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Figure 1: Modeling Multilingual Speech Using MonolinguabR Systems.

1 Introduction

Language independent acoustic modeling was one of thestepidied at the 1999 Johns Hopkins
University Language Engineering Workshop hosted by thet€@dor Language and Speech Pro-
cessing. Our work was motivated by the need for speech rétbogim languages beyond the well-
studied languages of Europe, Asia, and the Americas. Thistatal techniques used for speech
and language modeling require relatively large amountsariatingual speech and text as training
data. In ‘resource-rich’ languages which have such corpihi@se statistical estimation methods
have been shown to work quite well. However, if only small amis of training data are available
in a language, these monolingual techniques are lessigéfeCur goal was to address this problem
by developing techniques that reduce the amount of datseddgednodel resource-poor languages
by borrowing data and models from resource-rich languages.

Multilingual ASR techniques are a significant departurerfrourrent practice, in that the best
ASR systems are inherently monolingual. Their languageetspghronunciation dictionaries, and
acoustic models are constructed using data only from thgulage of interest, and make no use
of data or models from other languages. These monolingabhiques are limited in processing
multiple languages. Unless the relationships betweenrtiidual languages is described and
captured, separate systems for each language must bermlithade to operate independently as
shown in Figure 1. Of course, this should be acceptable ifdagaate system can be trained for
each language. However, as described above, there aréaitian which it may be desirable to
borrow data and models across languages.

While in our studies we used multiple languages simultaslgpwur goal was not to build
a multilingual ASR system capable of recognizing sevemgleages equally well. We intended
instead to develop a good monolingual system for a specHiggtlanguage by borrowing data and
models from other languages. In speaker independent ASRelsare first trained using speech
from multiple speakers and then adapted to a specific spe#ker before or during recognition.
Analogouslylanguage independent acoustic modeiisig methodology that combines speech and
models from multiple source languages and transforms themetognition in a specific target
language.
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Figure 2: Two Approaches to Language Independent Acoustideing. Monolingual systems can
be trained independently and merged prior to use (left) eesp data from several languages can
be pooled to train a single set of acoustic models (right).

As mentioned above, acoustic training data is not the orsguece needed for statistical ASR.
However, we have assumed for our work that language modedsupciations, and appropriate
acoustic processing are available for the target languagethat only transcribed acoustic training
data is in short supply. This is not a completely unrealistienario in that dictionaries with pro-
nunciations are available for many languages, as are emkwspapers and other text. However,
we stress that in our work we have addressed only one aspkctgfage independent modeling.

1.1 Previous work

As part of our summer project we conducted a literature gérd held a ‘paper club’ to familiarize
ourselves with previous relevant work in cross-lingual amaltilingual acoustic modeling. For a
recent overview, see the report by Howayal.[16]. We also found work described in the following
references to be relevant to our studies [16, 6, 12, 8, 1413811, 5]

1.2 Project Overview

We have developed methods for automatic speech recogtitaarshare data and acoustic mod-
els across languages. Underlying these methodplamee mappingthat identify similar speech
sounds across languages. We obtain these phone mappingsbhashknowledge-basednd au-
tomaticmethods. The knowledge-based methods rely only on acepistinetic categorizations
of the individual languages and as such can be used if no tathia available in the target lan-
guage. The automatic methods derive phone mappings usialljamounts of acoustic data in the
target language. Using mappings found by either approaatawdorrow models from several lan-
guages simultaneously to cover the phone inventory of tlyetdanguage as depicted in Figure 2.
The automatic methods allow additional refinement by bomgwnodels sub-phonetically at the
HMM-state level. This can be especially valuable if the ¢éalgnguage contains phones not found



in any of the source languages since these techniques ar®ofassemble a new phone model from
component states of different source language phone models

While both the automatic and knowledge-based phone mapgingbe used without modifica-
tion to construct recognizers in the target language bydwarrg acoustic models from the various
source languages, HMM adaptation techniques can also betagmprove the systems using the
small amount of target language adaptation data we assuamaiiable.

As a further refinement, we obtained the best recognitiofopmance not from individually
adapted source language acoustic models but by using Disative Model Combination (DMC)
to combine acoustic models from several languages sinedizsly. Referring to the left ASR
architecture of Figure 2, it is not at all obvious how best ¢anbine hypotheses produced using
several sets of acoustic models. DMC provides a principfedl effective way to do this. This
combination can be done at the sentence or sub-word leviél better performance obtained using
phone-level combinations. We note in particular that DMkesaeffective use of source language
acoustic models that individually do not perform well inrts&ribing the target language.

We began experiments language adaptive training an attempt to train a single set of acous-
tic models using a multilingual training set, as depictedrigure 2. This work is still on-going,
however our work inLanguage Adaptive Clusteringrovides strong evidence that all the above
methods should benefit from acoustic normalization thaistiams data and models as part of the
phonetic mapping between languages.

1.3 Accomplishments

We summarize here the achievements of our summer projectelNechniques and results not
previously reported in the literature are italicized.

¢ An experimental framework for language independent acouosideling thatis cross-domain
as well as multilingual

e Creation of Czech language Broadcast News corpus

e Compilation of acoustic phonetic characterizations oflishg Czech, Russian, Spanish, and
Mandarin

e Development of knowledge-based phone-mappings that almaving models across lan-
guages when no training data is available

e Development of automatic methods to derive sub-phonefipings to share acoustic HMMs
between languages

e Development of Language Adaptive Clustering to derive rat@ phone-level mappings
and cross-language acoustic hormalization

e Use of phone-level cross-language normalization to imgsawrce language HMM perfor-
mance

e Use of HMM adaptation techniques to improve source langtiigils

e Use of DMC to combine acoustic scores derived from multiplece language acoustic
models



e Use of ROVER to combine acoustic scores derived from meilsiplirce language acoustic
models

e Improvement over an monolingual baseline systesing multilingual methods



2 Czech Monolingual Experiments

As part of our research program we have established an empetal framework for language
independent acoustic modeling. Since this problem hasewt idely studied, we were not able
simply to use previously defined training and test sets tduewe our ideas. We therefore began
our work by investigating ASR performance in an attempt td &m appropriate ‘operating point’
at which to conduct our experiments.

ASR performance is determined by a variety of factors. Revémce is generally poor if the
speech to be recognized is produced spontaneously, asvarsational speech. Read speech is in
general easier to recognize, and, as a special case, ‘glapeech’ by trained broadcast announcers
can be particularly easy to transcribe. Performance alperf#s on the modeling techniques used,
the recording conditions, the amount of data availableamtlanguage and acoustic models, and
the similarity between the training data and the test maltevi/e considered these last two factors
to be especially important in defining our experiments, siperformance is generally best given a
large training set that closely resembles the test set.

Our initial plan to define our experiments was straightfadvaWe first decided on Czech
language news broadcasts as our test domain. We choose tewsebroadcasts because they
contain a variety of different types of speech and are redftieasy to obtain. We choose the Czech
language because there are ongoing language engineeojegtsrstudying Czech from which we
would be able to borrow resources. We also felt that stud@irech was a realistic task since, unlike
Spanish or Mandarin, there is fairly little knowledge of €iig Czech ASR systems to influence
our work. To obtain the needed broadcast training and tetsinag we arranged with the Linguistic
Data Consortium to record Czech language Voice of Americ@X)/broadcasts.

We decided to build our initial Czech broadcast news system fa ten hour Czech VOA
acoustic training set using techniques known to work welbtiner languages and domains. The
language model and pronouncing dictionary were develapedi previous work in transcription of
read Czech [3]. Such an effort is a common exercise in trginMASR system using a moderately
large amount of homogeneous acoustic training data.

After obtaining the performance of this well-trained systeve planned to reduce drastically
the size of the acoustic training set and build a new, impgskied system. Given our past experience
and the reported experience of others, we expected thairigga system using approximately one
hour of acoustic training data would yield an ASR system geaformed substantially worse than
the initial, well-trained system.

This reduced-size acoustic training set, the impoverishedels, along with the dictionary and
language model would serve as the baseline for our secoraf sgperiments. We would attempt
to improve the performance of the impoverished system bydwdng both acoustic training data
and full ASR systems from other languages. In summary, aur plas to begin with a well-trained
monolingual system built from homogeneous data and ‘battk anheterogeneous multi-lingual
domain by reducing the target language acoustic trainita da

As the following account describes, our experiments didgmfas we expected. We found
that speaking-style effects in the Czech VOA recordings idated all other factors in ASR per-
formance. The ‘planned speech’ of the VOA announcers wag @asy to recognize, no matter
how little data was used to train the system. We thereforevigeced to obtain other news broad-
casts data for use as our test set. The remainder of thi®eetgicribes the data and experimental
conditions in more detail.



2.1 Czech Speech and Language Data
Read Speech

Our initial experience with Czech ASR is in the transcriptad read speech [3]. We developed pilot
ASR systems using speech from the Charles University FinBRews Corpus (CUCFN). We used
the portion of this corpus that consists of recordings oflreeonomic news taken from the Cesko-
moravsky Profit Journal. This database consists of speachle fluent Czech speakers recorded
in quiet conditions at 22KHz with 16 bit resolution. The sgieevas recorded simultaneously with
both a Sennheiser head-mounted, close-talking microphodea desk-mounted microphone. In
our work we used the recordings from the desk-mounted miwop channel. Speech from 29
male speakers and 23 female speakers has been collectedréiatly Most subjects were native
speakers of common Czech, except for some speakers withethaggional accents from North
Moravia and South Moravia. There was also one native Rusgiaaker and one native Macedo-
nian speaker. The first stage of corpus contains a total d g28tences yielding slightly more than
17 hours of speech.

Broadcast Speech

Satellite transmissions of Voice of America broadcastsewecorded by the Linguistic Data Con-
sortium (LDC) and transcribed at the University of West Bolieeaccording to protocols developed
by LDC for use in Broadcast News LVR evaluation. The recagdispan the period February 8
through May 4, 1999. The corpus consists of 46 recording®OahBute news broadcasts yielding
a total of 23 hours of broadcast material. Portions of thexshaontaining music, speech in music,
or other non-speech material are marked, but these intevw@ie not transcribed. This yields ap-
proximately 19:30 minutes of transcribed material fromred0 minute broadcast, for a total of 20
hours 24 minutes of pure transcribed speech.

Broadcasts from another news source were recorded to cameplehe VOA collection. Sev-
eral programs broadcast I@esky rozhlas 1 - RadioZurnéit(p://radiozurnal. CRo.c on July 30 and
31, 1999 were recorded at Charles University. The showsatoed general news with a mix of
discussions, spontaneous and planned speech. The FM bstadere recorded directly onto a PC
using the CoolEditHttp://www.syntrillium.con) program at 22KHZ and 16 bit resolution. The data
was then transcribed at CLSP during the workshop. Througghitipromptu collection effort we
obtained an additional 99 minutes of transcribed speeemd#d primarily for use as a test set.

Czech Language Models

In our experiments this summer we used language modelsafatin our previous work on read
Czech. The language model vocabulary was 63K words, and e aibigram language model
trained from a 16.5 million word corpus of news text (Liddvéviny 1991-1994). Table 1 shows the
perplexity of representative samples of the three Czeaduage databases. Although the language
model training corpus is from another domain, perplexiaesl OOV rates are fairly consistent
across the different test sets.



| Corpus | Perplexity| OOV Rate|

CUCFN 737.5 6.7%
VOA 664.0 6.7%
CRol 763.6 7.8%

Table 1: Test set perplexities and OOV Rates

Training Set Model Set
Size (hours)| Mixtures | Type WER (%)
Czech VOA Test Set 1
12.8 12 3886 state xword triphone  27.1
10.0 12 monophone 27.6
1.0 8 monophone 30.2
0.5 20 monophone 31.3
Czech VOA 1.0 Hour Acoustic Training Set

1.0 | 10 | monophone | 261

Table 2: Training and Testing on Czech VOA Broadcasts. WardrERate (WER) changes very
little despite large variations in model complexity andrimag set size.

2.2 Czech Baseline ASR Experiments

We defined a variety of training and test sets in the courseuofritial experiments. The initial
acoustic training set was drawn from a selection of 40 shawadrast during the period February
2, 1999 through March 27, with two additional shows from ABfi and May 4. The total amount
of transcribed speech in these shows totalled 12.8 hoursll lihe experiments we conducted,
broadcasts were segmented into individual utteranceg uxinndary information taken from the
annotations.

2.2.1 Czech Monolingual ASR Experiments

Our first Czech VOA test set consisted of broadcasts fromurseiprl5, March 13, and May 3 1999
totalling 1.0 hours of transcribed speech. The speechriegtrameterization employed in training
and test are mel-frequency cepstra, including both deliedaita-delta sub-features; cepstral mean
subtraction is applied to all features on a per utterancesb&¢aveform files were down-sampled
to 16KHz. All models were trained using the HTK ‘incremertalld’ procedures beginning from
a flat-start.

The first CZ VOA experiments tested a 12 mixture, state chestecross-word triphone sys-
tem. The Word Error Rate (WER) of this system was 27.1% (sé&#eT2), which we considered
to be reasonable given the 6.7% OQV rate. We then investgheeperformance of a 20-mixture
monophone system. Our hope was that we would be able to useghone systems in our experi-
ments since this would simplify sharing models across laggs, and we did indeed find that this
monophone system performed comparably to the triphonesyst



Czech VOA Test Set 1

Speaker Identity| Gender| WER || Gender| WER
Unknown F 24.05 F 22.47
F 17.26 F 25.91
F 31.67 F 33.55
M 25.14 M 26.61

M 23.91
Anchors M 16.28 M 45.54
F 25.53 F 24.82
\ Overall | 27.6% | |

Table 3: Word Error Rate by Speaker for the 10 Hour Czech VOMi2ure Monophone System.
High overall accuracy is not due to a few well-recognizedvittlials.

Motivated by these results, we decided to study monophorferpgance as a function of re-
duced training set size. We expected performance to dexweidls large reductions in the training
set, however, as detailed in Table 2, we found performante targely insensitive to both model
complexity and the amount of training data. This experinieavidence that there is too much self-
similarity in this particular training and test set comMioa for it to be useful for ASR experiments.
This is further confirmed by testing the 1.0 hour monophond&®on the data used to train them
- only a 4% absolute difference is performance is observéadmn the training and test sets. This
is contrary to the expectation that performance on theitrgidata should be much greater than on
a fair test set.

2.2.2 Analysis of Czech VOA Performance

We studied the performance by each speaker to see if thisiseilaarity is due to speech from
‘news anchors’ dominating both the training and test setsvéVer, as shown in Table 3, we found
that performance varied widely over all the speakers in &ésé $et. In fact, the worst performing
speaker was one of the anchors.

We next considered whether the training and test sets weitasbecause they were collected
within a relatively short time, since stories ‘in the newshtained frequently occurring words and
phrases that might end up being unusually well-trained. Afndd another test set to be Czech
VOA recordings from the week of May 21, 1999. This ensured assion of several weeks
between the test set and the bulk of the training data. Howaseshow in Table 4, performance
was only slightly worse on these later shows than on theezadst set. We concluded from this
that the similarity between the test and training set wassimoply due to their being recorded at
about the same time.

2.2.3 Cross-Domain Experiments

As shown in Table 5, we found several surprising results ipegiments with our read speech
systems and data sets. Most surprisingly, a read speecbnsystined on 1.0 hour of speech
performs significantly better on the Czech VOA data than éslon read speech. Conversely, the



Czech VOA Test Set 2
Date | WER | Date | WER
05/21/99| 36.14 || 05/22/99] 33.43
05/23/99| 36.44 || 05/24/99| 37.18
05/25/99| 33.34 || 05/26/99| 39.43
05/27/99| 37.54 || 05/28/99] 32.89
Overall | 35.7%

Table 4: Daily Word Error Rate of a 1.0 Hour, 20-Mixture Morame Czech VOA System. This
test set was recorded several weeks after the acoustigigaset, and performance is only slightly
less than found on the earlier test set.

WER (%)
Models CUCFN | VOA Set 1| VOA Set 2
10.0 hr CZ VOA 12-Mixture Monophong¢ 68.0 27.6
1.0 hr CZ VOA 20-Mixture Monophone  66.1 30.2 28.8
1.0 hr CUCFN 20-Mixture Monophone  47.3 35.7

Table 5: Training and Testing on Czech VOA Broadcasts and ENURead Speech. The read
speech CUCFN models perform better across domains tharzéseh@®roadcast VOA models.

Czech VOA systems perform much worse on the read speech.sliggests that the Czech VOA
data is more like read speech than much of the speech actu#ilg read speech corpus.

We were curious whether this self-similarity is a generalgarty of VOA speech, or whether
we merely were unlucky with our Czech broadcasts. Juan yetformed a quick experiment
using the CMU Sphinx Il Spanish Hub V broadcast news systdth a bigram derived from
newspaper stories. Performance of acoustic models tranedl0 hour of Spanish VOA speech
was measured on 30 minute test sets of Spanish VOA test lasisdand Spanish language ECO
news broadcasts from Mexico. The results given in Table 6san#lar to those we encountered
in the Czech VOA data: the system trained on Spanish VOA dati@ins well on other Spanish
VOA data, but generalizes poorly to other Spanish broaditztst

Our concerns about the general nature of VOA speech pronugtezirecord the aforementioned
news programs broadcast éyssky rozhlas 1 - RadioZurnal. For convenience thissesivas called
CRo1. Unlike the Czech VOA data, performance on this testastd as expected with reductions

30 Minute Test Set
WER (%)
Models Spanish VOA| ECO
1.0 hr Spanish VOA Monophongs  22.5 51.7

Table 6: Testing Spanish Broadcast News with 1.0 Hour Spav/3A Models. Spanish VOA
models generalize poorly to ECO newsbroadcast data.



Czech CRo1 Test Set
Models | WER (%)
13 hour CUCFN 3886 state xword triphane  42.0
10 hour CUCFN 12-mixture monophohe 55.5
10 hour CUCFN 20-mixture monophonel  54.8
10 hour Czech VOA 12-mixture monophomne 58.0
1 hour CUCFN 20-mixture monophone 58.6

D

Table 7: Word Error Rate for the CRol News Broadcasts. Pedoce varies significantly with
variations in training set size and model complexity. Expents marked were conducted with
22KHz sampled training and test data.

| | CUCFN | Czech VOA-1| Czech VOA-2| CRol |

females/males 717 8/5 26/6 39/61
females/males utterances 700/699 2571147 836/281 345/466
planned/spontaneous utterances (%)00/0 100/0 100/0 45/55
studio/outside (%) 100/0 100/0 100/0 85/15
total utterances 1399 404 1117 811
speakers 14 13 32 46
duration (minutes) 60 150 929

Table 8:; Characteristics of the Test Set Partitions.

in training data and model complexity. In particular, we elg an absolute reduction of 17%
in word accuracy by going from a 13 hour cross-word triphoysteam to a 1.0 hour monophone
system.

2.3 Training and Test Set Definitions

Our initial experiments indicated that our Czech VOA cdiiex is quite well-behaved, in that
using only small amounts of acoustic training data yield$yfgood word accuracy. Although our
experiments do not explain why this is so, this lack of vatigbmakes the Czech VOA unsuitable
for use simultaneously in training and testing. A relatealyem is that since this VOA appears to
be similar only to itself and very different from other spkeeby studying it we risk obtaining results
that are not valid in general. For these reasons we extehedddt and training set to include Czech
speech outside VOA.

We decided to fix the 1.0 hour CUCFN read speech training sétein-language acoustic
training set. The main test set is the second Czech VOA Tésisén for its larger size). The
CUCEFN test set and the CRo1 collection serve as secondatynare difficult, test sets. In this
way we avoid using the Czech VOA data simultaneously in ingiand testing.

This provides a realistic and interesting training scemdrat involves cross-domain as well as
multilingual factors. Overall characteristics of the test partitions are provided in Table 8.

The baseline recognition performance is summarized inef@bl These are the ‘numbers to

10



Word Error Rate (%)
CUCFN | Czech VOA| CRol

| 473 | 357 | 586 |

Table 9: Performance of a 1.0 Hour CUCFN 20-Mixture Monoph8gstem.

beat’: any experiment that improves over these results mgumly the 1.0 hour CUCFN acoustic
training set and data borrowed from other languages willdresitlered a success.

2.4 A Cautionary Note

These experiments with Czech VOA are reported to emphab&dadnguage is just one charac-
teristic of speech and that other conditions, such as spgalyle, are significant factors in ASR

performance. It is therefore critically important to olstaiverse training and test sets for multilin-

gual experiments. It is also important that results of ledilomain experiments, such as training
and testing with data from the same news programs, be imtegbicautiously since performance
may not carry over to more diverse domains.

3 Cross-Lingual Phone Mappings

3.1 Knowledge-Based Phone Mappings

In some applications, itis highly desirable to be able tcetigy speech recognition systems without
using any acoustic training data. In such situations, lvarmg models from other languages for
which speech recognition technology is well-developedxiseenely attractive. The approaches
presented here are referred to as knowledge-based bebayseploit linguistic knowledge of the
languages and their phoneme inventories, and because @lieynbt been retrained on any target
language acoustic data.

The goals of the work presented in this section were two:fold

(1) to develop baseline performance for target languagtessdeveloped from our existing
source-language monolingual systems, and

(2) to minimize the amount of target language training daguired by developing effective
techniques for model combination from the source languages

In our case, our source languages were English (EN), Spéas)H Mandarin Chinese (MD), and
Russian (RN). The target language was Czech (CZ). As prskiauentioned, these languages
were chosen primarily because of the existence of large atsmf data from a similar domain:
Broadcast News (BN). Russian was the only exception. ThdhghRussian data consisted of
read speech, Russian is acoustically very close to Czechhance provided another important
contrastive data point.

Through the course of our work this summer, we establishedesmportant bounds on perfor-
mance that provide a good deal of perspective on the prot#gstems that use no target language
training data generally performed in the range of 80% WERtews allowed some access to target

11



IPA Conversion Chart For Consonants
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Figure 3: An IPA description of the consonant portions ofphene sets used in our experiments.

language data to determine phone-level or state-level mgpmperformed in the range of a WER
of 55%; systems allowed some amount of retraining or systanisfrom large amounts of target
language data achieved performance in the range of 30%.

A third goal of this work was to attempt to close the gap betwtbe knowledge-based systems
operating at a WER of 80% and the data-driven systems opgratithe range of 55% WER.
We attempted to do this only by utilizing a priori informati@bout the proximity of the source
languages to the target language, and developing intetligethods of model combination for the
source languages.

3.1.1 Monolingual Cross-Language Baselines

Our first set of baselines involved a simple mapping exparinmewhich phones from the Czech
target language were mapped to their nearest neighbor ingéessource language using a simi-
larity measure based on feature-based descriptions offtbegs. This is a manual procedure that
leverages extensive knowledge of acoustic phonetics [di.approach involved first describing the
phones in both the source and target languages in termsipéttieulatory positions, a process that
leads to a description of the sounds using the Internatidhahetic Alphabet (IPA) [23]. A portion
of this analysis is shown in Figure 3. A complete inventofgng with several related resources,
can be found in [21]; an example of such a description for anghie shown in Table 10. The ad-
vantage of this approach is that all languages can, in thbemepresented within the same system.
Other advantages include an ability to cluster phones fotexd-dependent representations using
approaches based on acoustic phonetic similarity anakgowhat is used in language-dependent
recognition.

We next determined the proximity of a sound in the target legg to a sound in the source
language using this representation, and developed aniatsbsymbol-to-symbol mapping. Exam-
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Phone| Description

S UNVOICED ALVEOLAR FRICATIVE

F UNVOICED LABIO-DENTAL FRICATIVE
Il HIGH FRONT UNROUND LONG VOWEL

Table 10: An example of a representation of a phone in ternastiiulatory positions.

VOA-1 VOA-2

Source Language WER(%) | WER(%)
Czech 27.6 23.6
Russian 65.2 60.8
Spanish 79.3 71.7
English 80.9 75.5
Mandarin 91.1 88.7

Table 11: Baseline monolingual system performance.

ples of such mappings are given in Figure 4. While it was ffds$0 achieve reasonable mappings
for each language, there are significant variations in thel lef detail used in the source language
phonetic inventories. Spanish, for example, only used 2inph, while Russian used 44 phones.
Since optimization of the source language systems was beyerscope of this project, we did not
spend a lot of time fine-tuning the phonetic mappings, orgieésg phone inventories particularly
suited to our task. Instead, as a starting point, we usethefshelf state-of-the-art existing BN
systems. We proceeded to use these mappings to obtaimegsetformance of a Czech Broadcast
News (CZBN) recognition system using acoustic models frbengource languages derived from
these mappings. The procedure was quite simple: repreaehtgone symbol in the Czech lexi-
con using a corresponding source language phone locatectifrese mappings. The performance
of systems constructed in this manner is given in Table 1r@l we observe that performance is
poor - in the range of 80%WER. It was a great surprise to olestat the Russian acoustic models,
though they were trained on read speech, were a close matbh @ZBN data, especially consid-
ering the differences in microphones, speaking style, aedlking rates. As we subsequently found
out, the CZBN data is relatively well-articulated, and faasy to recognize at a nominal level of
performance. We also observed from these experiments énitrmance for English and Spanish
was comparable, and performance for Mandarin lags the sirstems.

Upon observing this degradation of performance for Mangave hypothesized that the phone
mapping was a major source of error. Hence, we evaluateddifferent phone mappings. These
mappings are summarized in Figure 4, and explained in grdatail in Figure 5. The performance
on the VOA-1 evaluation for each of these mappings is givefainle 12. Though we achieved a
very minor improvement in performance (a 0.8% absolute)gaia can conclude that performance
is not extremely sensitive to the quality of the manual pho@ping at the level of performance
our system was operating at. Hence, we turned our attertiomethods for combining multiple
languages into a single system.

13



Czech i  English {  Spanish
fa [ahZ) bux iah i sh ;i oa | a

aa | (aax2) father Doaax [ oaaX | A

Paw | {awl) down
b (b:1) blue
6 (t5:3) Yeltsin
ch {chil) chip
d (d:1) dark
4 (dyd) due
e | [ehl) bet
ee | {eh:3) long of &
fo (F1) fix

i {g1) global

hod {hb:2) ahead

1 (ih:1) hit

i i (iy:1) he
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Figure 4: Phone mappings from Czech to our four source lagpegiasing an IPA-based feature
representation. For some languages, several possibleémgamre shown to demonstrate that there
is some amount of ambiguity in these mappings.
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Czech Mandarin
Example - CZ IPA or Description
{ahZ) bt front allophone of faf
(aax2) father front allophone of faf
(aw:1) down schowa, mid central nnromnded
(b:1) blue P
(t5:3) Yelrsin aspirated dental afficate ts
{ch1) chip aspirated palatal afficate
{d1) dark t
(dyd) due t
{ehl) bet 3
(eh:3) long of & lowrer—roid front nnronnded
{17 fix i
(g1 global k
(hh:2) ahead lanmgeal or welar fricative
{ih:1) hit barred i
(¥} he i
(¥1) yes retroflexr
(k2] key aspirated k
(117 loarn 1
(1) meet m
{n:1) noun n
(nx:1) hang velar nasal
(ny:4) new velar nasal
{aa:2) hat mid back round
{ow:1) low oid back round
(p:2) power aspirated p
{r:4) Rome retroflexy
(1 shuE) nia 2
(r =hu3) nda retroflex affricate
{s:1) son g
(sh:1) shape voiceless retroflex fricatve
(t:2) tormada t
(tyd) statue t
{uh:2) could high back rovnded
(w1 whao high back rovnded
[w1) victory f
(khh:3) Loch lanmgeal or velar fricative
{z:1) zoa dental affricate (ts)
(zh:1) pleasure retroflex affricate

Figure 5: Four variations of Czech to Mandarin phone mappthgt were explored to diagnose the
poor performance of the Mandarin system.
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Source Language VOA-1 WER(%)
Mandarin - vl 91.1
Mandarin - v2 93.7
Mandarin - v3 90.1
Mandarin - v4 89.3

Table 12: Several approaches to Mandarin phone mappingsex@tored in an effort to improve
performance. As we can see, performance was not greathemdfkd by the nature of the manual
phone mapping.

Source Language VOA-1 WER(%)
Spanish 79.3
Selective 77.7

Table 13: A comparison of performance using a Spanish-oydyesn, and a system involving
a mixture of mappings from three source languages. Thougtetis a modest improvement in
performance, the improvement was not nearly as significemteahad hoped.

3.1.2 Multilingual Phone Mappings

It was evident that a single source language did not providieral coverage of Czech. Therefore, it
was natural to explore a mapping that involved phones frésoairce languages based on proximity
in the IPA table. Since Russian was clearly acousticallg@ldo Czech than any of the other source
languages, we excluded Russian from the set of source lgeguar this experiment, so that it
would not mask any trends in our knowledge-based systermilyat surface. This was somewhat
of a cheating experiment in that we began with our best mod#is Spanish system. We then
replaced phones in cases where other languages appeara¢eta kloser match. We did include
Mandarin even though we had suspicions about the qualityeofrtodels.

A summary of the resulting mapping is shown in Figure 6, areabksociated performance is
givenin Table 13 Though we achieved modestimprovementsriopnance (1.6% absolute WER),
we did not achieve performance comparable to data-drivggping methods discussed later.

Our next attempt to understand the deficiencies of the kraigdéased system was to explore a
series of experiments in which the recognition system wiasveld to choose the best combination
of phones at runtime (rather than fixing these via a mappiitg f recognition). First, we explored
a parallel pronunciation approach [22] in which each iterthi@ lexicon was allowed to be repre-
sented as a sequence of phones from a single language. Thisypl@amented using pronunciation
networks, and is summarized in Figure 7.

Unfortunately, this approach resulted in a slightly degdhgderformance, as shown in Table 14.
This result was somewhat discouraging, since we had hoedhd additional degrees of freedom
would offset any systematic acoustic bias between the twoailts. The next obvious thing to
try was to allow the recognition system to mix and match plsdnam all source languages. This
approach, referred to as a multiphone approach, is also swized in Figure 7. The corresponding
performance is given in Table 14. The multiphone approack avaattempt to let the recognizer
find the best realization of a phone, rather than fixing thiseldeon a priori linguistic knowledge.
We can see that a minor improvement in performance over thalglapronunciation system was
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Spanish Selective

as @ WD

awr aw EN
b b ES
& t B3
o ES
i 1 ES
i e
e e B3
ee E MD
i T ES
g g BS
h i_ES
i ih EM
i i B3
i y_ES
k k_ES
: 1L E3

n n_E3
ng nx EN

i o 8

ow o B3
P p_ES

rsh r B3
rzh r B3
& s B3

sh sh_EM
t t_ES
W TES
u u ES
m u ES
v v ES
Es

z z_EN

zh zh EM

Figure 6: A selective phone mapping that uses phones froee gwurce languages to model Czech.
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achieved, as expected. However, overall performancelidbstow the best monolingual system,
and far below the Russian system shown in Table 14. Agaiswhs a discouraging result.

Source Language| VOA-1 WER (%)
Czech (C2) 27.6
Russian (RN) 65.2
Spanish (ES) 79.3
English (EN) 80.9
Mandarin (MD) 91.1
Parallel Prons. 83.0
Multi-Phone Prons 80.1

Table 14: Performance for two approaches as mixing phooesfinultiple languages. The parallel

pronunciation approach constrains words to use phonestfieraame language. The multi-phone
approach allows the system to mix and match phones from agpge. As we can see, the latter
system resulted in a minor improvement in performance, lwihdt exceed the performance of the
baseline system.

3.2 Automatic Generation of Phone and Sub-Phonetic Mapping

The purpose of this work was to generate automatically a fsphonetic mappings from a pool
of well trained languages (the source languages) to a siagtpiage (the target language) where
there is little data to train a large set of acoustic models.address this problem, we developed
a methodology to derive automatically these mappings biotfieaphonetic and at the subphonetic
levels.

Several uses can be made of these mappings once they aneeabtfair example, they can be
used to assemble acoustic models in the target languaggaitponents obtained from the source
languages acoustic model inventories, they can be usedite deitialization models for further
adaptation or retraining methods, or they can be used t@Watata for acoustic modeling.

In the following sections we will describe tHeéonfusion Matrixapproach to finding cross-
lingual mappings as well as the criteria we explored in ouegtigations, we will describe how we
mixed models coming from several source models, and weYipadsent our experimental results.
In the final subsection we present directions for furtherkvor

3.2.1 The Confusion Matrix Approach to Cross-Lingual Phonéic Similarities

Figure 8 below presents a segment of speech in the targetdgeg Let X denote the phonetic
segmentation and labels assigned to the utterance seghhese segments can be obtained through
human intervention or automatically, by force-aligning thegment transcriptions. Let Y denote
the output of a phonetic recognition of the same speech segmea given source language. The
phonemes that will appear in this string Y are not phonediakming in the phonetic inventory of the
language in which the sentence was uttered, however, foffiaiently long segment of speech the
co-occurrences between phone in the string X and phonegistting Y will reflect the similarity,

at least from the recognizer’s point of view, between phonédmth languages.
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Parallel Pronunciations:

BET: b_EN eh_EN t EN

b_ES eh_ES t ES

(1-O—0O—0O—0O-LC

b_MD eh_MD t MD

All-Phone Approach:

BET:

Figure 7: Two approaches to mixing multiple source languegristic models without the use of
acoustic training data. In the first approach, the recogrizeonstrained at the lexical level to
phones from a single source language to represent a wortielsgcond approach, the recognizer
can mix and match phones from any source language.
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Figure 8: Speech Segment with Automatic Labelling Comp#odtie Reference Transcription.

Once a criterion for co-occurrence between two phonetiellags of the acoustic segments
is defined (e.g., a minimum number of overlapping frames,),etee can arrange the phones of
the source language and target language into a matrix timaaios the counts of co-occurrences
between the!” andk!” phones of the source and target languages, respectivéhe in, k) entry
of the matrix. This matrix of co-occurrences is the confagiatrix.

After the confusion matrix between the phones of two langs&g obtained, we derive map-
pings from this matrix. Given a source phone (in & row), we would like to select the phone
in the target language that best matches it (i.e., chooseestematching:'” column). To do this
we can simply choose the column with the highest count. Aebetiethod takes into account the
number of times thé*" source language phone was hypothesized by dividing thetsafithe bin
(n, k) by the accumulated counts of the coluin

We extended this technique to the state level, motivatedibynduition that some phones in the
target language seemed hard to match. To obtain the subjtorapping, we broke each HMM in
the source and target language into its conforming stateéslarived an HMM from each of these
states. Using these new, sub-phone HMMs we constructed &omefusion matrix. As expected,
we found that some of these hard-to-match target languagegshwere modeled by assembling
new models from phonetic subunits from other languages.

We observed that when many states and phones from variogadges were competing to
represent any given target model, several models seemeiddgh counts and thus be close
candidates for a reasonable match. We explored the passifilincluding several of these best
matching candidates by combining the Gaussian models in rtigtures after weighting them
accordingly. We established the weights used in this statebination to be proportional to the
normalized number of counts corresponding to the map. Tablshows an example of the best
3 matches between ENglish, MAndarin and SPanish, to repréise 3 states of the Czech vowel
HMM aaand their corresponding weights.

Experimental Results

Table 16 below shows recognition experiments we conducs@thumappings derived from con-
fusion matrices. Column one refers to the languages emgltyelerive the source inventory of
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State|| Source Language HMM State Matches with Scores
aal || enay1/0.12| enaal/0.11| maal/0.09
aa?2 || enaw 2/0.19| enaa2/0.17 | enaax2/0.12
aa3 | enay2/0.28 | enaw.3/0.23| enao3/0.06

Table 15: Example Cross-Lingual State-Level Mappings @déy Confusion Scores.g. Czech
data aligned as state 1 of the Czech HMKlis best modeled by state 1 of the English H\Niy

Source(s) | Mapping Method n-best| WER(%)

Czech Phone baseline 38.01
EN Phone manual 1 >80

SP Phone manual 1 >80

EN Phone matrix 1 68.31

SP Phone matrix 1 68.67

EN State matrix 1 64.75

SP State matrix 1 70.03

MA State matrix 1 79.69
EN+SP+MA| State matrix 1 62.28
EN+SP+MA| State matrix 3 55.77
EN+SP+MA| State matrix-2 3 54.38
EN+SP+MA| State | matrix-2 + LAC 3 48.80

Table 16: Recognition Performance Using Automatic Methddie Czech baseline system and the
knowledge-based system are included for comparison.

phonetic units; column two refers to the type of phonetid eniployed (i.e., phone or state); col-
umn three refers to the method employed to determine the imgfipe., manual, matrix based, or
matrix based with Language Adaptive Clustering); colunmur fefers to the number of best match-
ing source language phonetic units from the confusion métinked by their normalized counts)
that were used to assemble the target language phoneticaokiinn five shows the corresponding
Word Error Rate. The first line presents our baseline, in Wmmnophone Czech models trained
on approximately one hour of Broadcast News data are useectnize a separate episode of
Broadcast News data. The following two lines show the redagnresults obtained using a typical
human based mapping from the source languages English (Ejanish (S) respectively. When
mappings are obtained using the matrix approach the wood exte drops below 70% (lines 4 and
5). State level mappings help reduce the error rate of thdignmappings. The best results are
obtained when three source languages are included (En§listnish and Mandarin Chinese) and
state mappings are obtained for both one state to one sta@imga(line 9) and best three states to
one Czech state (lines 10 and 11). The best number is belowWB8ER. The difference between
line 10 and line 11 is due to the presence (line 11) or absdimz10) of count normalization of
the columns in the confusion matrix.
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Acoustic Training Using Automatic Mappings

We used the best mapping described above (last row in the)tdbl derive Czech models from
the source languages. Using these models as starting foirftather iterations of Baum Welch
training did not seem to give any noticeable advantage oagrihg from a flat-start. However,
the performance of the best mapping could be improved sotislig by performing phonetically
motivated cepstral mean normalization as described ingkesection: the WER was brought down
in this way to 48.8%.

3.3 Language Adaptive Clustering

Here we examine a novel method to find cross-lingual phongyingp using a modified version
of vector quantization [15]. The key feature here is that Wewathe source language data to
be acted upon by language-specific transformations, in tpe bhhat these transformations will
model differences in recording conditions as well as déferes in the pronunciation patterns of
the languages. We stress that these cross-lingual tranafions are useful not only in improving
clustering; they can be applied directly to models and datarnove cross-language variability.

Vector-quantization, also called K-Means clustering, &lwnown, as is the LBG algorithm
used to obtain VQ codebooks. Given a set of data vectors gdidgto find a finite set of centroids,
or codewords, that will be used to represent the data sohleabtal distortion is minimized. For
a collection of data vectorse; }, the minimum distortion vector quantizer attempts to fincttaos
codewords or centroids; = {C';}, to minimize the design objective

in |Cp — a2,
2 i G = i

The preimages of codewords, i.e the vectors that share a conwmdeword, are known as
clusters. Intuitively, the idea is that each cluster corgaectors that are “close together”. The LBG
algorithm is an iterative procedure that alternates betweeomputing centroids and recomputing
clusters. This is combined with “splitting”: to increaseethumber of clusters, each centroid is
perturbed to create a new codeword.

The outcome of this procedure can be represented as a biearyhere each node at the
stage represents a cluster, and its children are the ciisterwhich it has been split. In the case of
multilingual acoustic data, if vectors of a Czech phone axtars of, say, a Spanish phone end up
in the same cluster, then that Spanish phone should be mappeel Czech phone.

For our application, we introduce two modifications. The Y&ring technique does not ensure
that all the samples of a given phone belong to the same clastere modify the step of the algo-
rithm in which clusters are recomputed. Rather than assigdaword to each vector individually,
we find the codeword that best describes all instances of agimceach language.

The VQ procedure could be run with this modification to clugthones across languages.
However, we observed (see Table 18) that the differencesdeet languages dominate differences
between phones: by the second level of splitting, the disstecome extremely language-specific,
i.e. each cluster contains mostly phones from only one laggu This defeats the purpose of the
procedure, which was to find phone clusters across languages

Our second modification is to introduce cross-languagefoemations to eliminate these broad
cross-language differences. Specifically, for each ctustd source language, we allow a member
of a family T' of transformations to act on that language’s data in thetetus
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We have defined a modified VQ objective function that incospes these transformations.
Let xf’l denote the!” sample of phone from languagd. The modified objective function that
describes a clustering Czech, Spanish, Russian, Mana@adnglish phone is

. C _ p,cz 2 . . C _ Tp’l pJ 2‘
) Ceet Z' s Z Ceer TIIEZIQTZN g (=)

7 le{ma,sp,ru,en} 7

Note that no transformation is applied to the target langudaga. In this way we hope to find the
best target language codewords along with mappings fronsdbece language data to the target
language codewords.

We considered two possible families of transformationgations

TPl (2Pl = Wwrt!

and additive shifts
TP (P = P 4 ppl,

In either case, the LBG algorithm was modified as follows.

Language Adaptive LBG Clustering

Given a set of codeword%”;, }&_, and a set of transformatiod§ '}, one iteration of the modified
LBG procedure is summarized as follows

Find codewords for all phones in each language : r»! = argmin;, 3, |C), — T7!(2")|?

Reestimate all centroids;,, £ =1,..., K : X, = {aP:rpl=k}, o=Xp
Ck — Ck

Reestimate transforms for source language phoneg: = r?!

TP argminger Y o — t(aPh))?

As the procedure shows, after recomputing the centroidslustiers, we add another step, in which
the transformation is recomputed to be the best possiblelraeotT” given the new centroids and
clusters.

In the case of rotations, we reestimate these transformabyg arranging all the samples of a
phonep from languagd into a matrix X = [acf’l], and with the new centroid; fixed, we use a
procedure analogous to least-squares regression to firgpthreum transformation

Wel=¢, 1" X' (XX)7!
where’ denotes transposition. In the case of shifts, the transfoamis simpler:
bp’l = C — W

where the last term is the mean vector of the samples fromegpohlanguagé.
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WER(%)
mapping alone 86.4
mapping + transformation 71.6%

Table 17: WER of Cross-Language Phone Clustering usingtAedshift.

Results

For these experiments, the target language was Czech argbtinee languages were Russian,
Spanish, and Mandarin. For each language, we used aboubddr &f acoustic data in the form
of 39-dimensional mel-frequency cepstral coefficientswiiiteir first and second differences. The
data was labelled at the phone level via automatic alignmém Czech data was CUCFN speech
aligned by the 1.0 hour monophone models.

To establish some initial baselines, we ran the VQ algorithithout any language-specific
transformations. Clusters were split successively uhéltcontained only one Czech phone. The
results are shown in Table 18. It can be seen that the clustergredominantly multi-lingual, and
even worse, many Czech phones can be found in clusters alone.

We next tried to force phones to map across languages, byngddr the four closest Spanish
and Mandarin phones for each Czech phone. Results are shovabie 20. As can be seen, the
mappings from Table 19 do not look reasonable, and it is foereecessary to apply some kind of
transformation to the non-Czech data.

Next we moved on to the actual experiments involving tramsédions. In the first case, using
rotations, there was a disappointing lack of cross-langudgstering; phones still tended to stay
with others of the same language. This is shown in Table 2thdrsecond case, using an additive
shift, there was much more cross-language clustering. Eiestep was to use the results of this
latter cross-language clustering to generate a mapping.r@sults of this are shown in Table 21.
We tested this mapping in two ways. First, we simply ran agedoon experiment on the Czech
data by replacing each Czech phone with its source languiagieep and the results are given in
Table 17. This gave relatively poor results - the word erate was 86.4%. However, this approach
does not take into account the additive shifts that were wégle clustering. So the next experiment
was to apply the appropriate additive shifts to the meank®f3aussian mixtures for each source
language phone’s HMM. This significantly reduced word erate to 71.6%, which is comparable
to the other automatic phone-level methods.

Applications to Other Methods

Another point worth mentioning in connection with crosagaage transformations is that they
can also be used in conjunction with other methods of geingratappings. Specifically, given a

mapping, we could try to improve its performance by apphadditive shifts to the source language
HMMs as above. We tried doing this with the mappings gendrayeusing a state-level confusion

matrix. This resulted in a significant drop in error rate fré#h 5% to 48.8%.
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Cluster| Phone : Source Language
1 9:CZ e:SP I:SP d:SP m:SP r:SP n:SP i:SP g:SP Il:SP gn:SP ni{® i
2 ee:CZ m:SP at:MA d:MA
3 sil:SP k:SP t:SP a:SP p:SP
4 sp:SP t:MA g:MA p:MA
5 S:SP ch:SP x:MA j:MA q:MA
6 X CZ |:SP s:MA c:MA
7 [:CZ 0:SP u:SP
8 f:CZ f:SP h:MA z:MA f:MA k:MA
9 rzh:Cz
10 rshCz
11 aa:CZa:Cz
12 a:MA
13 ow:CZ aw:CZ 0:MA
14 0:CZ amp:MA gt:MA
15 uu:CZ w:MA u:MA
16 u:Cz
17 ng:CZ b:SP
18 h:Cz
19 v:CZ b:CZv:SP
20 b:MA
21 r.cz
22 d:CZy:SP
23 e:CZj:CZi:CZe:MA
24 y:MA %:MA r:MA [:MA
25 ii:Cz
26 m:CZ dj:CZ m:MA
27 n:CZ
28 nj:CzZ
29 z:CZ x:SP
30 s:CZc:CzZ
31 p:CZt:CZ
32 k:CZ sp:MA
33 sil:MA
34 sil:CZ sp:CZ
35 zh:CzZ
36 tj:CZ
37 sh:Cz
38 ch:Cz

Table 18: VQ Phone Clusters Found Without Cross-Languagestormations.

25



Czech| Best | Second| Third | Fourth
sil Sp:MN | f:SP S:MN | r:MN
p C:MN | p:MN s:SP | gn:SP
rsh t:MN p:SP | ccMN | e:MN
e f:MN f:MN x:SP | I:IMN
] p:MN | g:MN | xMN | y:MN
[ f:SP b:MN | sil:SP | d:MN
\% x:SP | sitMN | g:MN | @:MN
aa S:MN | sp:SP | z:MN y:SP
m zZMN | t:MN j:MN rr:SP
ii sikSP | zZMN | ttMN | %:MN

n j:SP x:SP f:SP g:SP
0 sp:SP| tSP | sp:MN | n:MN
S sitMN | j:SP j:SP V:SP
I p:SP | sp:MN | p:MN [:SP
X j:MN k:SP | ch:SP | k:SP
h g:MN | j:MN f:MN b:SP
a X:MN | d:MN t:SP | sp:SP
u k:SP | c:MN k:SP | w:MN
r t:SP | kkMN | sp:SP | at:MN
k k:MN | ch:SP | sitMN | [:SP
nj b:MN | gq:MN p:SP | sil:MN
f ch:SP | h:MN | kiMN e:SP
ch g:MN | x:MN | d:MN r:SP

sp h:MN | s:MN | g:MN u:SP
z d:MN b:SP | h:MN | m:MN
t s:SP g:SP | b:MN | m:SP
c attMN | d:SP e:SP | b:MN
b g:SP | m:MN | y:SP | ch:SP
uu @:MN | w:MN g:SP | i:MN

d rrMN sikSP | @:MN | t:SP

ee b:SP | mSP | %:MN | p:SP
rzh mSP | @:MN | y:MN n:SP
zh y:SP r:SP d:SP | d:SP
dj W:MN | n:MN | at:MN | g:MN
ow r:SP V:SP | rMN | p:MN
sh m:MN [:SP l:SP 0:SP
tj a:MN | [:IMN i:SP j:SP

ng d:SP | rMN 0:SP | f:SP

g n:MN | y:MN b:SP | u:MN
aw 0:SP | y:SP r:SP i:SP

Table 19: The Four Closest Spanish and Mandarin Phones ébrEzech Phone Measured Without
Transformation.
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Cluster| Phones

1 9:CZ|:SP 0:SP s:SP 11:SP b:SP m:SP a:SP r:SP n:SP i:SP y:SP
sp:SP gn:SP sil:MA h:MA w:MA at:MA n:MA y:MA i:MA s:MA o:MA tMA
x:MA a:MA %:MA d:MA m:MA e:MA gt:MA c:MA u:MA r:MA j:MA q:MA
[:MA u:SP v:SP g:SP z.MA @:MA

2 h:CZ sil:SP sp:MA

3 z:CZ j:SP k:MA

4 l.Cz

5 rcz

6 0:.CZ

7 aw:CZ

8 ii:Cz

9 nj:CzZ

10 ng:CZ

11 rzh:Cz

12 zh:CzZ

13 f:SP g:MA b:MA p:MA

14 rsh:CZ

15 c:.CzZ

16 s:CZ

17 aa:.Cz

18 a:.Cz

19 ee:CzZ

20 e.Cz

21 jiCzZ

22 i:CZ

23 u:CZ uu:Cz

24 ow:CZ p:SP

25 m:CZ

26 n:CZ

27 v:.CZ

28 d:Cz

29 dj:CZ k:SP e:SP d:SP t:SP II:SP ch:SP x:SP f:MA

30 b:Cz

31 x:CZ

32 tj:CZ

33 sh:Cz

34 ch:Cz

35 f.CZ

36 t:CZ

37 p:CZ k:CZ

38 sil:CZ sp:CZ

Table 20: Phone Clusters Found Using Rotations.
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Czech Phong Source Language PhonleCzech Phong Source Language Phor
sil sp:RU k k:RU
p p:SP t t:RU
z c:RU rsh fi:RU
ch chj:RU g 0j:RU
dj m:SP h v:RU
d d:SP ng g:RU
n n:RU uu u:RU
ii y:SP ] j:RU
e e:RU ee e:SP
aa a:RU X x:RU
f z:RU b g:SP
Y v:SP m m:RU
ow u:SP u I:RU
S s:RU c ch:SP
tj sj:RU I ee:RU
sh shj:RU a aa:RU
o] o:RU aw u:RU
r y:RU [ i:RU
nj gn:SP rzh ch:SP
zh zj:RU rr r:SP

Table 21: Phone Mapping Found Using Clustering with Adei@hifts.
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3.4 Discussion
Knowledge-Based Methods

In developing knowledge-based methods for cross-linghahp mapping, we attempted to im-
prove speech recognition performance without access taaggt language training data using
only linguistic knowledge about the acoustic phoneticauite of each language. We learned that
proximity of the source language models to the target laggua presently a stronger correlate
than anything we can do based on linguistic knowledge andgtimmappings. We also showed
that accounting for some language-dependent bias betWeetrce languages and the target lan-
guage is not a trivial matter. It seems characterizatiomefdgroximity of the target language in an
acoustic sense might be a worthwhile topic for further reggaas well as a more controlled study
of channel-independent acoustic representations. Ddteeaources related to the information pre-
sented in this section can be found on the web at
http://lwww.clsp.jhu.edu/ws99/projects/asr/fipaésentation/knowleddeased .

We proceeded with an analysis of the common error modalfiviesur best system. We have
observed that, though the overall WER is high, performan¢keeaphone-level appears to be fairly
good; for example, the Russian system phone error rate w8%@36he alignments are plausible,
and a majority of the words are only partially misrecognized

Automatic Methods

The phone confusion method described in this section helpedtain automatically derived map-
pings at the phonetic and subphonetic level between a paetlbtrained languages and our target
language. It is reasonable to expect that the noise and @coosditions in which these source
languages were recorded will influence and to a large extetetrichine the phonetic mappings ob-
tained in this way. In other words, the approach described@lloes nothing to remove any sort
of acoustic bias that will influence the phonetic mappingcoate. We showed that this approach
helps well to develop a basic set of mappings which will beadplin approaches described later in
this report (e.g., DMC). We demonstrated that by combintages from source languages HMMs
we can get better mappings than by using phones. It is woitbwd devote some future efforts
into the problem of acoustic bias removal before derivingdboustic mappings

Language Adaptive Clustering

The above algorithm with additive shifts gave mappings vehpsrformance was comparable to
other automatically generated phone mappings. Furtheymer found that additive shifts can also
improve other methods, such as the confusion matrix basgaagh. Possible extensions of this
approach include obtaining mappings at the state levelyaimd) a broader class of transformations,
such as affine transformations.

4 Cross-Language Acoustic Model Adaptation

Despite the substantial differences between the qualiphofie mappings obtained by knowledge-
based and automatic state-level phone mappings, adaptatiog MLLR and MAP! on the 1.0

!References and procedures are in the HTK documentation [25]
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Source Mixtures / Type | Unadapted GMLLR | MLLR+MAP
MA 10 hours| 20 /monophone  88.7 63.0
SP 10 hours| 20 / monophone  71.6 50.9
RU 3 hours | 20/ monophone 60.8 70.7 45.3
EN 10 hours| 20/ monophone  75.7 47.2

CZ 1 hour | 20/ monophone 334
CZ 1 hour 6 / triphone 30.7

Table 22: Effect of Adaptation on Source Language Systemap#ation is via 1 global MLLR
transformation, followed by a 4 class MLLR transformatitmilowed by MAP adaptation. Test set
is VOA-2.

Training System Adaptation WER(%)
Data Mixtures/Type Steps VOA-2 | CUCFN
EN 10.3 hours 12/triphone | 4xMLLR+1xMAP | 35.1 47.6
EN 10.3 hours 12/triphone | 4XxMLLR+4xMAP | 32.6 441
EN 72.0 hours 12/triphone | 4XMLLR+4xMAP | 32.7 42.1
CZ 1 hour | 20/monophone 334 47.3
CZ 1 hour 6/triphone 30.7 37.1

Table 23: Effect of Adaptation on English Broadcast News&ys. Number of training iterations
for each adaptation procedure are included.

hour of Czech read speech largely compensates for thesedtiffes, as shown in Tables 22 and 23.
Furthermore, while performance improves significantlg #dapted systems do not individually
improve over the monolingual Czech triphone system.

5 Multilingual Discriminative Model Combination

Discriminative model combination [1, 2] aims at an optinrakgration of all given acoustic and
language models into one log-linear posterior probabdiggribution. As opposed to the maximum
entropy approach, the coefficients of the log-linear coratiam are estimated on training samples
using discriminative methods to obtain an optimal classifie

Given the posterior distribution(k|z) that observation: belongs to class, the decision rule
that results in a minimum expected number of classificatioorg is the so-called Bayes’ decision
rule. For a given observatianof unknown class membership, find the clags) such that:

VE' =1, K;K' #k: logr(klz) —log 7 (k'|z) > 0. (1)

The functiory (z, k, k') = log(w(k|z) /= (k'|z)) in (1) describes the class boundaries and is referred
to as discriminant function [7, 10].

In our problem of recognizing continuously spoken sentenites observation is a sequence of
feature vectorsz? = (2',...,27), which has to be classified into a word sequence
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wy = (w?, ..., w’). However, the true distribution(w?|=T) of natural human speech is unknown.
Thereforer (w?|z]) has to be approximated by a model distributigm? | =7 ).

A widely used training criterion for the distributignis the maximum likelihood criterion. The
assumption is that we know the functional form of the probghiistribution p, but not the param-
eters. Using the maximum likelihood criterion the paramgetge estimated on training samples.

The resulting distributiop is then “plugged in” to the Bayes’ decision rule: For a givdrser-
vationz? of unknown class membership, find the clagyz{) such that:

s s
Yo't #wi o logp(wile]) —log p(w'y [ef) 2 0. )
Rewriting the discriminant function

T 5 /S')

S/
g(xy,wy,w'y = logp(wﬂxlT) - logp(w’1 |$1T)

= logp(wd)p(aTwd)] — loglp(w’s )p(aT]w'S )],
3)

we obtain the well-known decomposition pfinto a language model probabilipyw?) and an
acoustic-phonetic likelihoog(z7 |wy). Sincep typically deviates from the true distribution the
decision rule (3) will deviate from Bayes’ decision ruleythieading to a suboptimal classifier.

To overcome this limitation, discriminative methods carapelied [17, 20]. The goal of dis-
criminative parameter optimization is to be able to cofgediscriminate the observations rather
than to fit the distributions to the observed data.

A simple example for the discriminative approach is thempation of the so-called language
model factor\ of the discriminant function:

s’ s’ s
g(z] wi w7 ) = logp(w]) 'p(a] [w])] = log[p(w’y ) *plai|w'y ).

(4)

Experiments [19] show that a valuewith A # 1 gives a minimum word error rate. The deviation
from value) = 1 is caused by the deviation of the language model probabilityy) and the
deviation of the likelihoogh(z{ |w?') from their “true” values.

Let us assume that we are giv@hdifferent acoustic and language models, which are idedtifie
by numbersj = 1,..., M. From model; we can compute the posterior probability(k|z) of a
hypothesized clask given an observation. These models are now log-linearly combined into a
distribution of the exponential family:

I - —logZA(ac)—I—ZNi Ajlog pj(k|x)
P klz) = e i=1 (5)
NGE
The coefficients\ = (Aq, ..., /\M)T can be interpreted as weights of the modelgithin the model
combination (5). The valug&, (z) is a normalization constant. As opposed to the maximum pytro

approach, which leads to a distribution of the same funelitorm, the coefficientd are optimized
with respect to the decision error rate of the discriminamiction (6):

log 22 (F[2) f:/\ I
og ——— = - 10
gpA(k/|$) = 7108

p;(k]2)
s (W]2) ©)
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This approach is calleDiscriminative Model Combinationif only one acoustic and one language
model are combined, DMC will optimize the so called languageht,or language model factor,.
DMC allows for the integration of any model into an optimatdder, since the weight; of the
model; within the combination depends on its ability to provideoimhation for correct classifica-
tion.

5.1 DMC Training

Thus far, DMC has been used to optimize large vocabularyimootis speech recognition (LVCSR)
systems at the sentence level, although it can also be dppleher problems in pattern recognition
due to its general formulation. In LVCSR systems, the spakterance is used as observation

z and any hypothesized sentence can be regarded askclaBsr DMC training we are given

a set of sentences = 1,..., N. For each of the training sentences we are given the acoustic
observation:,, and the correct class assignmeépti.e. k,, is the correct transcription af,,. Using

a preliminary decoding we can define the set of rival clagses k, and we can compute the
number of word errors of the rival clagswith the help of the Levenshtein distanték,,, k). The
model combination should then minimize the word error caif ):

EA) = i\f: L (k arg max <log M))
n=1 " k#kn pA(kn|$n)

on representative training data to assure optimality omdependent test set. Since this optimiza-
tion criterion is not differentiable we approximate it inadogy to the well-known MCE training by
a smoothed word error count:

N
Eywe(A) = Y0 > Lk kn)S(k,n, A), )
n=1k#ky

whereS (k, n, A) is a smoothed indicator functiof.(k, n, A) should be close to one if the classifier
(6) will select hypothesig and it should be close to zero if the classifier (6) will rejegpothesis
k. One possible indicator function with these properties is

S(k,n,A) = <pH{A}(k|xn))n (8)

S (1 (1))

wheren is a suitable constant. Optimization éfy;1z(A) with respect toA leads to an itera-
tive gradient descent scheme. Another possible indicatoctfon with similar properties is the
following second order function:

1 g> A
2
Sk, A)=1 (£2)° -B<g<A ©)
0 g< -—B
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where

which gives a closed form matrix solution far. The values4, B determine the form of the 2-nd
degree function and the set of hypotheses used for thergirBoth indicator functions lead to
similar and reasonable DMC coefficients.

5.2 Log-linear Structuring of Distributions

DMC allows for the optimization of any log-linear distribah. Now, the idea is to find suitable

factorizations of the distribution. Each of the factors ntlagn be weighted independently, leading
to a log-linear functional form of the distribution. The limving 2 sections show examples of
structuring the overall distribution into a log-linear for

Assume that we are given acoustic moddls: = 1,...,7 and language models;,; =
1,...,J. These models can be interpolated into one log-linearidigion:
IT; Ai(a|k) IT; Lj (k)™
pH (k|$) = . //\'] : (YA (10)
{A} Yo 11 A (2] ) ijL](k) J
Define:
B Ai(z|k)
PasiD) = Al -
prj(klz) = L;(k) (12)
Then we can write:
[T pai(kle) TT; pr.j (kl2)™
P (kle) = S VE— Sy e e (13)
{A} 2w T pai(K'|2) N I oo (K |) ™

Thus we are able to handle the optimization of the interpaedf acoustic as well as of language
models in a uniform way. Both model types may be interpolajgimally at the same time using
DMC.

5.3 Structuring the Distribution into Phonetic Classes

The following structuring of a distribution was first apmlieo decompose the distribution into word
classes [24]. The idea here is to segment the overall dognez|k) of the sentencé into the
phonegs: found in the sentence

log p(x|k) = > log p(«"|h) (14)
hek
To reduce the number of classes, here we clustered all premarto the three classes: vowels,
consonants, silence.

logpy (x|k) = > 6(h,V)logp(x"|h) (15)
hek
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log po(zlk) = > 8(h,C)logp(z"|h) (16)
hek

log ps(zlk) = > 8(h,S)logp(x"|h) (17)
hek

After segmenting the sentence probability into these 3 ptiortlasses we can again build a log-
linear distribution:

p(k) epy (2]k)* pe (2[k) N ps (x] k)
Yopr PR epy (2[R po (e |k e ps (x]k) s

The idea behind this functional form of the distributionligt the vowels, consonants and si-
lence models may have a different importance for classifinand should be weighted differently.

klz) =

11
Py A}( (18)

5.4 Combination of Multiple Source Language Acoustic Moded
5.4.1 Sentence-Level Model Combination

The most direct use of DMC to merge models from multiple lsaggs is to combine them at the
sentence-level. For example, a combination of Spanish aaadisrin models has the following
functional form:

long{A}(k|x) = CHArmLe (k) + AezAcs (2|k) + AspAsp (2] k) + Mg Ama(2|k) (19)

whereL.. (k) is the Czech language modé,. (z|k) is the Czech acoustic model,, (z|k) is the
Spanish acoustic model ang,,, (x| k) is the mandarin acoustic model.

5.4.2 Phonetic Class Combination

A potentially more powerful approach is to use DMC with laaga-specific phonetic classes by
applying the ideas of Section 5.3. In the example given HeMC is applied at the phoneme-
class model level, i.e. for each of the three languages a Ivawdel, a consonant-model and a
silence-model were created, summing up to 9 different atoosdels:

1ong{A}(k|x) = C+ Ayl (k)

—I_ACZ,VVCZ ($|k) + Acz,C’Cvcz ($|k) + ACZ,SSCZ ($|k)

FAsp,v Vap(@] k) + Asp,oClsp (@] k) + Asp,55sp (] F)

—I'/\ma,VVma(ﬂk) + /\ma,CCma($|k) + Mg, 559ma (x|k). (20)
whereV_.(z|k) is the Czech vowel-class model, . (z|k) is the Czech consonant-class model,

S (z|k) is the Czech silence model, and the remaining class modelslefined similarly for
Spanish and Mandarin.

5.5 DMC Experiments on the VOA Test Sets

The software used at the workshop was restricted to the usebest lists for DMC-training and
DMC-decoding. Note that DMC can be applied directly on ddasiices, as is done at Philips
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DMC models WER(%)
oracle 19.54
anti-oracle 45.04
first best (baseline) 24.76
Ac.+ L. 24.36
Acr + Lo, + WordPenalty 23.78
Ao + Asp + Apy + Lo + WordPenalty 24.01

Table 24: Sentence-Level DMC Results on the VOA-1 Test Sat.ekperiment used 100-best lists,
knowledge based Spanish and Mandarin phoneme mappingbjraation of the Czech language
model, the Czech acoustic model, the Spanish acoustic raxtttthe Mandarin acoustic model

Research Laboratories in the HUB4 system. This simplifiedeaperiments; when working with

N-Best lists, the handling of the hypotheses for DMC-tragnand decoding becomes trivial. On
the other hand, the choice of the size of the N-Best listsaiwut to be crucial for the obtained
results, which will be shown in the next few sections.

Experiments on the VOA-1 Test Set

In the first set of experiments, knowledge based mappingpaifiSh (SP) and Mandarin (MA) con-
text independent phonemes to Czech (CZ) phonemes weredpplhese mappings were created
prior to the workshop. Both the Spanish and the Mandariresysiwere trained on about 10 hours
of acoustic Broadcast News data. Using the mappings, CZezhgme models were generated by
plugging in the corresponding Spanish phoneme model. Time gaocedure was applied for the
Mandarin models. Thus we arrived at a Spanish-Czech and dafimmCzech system.

The baseline Czech monophone system (CZ) was trained onrldrzmech VOA data. Using
this system, 100-best lists were decoded on the Czech V@AtTorpus. The task was now to beat
the 1 hour Czech VOA system, with help of the Spanish-Czechtla@ Mandarin-Czech system.
For this reason, the Spanish and Mandarin models were soorélte 100-best lists of the Czech
VOA-1 test corpus. Next DMC was applied, using the held-oethmad: train DMC coefficients
on the first/second half of the corpus and test on the secosidiélf, and add up the error counts
obtained on both tests.

Since the N-Best lists were quite short and the Spanish amdidtan knowledge-based models
performed badly, - A free decoding of Spanish and Mandarideon Czech data gives a word
error rate of about 80-90% - no real gain was expected. Thevwidlg two sections summarize the
experiments on this test set at the sentence-level and grhtireeme-class level.

Using a sentence-level model combination as describediratian 19, produced results sum-
marized in Table 24. From these we can conclude that SpangMandarin models do not help,
which may be due to the small size of the n-best lists or duegevieakness of the models. Another
important observation is that DMC automatically found duttthe given Spanish and Mandarin
models are weak, so these models received a small weighinwite model combination and the
performance of the overall system did not degrade! In aoditve see that DMC optimized auto-
matically the language weight; this is a well-known effect.

The next experiment used for DMC phonetic-class combinatito have a fair comparison,
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DMC Model WER(%)
oracle 19.5
anti-oracle 45.0
first best (baseline) 24.8
Ao+ L. + WP 23.8
Voot Coo+Se: + Vip + Cop + Sspt+ +Via + Cria + S + Lo + WP 23.5

Table 25: Phonetic-Class DMC Results on the VOA-1 Test St ekperiment used 100-best lists,
knowledge based Spanish and Mandarin phoneme mappingbjraation of the Czech language
model, the Czech, Spanish, and Mandarin vowel, consonaaisilence models.

the monolingual baseline experiment was defined by appIRikig to the Czech phoneme-class
models only. From Table 25 we can see that the structurimgyphbneme classes improves the
Czech system from 23.8% to 23.2% but that, again, the SpanigiMandarin Models do not help.

Note that the slight improvement from 23.8% to 23.2% is gdibg adding only 3 free parameters
to the system only.

Experiments on the VOA-2 Test Set

A new experiment definition was created to overcome the #tiahs described above. The size
of the N-Best lists were increased significantly and moreaaded models were applied. During
the workshop period, knowledge based mappings of SpanB) ussian (RU), and English (EN)
models to Czech models were created. The Czech baselinepmone system was trained on 1
hour of Czech read speech data which may be a useful startap Wtlding a system in a very
new language. Using this system 1000-best lists were decod¢he Czech VOA-2 test corpus.
The Spanish, Russian, and English models were scored om 1089-best lists. DMC was again
applied using the held-out method. This setup is reasoratileshould give more realistic results
than the VOA-1 setup in the previous section.

With this new test set, the experiments on the sentence ésvelell as on the phoneme-class
level were repeated. The overall combination of the giveure® models leads to the following
functional form:

1ong{A}(k|x) = CHAnmLe:(k) + Az Acz (2[k) + AgpAgy (] k)
Ay Ap (2]k) + Aen Acn (2]). (21)

The performance of the various single acoustic models issanzed in Table 26. The error rates
were obtained by a free decoding using the source-languamestic models and the Czech lan-
guage model on the Czech VOA-2 test set.

The systems in Table 26, which are marked with a '*', were coretl into one decoder using
DMC. Results are presented in Table 27, from which we can Isaethe Spanish and Russian
models help to improve the system and that the English triphmodels help even more. The
overall word error rate can be reduced significantly from438.(free decoding of Czech 1 hour
system) down to 29.2% (N-Best decoding of multilingual systcombination). This result was
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Source Language Acoustic Model VOA-2 WER(%)
29 hour Spanish BN Monophone 71.1*
4 hour Russian Monophone 60.6 *
10 hour English BN Triphone adapted to Czech  35.1*
1 hour Czech CUCFN Monophone 33.4*
1 hour Czech CUCFN Triphone 30.7
10 hour Czech CUCFN Triphone 27.1

Table 26: Recognition Performance of Source-Language argkfLanguage Systems.

DMC Model VOA-2 WER(%)
oracle 19.8
anti-oracle 56.6
first best (baseline) 34.0
Lo, + A, 32.7
ch + Acz + Aru 325
ch + Acz + Aru + Asp 323
ch + Acz + Aru + Asp + Aen 292

Table 27: Results of Sentence-Level DMC on the VOA-2 Test Séte experiment used 1000-
best lists, knowledge based Spanish, Russian, and Engiateme mappings, combination of the
Czech language model, the Czech acoustic model, the Spagusistic model, the Russian acoustic
model, and the English acoustic model
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DMC model WER(%)
oracle 19.8
anti-oracle 56.6
first best 34.0
L., + A.. (baseline) 32.7
ch + ch + Ccz + Scz 321
ch + Acz + Aru + Asp 323
ch ‘|’ ch ‘|’ Ccz ‘|’ Scz ‘|"/7’u ‘|’ Cru ‘|’ Sru ‘|’ Vsp ‘|’ Csp ‘|’ Ssp 318
ch + Acz + Aru + Asp + Aen 292
Lo:4+ Ve, + 0 + S + Vo + Cry +5,u + Vip + Csp + S5 + Vepp + Copy + Sep 28.9

Table 28: Results of Phonetic-Class DMC on the VOA-2 Test Séte experiment used 1000-
best lists, knowledge based Spanish, Russian, and Engi@ieme mappings, combination of the
Czech language model, the Czech, Spanish, Russian, antfErglvel, consonant and silence
models

not expected since the combination was done at the sentrelehd only 5 free parameters were
optimized.

The next question addressed was whether the results atnkense level can be further im-
proved when applying DMC to phonetic-classes. To compageréisults with a corresponding
Czech baseline system, the phonetic class model comhmnage optimized using the Czech mod-
els only, as in Equation 19. The following overall system wasated and

1ong{A}(k|x) = C+Apamle. (k)

FAe v Ve (2|k
+Aop,v Vep (2] K
A v Vi (2|
FAen, v Ven (|

+ Ao, 0 Cez(2]k) + Aoz 5Ses (2] k)

+ Asp,cCspl@lk) + Asp 595, (2]k)

+ A, 0Crul|k) + A, 5Sru (2]K)

+ Aen, 0 Cen (k) + Acn,55en (]k). (22)

— e S

X

Table 28 summarizes the results obtained after optimiziegitbove model combinations.

5.6 Conclusions and Summary

For the VOA-1 setup we can draw the following conclusions:

e The knowledge based Mandarin and Spanish models did not Isétge DMC found this
automatically, the system performance did not degrade.

e The n-best lists were too short.
e The language weight was optimized automatically.

e The results matched our expectations.
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From the VOA-2 results of Table 28 we can conclude that thecstring into phoneme classes
improves the system and that the interpolation of multiiagphoneme-class models performs
better than the interpolation of multilingual systems.

The conclusions from this work using DMC for language indegent acoustic modeling can
be condensed into the following points:

¢ DMC works in the language independent environment.

The size of the n-best lists is crucial. The size should besehso that the word error rate of
the oracle and of the first-best decoding differ significantl

A multilingual interpolation of systems performs betteatithe monolingual 1 hour system.

Poor models from remote languages can still contribute éoptarformance of the overall
model combination if they are optimally weighted by DMCitiag.

A log-linear structuring into phonetic classes seems taaw the classification.

The best performance is achieved by a multilingual inteafoh of phonetic class models.

6 Multilingual Model Combination Using ROVER

An approach to multilingual model combination that is sgraforward to implement and investigate
is to combine system hypotheses using ROVER [9]. ROVER coediiypotheses using a majority
voting scheme to produce a consensus hypothesis and hash@en to provide modest gains in
performance in LVCSR experiments. We will use ROVER as a medrcombining alternative
hypotheses derived from different source language acoosidels.

ROVER uses the NIST alignment algorithm to create a wordsitenm network, taking the first
input system as a reference and aligning with it the remgiiypotheses. ROVER then uses a
voting algorithm to determine the best path of word traosisi between all nodes of the network.
Word-level confidence scores in the range [0-1] are needelédyoting algorithm were derived in
two ways. One method used to derive these scores was tollimeap the acoustic scores of the
hypotheses in the 1000 element N-Best list into the confielesrage [0-1]. The second method was
to use the performance accuracy of the system as a constditerce score for all hypotheses of
that system; we found this latter method to yield the besiltes

ROVER was used in two experiments: to combine the four kndgdebased systems that used
each of the source language acoustic HMM models and a knge/leased mapping, and to produce
a baseline for comparison with the DMC system. The resulte@knowledge-based experiments
are described in Table 29. We found that the best ROVER outping the accuracy scores of
each system as confidence scores produced a WER of 62%. Tkesgpariment performed at the
phone-level gives similar improvement.

As a simple experiment to compare ROVER and DMC, the 100Q@-Bgsotheses from the
Czech system are rescored with optimized language modghtgeand combined using ROVER
with confidence scores from system accuraéieShe results are summarized in Table 30, but we
find DMC and ROVER to give similar performance.

2As a result of being restricted to the Czech 1000-Best lstiqsgmance improves over that reported in Table 29.
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Source | WER(%) || Source | WER(%)
Russian| 65.2 Spanish 79.3
English 80.9 Mandarin 90.1

| Rover | 62.0 |

Table 29: ROVER Combination of Source Language Hypothesasg.Knowledge-Based Phone
Mappings

Method | Source | WER(%)
- Czech 33.3
- Russian| 60.8
- Spanish| 71.6
ROVER 33.1
DMC 33.0

Table 30: Comparison of DMC and ROVER in Czech Monolingudl@-®8est List Rescoring.

6.1 Discussion

Using ROVER in the knowledge based phone mappings, we obtdyra small improvement over
the best monolingual system, but it provides additionadlence that some benefit can be obtained
by combining scores from multiple language systems and rgesagain that in this experiment no
target language data at all is used in these experiments.

The advantage of ROVER is that it can combine different higpsés from the different systems,
whereas DMC needs the intersection of hypotheses of diffesgstems. In other words DMC
needs different scores from different systems of the sanpetmesis. Thus ROVER is simpler to
implement, although this difference is minor in our N-Bestgoring experiments, since the same
hypotheses are rescored by all systems.

7 Conclusion

We have presented the results of our experiments in langndgpendent acoustic modeling. We
studied both knowledge-based and automatic methods teedemdss-lingual phonetic and sub-
phonetic mappings, and found that the automatic methoderpeed significantly better than the
knowledge-based methods.

Acoustic HMM adaptation further improved the source largpienodels, although not to the
point that they performed better than monolingual Czeclesys. However, multilingual interpo-
lation with adapted source-language acoustic models wWastiee in improving the performance
of monolingual systems. Surprisingly, even source-lagguaodels that perform poorly when
used individually can contribute to the overall combinatishen their contribution is determined
by DMC-training. In summary, we have developed a methodplogvhich cross-language pho-
netic mappings, acoustic adaptation, and discriminatiwdehcombination can be used to improve
monolingual systems trained from small amounts of speech.
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