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Figure 1: Modeling Multilingual Speech Using Monolingual ASR Systems.

1 Introduction

Language independent acoustic modeling was one of the topics studied at the 1999 Johns Hopkins
University Language Engineering Workshop hosted by the Center for Language and Speech Pro-
cessing. Our work was motivated by the need for speech recognition in languages beyond the well-
studied languages of Europe, Asia, and the Americas. The statistical techniques used for speech
and language modeling require relatively large amounts of monolingual speech and text as training
data. In ‘resource-rich’ languages which have such corpora, these statistical estimation methods
have been shown to work quite well. However, if only small amounts of training data are available
in a language, these monolingual techniques are less effective. Our goal was to address this problem
by developing techniques that reduce the amount of data needed to model resource-poor languages
by borrowing data and models from resource-rich languages.

Multilingual ASR techniques are a significant departure from current practice, in that the best
ASR systems are inherently monolingual. Their language models, pronunciation dictionaries, and
acoustic models are constructed using data only from the language of interest, and make no use
of data or models from other languages. These monolingual techniques are limited in processing
multiple languages. Unless the relationships between the individual languages is described and
captured, separate systems for each language must be built and made to operate independently as
shown in Figure 1. Of course, this should be acceptable if an adequate system can be trained for
each language. However, as described above, there are situations in which it may be desirable to
borrow data and models across languages.

While in our studies we used multiple languages simultaneously, our goal was not to build
a multilingual ASR system capable of recognizing several languages equally well. We intended
instead to develop a good monolingual system for a specified target language by borrowing data and
models from other languages. In speaker independent ASR, models are first trained using speech
from multiple speakers and then adapted to a specific speakereither before or during recognition.
Analogously,language independent acoustic modelingis a methodology that combines speech and
models from multiple source languages and transforms them for recognition in a specific target
language.
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Figure 2: Two Approaches to Language Independent Acoustic Modeling. Monolingual systems can
be trained independently and merged prior to use (left) or speech data from several languages can
be pooled to train a single set of acoustic models (right).

As mentioned above, acoustic training data is not the only resource needed for statistical ASR.
However, we have assumed for our work that language models, pronunciations, and appropriate
acoustic processing are available for the target language,and that only transcribed acoustic training
data is in short supply. This is not a completely unrealisticscenario in that dictionaries with pro-
nunciations are available for many languages, as are on-line newspapers and other text. However,
we stress that in our work we have addressed only one aspect oflanguage independent modeling.

1.1 Previous work

As part of our summer project we conducted a literature review and held a ‘paper club’ to familiarize
ourselves with previous relevant work in cross-lingual andmultilingual acoustic modeling. For a
recent overview, see the report by Hoveyet al.[16]. We also found work described in the following
references to be relevant to our studies [16, 6, 12, 8, 14, 18,13, 11, 5]

1.2 Project Overview

We have developed methods for automatic speech recognitionthat share data and acoustic mod-
els across languages. Underlying these methods arephone mappingsthat identify similar speech
sounds across languages. We obtain these phone mappings using bothknowledge-basedandau-
tomaticmethods. The knowledge-based methods rely only on acoustic-phonetic categorizations
of the individual languages and as such can be used if no data at all is available in the target lan-
guage. The automatic methods derive phone mappings using small amounts of acoustic data in the
target language. Using mappings found by either approach wecan borrow models from several lan-
guages simultaneously to cover the phone inventory of the target language as depicted in Figure 2.
The automatic methods allow additional refinement by borrowing models sub-phonetically at the
HMM-state level. This can be especially valuable if the target language contains phones not found
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in any of the source languages since these techniques are free to assemble a new phone model from
component states of different source language phone models.

While both the automatic and knowledge-based phone mappings can be used without modifica-
tion to construct recognizers in the target language by borrowing acoustic models from the various
source languages, HMM adaptation techniques can also be used to improve the systems using the
small amount of target language adaptation data we assume isavailable.

As a further refinement, we obtained the best recognition performance not from individually
adapted source language acoustic models but by using Discriminative Model Combination (DMC)
to combine acoustic models from several languages simultaneously. Referring to the left ASR
architecture of Figure 2, it is not at all obvious how best to combine hypotheses produced using
several sets of acoustic models. DMC provides a principled and effective way to do this. This
combination can be done at the sentence or sub-word level, with better performance obtained using
phone-level combinations. We note in particular that DMC makes effective use of source language
acoustic models that individually do not perform well in transcribing the target language.

We began experiments inlanguage adaptive trainingin an attempt to train a single set of acous-
tic models using a multilingual training set, as depicted inFigure 2. This work is still on-going,
however our work inLanguage Adaptive Clusteringprovides strong evidence that all the above
methods should benefit from acoustic normalization that transforms data and models as part of the
phonetic mapping between languages.

1.3 Accomplishments

We summarize here the achievements of our summer project. Novel techniques and results not
previously reported in the literature are italicized.� An experimental framework for language independent acoustic modeling that is cross-domain

as well as multilingual� Creation of Czech language Broadcast News corpus� Compilation of acoustic phonetic characterizations of English, Czech, Russian, Spanish, and
Mandarin� Development of knowledge-based phone-mappings that allowsharing models across lan-
guages when no training data is available� Development of automatic methods to derive sub-phonetic mappings to share acoustic HMMs
between languages� Development of Language Adaptive Clustering to derive automatic phone-level mappings
and cross-language acoustic normalization� Use of phone-level cross-language normalization to improve source language HMM perfor-
mance� Use of HMM adaptation techniques to improve source languageHMMs� Use of DMC to combine acoustic scores derived from multiple source language acoustic
models
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� Use of ROVER to combine acoustic scores derived from multiple source language acoustic
models� Improvement over an monolingual baseline systemusing multilingual methods
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2 Czech Monolingual Experiments

As part of our research program we have established an experimental framework for language
independent acoustic modeling. Since this problem has not been widely studied, we were not able
simply to use previously defined training and test sets to evaluate our ideas. We therefore began
our work by investigating ASR performance in an attempt to find an appropriate ‘operating point’
at which to conduct our experiments.

ASR performance is determined by a variety of factors. Performance is generally poor if the
speech to be recognized is produced spontaneously, as in conversational speech. Read speech is in
general easier to recognize, and, as a special case, ‘planned speech’ by trained broadcast announcers
can be particularly easy to transcribe. Performance also depends on the modeling techniques used,
the recording conditions, the amount of data available to train language and acoustic models, and
the similarity between the training data and the test material. We considered these last two factors
to be especially important in defining our experiments, since performance is generally best given a
large training set that closely resembles the test set.

Our initial plan to define our experiments was straightforward. We first decided on Czech
language news broadcasts as our test domain. We choose to usenews broadcasts because they
contain a variety of different types of speech and are relatively easy to obtain. We choose the Czech
language because there are ongoing language engineering projects studying Czech from which we
would be able to borrow resources. We also felt that studyingCzech was a realistic task since, unlike
Spanish or Mandarin, there is fairly little knowledge of existing Czech ASR systems to influence
our work. To obtain the needed broadcast training and test material, we arranged with the Linguistic
Data Consortium to record Czech language Voice of America (VOA) broadcasts.

We decided to build our initial Czech broadcast news system from a ten hour Czech VOA
acoustic training set using techniques known to work well inother languages and domains. The
language model and pronouncing dictionary were developed in our previous work in transcription of
read Czech [3]. Such an effort is a common exercise in training an ASR system using a moderately
large amount of homogeneous acoustic training data.

After obtaining the performance of this well-trained system, we planned to reduce drastically
the size of the acoustic training set and build a new, impoverished system. Given our past experience
and the reported experience of others, we expected that training a system using approximately one
hour of acoustic training data would yield an ASR system thatperformed substantially worse than
the initial, well-trained system.

This reduced-size acoustic training set, the impoverishedmodels, along with the dictionary and
language model would serve as the baseline for our second setof experiments. We would attempt
to improve the performance of the impoverished system by borrowing both acoustic training data
and full ASR systems from other languages. In summary, our plan was to begin with a well-trained
monolingual system built from homogeneous data and ‘back into’ a heterogeneous multi-lingual
domain by reducing the target language acoustic training data.

As the following account describes, our experiments did notgo as we expected. We found
that speaking-style effects in the Czech VOA recordings dominated all other factors in ASR per-
formance. The ‘planned speech’ of the VOA announcers was very easy to recognize, no matter
how little data was used to train the system. We therefore were forced to obtain other news broad-
casts data for use as our test set. The remainder of this section describes the data and experimental
conditions in more detail.
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2.1 Czech Speech and Language Data

Read Speech

Our initial experience with Czech ASR is in the transcription of read speech [3]. We developed pilot
ASR systems using speech from the Charles University Financial News Corpus (CUCFN). We used
the portion of this corpus that consists of recordings of read economic news taken from the Cesko-
moravsky Profit Journal. This database consists of speech read by fluent Czech speakers recorded
in quiet conditions at 22KHz with 16 bit resolution. The speech was recorded simultaneously with
both a Sennheiser head-mounted, close-talking microphoneand a desk-mounted microphone. In
our work we used the recordings from the desk-mounted microphone channel. Speech from 29
male speakers and 23 female speakers has been collected and verified. Most subjects were native
speakers of common Czech, except for some speakers with marked regional accents from North
Moravia and South Moravia. There was also one native Russianspeaker and one native Macedo-
nian speaker. The first stage of corpus contains a total of 7280 sentences yielding slightly more than
17 hours of speech.

Broadcast Speech

Satellite transmissions of Voice of America broadcasts were recorded by the Linguistic Data Con-
sortium (LDC) and transcribed at the University of West Bohemia according to protocols developed
by LDC for use in Broadcast News LVR evaluation. The recordings span the period February 8
through May 4, 1999. The corpus consists of 46 recordings of 30 minute news broadcasts yielding
a total of 23 hours of broadcast material. Portions of the shows containing music, speech in music,
or other non-speech material are marked, but these intervals were not transcribed. This yields ap-
proximately 19:30 minutes of transcribed material from each 30 minute broadcast, for a total of 20
hours 24 minutes of pure transcribed speech.

Broadcasts from another news source were recorded to complement the VOA collection. Sev-
eral programs broadcast byČeský rozhlas 1 - Radiožurnál (http://radiozurnal.CRo.cz) on July 30 and
31, 1999 were recorded at Charles University. The shows contained general news with a mix of
discussions, spontaneous and planned speech. The FM broadcasts were recorded directly onto a PC
using the CoolEdit (http://www.syntrillium.com) program at 22KHZ and 16 bit resolution. The data
was then transcribed at CLSP during the workshop. Through this impromptu collection effort we
obtained an additional 99 minutes of transcribed speech intended primarily for use as a test set.

Czech Language Models

In our experiments this summer we used language models developed in our previous work on read
Czech. The language model vocabulary was 63K words, and we used a bigram language model
trained from a 16.5 million word corpus of news text (LidovéNoviny 1991-1994). Table 1 shows the
perplexity of representative samples of the three Czech language databases. Although the language
model training corpus is from another domain, perplexitiesand OOV rates are fairly consistent
across the different test sets.
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Corpus Perplexity OOV Rate

CUCFN 737.5 6.7%
VOA 664.0 6.7%
CRo1 763.6 7.8%

Table 1: Test set perplexities and OOV Rates

Training Set Model Set
Size (hours) Mixtures Type WER (%)

Czech VOA Test Set 1
12.8 12 3886 state xword triphone 27.1
10.0 12 monophone 27.6
1.0 8 monophone 30.2
0.5 20 monophone 31.3

Czech VOA 1.0 Hour Acoustic Training Set
1.0 10 monophone 26.1

Table 2: Training and Testing on Czech VOA Broadcasts. Word Error Rate (WER) changes very
little despite large variations in model complexity and training set size.

2.2 Czech Baseline ASR Experiments

We defined a variety of training and test sets in the course of our initial experiments. The initial
acoustic training set was drawn from a selection of 40 shows broadcast during the period February
2, 1999 through March 27, with two additional shows from April 30 and May 4. The total amount
of transcribed speech in these shows totalled 12.8 hours. Inall the experiments we conducted,
broadcasts were segmented into individual utterances using boundary information taken from the
annotations.

2.2.1 Czech Monolingual ASR Experiments

Our first Czech VOA test set consisted of broadcasts from February 15, March 13, and May 3 1999
totalling 1.0 hours of transcribed speech. The speech feature parameterization employed in training
and test are mel-frequency cepstra, including both delta and delta-delta sub-features; cepstral mean
subtraction is applied to all features on a per utterance basis. Waveform files were down-sampled
to 16KHz. All models were trained using the HTK ‘incrementalbuild’ procedures beginning from
a flat-start.

The first CZ VOA experiments tested a 12 mixture, state clustered, cross-word triphone sys-
tem. The Word Error Rate (WER) of this system was 27.1% (see Table 2), which we considered
to be reasonable given the 6.7% OOV rate. We then investigated the performance of a 20-mixture
monophone system. Our hope was that we would be able to use monophone systems in our experi-
ments since this would simplify sharing models across languages, and we did indeed find that this
monophone system performed comparably to the triphone system.

7



Czech VOA Test Set 1
Speaker Identity Gender WER Gender WER

Unknown F 24.05 F 22.47
F 17.26 F 25.91
F 31.67 F 33.55
M 25.14 M 26.61
M 23.91

Anchors M 16.28 M 45.54
F 25.53 F 24.82

Overall 27.6%

Table 3: Word Error Rate by Speaker for the 10 Hour Czech VOA 12-Mixture Monophone System.
High overall accuracy is not due to a few well-recognized individuals.

Motivated by these results, we decided to study monophone performance as a function of re-
duced training set size. We expected performance to decrease with large reductions in the training
set, however, as detailed in Table 2, we found performance tobe largely insensitive to both model
complexity and the amount of training data. This experimentis evidence that there is too much self-
similarity in this particular training and test set combination for it to be useful for ASR experiments.
This is further confirmed by testing the 1.0 hour monophone models on the data used to train them
- only a 4% absolute difference is performance is observed between the training and test sets. This
is contrary to the expectation that performance on the training data should be much greater than on
a fair test set.

2.2.2 Analysis of Czech VOA Performance

We studied the performance by each speaker to see if this self-similarity is due to speech from
‘news anchors’ dominating both the training and test sets. However, as shown in Table 3, we found
that performance varied widely over all the speakers in the test set. In fact, the worst performing
speaker was one of the anchors.

We next considered whether the training and test sets were similar because they were collected
within a relatively short time, since stories ‘in the news’ contained frequently occurring words and
phrases that might end up being unusually well-trained. We defined another test set to be Czech
VOA recordings from the week of May 21, 1999. This ensured a separation of several weeks
between the test set and the bulk of the training data. However, as show in Table 4, performance
was only slightly worse on these later shows than on the earlier test set. We concluded from this
that the similarity between the test and training set was notsimply due to their being recorded at
about the same time.

2.2.3 Cross-Domain Experiments

As shown in Table 5, we found several surprising results in experiments with our read speech
systems and data sets. Most surprisingly, a read speech system trained on 1.0 hour of speech
performs significantly better on the Czech VOA data than it does on read speech. Conversely, the
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Czech VOA Test Set 2
Date WER Date WER

05/21/99 36.14 05/22/99 33.43
05/23/99 36.44 05/24/99 37.18
05/25/99 33.34 05/26/99 39.43
05/27/99 37.54 05/28/99 32.89
Overall 35.7%

Table 4: Daily Word Error Rate of a 1.0 Hour, 20-Mixture Monophone Czech VOA System. This
test set was recorded several weeks after the acoustic training set, and performance is only slightly
less than found on the earlier test set.

WER (%)
Models CUCFN VOA Set 1 VOA Set 2

10.0 hr CZ VOA 12-Mixture Monophone 68.0 27.6
1.0 hr CZ VOA 20-Mixture Monophone 66.1 30.2 28.8
1.0 hr CUCFN 20-Mixture Monophone 47.3 35.7

Table 5: Training and Testing on Czech VOA Broadcasts and CUCFN Read Speech. The read
speech CUCFN models perform better across domains than the Czech broadcast VOA models.

Czech VOA systems perform much worse on the read speech. Thissuggests that the Czech VOA
data is more like read speech than much of the speech actuallyin the read speech corpus.

We were curious whether this self-similarity is a general property of VOA speech, or whether
we merely were unlucky with our Czech broadcasts. Juan Huerta performed a quick experiment
using the CMU Sphinx III Spanish Hub V broadcast news system with a bigram derived from
newspaper stories. Performance of acoustic models trainedon 1.0 hour of Spanish VOA speech
was measured on 30 minute test sets of Spanish VOA test broadcasts and Spanish language ECO
news broadcasts from Mexico. The results given in Table 6 aresimilar to those we encountered
in the Czech VOA data: the system trained on Spanish VOA data performs well on other Spanish
VOA data, but generalizes poorly to other Spanish broadcastdata.

Our concerns about the general nature of VOA speech promptedus to record the aforementioned
news programs broadcast byČeský rozhlas 1 - Radiožurnál. For convenience this testset was called
CRo1. Unlike the Czech VOA data, performance on this test setvaried as expected with reductions

30 Minute Test Set
WER (%)

Models Spanish VOA ECO
1.0 hr Spanish VOA Monophones 22.5 51.7

Table 6: Testing Spanish Broadcast News with 1.0 Hour Spanish VOA Models. Spanish VOA
models generalize poorly to ECO newsbroadcast data.

9



Czech CRo1 Test Set
Models WER (%)

13 hour CUCFN 3886 state xword triphoney 42.0
10 hour CUCFN 12-mixture monophoney 55.5
10 hour CUCFN 20-mixture monophone 54.8

10 hour Czech VOA 12-mixture monophone 58.0
1 hour CUCFN 20-mixture monophone 58.6

Table 7: Word Error Rate for the CRo1 News Broadcasts. Performance varies significantly with
variations in training set size and model complexity. Experiments markedy were conducted with
22KHz sampled training and test data.

CUCFN Czech VOA-1 Czech VOA-2 CRo1

females/males 7/7 8/5 26/6 39/61
females/males utterances 700/699 257/147 836/281 345/466
planned/spontaneous utterances (%)100/0 100/0 100/0 45/55
studio/outside (%) 100/0 100/0 100/0 85/15
total utterances 1399 404 1117 811
speakers 14 13 32 46
duration (minutes) 60 150 99

Table 8: Characteristics of the Test Set Partitions.

in training data and model complexity. In particular, we observe an absolute reduction of 17%
in word accuracy by going from a 13 hour cross-word triphone system to a 1.0 hour monophone
system.

2.3 Training and Test Set Definitions

Our initial experiments indicated that our Czech VOA collection is quite well-behaved, in that
using only small amounts of acoustic training data yields fairly good word accuracy. Although our
experiments do not explain why this is so, this lack of variability makes the Czech VOA unsuitable
for use simultaneously in training and testing. A related problem is that since this VOA appears to
be similar only to itself and very different from other speech, by studying it we risk obtaining results
that are not valid in general. For these reasons we extended the test and training set to include Czech
speech outside VOA.

We decided to fix the 1.0 hour CUCFN read speech training set asthe in-language acoustic
training set. The main test set is the second Czech VOA Test (chosen for its larger size). The
CUCFN test set and the CRo1 collection serve as secondary, and more difficult, test sets. In this
way we avoid using the Czech VOA data simultaneously in training and testing.

This provides a realistic and interesting training scenario that involves cross-domain as well as
multilingual factors. Overall characteristics of the testset partitions are provided in Table 8.

The baseline recognition performance is summarized in Table 9. These are the ‘numbers to
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Word Error Rate (%)
CUCFN Czech VOA CRo1

47.3 35.7 58.6

Table 9: Performance of a 1.0 Hour CUCFN 20-Mixture Monophone System.

beat’: any experiment that improves over these results by using only the 1.0 hour CUCFN acoustic
training set and data borrowed from other languages will be considered a success.

2.4 A Cautionary Note

These experiments with Czech VOA are reported to emphasize that language is just one charac-
teristic of speech and that other conditions, such as speaking style, are significant factors in ASR
performance. It is therefore critically important to obtain diverse training and test sets for multilin-
gual experiments. It is also important that results of limited domain experiments, such as training
and testing with data from the same news programs, be interpreted cautiously since performance
may not carry over to more diverse domains.

3 Cross-Lingual Phone Mappings

3.1 Knowledge-Based Phone Mappings

In some applications, it is highly desirable to be able to develop speech recognition systems without
using any acoustic training data. In such situations, borrowing models from other languages for
which speech recognition technology is well-developed is extremely attractive. The approaches
presented here are referred to as knowledge-based because they exploit linguistic knowledge of the
languages and their phoneme inventories, and because they have not been retrained on any target
language acoustic data.

The goals of the work presented in this section were two-fold:

(1) to develop baseline performance for target language systems developed from our existing
source-language monolingual systems, and

(2) to minimize the amount of target language training data required by developing effective
techniques for model combination from the source languages.

In our case, our source languages were English (EN), Spanish(ES), Mandarin Chinese (MD), and
Russian (RN). The target language was Czech (CZ). As previously mentioned, these languages
were chosen primarily because of the existence of large amounts of data from a similar domain:
Broadcast News (BN). Russian was the only exception. Thoughthe Russian data consisted of
read speech, Russian is acoustically very close to Czech, and hence provided another important
contrastive data point.

Through the course of our work this summer, we established some important bounds on perfor-
mance that provide a good deal of perspective on the problem.Systems that use no target language
training data generally performed in the range of 80% WER; systems allowed some access to target
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Figure 3: An IPA description of the consonant portions of thephone sets used in our experiments.

language data to determine phone-level or state-level mappings performed in the range of a WER
of 55%; systems allowed some amount of retraining or systemsbuilt from large amounts of target
language data achieved performance in the range of 30%.

A third goal of this work was to attempt to close the gap between the knowledge-based systems
operating at a WER of 80% and the data-driven systems operating in the range of 55% WER.
We attempted to do this only by utilizing a priori information about the proximity of the source
languages to the target language, and developing intelligent methods of model combination for the
source languages.

3.1.1 Monolingual Cross-Language Baselines

Our first set of baselines involved a simple mapping experiment in which phones from the Czech
target language were mapped to their nearest neighbor in a single source language using a simi-
larity measure based on feature-based descriptions of the phones. This is a manual procedure that
leverages extensive knowledge of acoustic phonetics [4]. Our approach involved first describing the
phones in both the source and target languages in terms of their articulatory positions, a process that
leads to a description of the sounds using the InternationalPhonetic Alphabet (IPA) [23]. A portion
of this analysis is shown in Figure 3. A complete inventory, along with several related resources,
can be found in [21]; an example of such a description for a phone is shown in Table 10. The ad-
vantage of this approach is that all languages can, in theory, be represented within the same system.
Other advantages include an ability to cluster phones for context-dependent representations using
approaches based on acoustic phonetic similarity analogous to what is used in language-dependent
recognition.

We next determined the proximity of a sound in the target language to a sound in the source
language using this representation, and developed an associated symbol-to-symbol mapping. Exam-
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Phone Description
S UNVOICED ALVEOLAR FRICATIVE
F UNVOICED LABIO-DENTAL FRICATIVE
II HIGH FRONT UNROUND LONG VOWEL

Table 10: An example of a representation of a phone in terms ofarticulatory positions.

VOA-1 VOA-2
Source Language WER(%) WER(%)

Czech 27.6 23.6
Russian 65.2 60.8
Spanish 79.3 71.7
English 80.9 75.5

Mandarin 91.1 88.7

Table 11: Baseline monolingual system performance.

ples of such mappings are given in Figure 4. While it was possible to achieve reasonable mappings
for each language, there are significant variations in the level of detail used in the source language
phonetic inventories. Spanish, for example, only used 25 phones, while Russian used 44 phones.
Since optimization of the source language systems was beyond the scope of this project, we did not
spend a lot of time fine-tuning the phonetic mappings, or designing phone inventories particularly
suited to our task. Instead, as a starting point, we used off-the-shelf state-of-the-art existing BN
systems. We proceeded to use these mappings to obtain baseline performance of a Czech Broadcast
News (CZBN) recognition system using acoustic models from the source languages derived from
these mappings. The procedure was quite simple: represent each phone symbol in the Czech lexi-
con using a corresponding source language phone located from these mappings. The performance
of systems constructed in this manner is given in Table 11. Overall, we observe that performance is
poor - in the range of 80%WER. It was a great surprise to observe that the Russian acoustic models,
though they were trained on read speech, were a close match tothe CZBN data, especially consid-
ering the differences in microphones, speaking style, and speaking rates. As we subsequently found
out, the CZBN data is relatively well-articulated, and fairly easy to recognize at a nominal level of
performance. We also observed from these experiments that performance for English and Spanish
was comparable, and performance for Mandarin lags the othersystems.

Upon observing this degradation of performance for Mandarin, we hypothesized that the phone
mapping was a major source of error. Hence, we evaluated fourdifferent phone mappings. These
mappings are summarized in Figure 4, and explained in greater detail in Figure 5. The performance
on the VOA-1 evaluation for each of these mappings is given inTable 12. Though we achieved a
very minor improvement in performance (a 0.8% absolute gain), we can conclude that performance
is not extremely sensitive to the quality of the manual phonemapping at the level of performance
our system was operating at. Hence, we turned our attention to methods for combining multiple
languages into a single system.
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Figure 4: Phone mappings from Czech to our four source languages using an IPA-based feature
representation. For some languages, several possible mappings are shown to demonstrate that there
is some amount of ambiguity in these mappings.
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Figure 5: Four variations of Czech to Mandarin phone mappings that were explored to diagnose the
poor performance of the Mandarin system.
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Source Language VOA-1 WER(%)
Mandarin - v1 91.1
Mandarin - v2 93.7
Mandarin - v3 90.1
Mandarin - v4 89.3

Table 12: Several approaches to Mandarin phone mappings were explored in an effort to improve
performance. As we can see, performance was not greatly influenced by the nature of the manual
phone mapping.

Source Language VOA-1 WER(%)
Spanish 79.3
Selective 77.7

Table 13: A comparison of performance using a Spanish-only system, and a system involving
a mixture of mappings from three source languages. Though there is a modest improvement in
performance, the improvement was not nearly as significant as we had hoped.

3.1.2 Multilingual Phone Mappings

It was evident that a single source language did not provide optimal coverage of Czech. Therefore, it
was natural to explore a mapping that involved phones from all source languages based on proximity
in the IPA table. Since Russian was clearly acoustically closer to Czech than any of the other source
languages, we excluded Russian from the set of source languages for this experiment, so that it
would not mask any trends in our knowledge-based systems that might surface. This was somewhat
of a cheating experiment in that we began with our best models- the Spanish system. We then
replaced phones in cases where other languages appeared to have a closer match. We did include
Mandarin even though we had suspicions about the quality of the models.

A summary of the resulting mapping is shown in Figure 6, and the associated performance is
given in Table 13 Though we achieved modest improvements in performance (1.6% absolute WER),
we did not achieve performance comparable to data-driven mapping methods discussed later.

Our next attempt to understand the deficiencies of the knowledge-based system was to explore a
series of experiments in which the recognition system was allowed to choose the best combination
of phones at runtime (rather than fixing these via a mapping prior to recognition). First, we explored
a parallel pronunciation approach [22] in which each item inthe lexicon was allowed to be repre-
sented as a sequence of phones from a single language. This was implemented using pronunciation
networks, and is summarized in Figure 7.

Unfortunately, this approach resulted in a slightly degraded performance, as shown in Table 14.
This result was somewhat discouraging, since we had hoped that the additional degrees of freedom
would offset any systematic acoustic bias between the two domains. The next obvious thing to
try was to allow the recognition system to mix and match phones from all source languages. This
approach, referred to as a multiphone approach, is also summarized in Figure 7. The corresponding
performance is given in Table 14. The multiphone approach was an attempt to let the recognizer
find the best realization of a phone, rather than fixing this based on a priori linguistic knowledge.
We can see that a minor improvement in performance over the parallel pronunciation system was
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Figure 6: A selective phone mapping that uses phones from three source languages to model Czech.
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achieved, as expected. However, overall performance is still below the best monolingual system,
and far below the Russian system shown in Table 14. Again, this was a discouraging result.

Source Language VOA-1 WER (%)
Czech (CZ) 27.6

Russian (RN) 65.2
Spanish (ES) 79.3
English (EN) 80.9

Mandarin (MD) 91.1
Parallel Prons. 83.0

Multi-Phone Prons. 80.1

Table 14: Performance for two approaches as mixing phones from multiple languages. The parallel
pronunciation approach constrains words to use phones fromthe same language. The multi-phone
approach allows the system to mix and match phones from any language. As we can see, the latter
system resulted in a minor improvement in performance, but did not exceed the performance of the
baseline system.

3.2 Automatic Generation of Phone and Sub-Phonetic Mappings

The purpose of this work was to generate automatically a set of phonetic mappings from a pool
of well trained languages (the source languages) to a singlelanguage (the target language) where
there is little data to train a large set of acoustic models. To address this problem, we developed
a methodology to derive automatically these mappings both at the phonetic and at the subphonetic
levels.

Several uses can be made of these mappings once they are obtained: for example, they can be
used to assemble acoustic models in the target language using components obtained from the source
languages acoustic model inventories, they can be used to derive initialization models for further
adaptation or retraining methods, or they can be used to borrow data for acoustic modeling.

In the following sections we will describe theConfusion Matrixapproach to finding cross-
lingual mappings as well as the criteria we explored in our investigations, we will describe how we
mixed models coming from several source models, and we finally present our experimental results.
In the final subsection we present directions for further work.

3.2.1 The Confusion Matrix Approach to Cross-Lingual Phonetic Similarities

Figure 8 below presents a segment of speech in the target language. Let X denote the phonetic
segmentation and labels assigned to the utterance segment.These segments can be obtained through
human intervention or automatically, by force-aligning the segment transcriptions. Let Y denote
the output of a phonetic recognition of the same speech segment in a given source language. The
phonemes that will appear in this string Y are not phones thatbelong in the phonetic inventory of the
language in which the sentence was uttered, however, for a sufficiently long segment of speech the
co-occurrences between phone in the string X and phones in the string Y will reflect the similarity,
at least from the recognizer’s point of view, between phonesin both languages.
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Figure 7: Two approaches to mixing multiple source languageacoustic models without the use of
acoustic training data. In the first approach, the recognizer is constrained at the lexical level to
phones from a single source language to represent a word. In the second approach, the recognizer
can mix and match phones from any source language.
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Figure 8: Speech Segment with Automatic Labelling Comparedto the Reference Transcription.

Once a criterion for co-occurrence between two phonetic labelings of the acoustic segments
is defined (e.g., a minimum number of overlapping frames, etc.), we can arrange the phones of
the source language and target language into a matrix that contains the counts of co-occurrences
between thenth andkth phones of the source and target languages, respectively, inthe(n; k) entry
of the matrix. This matrix of co-occurrences is the confusion matrix.

After the confusion matrix between the phones of two languages is obtained, we derive map-
pings from this matrix. Given a source phone (in thenth row), we would like to select the phone
in the target language that best matches it (i.e., choose thebest matchingkth column). To do this
we can simply choose the column with the highest count. A better method takes into account the
number of times thekth source language phone was hypothesized by dividing the counts of the bin(n; k) by the accumulated counts of the columnk.

We extended this technique to the state level, motivated by our intuition that some phones in the
target language seemed hard to match. To obtain the subphonetic mapping, we broke each HMM in
the source and target language into its conforming states and derived an HMM from each of these
states. Using these new, sub-phone HMMs we constructed a newconfusion matrix. As expected,
we found that some of these hard-to-match target language phones were modeled by assembling
new models from phonetic subunits from other languages.

We observed that when many states and phones from various languages were competing to
represent any given target model, several models seemed to give high counts and thus be close
candidates for a reasonable match. We explored the possibility of including several of these best
matching candidates by combining the Gaussian models in their mixtures after weighting them
accordingly. We established the weights used in this state combination to be proportional to the
normalized number of counts corresponding to the map. Table15 shows an example of the best
3 matches between ENglish, MAndarin and SPanish, to represent the 3 states of the Czech vowel
HMM aaand their corresponding weights.

Experimental Results

Table 16 below shows recognition experiments we conducted using mappings derived from con-
fusion matrices. Column one refers to the languages employed to derive the source inventory of
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State Source Language HMM State Matches with Scores
aa 1 en ay 1 / 0.12 en aa 1 / 0.11 ma a 1 / 0.09
aa 2 en aw 2 / 0.19 en aa 2 / 0.17 en aax 2 / 0.12
aa 3 en ay 2 / 0.28 en aw 3 / 0.23 en ao 3 / 0.06

Table 15: Example Cross-Lingual State-Level Mappings Ordered by Confusion Score;e.g. Czech
data aligned as state 1 of the Czech HMMaa is best modeled by state 1 of the English HMMay.

Source(s) Mapping Method n-best WER(%)
Czech Phone baseline 38.01

EN Phone manual 1 >80
SP Phone manual 1 >80
EN Phone matrix 1 68.31
SP Phone matrix 1 68.67
EN State matrix 1 64.75
SP State matrix 1 70.03
MA State matrix 1 79.69

EN+SP+MA State matrix 1 62.28
EN+SP+MA State matrix 3 55.77
EN+SP+MA State matrix-2 3 54.38
EN+SP+MA State matrix-2 + LAC 3 48.80

Table 16: Recognition Performance Using Automatic Methods. The Czech baseline system and the
knowledge-based system are included for comparison.

phonetic units; column two refers to the type of phonetic unit employed (i.e., phone or state); col-
umn three refers to the method employed to determine the mapping (i.e., manual, matrix based, or
matrix based with Language Adaptive Clustering); column four refers to the number of best match-
ing source language phonetic units from the confusion matrix (ranked by their normalized counts)
that were used to assemble the target language phonetic unit; column five shows the corresponding
Word Error Rate. The first line presents our baseline, in which monophone Czech models trained
on approximately one hour of Broadcast News data are used to recognize a separate episode of
Broadcast News data. The following two lines show the recognition results obtained using a typical
human based mapping from the source languages English (E) and Spanish (S) respectively. When
mappings are obtained using the matrix approach the word error rate drops below 70% (lines 4 and
5). State level mappings help reduce the error rate of the English mappings. The best results are
obtained when three source languages are included (English, Spanish and Mandarin Chinese) and
state mappings are obtained for both one state to one state mapping (line 9) and best three states to
one Czech state (lines 10 and 11). The best number is below 55%WER. The difference between
line 10 and line 11 is due to the presence (line 11) or absence (line 10) of count normalization of
the columns in the confusion matrix.
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Acoustic Training Using Automatic Mappings

We used the best mapping described above (last row in the table), to derive Czech models from
the source languages. Using these models as starting pointsfor further iterations of Baum Welch
training did not seem to give any noticeable advantage over training from a flat-start. However,
the performance of the best mapping could be improved substantially by performing phonetically
motivated cepstral mean normalization as described in the next section: the WER was brought down
in this way to 48.8%.

3.3 Language Adaptive Clustering

Here we examine a novel method to find cross-lingual phone mappings using a modified version
of vector quantization [15]. The key feature here is that we allow the source language data to
be acted upon by language-specific transformations, in the hope that these transformations will
model differences in recording conditions as well as differences in the pronunciation patterns of
the languages. We stress that these cross-lingual transformations are useful not only in improving
clustering; they can be applied directly to models and data to remove cross-language variability.

Vector-quantization, also called K-Means clustering, is well-known, as is the LBG algorithm
used to obtain VQ codebooks. Given a set of data vectors, the goal is to find a finite set of centroids,
or codewords, that will be used to represent the data so that the total distortion is minimized. For
a collection of data vectorsfxig, the minimum distortion vector quantizer attempts to find a set of
codewords or centroids,C = fCkg, to minimize the design objectiveXi minCk2C jCk � xij2:

The preimages of codewords, i.e the vectors that share a common codeword, are known as
clusters. Intuitively, the idea is that each cluster contains vectors that are “close together”. The LBG
algorithm is an iterative procedure that alternates between recomputing centroids and recomputing
clusters. This is combined with “splitting”: to increase the number of clusters, each centroid is
perturbed to create a new codeword.

The outcome of this procedure can be represented as a binary tree where each node at thekth
stage represents a cluster, and its children are the clusters into which it has been split. In the case of
multilingual acoustic data, if vectors of a Czech phone and vectors of, say, a Spanish phone end up
in the same cluster, then that Spanish phone should be mappedto the Czech phone.

For our application, we introduce two modifications. The VQ training technique does not ensure
that all the samples of a given phone belong to the same cluster, so we modify the step of the algo-
rithm in which clusters are recomputed. Rather than assign acodeword to each vector individually,
we find the codeword that best describes all instances of a phone in each language.

The VQ procedure could be run with this modification to cluster phones across languages.
However, we observed (see Table 18) that the differences between languages dominate differences
between phones: by the second level of splitting, the clusters become extremely language-specific,
i.e. each cluster contains mostly phones from only one language. This defeats the purpose of the
procedure, which was to find phone clusters across languages.

Our second modification is to introduce cross-language transformations to eliminate these broad
cross-language differences. Specifically, for each cluster and source language, we allow a member
of a familyT of transformations to act on that language’s data in the cluster.
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We have defined a modified VQ objective function that incorporates these transformations.
Let xp;li denote theith sample of phonep from languagel. The modified objective function that
describes a clustering Czech, Spanish, Russian, Mandarin,and English phone isXp minCk2C Xi jCk � xp;zi j2 + Xl2fma;sp;ru;eng minCk2C minT p;l2TXi jCk � T p;l(xp;li )j2:
Note that no transformation is applied to the target language data. In this way we hope to find the
best target language codewords along with mappings from thesource language data to the target
language codewords.

We considered two possible families of transformations: rotationsT p;l(xp;li ) = W p;lxp;li
and additive shifts T p;l(xp;li ) = xp;li + bp;l:
In either case, the LBG algorithm was modified as follows.

Language Adaptive LBG Clustering

Given a set of codewordsfCkgKk=1 and a set of transformationsfT p;lg, one iteration of the modified
LBG procedure is summarized as follows

Find codewords for all phones in each language : rp;l = argminkPi jCk � T p;l(xp;li )j2
Reestimate all centroidsCk; k = 1; : : : ; K : Xk = fxp;li : rp;l = kg; k = XkCk  k
Reestimate transforms for source language phones :k = rp;lT p;l  argmint2T Pi jk � t(xp;li )j2

As the procedure shows, after recomputing the centroids andclusters, we add another step, in which
the transformation is recomputed to be the best possible member ofT given the new centroids and
clusters.

In the case of rotations, we reestimate these transformations by arranging all the samples of a
phonep from languagel into a matrixX = [xp;li ℄, and with the new centroidk fixed, we use a
procedure analogous to least-squares regression to find theoptimum transformationW p;l = k 10 X 0 (XX 0)�1
where0 denotes transposition. In the case of shifts, the transformation is simpler:bp;l = k � xp;l
where the last term is the mean vector of the samples from phonep of languagel.
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WER(%)
mapping alone 86.4

mapping + transformation 71.6%

Table 17: WER of Cross-Language Phone Clustering using Additive Shift.

Results

For these experiments, the target language was Czech and thesource languages were Russian,
Spanish, and Mandarin. For each language, we used about 1.0 hours of acoustic data in the form
of 39-dimensional mel-frequency cepstral coefficients with their first and second differences. The
data was labelled at the phone level via automatic alignment. The Czech data was CUCFN speech
aligned by the 1.0 hour monophone models.

To establish some initial baselines, we ran the VQ algorithmwithout any language-specific
transformations. Clusters were split successively until they contained only one Czech phone. The
results are shown in Table 18. It can be seen that the clustersare predominantly multi-lingual, and
even worse, many Czech phones can be found in clusters alone.

We next tried to force phones to map across languages, by looking for the four closest Spanish
and Mandarin phones for each Czech phone. Results are shown in Table 20. As can be seen, the
mappings from Table 19 do not look reasonable, and it is therefore necessary to apply some kind of
transformation to the non-Czech data.

Next we moved on to the actual experiments involving transformations. In the first case, using
rotations, there was a disappointing lack of cross-language clustering; phones still tended to stay
with others of the same language. This is shown in Table 20. Inthe second case, using an additive
shift, there was much more cross-language clustering. The next step was to use the results of this
latter cross-language clustering to generate a mapping. The results of this are shown in Table 21.
We tested this mapping in two ways. First, we simply ran a recognition experiment on the Czech
data by replacing each Czech phone with its source language phone, and the results are given in
Table 17. This gave relatively poor results - the word error rate was 86.4%. However, this approach
does not take into account the additive shifts that were usedwhile clustering. So the next experiment
was to apply the appropriate additive shifts to the means of the Gaussian mixtures for each source
language phone’s HMM. This significantly reduced word errorrate to 71.6%, which is comparable
to the other automatic phone-level methods.

Applications to Other Methods

Another point worth mentioning in connection with cross-language transformations is that they
can also be used in conjunction with other methods of generating mappings. Specifically, given a
mapping, we could try to improve its performance by applyingadditive shifts to the source language
HMMs as above. We tried doing this with the mappings generated by using a state-level confusion
matrix. This resulted in a significant drop in error rate from54.5% to 48.8%.
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Cluster Phone : Source Language
1 g:CZ e:SP l:SP d:SP m:SP r:SP n:SP i:SP g:SP ll:SP gn:SP n:MA i:MA
2 ee:CZ rr:SP at:MA d:MA
3 sil:SP k:SP t:SP a:SP p:SP
4 sp:SP t:MA g:MA p:MA
5 s:SP ch:SP x:MA j:MA q:MA
6 x CZ j:SP s:MA c:MA
7 l:CZ o:SP u:SP
8 f:CZ f:SP h:MA z:MA f:MA k:MA
9 rzh:CZ
10 rshCZ
11 aa:CZ a:CZ
12 a:MA
13 ow:CZ aw:CZ o:MA
14 o:CZ amp:MA gt:MA
15 uu:CZ w:MA u:MA
16 u:CZ
17 ng:CZ b:SP
18 h:CZ
19 v:CZ b:CZ v:SP
20 b:MA
21 r:CZ
22 d:CZ y:SP
23 e:CZ j:CZ i:CZ e:MA
24 y:MA %:MA r:MA l:MA
25 ii:CZ
26 m:CZ dj:CZ m:MA
27 n:CZ
28 nj:CZ
29 z:CZ x:SP
30 s:CZ c:CZ
31 p:CZ t:CZ
32 k:CZ sp:MA
33 sil:MA
34 sil:CZ sp:CZ
35 zh:CZ
36 tj:CZ
37 sh:CZ
38 ch:CZ

Table 18: VQ Phone Clusters Found Without Cross-Language Transformations.
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Czech Best Second Third Fourth
sil sp:MN f:SP s:MN r:MN
p c:MN p:MN s:SP gn:SP

rsh t:MN p:SP c:MN e:MN
e f:MN f:MN x:SP l:MN
j p:MN g:MN x:MN y:MN
i f:SP b:MN sil:SP d:MN
v x:SP sil:MN q:MN @:MN
aa s:MN sp:SP z:MN y:SP
m z:MN t:MN j:MN rr:SP
ii sil:SP z:MN t:MN %:MN
n j:SP x:SP f:SP g:SP
o sp:SP t:SP sp:MN n:MN
s sil:MN j:SP j:SP v:SP
l p:SP sp:MN p:MN ll:SP
x j:MN k:SP ch:SP k:SP
h q:MN j:MN f:MN b:SP
a x:MN d:MN t:SP sp:SP
u k:SP c:MN k:SP w:MN
r t:SP k:MN sp:SP at:MN
k k:MN ch:SP sil:MN l:SP
nj b:MN q:MN p:SP sil:MN
f ch:SP h:MN k:MN e:SP

ch g:MN x:MN d:MN r:SP
sp h:MN s:MN g:MN u:SP
z d:MN b:SP h:MN m:MN
t s:SP g:SP b:MN m:SP
c at:MN d:SP e:SP b:MN
b g:SP m:MN y:SP ch:SP
uu @:MN w:MN g:SP i:MN
d r:MN sil:SP @:MN t:SP
ee b:SP rr:SP %:MN p:SP
rzh rr:SP @:MN y:MN n:SP
zh y:SP r:SP d:SP d:SP
dj w:MN n:MN at:MN g:MN
ow r:SP v:SP r:MN p:MN
sh m:MN l:SP ll:SP o:SP
tj a:MN l:MN i:SP j:SP
ng d:SP r:MN o:SP f:SP
g n:MN y:MN b:SP u:MN

aw o:SP y:SP r:SP i:SP

Table 19: The Four Closest Spanish and Mandarin Phones for Each Czech Phone Measured Without
Transformation.
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Cluster Phones
1 g:CZ l:SP o:SP s:SP rr:SP b:SP m:SP a:SP r:SP n:SP i:SP y:SP

sp:SP gn:SP sil:MA h:MA w:MA at:MA n:MA y:MA i:MA s:MA o:MA t:MA
x:MA a:MA %:MA d:MA m:MA e:MA gt:MA c:MA u:MA r:MA j:MA q:MA
l:MA u:SP v:SP g:SP z:MA @:MA

2 h:CZ sil:SP sp:MA
3 z:CZ j:SP k:MA
4 l:CZ
5 r:CZ
6 o:CZ
7 aw:CZ
8 ii:CZ
9 nj:CZ
10 ng:CZ
11 rzh:CZ
12 zh:CZ
13 f:SP g:MA b:MA p:MA
14 rsh:CZ
15 c:CZ
16 s:CZ
17 aa:CZ
18 a:CZ
19 ee:CZ
20 e:CZ
21 j:CZ
22 i:CZ
23 u:CZ uu:CZ
24 ow:CZ p:SP
25 m:CZ
26 n:CZ
27 v:CZ
28 d:CZ
29 dj:CZ k:SP e:SP d:SP t:SP ll:SP ch:SP x:SP f:MA
30 b:CZ
31 x:CZ
32 tj:CZ
33 sh:CZ
34 ch:CZ
35 f:CZ
36 t:CZ
37 p:CZ k:CZ
38 sil:CZ sp:CZ

Table 20: Phone Clusters Found Using Rotations.
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Czech Phone Source Language PhoneCzech Phone Source Language Phone
sil sp:RU k k:RU
p p:SP t t:RU
z c:RU rsh fj:RU
ch chj:RU g gj:RU
dj m:SP h v:RU
d d:SP ng g:RU
n n:RU uu u:RU
ii y:SP j j:RU
e e:RU ee e:SP
aa a:RU x x:RU
f z:RU b g:SP
v v:SP m m:RU

ow u:SP u l:RU
s s:RU c ch:SP
tj sj:RU l ee:RU
sh shj:RU a aa:RU
o o:RU aw u:RU
r y:RU i i:RU
nj gn:SP rzh ch:SP
zh zj:RU rr r:SP

Table 21: Phone Mapping Found Using Clustering with Additive Shifts.
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3.4 Discussion

Knowledge-Based Methods

In developing knowledge-based methods for cross-lingual phone mapping, we attempted to im-
prove speech recognition performance without access to anytarget language training data using
only linguistic knowledge about the acoustic phonetic structure of each language. We learned that
proximity of the source language models to the target language is presently a stronger correlate
than anything we can do based on linguistic knowledge and phonetic mappings. We also showed
that accounting for some language-dependent bias between the source languages and the target lan-
guage is not a trivial matter. It seems characterization of the proximity of the target language in an
acoustic sense might be a worthwhile topic for further research, as well as a more controlled study
of channel-independent acoustic representations. Data and resources related to the information pre-
sented in this section can be found on the web at
http://www.clsp.jhu.edu/ws99/projects/asr/finalpresentation/knowledgebased .

We proceeded with an analysis of the common error modalitiesfor our best system. We have
observed that, though the overall WER is high, performance at the phone-level appears to be fairly
good; for example, the Russian system phone error rate was 36.3%. The alignments are plausible,
and a majority of the words are only partially misrecognized.

Automatic Methods

The phone confusion method described in this section helpedus obtain automatically derived map-
pings at the phonetic and subphonetic level between a pool ofwell trained languages and our target
language. It is reasonable to expect that the noise and acoustic conditions in which these source
languages were recorded will influence and to a large extent determine the phonetic mappings ob-
tained in this way. In other words, the approach described above does nothing to remove any sort
of acoustic bias that will influence the phonetic mapping outcome. We showed that this approach
helps well to develop a basic set of mappings which will be of help in approaches described later in
this report (e.g., DMC). We demonstrated that by combining states from source languages HMMs
we can get better mappings than by using phones. It is worthwhile to devote some future efforts
into the problem of acoustic bias removal before deriving the acoustic mappings

Language Adaptive Clustering

The above algorithm with additive shifts gave mappings whose performance was comparable to
other automatically generated phone mappings. Furthermore, we found that additive shifts can also
improve other methods, such as the confusion matrix based approach. Possible extensions of this
approach include obtaining mappings at the state level, andusing a broader class of transformations,
such as affine transformations.

4 Cross-Language Acoustic Model Adaptation

Despite the substantial differences between the quality ofphone mappings obtained by knowledge-
based and automatic state-level phone mappings, adaptation using MLLR and MAP1 on the 1.0

1References and procedures are in the HTK documentation [25].
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Source Mixtures / Type Unadapted GMLLR MLLR+MAP
MA 10 hours 20 /monophone 88.7 63.0
SP 10 hours 20 / monophone 71.6 50.9
RU 3 hours 20 / monophone 60.8 70.7 45.3
EN 10 hours 20 / monophone 75.7 47.2
CZ 1 hour 20 / monophone 33.4
CZ 1 hour 6 / triphone 30.7

Table 22: Effect of Adaptation on Source Language System. Adaptation is via 1 global MLLR
transformation, followed by a 4 class MLLR transformation,followed by MAP adaptation. Test set
is VOA-2.

Training System Adaptation WER(%)
Data Mixtures/Type Steps VOA-2 CUCFN

EN 10.3 hours 12/triphone 4xMLLR+1xMAP 35.1 47.6
EN 10.3 hours 12/triphone 4xMLLR+4xMAP 32.6 44.1
EN 72.0 hours 12/triphone 4xMLLR+4xMAP 32.7 42.1

CZ 1 hour 20/monophone 33.4 47.3
CZ 1 hour 6/triphone 30.7 37.1

Table 23: Effect of Adaptation on English Broadcast News Systems. Number of training iterations
for each adaptation procedure are included.

hour of Czech read speech largely compensates for these differences, as shown in Tables 22 and 23.
Furthermore, while performance improves significantly, the adapted systems do not individually
improve over the monolingual Czech triphone system.

5 Multilingual Discriminative Model Combination

Discriminative model combination [1, 2] aims at an optimal integration of all given acoustic and
language models into one log-linear posterior probabilitydistribution. As opposed to the maximum
entropy approach, the coefficients of the log-linear combination are estimated on training samples
using discriminative methods to obtain an optimal classifier.

Given the posterior distribution�(kjx) that observationx belongs to classk, the decision rule
that results in a minimum expected number of classification errors is the so-called Bayes’ decision
rule. For a given observationx of unknown class membership, find the classk(x) such that:8k0 = 1; :::; K;k0 6= k : log �(kjx)� log �(k0jx) � 0: (1)

The functiong(x; k; k0) = log(�(kjx)=�(k0jx)) in (1) describes the class boundaries and is referred
to as discriminant function [7, 10].

In our problem of recognizing continuously spoken sentences, the observation is a sequence of
feature vectorsxT1 = (x1; : : : ; xT ), which has to be classified into a word sequence
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wS1 = (w1; :::; wS). However, the true distribution�(wS1 jxT1 ) of natural human speech is unknown.
Therefore�(wS1 jxT1 ) has to be approximated by a model distributionp(wS1 jxT1 ).

A widely used training criterion for the distributionp is the maximum likelihood criterion. The
assumption is that we know the functional form of the probability distributionp, but not the param-
eters. Using the maximum likelihood criterion the parameters are estimated on training samples.

The resulting distributionp is then “plugged in” to the Bayes’ decision rule: For a given obser-
vationxT1 of unknown class membership, find the classwS1 (xT1 ) such that:8w0S01 6= wS1 : log p(wS1 jxT1 )� log p(w0S01 jxT1 ) � 0: (2)

Rewriting the discriminant functiong(xT1 ; wS1 ; w0S01 ) = log p(wS1 jxT1 )� log p(w0S01 jxT1 )= log[p(wS1 )p(xT1 jwS1 )℄� log[p(w0S01 )p(xT1 jw0S01 )℄;
(3)

we obtain the well-known decomposition ofp into a language model probabilityp(wS1 ) and an
acoustic-phonetic likelihoodp(xT1 jwS1 ). Sincep typically deviates from the true distribution�, the
decision rule (3) will deviate from Bayes’ decision rule, thus leading to a suboptimal classifier.

To overcome this limitation, discriminative methods can beapplied [17, 20]. The goal of dis-
criminative parameter optimization is to be able to correctly discriminate the observations rather
than to fit the distributions to the observed data.

A simple example for the discriminative approach is the optimization of the so-called language
model factor� of the discriminant function:g(xT1 ; wS1 ; w0S01 ) = log[p(wS1 )�p(xT1 jwS1 )℄� log[p(w0S01 )�p(xT1 jw0S01 )℄:

(4)

Experiments [19] show that a value� with � 6= 1 gives a minimum word error rate. The deviation
from value� = 1 is caused by the deviation of the language model probabilityp(wS1 ) and the
deviation of the likelihoodp(xT1 jwS1 ) from their “true” values.

Let us assume that we are givenM different acoustic and language models, which are identified
by numbersj = 1; : : : ;M . From modelj we can compute the posterior probabilitypj(kjx) of a
hypothesized classk given an observationx. These models are now log-linearly combined into a
distribution of the exponential family:p�f�g(kjx) = e� logZ�(x)+PMj=1 �j log pj(kjx) (5)

The coefficients� = (�1; :::; �M)T can be interpreted as weights of the modelsj within the model
combination (5). The valueZ�(x) is a normalization constant. As opposed to the maximum entropy
approach, which leads to a distributionof the same functional form, the coefficients� are optimized
with respect to the decision error rate of the discriminant function (6):log p�(kjx)p�(k0jx) = MXj=1�j log pj(kjx)pj(k0jx) (6)
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This approach is calledDiscriminative Model Combination. If only one acoustic and one language
model are combined, DMC will optimize the so called languageweight,or language model factor,.
DMC allows for the integration of any model into an optimal decoder, since the weight�j of the
modelj within the combination depends on its ability to provide information for correct classifica-
tion.

5.1 DMC Training

Thus far, DMC has been used to optimize large vocabulary continuous speech recognition (LVCSR)
systems at the sentence level, although it can also be applied to other problems in pattern recognition
due to its general formulation. In LVCSR systems, the spokenutterance is used as observationx and any hypothesized sentence can be regarded as classk. For DMC training we are given
a set of sentencesn = 1; : : : ; N . For each of the training sentences we are given the acoustic
observationxn and the correct class assignmentkn, i.e. kn is the correct transcription ofxn. Using
a preliminary decoding we can define the set of rival classesk 6= kn and we can compute the
number of word errors of the rival classk with the help of the Levenshtein distanceL(kn; k). The
model combination should then minimize the word error countE(�):E(�) = NXn=1L�kn; argmaxk 6=kn �log p�(kjxn)p�(knjxn)��
on representative training data to assure optimality on an independent test set. Since this optimiza-
tion criterion is not differentiable we approximate it in analogy to the well-known MCE training by
a smoothed word error count:EMWE(�) = NXn=1 Xk 6=kn L(k; kn)S(k; n;�); (7)

whereS(k; n;�) is a smoothed indicator function.S(k; n;�) should be close to one if the classifier
(6) will select hypothesisk and it should be close to zero if the classifier (6) will rejecthypothesisk. One possible indicator function with these properties isS(k; n;�) = �p�f�g(kjxn)��Pk0 �p�f�g(k0jxn)�� ; (8)

where� is a suitable constant. Optimization ofEMWE(�) with respect to� leads to an itera-
tive gradient descent scheme. Another possible indicator function with similar properties is the
following second order function:S(k; n;�)= 8>><>>: 1 g > A� g+BA+B�2 �B < g < A0 g < �B (9)
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where g = log p�f�g(kjxn)p�f�g(knjxn)
which gives a closed form matrix solution for�. The valuesA;B determine the form of the 2-nd
degree function and the set of hypotheses used for the training. Both indicator functions lead to
similar and reasonable DMC coefficients�j .
5.2 Log-linear Structuring of Distributions

DMC allows for the optimization of any log-linear distribution. Now, the idea is to find suitable
factorizations of the distribution. Each of the factors maythen be weighted independently, leading
to a log-linear functional form of the distribution. The following 2 sections show examples of
structuring the overall distribution into a log-linear form.

Assume that we are given acoustic modelsAi; i = 1; : : : ; I and language modelsLj ; j =1; : : : ; J . These models can be interpolated into one log-linear distribution:p�f�g(kjx) = QiAi(xjk)�iQj Lj(k)�jPk0 QiAi(xjk0)�iQj Lj(k0)�j : (10)

Define: pA;i(kjx) = Ai(xjk)Pk0 Ai(xjk0) (11)pL;j(kjx) = Lj(k) (12)

Then we can write: p�f�g(kjx) = Qi pA;i(kjx)�iQj pL;j(kjx)�jPk0 Qi pA;i(k0jx)�iQj pL;j(k0jx)�j (13)

Thus we are able to handle the optimization of the interpolation of acoustic as well as of language
models in a uniform way. Both model types may be interpolatedoptimally at the same time using
DMC.

5.3 Structuring the Distribution into Phonetic Classes

The following structuring of a distribution was first applied to decompose the distribution into word
classes [24]. The idea here is to segment the overall scorelog p(xjk) of the sentencek into the
phonesh found in the sentencek:log p(xjk) = Xh2k log p(xhjh) (14)

To reduce the number of classes, here we clustered all phonemes into the three classes: vowels,
consonants, silence. log pV (xjk) = Xh2k Æ(h; V ) log p(xhjh) (15)
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log pC(xjk) = Xh2k Æ(h; C) log p(xhjh) (16)log pS(xjk) = Xh2k Æ(h; S) logp(xhjh) (17)

After segmenting the sentence probability into these 3 phonetic classes we can again build a log-
linear distribution:p�f�g(kjx) = p(k)�LpV (xjk)�V pC(xjk)�CpS(xjk)�SPk0 p(k0)�LpV (xjk0)�V pC(xjk0)�CpS(xjk0)�S (18)

The idea behind this functional form of the distribution is that the vowels, consonants and si-
lence models may have a different importance for classification and should be weighted differently.

5.4 Combination of Multiple Source Language Acoustic Models

5.4.1 Sentence-Level Model Combination

The most direct use of DMC to merge models from multiple languages is to combine them at the
sentence-level. For example, a combination of Spanish and Mandarin models has the following
functional form:log p�f�g(kjx) = C + �LMLz(k) + �zAz(xjk) + �spAsp(xjk) + �maAma(xjk) (19)

whereLz(k) is the Czech language model,Az(xjk) is the Czech acoustic model,Asp(xjk) is the
Spanish acoustic model andAma(xjk) is the mandarin acoustic model.

5.4.2 Phonetic Class Combination

A potentially more powerful approach is to use DMC with language-specific phonetic classes by
applying the ideas of Section 5.3. In the example given here,DMC is applied at the phoneme-
class model level, i.e. for each of the three languages a vowel-model, a consonant-model and a
silence-model were created, summing up to 9 different acoustic models:log p�f�g(kjx) = C + �LMLz(k)+�z;V Vz(xjk) + �z;CCz(xjk) + �z;SSz(xjk)+�sp;V Vsp(xjk) + �sp;CCsp(xjk) + �sp;SSsp(xjk)+�ma;V Vma(xjk) + �ma;CCma(xjk) + �ma;SSma(xjk): (20)

whereVz(xjk) is the Czech vowel-class model,Cz(xjk) is the Czech consonant-class model,Sz(xjk) is the Czech silence model, and the remaining class models are defined similarly for
Spanish and Mandarin.

5.5 DMC Experiments on the VOA Test Sets

The software used at the workshop was restricted to the use ofn-best lists for DMC-training and
DMC-decoding. Note that DMC can be applied directly on denselattices, as is done at Philips

34



DMC models WER(%)
oracle 19.54

anti-oracle 45.04
first best (baseline) 24.76Az + Lz 24.36Az + Lz +WordPenalty 23.78Az + Asp + Ama + Lz +WordPenalty 24.01

Table 24: Sentence-Level DMC Results on the VOA-1 Test Set. The experiment used 100-best lists,
knowledge based Spanish and Mandarin phoneme mappings, combination of the Czech language
model, the Czech acoustic model, the Spanish acoustic model, and the Mandarin acoustic model

Research Laboratories in the HUB4 system. This simplified our experiments; when working with
N-Best lists, the handling of the hypotheses for DMC-training and decoding becomes trivial. On
the other hand, the choice of the size of the N-Best lists turned out to be crucial for the obtained
results, which will be shown in the next few sections.

Experiments on the VOA-1 Test Set

In the first set of experiments, knowledge based mappings of Spanish (SP) and Mandarin (MA) con-
text independent phonemes to Czech (CZ) phonemes were applied. These mappings were created
prior to the workshop. Both the Spanish and the Mandarin systems were trained on about 10 hours
of acoustic Broadcast News data. Using the mappings, Czech phoneme models were generated by
plugging in the corresponding Spanish phoneme model. The same procedure was applied for the
Mandarin models. Thus we arrived at a Spanish-Czech and a Mandarin-Czech system.

The baseline Czech monophone system (CZ) was trained on 1 hour Czech VOA data. Using
this system, 100-best lists were decoded on the Czech VOA-1 test corpus. The task was now to beat
the 1 hour Czech VOA system, with help of the Spanish-Czech and the Mandarin-Czech system.
For this reason, the Spanish and Mandarin models were scoredon the 100-best lists of the Czech
VOA-1 test corpus. Next DMC was applied, using the held-out method: train DMC coefficients
on the first/second half of the corpus and test on the second/first half, and add up the error counts
obtained on both tests.

Since the N-Best lists were quite short and the Spanish and Mandarin knowledge-based models
performed badly, - A free decoding of Spanish and Mandarin models on Czech data gives a word
error rate of about 80-90% - no real gain was expected. The following two sections summarize the
experiments on this test set at the sentence-level and on thephoneme-class level.

Using a sentence-level model combination as described in Equation 19, produced results sum-
marized in Table 24. From these we can conclude that Spanish and Mandarin models do not help,
which may be due to the small size of the n-best lists or due to the weakness of the models. Another
important observation is that DMC automatically found out that the given Spanish and Mandarin
models are weak, so these models received a small weight within the model combination and the
performance of the overall system did not degrade! In addition we see that DMC optimized auto-
matically the language weight; this is a well-known effect.

The next experiment used for DMC phonetic-class combination. To have a fair comparison,
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DMC Model WER(%)
oracle 19.5

anti-oracle 45.0
first best (baseline) 24.8Az + Lz +WP 23.8Vz + Cz + Sz + Lz +WP 23.2Vz + Cz + Sz + Vsp + Csp + Ssp+ +Vma + Cma + Sma + Lz +WP 23.5

Table 25: Phonetic-Class DMC Results on the VOA-1 Test Set. The experiment used 100-best lists,
knowledge based Spanish and Mandarin phoneme mappings, combination of the Czech language
model, the Czech, Spanish, and Mandarin vowel, consonant, and silence models.

the monolingual baseline experiment was defined by applyingDMC to the Czech phoneme-class
models only. From Table 25 we can see that the structuring into phoneme classes improves the
Czech system from 23.8% to 23.2% but that, again, the Spanishand Mandarin Models do not help.
Note that the slight improvement from 23.8% to 23.2% is gained by adding only 3 free parameters
to the system only.

Experiments on the VOA-2 Test Set

A new experiment definition was created to overcome the limitations described above. The size
of the N-Best lists were increased significantly and more advanced models were applied. During
the workshop period, knowledge based mappings of Spanish (SP), Russian (RU), and English (EN)
models to Czech models were created. The Czech baseline monophone system was trained on 1
hour of Czech read speech data which may be a useful startup when building a system in a very
new language. Using this system 1000-best lists were decoded on the Czech VOA-2 test corpus.
The Spanish, Russian, and English models were scored on these 1000-best lists. DMC was again
applied using the held-out method. This setup is reasonableand should give more realistic results
than the VOA-1 setup in the previous section.

With this new test set, the experiments on the sentence levelas well as on the phoneme-class
level were repeated. The overall combination of the given source models leads to the following
functional form:log p�f�g(kjx) = C + �LMLz(k) + �zAz(xjk) + �spAsp(xjk)+�ruAru(xjk) + �enAen(xjk): (21)

The performance of the various single acoustic models is summarized in Table 26. The error rates
were obtained by a free decoding using the source-language acoustic models and the Czech lan-
guage model on the Czech VOA-2 test set.

The systems in Table 26, which are marked with a ’*’, were combined into one decoder using
DMC. Results are presented in Table 27, from which we can see that the Spanish and Russian
models help to improve the system and that the English triphone models help even more. The
overall word error rate can be reduced significantly from 33.4% (free decoding of Czech 1 hour
system) down to 29.2% (N-Best decoding of multilingual system combination). This result was
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Source Language Acoustic Model VOA-2 WER(%)
29 hour Spanish BN Monophone 71.1 *

4 hour Russian Monophone 60.6 *
10 hour English BN Triphone adapted to Czech 35.1 *

1 hour Czech CUCFN Monophone 33.4 *
1 hour Czech CUCFN Triphone 30.7
10 hour Czech CUCFN Triphone 27.1

Table 26: Recognition Performance of Source-Language and Target-Language Systems.

DMC Model VOA-2 WER(%)
oracle 19.8

anti-oracle 56.6
first best (baseline) 34.0Lz + Az 32.7Lz +Az +Aru 32.5Lz +Az +Aru +Asp 32.3Lz + Az +Aru + Asp +Aen 29.2

Table 27: Results of Sentence-Level DMC on the VOA-2 Test Set. The experiment used 1000-
best lists, knowledge based Spanish, Russian, and English phoneme mappings, combination of the
Czech language model, the Czech acoustic model, the Spanishacoustic model, the Russian acoustic
model, and the English acoustic model
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DMC model WER(%)
oracle 19.8

anti-oracle 56.6
first best 34.0Lz + Az (baseline) 32.7Lz + Vz + Cz + Sz 32.1Lz + Az +Aru +Asp 32.3Lz + Vz + Cz + Sz +Vru + Cru + Sru + Vsp + Csp + Ssp 31.8Lz + Az + Aru + Asp +Aen 29.2Lz + Vz + Cz + Sz + Vru + Cru +Sru + Vsp + Csp + Ssp + Ven + Cen + Sen 28.9

Table 28: Results of Phonetic-Class DMC on the VOA-2 Test Set. The experiment used 1000-
best lists, knowledge based Spanish, Russian, and English phoneme mappings, combination of the
Czech language model, the Czech, Spanish, Russian, and English vowel, consonant and silence
models

not expected since the combination was done at the sentence level and only 5 free parameters were
optimized.

The next question addressed was whether the results at the sentence level can be further im-
proved when applying DMC to phonetic-classes. To compare the results with a corresponding
Czech baseline system, the phonetic class model combination was optimized using the Czech mod-
els only, as in Equation 19. The following overall system wascreated andlog p�f�g(kjx) = C + �LMLz(k)+�z;V Vz(xjk) + �z;CCz(xjk) + �z;SSz(xjk)+�sp;V Vsp(xjk) + �sp;CCsp(xjk) + �sp;SSsp(xjk)+�ru;V Vru(xjk) + �ru;CCru(xjk) + �ru;SSru(xjk)+�en;V Ven(xjk) + �en;CCen(xjk) + �en;SSen(xjk): (22)

Table 28 summarizes the results obtained after optimizing the above model combinations.

5.6 Conclusions and Summary

For the VOA-1 setup we can draw the following conclusions:� The knowledge based Mandarin and Spanish models did not help. Since DMC found this
automatically, the system performance did not degrade.� The n-best lists were too short.� The language weight was optimized automatically.� The results matched our expectations.
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From the VOA-2 results of Table 28 we can conclude that the structuring into phoneme classes
improves the system and that the interpolation of multilingual phoneme-class models performs
better than the interpolation of multilingual systems.

The conclusions from this work using DMC for language independent acoustic modeling can
be condensed into the following points:� DMC works in the language independent environment.� The size of the n-best lists is crucial. The size should be chosen so that the word error rate of

the oracle and of the first-best decoding differ significantly.� A multilingual interpolation of systems performs better than the monolingual 1 hour system.� Poor models from remote languages can still contribute to the performance of the overall
model combination if they are optimally weighted by DMC-training.� A log-linear structuring into phonetic classes seems to improve the classification.� The best performance is achieved by a multilingual interpolation of phonetic class models.

6 Multilingual Model Combination Using ROVER

An approach to multilingual model combination that is straightforward to implement and investigate
is to combine system hypotheses using ROVER [9]. ROVER combines hypotheses using a majority
voting scheme to produce a consensus hypothesis and has beenshown to provide modest gains in
performance in LVCSR experiments. We will use ROVER as a means of combining alternative
hypotheses derived from different source language acoustic models.

ROVER uses the NIST alignment algorithm to create a word transition network, taking the first
input system as a reference and aligning with it the remaining hypotheses. ROVER then uses a
voting algorithm to determine the best path of word transitions between all nodes of the network.
Word-level confidence scores in the range [0-1] are needed bythe voting algorithm were derived in
two ways. One method used to derive these scores was to linearly map the acoustic scores of the
hypotheses in the 1000 element N-Best list into the confidence range [0-1]. The second method was
to use the performance accuracy of the system as a constant confidence score for all hypotheses of
that system; we found this latter method to yield the best results.

ROVER was used in two experiments: to combine the four knowledge-based systems that used
each of the source language acoustic HMM models and a knowledge based mapping, and to produce
a baseline for comparison with the DMC system. The results ofthe knowledge-based experiments
are described in Table 29. We found that the best ROVER outputusing the accuracy scores of
each system as confidence scores produced a WER of 62%. The same experiment performed at the
phone-level gives similar improvement.

As a simple experiment to compare ROVER and DMC, the 1000-Best hypotheses from the
Czech system are rescored with optimized language model weights and combined using ROVER
with confidence scores from system accuracies2. The results are summarized in Table 30, but we
find DMC and ROVER to give similar performance.

2As a result of being restricted to the Czech 1000-Best list, performance improves over that reported in Table 29.
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Source WER(%) Source WER(%)
Russian 65.2 Spanish 79.3
English 80.9 Mandarin 90.1

Rover 62.0

Table 29: ROVER Combination of Source Language Hypotheses Using Knowledge-Based Phone
Mappings

Method Source WER(%)
- Czech 33.3
- Russian 60.8
- Spanish 71.6

ROVER 33.1
DMC 33.0

Table 30: Comparison of DMC and ROVER in Czech Monolingual 1000-Best List Rescoring.

6.1 Discussion

Using ROVER in the knowledge based phone mappings, we obtainonly a small improvement over
the best monolingual system, but it provides additional evidence that some benefit can be obtained
by combining scores from multiple language systems and we stress again that in this experiment no
target language data at all is used in these experiments.

The advantage of ROVER is that it can combine different hypotheses from the different systems,
whereas DMC needs the intersection of hypotheses of different systems. In other words DMC
needs different scores from different systems of the same hypothesis. Thus ROVER is simpler to
implement, although this difference is minor in our N-Best rescoring experiments, since the same
hypotheses are rescored by all systems.

7 Conclusion

We have presented the results of our experiments in languageindependent acoustic modeling. We
studied both knowledge-based and automatic methods to derive cross-lingual phonetic and sub-
phonetic mappings, and found that the automatic methods performed significantly better than the
knowledge-based methods.

Acoustic HMM adaptation further improved the source language models, although not to the
point that they performed better than monolingual Czech systems. However, multilingual interpo-
lation with adapted source-language acoustic models was effective in improving the performance
of monolingual systems. Surprisingly, even source-language models that perform poorly when
used individually can contribute to the overall combination when their contribution is determined
by DMC-training. In summary, we have developed a methodology in which cross-language pho-
netic mappings, acoustic adaptation, and discriminative model combination can be used to improve
monolingual systems trained from small amounts of speech.
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