
High Performance Messaging on
Workstations:

Illinois Fast Messages (FM) for Myrinet�

Scott Pakiny Mario Lauriaz Andrew Chieny

Abstract

In most computer systems, software overhead dominates
the cost of messaging, reducing delivered performance, espe-
cially for short messages. Efficient software messaging layers
are needed to deliver the hardware performance to the appli-
cation level and to support tightly-coupled workstation clusters.

Illinois Fast Messages (FM) 1.0 is a high speed messag-
ing layer that delivers low latency and high bandwidth for short
messages. For 128-byte packets, FM achieves bandwidths of
16.2 MB/s and one-way latencies 32�s on Myrinet-connected
SPARCstations (user-level to user-level). For shorter packets,
we have measured one-way latencies of 25 �s, and for larger
packets, bandwidth as high as to 19.6 MB/s — delivered band-
width greater than OC-3. FM is also superior to the Myrinet API
messaging layer, not just in terms of latency and usable band-
width, but also in terms of the message half-power point (n 1

2
),

which is two orders of magnitude smaller (54 vs. 4,409 bytes).
We describe the FM messaging primitives and the critical

design issues in building a low-latency messaging layers for
workstation clusters. Several issues are critical: the division of
labor between host and network coprocessor, management of
the input/output (I/O) bus, and buffer management. To achieve
high performance, messaging layers should assign as much
functionality as possible to the host. If the network interface has
DMA capability, the I/O bus should be used asymmetrically, with

�The research described in this paper was supported in part by NSF grants
CCR-9209336 and MIP-92-23732, ONR grants N00014-92-J-1961 and N00014-
93-1-1086 and NASA grant NAG 1-613. Andrew Chien is supported in part by NSF
Young Investigator Award CCR-94-57809.

yDepartment of Computer Science, University of Illinois at Urbana-Champaign,
1304 W. Springfield Ave., Urbana, IL 61801, USA

zDipartimento di Informatica e Sistemistica, Università di Napoli “Federico II”,
via Claudio 21, 80125 Napoli, Italy

1

the host processor moving data to the network and exploiting
DMA to move data to the host. Finally, buffer management
should be extremely simple in the network coprocessor and
match queue structures between the network coprocessor and
host memory. Detailed measurements show how each of these
features contribute to high performance.

1 Introduction
As the performance of workstations reaches hundreds of megaflops
(even gigaflops), networks of workstations provide an increasingly
attractive vehicle for high performance computation [3]. In fact, work-
station clusters have a number of advantages over their major com-
petitors (massively-parallel processors based on workstation proces-
sors). These advantages can include lower cost, a larger software
base, and greater accessibility. Further, the advent of high perfor-
mance network interconnects such as ATM [7], Fibre Channel [4],
FDDI [13], and Myrinet [6] present the possibility that workstation
clusters can deliver good performance on a broader range of parallel
computations.

Achieving efficient communication is the major challenge in syn-
thesizing effective parallel machines from networks of workstations.
Unfortunately, to date the most common messaging layers used for
clusters (TCP/IP [9], PVM [27]) generally have not delivered a large
fraction of the underlying communication hardware performance to
the applications. Reasons for this include protocol overhead, buffer
management, link management, and operating system overhead.
Even in recent high speed network experiments, high bandwidths are
generally only achieved for large messages (hundreds of kilobytes or
even megabytes) and then only with overheads of 1 millisecond or
more. Reasons for this include system call overhead, buffer copying,
network admission control, poor network management, and software
overhead . As a result, parallel computing on workstation clusters
has largely been limited to coarse-grained applications.

Attempts to improve performance based on specialized hardware
can achieve dramatically higher performance, but generally require
specialized components and interfacing deep into a computer system
design [16, 18, 19]. This increases cost, and decreases the potential
market (and hence sale volume) of the network hardware.

The goal of the Illinois Fast Messages (FM) project is to deliver
a large fraction of the network’s physical performance (latency and
bandwidth) to the user at small packet sizes.1 Building efficient soft-

1More information and software releases of FM are available from:
http://www-csag.cs.uiuc.edu/projects/communication/sw-messaging.html .

2

ware messaging layers is not a unique goal [12, 25, 30, 31], but FM
is distinguished by its hardware context (Myrinet) and high perfor-
mance.

The Fast Messages project focuses on optimizing the software
messaging layer that resides between lower-level communication
services and the hardware. It is available on both the Cray T3D
[22, 23] and Myricom’s Myrinet [6]. Using the Myrinet, FM provides
MPP-like communication performance on workstation clusters. FM
on the Myrinet achieves low-latency, high-bandwidth messaging for
short messages delivering 32�s latency and 16 MBytes/s bandwidth
for 128 byte packets (user-level to user-level). For shorter packets,
latency drops to 25�s, and for larger packets, bandwidth rises to
19.6 MB/s. This delivered bandwidth is greater than OC-3 ATM’s
physical link bandwidth of 19.4 MB/s. FM’s performance exceeds the
messaging performance of commercial messaging layers on numer-
ous massively-parallelmachines [21, 29, 11]. A good characterization
of a messaging layer’s usable bandwidth (bandwidth for short mes-
sages) is n 1

2
, the packet size to achieve half of the peak bandwidth

(r12). FM achieves an n 1
2

of 54 bytes. In comparison, Myricom’s
commercial API requires messages of over 3,873 bytes to achieve
the same bandwidth. FM has improved the network’s ability to deliver
performance to short messages dramatically, reducing n 1

2
by nearly

two orders of magnitude.
In the design of FM, we addressed three critical design issues

faced by all designers of input/output bus interfaced high speed net-
works: division of labor between host and network coprocessor, man-
agement of the input/output bus, and buffer management. To achieve
high performance, messaging layers should assign as much function-
ality as possible to the host. This leaves the network coprocessor free
to service the high speed network channels. If the network interface
has DMA capability, the input/output bus should be used asymmetri-
cally, with the host processor moving data to the network and exploit-
ing DMA to move data to the host. Using the processor to move data
to the network reduces latency, particularly for small messages. DMA
transfer for incoming messages, initiated by the network coprocessor,
maximizes receive bandwidth with little cost in latency. Finally, buffer
management should be extremely simple in the network coprocessor
and match queue structures between the network coprocessor and
host memory. Simple buffer management minimizes software over-
head in the network coprocessor, again freeing the coprocessor to
service the fast network. Matching queue structures between the host
and network coprocessor allows short messages to be aggregated
in DMA operations, reducing the data movement overhead. Detailed
measurements evaluate several design alternatives and show how

3

each of these achieves high performance.
The rest of the paper is organized as follows. Section 2 describes

issues common to all messaging layers. Section 3 explains our FM
design in light of the hardware constraints of a workstation cluster. In
Section 4, we present the design and performance of FM elements
in detail, justifying each design decision with empirical studies. We
discuss our findings in Section 5 and provide a brief summary of the
paper and conclusions in Section 6.

2 Background
For some time, researchers and even production sites have been us-
ing workstation clusters for parallel computation. Many libraries are
available to support such distributed parallel computing (PVM [27]
atop UDP or TCP [28] is perhaps the most popular). The communi-
cation primitives in these libraries have typically exploited operating
system communication services, running atop 10 Mb/s Ethernet, or
more recently some higher speed physical media such as FDDI [13],
ATM [7] or Fibre Channel [4]. While such facilities are useful for
coarse-grain decoupled parallelism, they suffer from high software
communication overhead (operating system calls) and low achieved
bandwidth (media limits or software overhead), and thus cannot sup-
port more tightly coupled or finer-grained parallelism.

Higher performance messaging systems for workstation clusters
often bypass the operating system, mapping the network device in-
terface directly into the user address space and accessing it directly
via load/store operations. Protection can still be achieved at virtual
address translation but sharing of communication resources is more
complicated. Our FM layer uses this approach, mapping the Myrinet
network interface directly into the user address space. Note that
even with a memory-mapped interface accesses can still be expen-
sive; in our Myrinet system, reading a network interface status field
requires �15 processor cycles. Some ATM systems provide memory
mapped input/output bus interfaces, but achieving performance is still
a challenging proposition. For example, delivered bandwidths of 1–
3 MB/s are typical [24]. Achieving high performance requires careful
management of the hardware resources by the software messaging
layer.

How deeply network interfaces will be integrated into a typical
system is a debate currently raging in the workstation cluster com-
munity. Less integrated solutions are favored by third party network
providers, giving leverage for their designs over many systems. More
tightly integrated designs clearly make it easier to achieve low latency
and high bandwidth. The Myrinet hardware used for this work rep-

4

resents the former approach, interfacing the network to the Sun’s
input/output bus (SBus). Consequently, many parts of the worksta-
tion architecture affect performance; in the following paragraphs we
describe the performance of these salient network and workstation
features.

Myrinet Network Features

Myrinet is a high speed LAN interconnect which uses byte-wide
parallel copper links to achieve physical link bandwidth of 76.3 MB/s [6].
Myrinet uses a network coprocessor (LANai) which controls the phys-
ical link and contains three DMA engines (incoming channel, outgoing
channel, and host) to move data efficiently. Host-LANai coordination
is achieved by mapping the LANai’s memory into the host address
space. Though the LANai integrates much of the critical functionality
(low-overhead DMA), the current version (2.3) is a rather slow pro-
cessor, a CISC architecture operating at the SBus clock frequency
(20–25 Mhz) and executing one instruction every 3–4 cycles. The low
speed of the LANai processor (�5 MIPS) compared to the network
makes LANai program design critical in achieving high performance.
For example, spooling a packet of 128 bytes over the channel takes
1.6�s, the equivalent of only about eight to ten LANai instructions!

Host memory Host memory

MBus-SBus
interface

SB
us

M
B

us

M
B

us
SB

us

MBus-SBus
interface

Myrinet

physical

connection

Myrinet interface

LANai Memory

Myrinet interface

LANai Memory

Write buffer

Cache

Write buffer

CacheSPARC SPARC

Figure 1: Host-to-host data path

Workstation Features

Critical issues in the workstation include the processor speed,
memory performance (memory bus) and input/output performance

5

(input/output bus). While latency is important, for longer messages
the critical issue is bandwidth. To reach the network, data must first
traverse the processor memory hierarchy (write buffer, memory bus),
then the input/output bus (see Figure 1). Because the memory bus
(MBus) has typically much better performance, the input/output bus
(SBus) is generally the bottleneck. SBus performance favors DMA,
supporting it with special burst-mode transfers which provide 40–
54 MB/s for large transfers. With the Myrinet network interface, DMA
can only initiated by the LANai and transfers must be to or from kernel
memory. For processor mediated transfers, using double-word writes
achieves a maximum of 23.9 MB/s.

We use two workstations for our measurements: a SPARCsta-
tion 20 with two 50 MHz SuperSPARC processors (without the op-
tional L2 cache) and a SPARCstation 10 with four 55 MHz RT100
HyperSPARCs. The multiplicity of processors is not a significant is-
sue. The memory bandwidths of the processors are 60 MB/s writes,
80 MB/s reads and 52 MB/s writes, 37 MB/s reads respectively.
These memory bandwidths are greater than the processor-mediated
SBus bandwidth, and hence are not a critical performance factors.

3 The Fast Messages Approach
3.1 Illinois Fast Messages (FM) 1.0

Illinois Fast Messages (FM) is a high performance messaging layer
which is available on several parallel platforms (Cray T3D and work-
station clusters) [22, 23]. The design goal of FM is to deliver network
hardware performance to the application level with a simple interface.
FM is appropriate for implementors of compilers, language runtimes,
communications libraries, and in some cases application program-
mers.

Function Operation
FM send 4(dest,handler,i0,i1,i2,i3) Send a four word message
FM send(dest,handler,buf,size) Send a long message
FM extract() Process received messages

Table 1: FM 1.0 layer calls

Table 1 lists all three of FM’s messaging functions. There are two
calls to send messages, FM send 4() andFM send(), for extremely
short, and somewhat longer (32 words or fewer) messages. Each
message carries a pointer to a sender-specified function (called a

6

“handler”) that consumes the data at the destination. The handler-
carrying message concept is similar to Active Messages [31], but
in FM there is no notion of request-reply coupling. There are no
restrictions on the actions that can be performed by an handler,
and it is left to the programmer of preventing deadlock situations.
When a process wishes to check for and process a message, it
calls FM extract(), which dequeues and processes one or more
messages. Because host processor involvement is not required to
remove data from the network, polling is not required to prevent net-
work blockage. Similar to Active Messages, message buffers do not
persist beyond the return of the handler.

3.2 Critical Messaging Layer Issues

The primary purpose of a messaging layer is the efficient transport of
data from one processor to another. Messaging layers hide the un-
derlying hardware and software components, providing services such
as reliable delivery, synchronization, in-order delivery, and collective
communication in addition to basic data movement. We are con-
cerned with minimal messaging layers, so FM includes only features
whose omission would cause major performance losses if handled in
higher software layers.

The basic feature provided by FM is reliable delivery which is
deemed necessary due to the costs of source buffering, timeout, and
retry in higher software layers. Reliable delivery alone requires the
messaging implementation to resolve issues of flow control, buffer
management, and the division of labor between the host processor
and the network coprocessor. Messaging layers generally provide
flow control to avoid data loss and therefore, data retransmission.
Flow control is required because all real computers and networks
have only a finite amount of buffering—flow control prevents buffer
overflow. Optimal flow control matches send rates to receive rates
with minimal overhead.

Buffer management enables the reuse of the finite host and net-
work coprocessor memories to handle incoming and outgoing mes-
sages. Buffering is employed to match rates between the host pro-
cessor, network interface, and network channels. Buffers support
different processing rates and service intervals, decoupling network,
LANai, and host. An ideal buffering scheme would allow buffer allo-
cation and release in any order at minimal overhead.

The division of labor between the host processor and the net-
work coprocessor is a key performance issue in any system with a
programmable network coprocessor. While most services can be
programmed on either the host or the network interface, balanced
decompositions allow overlapping of the two levels and supporting

7

a higher message rate. Of course, configurations of host and net-
work coprocessor in which the host processor is much faster and has
significantly more memory [6, 20, 26] (e.g. our configuration) favor
assigning more work to the host.

4 Fast Messages 1.0 Implementation Design
The FM 1.0 implementation consists of two basic parts: the host
program and the LANai control program (LCP). These programs co-
ordinate through the LANai memory which is mapped into the host
processor’s address space, but rather expensive to access because
it resides on the SBus. Thus, a message transmission consists of the
following steps: getting the data to the LANai (traversing the sender’s
memory bus and input/output bus), putting the data onto the commu-
nication channel, removing it from the communication channel at the
receiver, and transporting the data to the receiver host’s memory.
Each of these steps contributes to communication latency, and the
slowest of them determines the maximum sustainable bandwidth.
Thus, all parts of the system—both hardware and software—can be
critical. Exploiting the Myrinet’s high speed links effectively requires
careful design of both the host and LCP both to be efficient and to
manage the bandwidth of the SBus and physical channel effectively.

Critical issues in the design of the FM messaging layer include
the structure of the LCP, buffer management and coordination of the
two programs across the SBus, and the design of the host program.
Careful design of all parts contributes to producing a high perfor-
mance messaging layer. To elucidate the contribution of each factor
to performance, we examine each in turn, building up from a mini-
mal network coprocessor program that merely sends data across the
channel (never getting it to the hosts) to a complete messaging layer.

4.1 Performance Metrics and Measurements

To characterize communication performance, we use several stan-
dard parameters (see Table 2). r

1
bounds the maximum possi-

ble throughput, and t0 captures the leanness of the implementation.
Since our goal is to support short messages more effectively, we
use n 1

2
to show how successful we are in delivering good network

performance for short messages. These performance metrics are
calculated from measurements of latency and throughput.

Network latency is measured by ping-ponging a message back
and forth 50 times, and dividing to compute the one-way packet la-
tency. Bandwidth is determined by measuring the time to send 65,535
packets and dividing the volume of data transmitted by the elapsed

8

Metric Definition
r1 Peak bandwidth for infinitely large packets (asymptotic)
n 1

2
Packet size to achieve bandwidth of r1

2

t0 Startup overhead
` Packet latency (one way)

Table 2: Definitions of performance metrics

time. All measurements were taken on an 8-port Myrinet switch and
a pair of workstations (see Section 2). In all of our measurements,
message length refers to the payload (so that the reported data are
inclusive of the header overhead), and 1 MB � 220 bytes.

4.2 Network Coprocessor Program

The network coprocessor program is a critical contributor to perfor-
mance, incurring latency and bounding the peak bandwidth achiev-
able. Because the network coprocessor (LANai) is of modest speed,
and the LANai control program (LCP) is a sequential program deal-
ing with concurrent activities, the organization of the LCP is critical to
achieving high performance. We consider two basic implementations
of the LANai control program’s main loop. The first, baseline, is the
straightforward logical structure shown in Figure 2(a). The second
version of the LCP loop, streamed, optimizes performance by con-
solidating checks for queue management and by streaming sends
and receives to improve peak performance (see Figure 2(b)). As
computer traffic is often quite bursty, streaming is likely to improve
average performance as well.

To calibrate our results and show how the LANai’s speed can im-
pact network performance, we compare performance for the baseline
and streamed performance against the LANai’s theoretical peak per-
formance. Theoretical peak performance is indicated as theoretical
peak and is calculated for an LCP which does DMAs of the appropri-
ate size, omitting any pointer updates, checks for completion, queue
boundary checks, looping overhead, etc. (see Appendix A).

The main loop organization in the LCP is a critical contributor
to both latency and bandwidth for short messages. As shown in
Figure 3, baseline incurs a latency far greater than the theoretical
minimum, indicating that even mundane pointer and looping over-
heads reduce performance significantly. The Baseline loop achieves
a t0 = 4:2�s, and n 1

2
= 315 bytes. Streamed improves the basic

LCP loop, achieving higher bandwidth and lower latency, especially

9

send channel is availableif hostsent != lanaisentand then

a packet is available on the receive channelif then

send packet from a fixed buffer location

receive packet into a fixed buffer location

lanaisent++

repeat forever

end if

end if
end repeat

PACKET sendbuffer

PACKET receivebuffer
integer hostsent
integer lanaisent /* Total # of msgs. LCP has sent */

/* Total # of msgs. host wants to send */

(a) Baseline

send channel is availablehostsent != lanaisentand then

a packet is available on the receive channelthen

send packet from a fixed buffer location

receive packet into a fixed buffer location

lanaisent++

repeat forever

end repeat

PACKET sendbuffer

PACKET receivebuffer
integer hostsent
integer lanaisent /* Total # of msgs. LCP has sent */

/* Total # of msgs. host wants to send */

while

while

end while

end while

(b) Streamed

Figure 2: Pseudocode for the LCP main loop

0 100 200 300 400 500 600
Packet size (bytes)

0

5

10

15

20

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

Baseline
Streamed
Theoretical peak

(a) Latency

0.0 100.0 200.0 300.0 400.0 500.0 600.0
Packet size (bytes)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

B
an

dw
id

th
 (

M
B

/s
)

Baseline
Streamed
Theoretical peak

(b) Bandwidth

Figure 3: LANai to LANai Performance

10

for short messages. More specifically, streamed achieves perfor-
mance of t0 = 3:5�s and n 1

2
= 249 bytes. In both case, r1 is 76.3

MB/s, the maximum link bandwidth.2 Even without any host proces-
sor or SBus involvement, a minimal LANai control program incurs
significant startup overhead, producing latencies much higher than
the theoretical peak. Both versions of the LCP can achieve full link
bandwidth, but they require large messages to do so. In all cases, the
streamed version is significantly better, so we build on the streamed
LCP loop from this point forward.

4.3 SBus Management

For high speed networks that interface to the input/output bus, the
speed and latency of that bus are critical performance constraints. In-
teraction costs between host and network coprocessor via the I/O bus
determine the feasible architectures for software messaging layers.
However, because I/O busses are widely standardized, they form
a cost-effective interface for networking hardware vendors. Conse-
quently, they are the most common level of interface for high speed
networks. The SPARCstation’s SBus can achieve high bandwidth
only for DMA transfers (see Section 2)—a significant performance
constraint.

We consider two possible architectures for interaction between the
host and LANai: all-DMA and hybrid. The first, all-DMA, attempts to
maximize bandwidth by using DMA to move data both to and from the
network. For outgoing messages, the host copies data into the DMA
region, writes message pointers to the LANai, and triggers the send.
The copy to the DMA region is necessary because DMA operations
can occur only between a device and a pinned-down, kernel-mapped
DMA region. For incoming messages, the host writes a buffer pointer
to the LANai, and the LANai uses DMA to transfer the message
into host memory. The second, hybrid, uses the host to move data
directly to the LANai’s memory and triggers the send (both over the
SBus). This avoids the memory to memory copy and eliminates one
synchronization between host and LANai. For incoming messages,
the LCP simply DMAs messages into the host memory.

To compare performance, we measured latency and bandwidth
for a range of packet sizes, layering these vestigial host programs
atop the superior streamed LCP main loop. Time is measured from
the FM send() call until the (essentially empty) handler returns. In
all cases, data copying is achieved with a memory-to-memory copy

2At present, we cannot explain the crossover points for latency (256 byte pack-
ets) and bandwidth (512 byte packets). We are trying to track down the source of
these perturbations.

11

function optimized (opencoded) for the packet size.

0 100 200 300 400 500 600
Packet size (bytes)

0

10

20

30

40

50

60

70

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

Streamed + hybrid
Streamed + all DMA
Streamed

(a) Latency

0.0 100.0 200.0 300.0 400.0 500.0 600.0
Packet size (bytes)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

B
an

dw
id

th
 (

M
B

/s
)

Streamed + hybrid
Streamed + all DMA
Streamed

(b) Bandwidth

Figure 4: Minimal host to host performance

Because the cost of interaction and data movement across the
SBus is high, extending the messaging layer out to the hosts pro-
duces dramatically lower performance. Both protocols for managing
the SBus produce much higher latencies for all message sizes, and
saturate at lower bandwidths than the underlying streamed LCP (see
Figure 4). all-DMA incurs a large additional latency because of a
memory to memory copy, and two synchronizations for SBus opera-
tions. However, using DMA transfers delivers high SBus bandwidth,
so all-DMA achieves t0 = 7:5�s, r1 = 33:0 MB/s and n 1

2
= 162

bytes. In contrast, hybrid incurs less additional latency initially, by
avoiding the memory to memory copy, and requiring only one syn-
chronization. However, because processor-mediated data move-
ment achieves lower SBus bandwidth, the SBus becomes the per-
formance limitation. The 21.2 MB/s peak bandwidth approaches the
maximum write bandwidth on the SBus. Overall, hybrid achieves
t0 = 3:5�s, r1 = 21:2 MB/s, and n 1

2
= 44 bytes.

The poor performance of processor mediated data movement
forces a performance tradeoff between short and long message per-
formance. Incurring latency degrades short message performance,
but delivers high bandwidth, improving long message performance.
To optimize short message performance in FM, we choose to use
the hybrid scheme. This choice can increase the host overhead for
messaging. Improved I/O bus bridges and higher performance I/O
busses could eliminate this tradeoff, enabling both high bandwidth
and low latency communication. Even the latency-optimized code

12

Characteristic Reg. Mem. DMA region LANai
Capacity Virtual memory Physical memory 128 KB
Host access Loads/store Loads/store Load/store
LANai access none DMA only Load/store

Figure 5: Memory characteristics

Packet

SBus

Myrinet

Packet

 Send queue

Receive queue

Kernel
memory

Receive queue
Host

Reject
queue

Figure 6: Host and LANai queues

produces rather high absolute bandwidth, but we still must add buffer
management and flow control to make the messaging layer useful.

4.4 Buffer Management

Buffer management is a critical issue for messaging layers, as it often
accounts for remarkably large fractions of the messaging overhead.
Our minimally-functional messaging layer thus far assumes infinite
buffering; any useful messaging layer must recycle its storage. In
addition, since the host and LANai must share message queues,
efficient synchronization is critical. Data can be buffered in three
locations: LANai memory, host DMA region, or regular host mem-
ory. Each type of memory has different capacity and accessibility
characteristics (see Table 5).

Because buffer management can be expensive, FM is designed
to use only four queues: LANai send, LANai receive, host receive,
and host reject queue (see Figure 6). More complex structures were
eschewed because even minimal multiplexing amongst queues in
the LANai reduces performance dramatically, and the cost of sharing
queues between the host and LANai is significant.

Outgoing packets are copied by the host directly into the LANai
send queue, and the packet’s presence is triggered by updating the
hostsent counter in the LANai memory. The LCP then DMAs the
packet out to the network channel. To avoid write races on memory
locations, the LANai uses a separate counter to keep track of the

13

LANai send queue (the lanaisent counter) which always trails the
hostsent counter by the number of packets in the queue. Allowing
each to own (and keep in a register) its respective counter reduces
the amount of synchronization between host and LANai.

For incoming packets, the LCP first DMAs the packet from the
network into the LANai receive queue. When the SBus becomes
available, the LCP DMAs all undelivered packets to the host memory.
The LANai does no interpretation of packets, blindly moving them
to the DMA region. Using the LANai to move packets to the host
frees the host to perform other computations but also enables higher
SBus bandwidths through the use of DMA. The bandwidth issue is
critical, as delivering incoming packets to the host is often the critical
bottleneck in high-performance networks,

We chose to do no packet interpretation in the LANai for several
reasons. First, the cost of interpretation in the LANai is significant
(see Figure 7). Second, having no packet interpretation and a sim-
ple LANai receive queue structure allows packets to be aggregated
and transferred with a single DMA operation, further increasing the
transfer bandwidth and reducing overhead. This simple LCP leaves
packet interpretation and sorting to the host (separating incoming
packets from rejected packets).

0 100 200 300 400 500 600
Packet size (bytes)

0

10

20

30

40

50

60

70

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

Streamed + hybrid
Streamed + hybrid + buff. mgmt.
Streamed + hybrid + buff. mgmt. + switch()

(a) Latency

0.0 100.0 200.0 300.0 400.0 500.0 600.0
Packet size (bytes)

0.0

5.0

10.0

15.0

20.0

25.0

B
an

dw
id

th
 (

M
B

/s
)

Streamed + hybrid
Streamed + hybrid + buff. mgmt.
Streamed + hybrid + buff. mgmt. + switch()

(b) Bandwidth

Figure 7: Host to Host performance with buffer management

Adding FM’s streamlined buffer management incurs some la-
tency, but preserves nearly all of the bandwidth of the messaging
layer. Figure 7 shows the performance of the hybrid layer, the
hybrid layer augmented with buffer management, and the hybrid
layer augmented by both buffer management and a switch() state-

14

ment to simulate packet interpretation. Compared to the hybrid
layer’s performance, t0 = 3:5�s, r1 = 21:2 MB/s, and n 1

2
= 44

bytes, the hybrid + buffer management layer achieves t0 = 3:8�s,
r1 = 21:9 MB/s, and n 1

2
= 53 bytes, representing only modest in-

creases in the startup latency and half-bandwidth packet size.
The switch() statement was added in the streaming receive

loop to simulate the impact of even minimal packet interpretation.
This change has little impact on overall latency, but because the
overhead is added in the innermost loop, it is fully exposed for each
packet and therefore has a much larger impact on bandwidth than
other types of overhead. Note that the larger increase in latency from
adding buffer management produces less reduction in bandwidth for
short messages. Performance of the hybrid + buffer management
+ switch() is only t0 = 6:8�s, r1 = 21:8 MB/s, and n 1

2
= 127 bytes.

While the peak bandwidth is nearly the same, there is a marked
increase in n 1

2
by 74 bytes. Clearly, adding packet interpretation to

the LCP would dramatically reduce short message performance.

4.5 Flow Control

The final piece of a complete messaging layer is flow control. Be-
cause all networks have finite buffering, flow control is necessary
to achieve reliable delivery, ensuring a receiver has enough buffer
space to store incoming messages. Traditional flow control schemes
include windows [28] which combine flow control and retransmis-
sion for fault tolerance. However window protocols generally require
buffer space proportional to the number of senders, incurring large
memory overheads in large clusters.

To avoid this overhead, FM implements a return-to-sender pro-
tocol which allocates buffers to prevent deadlock at the source (the
reject queue), avoiding nonscalable buffering requirements. In return-
to-sender, the sender optimistically sends packets into the network
while reserving space locally for each outstanding packet. If the re-
ceiver does not have space, it rejects packets, retransmitting them to
the sender. Successfully received packets are acknowledged, allow-
ing source buffers to be released. Rejected packets are retransmitted
eventually to ensure progress. Because each sender’s buffering re-
quirements are proportional to the number of outstanding packets,
there is no large collection of buffers that must be statically allocated.
Further, the buffer requirements for a particular node do not increase
with the number of hosts in the system. The idea behind return-to-
sender has been used in MPP’s such as the Cray T3D, and is similar
to deflection and chaos routing as used in the TERA-1 machine [2].
The well-known drawback of all of these retransmission schemes is

15

that delivery order is not preserved.
Because the reject queue holds packets rejected by any node,

it can be though of as “network window” and provides an efficient
use of pinned memory. Since the rejection mechanism does not
provide fault-tolerance, the network is assumed to be reliable, or fault-
tolerance must be provided by a higher level protocol. In the case
of Myrinet, bit errors are exceedingly rare; other sources of system
failure are much more likely. Multiple packets can be acknowledged
with a single acknowledgement packet, and FM 1.0 optimizes further
by piggybacking acknowledgements on ordinary data packets.

0 100 200 300 400 500 600
Packet size (bytes)

0

10

20

30

40

50

60

70

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

Streamed + hybrid + buff. mgmt. + flow ctrl.
Streamed + hybrid + buff. mgmt.

(a) Latency

0.0 100.0 200.0 300.0 400.0 500.0 600.0
Packet size (bytes)

0.0

5.0

10.0

15.0

20.0

25.0

B
an

dw
id

th
 (

M
B

/s
)

Streamed + hybrid + buff. mgmt. + flow ctrl.
Streamed + hybrid + buff. mgmt.

(b) Bandwidth

Figure 8: Fast Messages messaging layer performance

Comparing the messaging layers with and without flow control in-
dicates that return-to-sender incurs little additional latency and only
moderate loss in bandwidth (see Figure 8). The entire FM layer
achieves t0 = 4:1�s, r1 = 21:4 MB/s, and n 1

2
= 54 bytes, a negligi-

ble difference from the performance of streamed + hybrid + buffer
management.

4.6 Comparative Performance

There are few messaging layers available on the Myrinet today; the
only major point of reference is the Myricom-supplied “Myrinet API.”
This software is part of the standard Myrinet software distribution (ver-
sion 2.0, available in March 1995) and used to support their TCP/IP
implementations. Table 3 highlights some of the differences between
the two messaging layers.

16

Feature Fast Messages 1.0 Myrinet API 2.0
Data Movement Direct from user

space
From user space,
DMA region, and
supports scatter-
gather operations

Delivery Guaranteed Not guaranteed
Delivery Order No guarantee Preserved
Reconfiguration Manual Automatic,

continuous
Buffering Large number of

small buffers
Small number of
large buffers

Fault Detection Assumes reliable
network

Message
checksums

Table 3: Selected differences between Fast Messages and Myrinet
API

From the preceding discussion, it should be clear that adding
even the smallest feature to the LCP can exact a large penalty in
performance. The Myricom API includes many additional features,
each taking its toll on performance. For example, automatic net-
work remapping—machines can be added or removed from the net-
work without modifying any configuration files—may be convenient
for users but can hurt the messaging layer’s performance. Also, syn-
chronization between the host and the LANai is expensive, yet must
be done frequently in the Myrinet API, to pass buffer pointers back
and forth.

The Myricom API’s greater functionality and host-LANai synchro-
nization structure translates to significantly poorer performance than
FM’s (see Figure 9). The Myricom API presents two interfaces,
myri cmd send imm() which uses the processor to move data to
the LANai, and myri cmd send() which uses DMA. FM achieves
superior performance to both interfaces. The design of FM achieves
its goal of high performance for short messages reflected in low
values for t0 and n 1

2
. Myricom’s API has much greater basic la-

tency and half power message size, but achieves comparable band-
width at the peak. Specifically, for the Myricom API, t0 =105.0�s,
r1 =23.9 MB/s3, and n 1

2
� 4;409 bytes. For the modest sacrifice in

peak bandwidth, we have achieved a reduction of n 1
2

of two orders of
magnitude.

3The Myricom API does not support message sizes large enough to accurately
measure r1, so we used the SBus write bandwidth.

17

0 100 200 300 400 500 600
Packet size (bytes)

0

50

100

150

200

250

300

350

400

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

Fast Messages
Myrinet API (myri_cmd_send_imm())
Myrinet API (myri_cmd_send())

(a) Latency

0.0 100.0 200.0 300.0 400.0 500.0 600.0
Packet size (bytes)

0.0

5.0

10.0

15.0

20.0

25.0

B
an

dw
id

th
 (

M
B

/s
)

Fast Messages
Myrinet API (myri_cmd_send_imm())
Myrinet API (myri_cmd_send())

(b) Bandwidth

Figure 9: Fast Messages vs. Myricom’s API

5 Discussion
Our design goal for FM was low latency and high bandwidth for
short messages; as illustrated in Table 4, FM 1.0 achieves an n 1

2

of 54 bytes, delivering 10.7MB/s at this small packet size. Larger
packet deliver higher bandwidth at some penalty in latency – 512
byte packets deliver 19.6 MB/s, greater than OC-3 ATM, and com-
petitive with commercial massively-parallel machines. For example,
while FM’s latencies are larger than Active Messages on the CM-5,
the bandwidth is much higher. FM also compares favorably to recent
MPPs [20, 21] in both bandwidth and latency.

While there may appear to be many design tradeoffs involving
performance for short or long messages (latency versus bandwidth),
the design of FM is a counterexample. Despite consistently favoring
low latency, the delivered peak bandwidth is within a few MB/s of
the Myricom API. In fact, it may be most advantageous to pick frame
sizes which deliver 80-90% of the achievable bandwidth; there is little
bandwidth benefit in going beyond this size, and FM shows that low
latencies are possible. Based on these considerations, we chose a
128-byte frame size for FM 1.0. Larger messages will require seg-
mentation and reassembly into frames of this size. Our approach
differs from the Generic Active Messages model [1] which provides
extremely short (4 word) messages and longer network DMA trans-
fers. Serendipitously, the FM frame size is close to the best size
for supporting TCP/IP and UDP/IP traffic, where the vast majority of
packets would fit into a single frame [5]. This presents the possibil-

18

Messaging layer feature Performance metric
Stream SBus Buffer Flow switch() t0 r1 n 1

2

(�s) (MB/s) (bytes)
None 4.2 76.3 315p
None 3.5 76.3 249p
Hybrid 3.5 21.2 44p
Hybrid

p
3.8 21.9 53p

Hybrid
p p

4.1 21.4 54
p

Hybrid
p p

6.8 21.8 127p
Hybrid

p p p
6.9 21.7 127p

All DMA 7.5 33.0 162
Myrinet API (myri cmd send imm()) 105 23.9 � 4,4K

Myrinet API (myri cmd send()) 121 23.9 � 6,9K

Table 4: Summary of FM 1.0 performance data

ity that a single low-level messaging layer can support both efficient
parallel computation and traditional protocols.

As mentioned in Section 4.5, return-to-sender is an optimistic flow
control protocol. Its potentially high performance is based on the
assumption that the receiver polls the network in a timely manner,
removing packets before its receive queue fills. However, the cur-
rent implementation of return-to-sender implements rejection at the
host (the LANai was too slow), which eliminates the memory require-
ment benefits. Interesting areas for future study include comparing
return-to-sender to traditional window protocols, and exploring other
dynamic flow control schemes.

FM’s performance is a product of a design carefully optimized for
low latency, subject to the constraints of a particular workstation and
network interface architecture. However, we believe these design
tradeoffs not only apply to many systems today, they are likely to
apply to cluster systems in the future. Because of the advantages
of input/output bus network interfaces, the basic network interface
architecture addressed by the design of FM is likely to persist in great
quantity. Further, the major factors that drove the FM design include
relative speed of host and coprocessor, performance of input/output
bus, memory capacity of coprocessor, and DMA restrictions. These
characteristics have every indication of continuing in workstation clus-
ter systems of the future.

Other researchers have built messaging layers for workstation
clusters, using other commercial hardware [30, 25]. FM on Myrinet
has performance beyond von Eicken et al.’s SPARCstation Active

19

Messages (SSAM), which employs ATM interface cards on the SBus.
SSAM achieves 26�s latency on 4-word messages, assuming a
10�s switch latency. Our measurements through an 8-port Myricom
switch achieve latencies of 25�s for 4-word messages and 32�s for
32-word messages. SSAM peaks at 7.5 MB/s, while FM achieves
16.2 MB/s for 32-word messages. Martin’s HP Active Messages
(HPAM) uses HP workstations with Medusa FDDI interface cards
on a high speed graphics bus. This makes HPAM’s network interface
much closer to the processor and therefore, connected with much
higher bandwidth. Consequently, HPAM achieves a lower latency,
15�s for 4-word messages and peak bandwidth of 12 MB/s. Despite
being hindered by an I/O bus network interface, FM delivers higher
bandwidth. HPAM’s hardware has the further advantage of signifi-
cant memory (one megabyte versus 128 kilobytes for Myrinet) on the
interface card. This is a key difference which affects the buffering
protocols feasible in the two systems.

A number of other researchers have explored the development of
special hardware to achieve low latency/high bandwidth communica-
tion (MINI [16], FUNet [18], VUNet [19], etc.). However, these hard-
ware approaches have the drawback that they depend on specific
memory bus interfaces, and require significant hardware investment.
FM demonstrates that decent performance can be achieved without
moving the interfaces closer to the host processor.

We believe that only modest architectural improvements are re-
quired to reduce the penalty of I/O bus interfaces further. The most
useful improvement would be to improve workstation performance
on SBus operations. Simply supporting burst-mode operations in
the write buffer across the MBus-SBus interface would provide DMA-
like bandwidth into the network enabling FM to achieve performance
close to that of streamed shown in Figure 3. In addition, accelerating
the LANai processor would reduce the serial overhead, a significant
contributor to messaging latency. Building custom hardware that im-
plements the functionality of FM’s LCP is another means to reduce
that serial overhead. Such custom hardware would provide truly con-
current service for sends and receives for both the host and network
channel.

6 Conclusion
Illinois Fast Messages 1.0 is a high performance messaging layer that
achieves communication performance comparable to that of an MPP
on a workstation cluster connected with a Myrinet network. Because
workstations are not designed to deliver low latency communication,
we devised efficient solutions to a series of critical issues: division

20

of labor between host and network coprocessor, efficient utilization
of the I/O bus, and implementation of scalable and efficient schemes
for flow control and buffer management. FM 1.0 demonstrates that it
is possible to find solutions in the context of current-day workstation
and network interface architectures which deliver high performance.
Despite our progress, we point out two minor changes that would have
a significant impact on achievable network performance – improved
I/O bus performance for non-DMA operations and a moderately faster
network interface processor.

7 Future work
FM 1.0 provides the starting point for a wealth of research in making
workstation clusters useful for parallel computation. There are signif-
icant outstanding questions about how to do flow control and reliable
transmission efficiently. We are exploring the software and hardware
issues in extending FM to provide higher performance, multitasking
(protection), and preemptive messaging. In addition, delivering ef-
fective low-latency communication requires coordinated scheduling,
so we are exploring integrating messaging with the node scheduler.

FM is designed to support efficient implementation of a variety of
communication libraries and run-time systems. To explore interface,
buffering, and scheduling issues, we are building implementations of
MPI [14], TCP/IP [10], and the Illinois Concert system’s runtime [8].
MPI is of growing popularity among application builders, presents
interesting collective communication operations, and there are effi-
cient implementations to compare against [15]. TCP/IP is a legacy
protocol in widespread use. And the Illinois Concert system is a fine-
grained programming system which depends critically on low-cost
high performance communication.

References
[1] The Generic Active Message Interface Specification. Available from

http://now.cs.berkeley.edu/Papers/Papers/gam spec.ps, 1994.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,
and B. Smith. The Tera computer system. 1990 International Conf.
on Supercomputing, June 11-15 1990. Published as Computer Ar-
chitecture News 18:3.

[3] T. Anderson, D. Culler, and D. Patterson. A case for NOW (networks
of workstations). IEEE Micro, 15(1):54–64, 1995.

21

[4] T. M. Anderson and R. S. Cornelius. High-performance switching with
Fibre Channel. In Digest of Papers Compcon 1992, pages 261–268.
IEEE Computer Society Press, 1992. Los Alamitos, Calif.

[5] G. Armitage and K. Adams. How inefficient is IP over ATM anyway?
IEEE Network, Jan/Feb 1995.

[6] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Ku-
lawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet—
a gigabit-per-second local-area network. IEEE Micro, 15(1):29–36,
February 1995. Available from http://www.myri.com/myricom/Hot.ps .

[7] CCITT, SG XVIII, Report R34. Draft Recommendation I.150: B-ISDN
ATM functional characteristics, June 1990.

[8] Andrew A. Chien, Vijay Karamcheti, John Plevyak, and Xingbin Zhang.
Concurrent aggregates language report 2.0. Available via anonymous
ftp from cs.uiuc.edu in /pub/csag or from http://www-csag.cs.uiuc.edu/,
September 1993.

[9] D. Clark, V. Jacobson, J Romkey, and H. Salwen. An analysis of TCP
processing overhead. IEEE Communication Magazine, 27(6):23–29,
June 1989.

[10] Douglas E. Comer. Internetworking with TCP/IP Vol I: Principles Pro-
tocols, and Architecture, 2nd edition. Prentice Hall, Englewood Cliffs,
NJ, 1991.

[11] Cray Research, Inc. Cray T3D System Architecture Overview, March
1993.

[12] Peter Druschel and Larry L. Peterson. Fbufs: A high-bandwidth cross-
domain transfer facility. In Proceedings of Fourteenth ACM Sym-
posium on Operating Systems Principles, pages 189–202. ACM
SIGOPS, ACM Press, December 1993.

[13] Fiber-distributed data interface (FDDI)—Token ring media access con-
trol (MAC). American National Standard for Information Systems ANSI
X3.139-1987, July 1987. American National Standards Institute.

[14] Message Passing Interface Forum. The MPI message passing inter-
face standard. Technical report, University of Tennessee, Knoxville,
April 1994. Can be found at http://www.mcs.anl.gov/mpi/mpi-report.ps.

[15] H. Franke, C. E. Wu, M Riviere, P Pattnik, and M Snir. MPI pro-
gramming environment for IBM SP1/SP2. In Proceedings of the
International Symposium on Computer Architecture, 1995.

[16] F. Hady, R. Minnich, and D. Burns. The Memory Integrated Network
Interface. In Proceedings of the IEEE Symposium on Hot Intercon-
nects, 1994.

22

[17] Mark Henderson, Bill Nickless, and Rick Stevens. A scalable high-
performance I/O system. In Proceedings of the Scalable High-
Performance Computing Conference, pages 79–86, 1994.

[18] James Hoe and A. Boughton. Network substrate for parallel processing
on a workstation cluster. In Proceedings of the IEEE Symposium
on Hot Interconnects, 1994.

[19] H. Houh, J. Adam, M. Ismert, C. Lindblad, and D. Tennenhouse. The
VuNet desk area network: Architecture, implementation and experi-
ence. IEEE Journal of Selected Areas in Communications, 1995.

[20] IBM 9076 Scalable POWERparallel 1: General information.
IBM brochure GH26-7219-00, February 1993. Available from
http://ibm.tc.cornell.edu/ibm/pps/sp2/index.html .

[21] Intel Corporation. Paragon XP/S Product Overview, 1991.

[22] Vijay Karamcheti and Andrew A. Chien. A comparison of architectural
support for messaging on the TMC CM-5 and the Cray T3D. In Pro-
ceedings of the International Symposium on Computer Architec-
ture, 1995. Available from http://www-csag.cs.uiuc.edu/papers/cm5-
t3d-messaging.ps .

[23] Vijay Karamcheti and Andrew A. Chien. FM—fast messaging on the
Cray T3D. Available from http://www-csag.cs.uiuc.edu/papers/t3d-fm-
manual.ps, February 1995.

[24] M. Liu, J. Hsieh, D. Hu, J. Thomas, and J. MacDonald. Distributed
network computing over Local ATM Networks. In Supercomputing
’94, 1995.

[25] R. Martin. HPAM: An Active Message layer for a net-
work of HP workstation. In Proceedings of the IEEE
Symposium on Hot Interconnects, 1994. Available from
ftp://ftp.cs.berkeley.edu/ucb/CASTLE/Active Messages/hotipaper.ps.

[26] Meiko World Incorporated. Meiko Computing Surface Communica-
tions Processor Overview, 1993.

[27] V. S. Sunderam. PVM: A framework for parallel distributed computing.
Concurrency, Practice and Experience, 2(4):315–340, [12] 1990.

[28] A. S. Tanenbaum. Computer networks. Prentice-Hall 2nd ed. 1989,
1981.

[29] Thinking Machines Corporation, 245 First Street, Cambridge, MA
02154-1264. The Connection Machine CM-5 Technical Summary, Oc-
tober 1991.

[30] T. von Eicken, A. Basu, and V. Buch. Low-latency communication over
ATM networks using Active Messages. IEEE Micro, 15(1):46–53,
1995.

23

[31] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Ac-
tive Messages: a mechanism for integrated communication
and computation. In Proceedings of the International Sym-
posium on Computer Architecture, 1992. Available from
http://www.cs.cornell.edu/Info/People/tve/ucb papers/isca92.ps .

A Theoretical Peak Performance of LANai
Theoretical peak performance in Figures Figure 3 (a) and (b) is based
on the following measured performance characteristics of the LANai.

DMA setup (tDMA) = 8 cycles� 40
ns

cycle
= 320 ns

Message overhead (t0) = tDMA +N bytes� 12:5
ns

byte
=

= (320+ 12:5N)ns

Message latency (`) = t0 + tswitch = (320+ 12:5N) +

+550 = (870+ 12:5N)ns

Communication bandwidth (rN) =
bytes
t0

=
N bytes

(320+ 12:5N)ns

24

Scott Pakin

Scott Pakin is currently a Ph.D. student in the Department of Com-
puter Science at the University of Illinois at Urbana-Champaign. He
has been working in the Concurrent Systems Architecture Group un-
der Professor Andrew A. Chien since January, 1993. The primary
goals of Scott’s research involve architecting scalable, parallel sys-
tems, leveraging off commodity hardware, but developing novel soft-
ware technology. Scott received his B.S. in mathematics/computer
science from Carnegie Mellon University in 1992 and his M.S. in com-
puter science from the University of Illinois at Urbana-Champaign in
1995.

Contact Information

E-mail: pakin@cs.uiuc.edu
Telephone: (217) 244-7116
Fax: (217) 244-6500
Mailing address: Scott Pakin

Department of Computer Science
1304 W. Springfield Ave.
Urbana, Illinois 61801
USA

www: http://www-csag.cs.uiuc.edu/individual/pakin

Mario Lauria

Mario Lauria graduated in electronic engineering at the University
of Naples, Italy, in 1992. He spent nine months at Ansaldo Trasporti,
where he worked as a computer systems analyst. In 1994 he joined

25

the Department of Computer Science and Systems of the University
of Naples, where he is working toward a Ph.D. in computer science.
He is spending a Fulbright scholarship he was granted in 1994 at
the University of Illinois at Urbana-Champaign, where he has joined
the Concurrent Systems Architecture Group. His research interests
include high performance computer communications and distributed
simulation, with the realization of a high speed communication system
for network of workstations as his present goal.

Contact Information

E-mail: lauria@cs.uiuc.edu lauria@cps.na.cnr.it
Phone: (217) 244-7118 +39 81 768-2897
Mail: Department of Dipartimento di

Computer Science Informatica e Sistemistica
1304 W. Springfield Ave. via Claudio 21
Urbana, Illinois 61801 80125 Napoli
USA Italy

www: http://www-csag.cs.uiuc.edu/individual/lauria

Andrew A. Chien

Andrew A. Chien is currently an Associate Professor in the De-
partment of Computer Science at the University of Illinois at Urbana-
Champaign, where he holds a joint appointment as an Associate Pro-
fessor in the Department of Electrical and Computer Engineering as
well as a Research Scientist with the National Center for Supercom-
puting Applications (NCSA). The primary goals of Professor Chien’s
research involve the interaction of programming languages, compil-
ers, system software, and machine architecture in high-performance
parallel systems. He has participated in the design of a number
of parallel systems (hardware and software), including the Illinois
Concert System (efficient parallel object-oriented programming), and
Illinois Fast Messages (high performance communication for MPP’s
and workstation clusters), and the MIT J-Machine (a 4096-processor
fine-grained parallel computer). His research is supported by ARPA,
NASA, ONR, and NSF as well as several corporate donors. Professor

26

Andrew Chien also co-directs an ARPA-funded I/O characterization
project and is a participant in the Scalable I/O Initiative (SIO), working
on the characterization of application input/output patterns for scal-
able, parallel scientific programs. Andrew Chien is the leader of the
Concurrent Systems Architecture Group at the University of Illinois
Dr. Chien received his B.S. in electrical engineering from the Mas-
sachusetts Institute of Technology in 1984 and his M.S. and Ph.D., in
computer science, from the Massachusetts Institute of Technology in
1987 and 1990, respectively. He was a recipient of the 1994 National
Science Foundation Young Investigator Award, and in 1995 received
the C. W. Gear Outstanding Junior Faculty Award.

Contact Information

E-mail: achien@cs.uiuc.edu
Telephone: (217) 333-6844
Fax: (217) 244-6500
Mailing address: Andrew A. Chien

Department of Computer Science
1304 W. Springfield Ave.
Urbana, Illinois 61801
USA

www: http://www-csag.cs.uiuc.edu/individual/achien

27

Copyright © 1995 by the Association for Computing Machinery, Inc. (ACM).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that new copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc.,
via fax at +1 (212) 869-0481, or via email at permissions@acm.org.

	Abstract
	1 Introduction
	2 Background
	3 The Fast Messages Approach
	3.1 Illinois Fast Messages (FM) 1.0
	3.2 Critical Messaging Layer Issues

	4 Fast Messages 1.0 Implementation Design
	4.1 Performance Metrics and Measurements
	4.2 Network Coprocessor Program
	4.3 SBus Management
	4.4 Buffer Management
	4.5 Flow Control
	4.6 Comparative Performance

	5 Discussion
	6 Conclusion
	7 Future work
	References
	A Theoretical Peak Performance of LANai
	Author Biographies

