and 2 ≤ J ≤ I, then for generic INDSCAL data the number of roots (real or complex)
of the polynomial system (19) is

degV = 2J−1. (21)
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Proof: Let [b1, ..., bJ ] be an element of the projective space P (J−1). We note that the
right hand side of (19) is a Veronese variety of degree d = 2, which is the image of
the Veronese map, ν2, defined by

ν2 : P (J−1) → P N ,

by sending
[b1, ..., bJ ] → [b2

1, b1b2, ..., bJbJ−1, b
2
J ],

where the image has N + 1 =
(

J−1+2
2

)
elements composed of binomials in b1, ..., bJ .

While the left hand side of (19) is a general linear space of projective dimension I−1.
The number of intersections of the general linear space with the Veronese varity is
finite, when I − 1 = N − (J − 1); that is

I = 1 + J(J − 1)/2. (22)

When (22) is true, the finite number of intersections is the degree of the Veronese
variety given in (21), see for instance Harris (1992, p. 231).

Corollary 1: The typical rank of INDSCAL arrays with a minimal system have
more than one rank value and the minimum attained value is I.

Proof: For minimal systems and 2 ≤ J ≤ I, I ≤ degV. The rank of a generic
INDSCAL array with a minimal system is I, if the number of real roots of V is
greater than or equal to I; otherwise its rank is greater than I.

5.1. Example 7. We consider a simulated generic dataset of size 4×3×3 having
the following 4 slices

X1 :=




[54, 107, 161]
[107, 58, 13]
[161, 13, 134]


 X2 :=




[114,−49,−125]
[−49,−144,−76]
[−125,−76,−8]




X3 :=




[−44, 7,−48]
[7,−36,−11]

[−48,−11,−154]


 X4 :=




[50, 92,−4]
[92, 100, 1]

[−4, 1,−100]]




INDSCAL 4×3×3 arrays have been studied in detail by Ten Berge, Sidiropoulos,
and Rocci (2004), where it is shown that if a certain polynomial of degree 4 has 4
real roots, then rank(X) = 4, otherwise the rank is 5.

The Gröbner basis with pure lexicographic order given by the following sequence
(b1, b2, s1, s2, s3, s4) of the free variables is formed of 6 polynomials listed below. The
first polynomial G4(s4) = 0 is of degree 4, as shown by ten Berge, Sidiropoulos and
Rocci (2004) and Theorem 3, and it has 2 real roots -0.1881015674e-2, 0.7632125093e-
1, so the rank of the dataset is greater than 4.
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G4(s4) =7337669360341773654444527-4293727819369270858661345768*s4

-211863296775796994233864209576*s2
4-1486920579131214046506874714272*s3

4

+65728692033647334980166673748496*s4
4,

G3(s3, s4) =17560973913802573904674715803175900627366683113948054931
-161223257377160952551452668901669378891965735728005400638*s4

-5837696072380594108159410240186154115595431615363079926796*s2
4

+1318397923701745931624444235931465979525756973974101183796472*s3
4

+5238806078525191567165441234720094289579153419952152373008*s3,
G2(s2, s4) =9628239825303370993360207993471191965769478430007385299
+11068252823433558277754489464864186098568340630108319931766*s4

+705995008022931051200292932727627624011448550604188031890116*s2
4

-9118208129962992736609222153263187238797217283937992554624760*s3
4

+20955224314100766268661764938880377158316613679808609492032*s2,
G1(s1, s4) =-9384923940854434492010502183000235854601288296806481877
-1964822700901995622589398714750515451903512627004147123640*s4

+1914122466041979887104614509203684754556718777770379683036*s2
4

+689540537276652567152783462787012635706612460537819392520176*s3
4

+2619403039262595783582720617360047144789576709976076186504*s1,
G2,4(b2, s4) =-155028823048701914654384720617223421617571775035134363431
-66211886029016478638439782073183667186014332650277499221046*s4

-3324980827880602990137773057985895339331874506372137213739628*s2
4

+44167907819442655873419676087304190072683931413772512430408456*s3
4

+1309701519631297891791360308680023572394788354988038093252*b2,
G1(b1, s4) =-1514819909584866108143372567736179608809277026174154396973
-345404316274377016240902795956549557726567542396897273802586*s4

-7696649874609748839698115121543942313397062924509594873506300*s2
4

+161342893355178852699731325084429928324620333696539365418650824*s3
4

+1905020392190978751696524085352761559846964879982600862912*b1

5.2. Example 8. We consider a simulated generic INDSCAL dataset of size 7 ×
4 × 4 having the following 7 slices

X1 :=




[140, 86,−110,−4]
[86,−182, 70, 36]

[−110, 70, 104, 183]
[−4, 36, 183, 148]


 X2 :=




[−20, 100, 173,−56]
[100, 128, 101, 75]
[173, 101, 124, 65]
[−56, 75, 65,−158]




X3 :=




[178, 15,−186, 52]
[15, 196, 119,−148]

[−186, 119,−138, 43]
[52,−148, 43,−110]


 X4 :=




[−8,−137, 21, 20]
[−137,−60, 64, 5]
[21, 64,−24,−14]
[20, 5,−14,−128]



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X5 :=




[194,−164,−36,−6]
[−164, 2,−114,−110]
[−36,−114, 64,−127]
[−6,−110,−127,−18]


 X6 :=




[−22, 74, 85,−40]
[74,−198, 23,−53]
[85, 23,−152, 18]

[−40,−53, 18,−48]




X7 :=




[−94, 109,−16, 90]
[109, 124, 164,−93]
[−16, 164, 98,−134]
[90,−93,−134, 184]




The Gröbner basis with pure lexicographic order given by the following sequence
(s1, ..., s7, b1, b2, b3) of the free variables is formed of 10 polynomials, but only the
first one is shown below. The first polynomial G3(b3) = 0 is of degree 8, as shown
in Theorem 3, and it has 2 real roots -4.615952848, 1.035693119, so the rank of the
dataset is greater than 7.

G3(b3) =-267319790697212354162205439965563724346086890209668628287611296
-418573483979735109514695930195818332286961955303805928337210144*b3

-53224562968122644847846329140305933491773608156555442814188832*b2
3

+190260260230311283947025128614232688395842607775283676963072480*b3
3

+172806709139583658797792038234309205181892588602072553465939944*b4
3

+164461253658569745584828839860332360925297521683057843681458288*b5
3

+95090716874891491062104108972298040778579595301835996945880112*b6
3

+24575461542028106507015735163996805821952192308876843008456228*b7
3

+2240887382441309183839416634048576470976843441637962999441259*b8
3

6. Conclusion

We introduced a new method to compute ranks of three-way arrays, by showing that
it is intimately related to the solution set of a system of polynomial equations, which
is a well developed and active area of mathematics known as algebraic geometry. The
new method was used to compute numerically the ranks of some sizes of three-way
arrays over R via Gröbner basis.

The problem of computing the rank of overdetermined systems by solving embed-
ded polynomial systems is a work in progress.
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Appendix 1
Below the matrix Yk = X′

k.
> K := 3;
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> J := 8;
> I := 15;
> with(LinearAlgebra);
> Y1 := RandomMatrix(J, I);
> Y2 := RandomMatrix(J, I);
> Y3 := RandomMatrix(J, I);
> S := Vector(1 .. I, 1);
> for h from 1 to I-1 do

S[h] := sh end do;
> M1 := Y2-c2*Y1;
> P1 := M1.S;
> M2 := Y3-c3*Y1;
> P2 := M2.S;
> poly := [seq(P1[l], l = 1 .. J), seq(P2[n], n = 1 .. J)];
> with(Groebner);
> liste := seq(sh, h = 1 .. I-1);
> polyG := Basis(poly, plex(liste, c3, c2));
> polyG[1];
> S := [solve(polyG[1])];
> nops(S);
> fsolve(polyG[1]);
> nops([fsolve(polyG[1])]);
> fsolve(polyG[1], a, complex);
> nops([fsolve(polyG[1], c3, complex)]);

References
Abo, H., Ottaviani, G., Peterson, C. (2006). Induction for secant varieties of

Segre varieties. arXiv:math.AG/0607191 v3, 2 August.
Basu, S., Pollack, R. and Roy, M-F. (2006). Algorithms in Real Algebraic Geom-

etry. Springer, Berlin, 2nd edition.
Bürgisser, P., Clausen, M., Shokrollahi, M.A. (1997). Algebraic Complexity The-

ory, with the collaboration of Thomas Lickteig. Grundlehren der Mathematischen

Wissenschaften, 315. Springer-Verlag, Berlin.
Carroll, J.D. and Chang J.J. (1970). Analysis of individual differences in mul-

tidimensional scaling via an n-way generalization of Eckart-Young decomposition.
Psychometrika, 35, 283-319.

Catalisano, M.V., Geramita, A.V., Gimigliano, A. (2002). Ranks of tensors, se-
cant varieties and fat points. Linear Algebra Appli. 355, 263-285. Erratum, Linear

Algebra Appli. 367 (2003), 347-348.



Some Numerical Results on the Rank of Generic Three-Way Arrays over R 20

Comon, P. and ten Berge, J. (2008). Generic and typical ranks of three-way
arrays. arXiv:0802.2371v1[cs.OH], 17 February.

Cox, D., Little, J. and O’Shea, D. (2007). Ideals, Varities, and Algorithms. Third
edition, Springer, N.Y.

Friedland, S. (2008). On the generic rank of 3-tensors. ArXiv:0805.3777v2[math.AG],
27 May.

Harris, J. (1992). Algebraic Geometry: A first course. Springer, N.Y.

Harshman, R. (1970). Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory“ multimodal factor analysis. UCLA Working Papers

in Phonetics, 16, 1-84.
Ja’ Ja’, J. (1979). Optimal evaluation of pairs of bilinear forms. SIAM Journal

of Computing, 8, 443-462.
Kruskal, J.B. (1977). Three-way arrays: Rank and uniqueness of trilinear decom-

positions with applications to arithmetic complexity and statistics. Linear Algebra

and its Applications, 18, 95-138.
Kruskal, J.B. (1983). Statement of some current results about three-way arrays.

Unpublished manuscript, AT&T Bell Laboratories, Murray Hill, N.J, downloadable
from http://www.leidenuniv.nl/fsw/three-mode/biblogr/biblio k.htm

Kruskal, J.B. (1989). Rank, decompostion, and uniqueness for 3-way and N-
way arrays. In R. Coppi & S. Bolasco (Eds.), Multiway data Analysis (pp. 7-18).
Amsterdam: North Holland.

Landsberg, J.M. and Manivel, L. (2006). Generalizations of Strassen’s equations
for secant varieties of Segre varieties. ArXiv:math/0601097v1[math.AG], 5 January.

Martin,M C. (2004). Tensor Decompositions Workshop Discussion Notes, Amer-
ican Institute of Mathematics (AIM), available online.

Rocci, R. and Ten Berge, J. (1994). A simplification of a result by Zellini on the
maximal rank of symmetric three-way arrays. Psychometrika, 59, 377-380.

Strassen, V. (1983). Rank and optimal computations of generic tensors. Linear

Algebra Appl. 52/53, 645-685.
Sturmfels, B. (2002). Solving Systems of Polynomial Equations. CBMS Reg.

Conf. Ser. in Mathematics, 97, AMS.
Ten Berge, J.M.F. (1991). Kruskal’s polynomial for 2× 2× 2 arrays and a gener-

alization to 2 × n × n arrays. Psychometrika, 56, 631-636.
Ten Berge, J.M.F. (2000). The typical rank of tall three-way arrays. Psychome-

trika, 65, 525-532.
Ten Berge, J.M.F. (2004a). Partial uniqueness in CANDECOMP\PARAFAC.

Journal of Chemometrics, 18, 12-16.
Ten Berge, J.M.F. (2004b). Simplicity and typical rank of three-way arrays, with

applications to Tucker-3 analysis with simple cores. Journal of Chemometrics, 18,



Some Numerical Results on the Rank of Generic Three-Way Arrays over R 21

17-21.
Ten Berge, J.M.F. and Kiers, H.A.L. (1999). Simplicity of core arrays in three-

way principal component analysis and the typical rank of P × Q × 2 arrays. Linear

Algebra its Applications, 294, 169-179.
Ten Berge, J.M.F. and Stegeman, A. (2006). Symmetry transformations for square

sliced three-way arrays, with applications to their typical rank. Linear Algebra its

Applications, 418 (1), 215-224.
Ten Berge, J.M.F., Sidiropoulos, N.D. and Rocci, R. (2004). Typical rank and

INDSCAL dimensionality for symmetric three-way arrays of order I×2×2 or I×3×3.
Linear Algebra its Applications, 388, 363-377.

Zellini, P. (1979). On the optimal computation of a set of symmetric and persym-
metric bilinear forms. Linear Algebra its Applications, 23, 101-119.

/end


