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Abstract

This paper surveys locally weighted learning� a form of lazy learning and memory�

based learning� and focuses on locally weighted linear regression� The survey dis�

cusses distance functions� smoothing parameters� weighting functions� local model

structures� regularization of the estimates and bias� assessing predictions� handling

noisy data and outliers� improving the quality of predictions by tuning �t parame�

ters� interference between old and new data� implementing locally weighted learning

e�ciently� and applications of locally weighted learning� A companion paper surveys

how locally weighted learning can be used in robot learning and control�

Keywords� locally weighted regression� LOESS� LWR� lazy learning� memory�

based learning� least commitment learning� distance functions� smoothing parame�

ters� weighting functions� global tuning� local tuning� interference�

� Introduction

Lazy learningmethods defer processing of training data until a query needs to be answered�
This usually involves storing the training data in memory� and �nding relevant data in
the database to answer a particular query� This type of learning is also referred to as
memory�based learning� Relevance is often measured using a distance function� with
nearby points having high relevance� One form of lazy learning �nds a set of nearest
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neighbors and selects or votes on the predictions made by each of the stored points� This
paper surveys another form of lazy learning� locally weighted learning� that uses locally
weighted training to average� interpolate between� extrapolate from� or otherwise combine
training data 	Vapnik� ����
 Bottou and Vapnik� ����
 Vapnik and Bottou� ������

In most learning methods a single global model is used to �t all of the training data�
Since the query to be answered is known during processing of training data� training query
speci�c local models is possible in lazy learning� Local models attempt to �t the training
data only in a region around the location of the query 	the query point�� Examples of
types of local models include nearest neighbor� weighted average� and locally weighted
regression 	Figure ��� Each of these local models combine points near a query point to
estimate the appropriate output� Nearest neighbor local models simply choose the closest
point and use its output value� Weighted average local models average the outputs of
nearby points� inversely weighted by their distance to the query point� Locally weighted

regression �ts a surface to nearby points using a distance weighted regression�
Weighted averages and locally weighted regression will be discussed in the following

sections� and our survey focuses on locally weighted linear regression� The core of the
survey discusses distance functions� smoothing parameters� weighting functions� and local
model structures� Among the lessons learned from research on locally weighted learning
are that practical implementations require dealing with locally inadequate amounts of
training data� regularization of the estimates by deliberate introduction of bias� meth
ods for predicting prediction quality� �ltering of noise and identifying outliers� automatic
tuning of the learning algorithm�s parameters to speci�c tasks or data sets� and e�cient
implementation techniques� Our motivation for exploring locally weighted learning tech
niques came from their suitability for real time online robot learning because of their fast
incremental learning and their avoidance of negative interference between old and new
training data� We provide an example of interference to clarify this point� We brie�y
survey published applications of locally weighted learning� A companion paper 	Atkeson
et al�� ����� surveys how locally weighted learning can be used in robot learning and
control� This review is augmented by a Web page 	Atkeson� ������

This review emphasizes a statistical view of learning� in which function approximation
plays the central role� In order to be concrete� the review focuses on a narrow problem
formulation� in which training data consists of input vectors of speci�c attribute values
and the corresponding output values� Both the input and output values are assumed to be
continuous� Alternative approaches for this problem formulation include other statistical
nonparametric regression techniques� multilayer sigmoidal neural networks� radial basis
functions� regression trees� projection pursuit regression� and global regression techniques�
The discussion section 	Section ��� argues that locally weighted learning can be applied
in a much broader context� Global learning methods can often be improved by localizing
them using locally weighted training criteria 	Vapnik� ����
 Bottou and Vapnik� ����

Vapnik and Bottou� ������ Although this survey emphasizes regression applications 	real
valued outputs�� the discussion section outlines how these techniques have been applied
in classi�cation 	discrete outputs�� We conclude with a short discussion of future research
directions�
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Figure �� Fits using di�erent types of local models for three and �ve data points�
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Notation

In this paper scalars are represented by italic lower case letters 	y�� Column vectors
are represented as boldface lower case letters 	x� and row vectors are represented as the
column vectors transposed 	xT�� Matrices are represented by bold face upper case letters
	X��

� Distance Weighted Averaging

To illustrate how locally weighted learning using a distance function is applied� we will
�rst consider a simple example� distance weighted averaging� This will turn out to be a
form of locally weighted regression in which the local model is a constant� A prediction �y
can be based on an average of n training values fy�� y�� ���� yng�

�y �

P
yi
n

	��

This estimate minimizes a criterion�

C �
X
i

	�y � yi�
� 	��

In the case where the training values fy�� y�� ���� yng are taken under di�erent conditions
fx��x�� ����xng� it makes sense to emphasize data that is similar to the query q and
deemphasize dissimilar data� rather than treat all the training data equally� We can do
this in two equivalent ways� weighting the data directly or weighting the error criterion
used to choose �y�

��� Weighting the Data Directly

Weighting the data can be viewed as replicating relevant instances and discarding irrel
evant instances� In our case an instance is represented as a data point 	x� y�� Relevance
is measured by calculating a distance d	xi�q� between the query point q and each data
point input vector xi� A typical distance function is the Euclidean distance 	xi is the ith
input vector� while xj is the jth component of the vector x��

dE	x�q� �
sX

j

	xj � qj�
� �

q
	x� q�T	x� q� 	��

A weighting function or kernel function K	� is used to calculate a weight for that data
point from the distance� A typical weighting function is a Gaussian 	Figure ���

K	d� � e�d
�

	��

The weight is then used in a weighted average�

�y	q� �

P
yiK	d	xi�q��P
K	d	xi�q��

	��

Note that the estimate �y depends on the location of the query point q�
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Query Point

Figure �� Unweighted averaging using

springs�

Query Point

Figure �� Locally weighted averaging us�

ing springs�

��� Weighting the Error Criterion

We are trying to �nd the best estimate for the outputs yi� using a local model that is
a constant� �y� Distance weighting the error criterion corresponds to requiring the local
model to �t nearby points well� with less concern for distant points�

C	q� �
nX
i��

h
	�y � yi�

�K	d	xi�q��
i

	��

The best estimate �y	q� will minimize the cost C	q�� For that value of �y� �C

��y
� �� This is

achieved by the �y given in Equation �� and so in this case weighting the error criterion and
weighting the data are equivalent� Note that both the criterion C	q� and the estimate
y	q� depend on the location of the query point q�

This process has a physical interpretation� Figures � and � show the data points 	black
dots�� which are �xed in space� pulling on a horizontal line 	the constant model� with
springs� The strength of the springs are equal in the unweighted case� and the position
of the horizontal line minimizes the sum of the stored energy in the springs 	Equation ���
We will ignore a factor of �

�
in all our energy calculations to simplify notation� In the

weighted case� the springs are not equal� and the spring constant of each spring is given
by K	d	xi�q��� The stored energy in the springs in this case is C of Equation �� which
is minimized by the physical process� Note that the locally weighted average emphasizes
points close to the query point� and produces an answer 	the height of the horizontal line�
that is closer to the height of points near the query point than the unweighted case�

��� The Distance Weighted Averaging Literature

In statistics the approach of �tting constants using a locally weighted training criterion
is known as kernel regression and has a vast literature 	H�ardle� ����
 Wand and Jones�
������ Nadaraya 	����� and Watson 	����� proposed using a weighted average of a set
of nearest neighbors for regression� The approach was also independently reinvented
in computer graphics 	Shepard� ������ Specht 	����� describes a memorybased neural
network approach based on a probabilistic model that motivates using weighted averaging
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as the local model for regression� Connell and Utgo� 	������ Kibler et al� 	����� and Aha
	����� have applied weighted averaging to arti�cial intelligence problems�

� Locally Weighted Regression

In locally weighted regression 	LWR� local models are �t to nearby data� As described
later in this section� this can be derived by either weighting the training criterion for the
local model 	in the general case� or by directly weighting the data 	in the case that the
local model is linear in the unknown parameters�� LWR is derived from standard regres
sion procedures for global models� We will start our exploration of LWR by reviewing
regression procedures for global models�

��� Nonlinear Local Models

����� Nonlinear Global Models

A general global model can be trained to minimize the following unweighted training
criterion�

C �
X
i

L	f	xi� ��� yi� 	��

where the yi are the output values corresponding to the input vectors xi� � is the parameter
vector for the nonlinear model �yi � f	xi� ��� and L	�yi� yi� is a general loss function for
predicting �yi when the training data is yi� For example� if the model were a neural net�
then � would be a vector of the synaptic weights� Often the least squares criterion is used
for the loss function 	L	�yi� yi� � 	�yi � yi���� leading to the training criterion�

C �
X
i

	f	xi� ��� yi�
� 	��

Sometimes no values of the parameters of a global model can provide a good approx
imation of the true function� There are two approaches to this problem� First� we could
use a larger� more complex global model and hope that it can approximate the data suf
�ciently� The second approach� which we discuss here� is to �t the simple model to local
patches instead of the whole region of interest�

����� A Training Criterion For Nonlinear Local Models

The data set can be tailored to the query point by emphasizing nearby points in the
regression� We can do this by weighting the training criterion�

C	q� �
X
i

�L	f	xi� ��� yi�K	d	xi�q��� 	��

where K	� is the weighting or kernel function and d	xi�q� is the distance between the
data point xi and the query q� Using this training criterion� f	x� �	q�� now becomes a
local model� and can have a di�erent set of parameters �	q� for each query point q�
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��� Linear Local Models

Given that we are using local models� it seems advantageous to keep them simple� and
to keep the training criterion simple as well� This leads us to explore local models that
are linear in the unknown parameters� and to use the least squares training criterion� We
derive least squares training algorithms for linear local models from regression procedures
for linear global models�

����� Linear Global Models

A global model that is linear in the parameters � can be expressed as 	Myers� ������

xTi � � yi 	���

In what follows we will assume that the constant � has been appended to all the input
vectors xi to include a constant term in the regression� The training examples can be
collected in a matrix equation�

X� � y 	���

where X is a matrix whose ith row is xTi and y is a vector whose ith element is yi�
Thus� the dimensionality of X is n � d where n is the number of data points and d is
the dimensionality of x� Estimating the parameters � using an unweighted regression
minimizes the criterion

C �
X
i

	xTi � � yi�
� 	���

by solving the normal equations �
XTX

�
� � XTy 	���

for ��

� �
�
XTX

���
XTy 	���

Inverting the matrix XTX is not the numerically best way to solve the normal equations
from the point of view of e�ciency or accuracy� and usually other matrix techniques are
used to solve Equation �� 	Press et al�� ������

����� Weighting the Criterion� A Physical Interpretation

In �tting a line or plane to a set of points� unweighted regression gives distant points equal
in�uence with nearby points on the ultimate answer to the query� for equally spaced data�
The linear local model can be specialized to the query by emphasizing nearby points� As
with the distance weighted average example we can either weight the error criterion that
is minimized� or weight the data directly� The two approaches are equivalent for planar
local models� Weighting the criterion is done in the following way

C	q� �
X
i

h
	xTi � � yi�

�K	d	xi�q��
i

	���

We again have a physical interpretation for C	q� of Equation ��� Much as thin plate
splines minimize a bending energy of a plate and the energy of the constraints pulling
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Query Point

Figure �� Unweighted springs�

Query Point

Figure �� Weighted springs�

on the plate� locally weighted regression can also be interpreted as a physical process� In
LWR with a planar local model� the line in Figures � and � can now rotate as well as
translate� The springs are forced to remain oriented vertically� rather than move to the
smallest distance between the data points and the line� Figure � shows the �t 	the line�
produced by equally strong springs to a set of data points 	the black dots�� minimizing
the criterion of Equation ��� Figure � shows what happens to the �t as the springs nearer
to the query point are strengthened and the springs further away are weakened� The
strengths of the springs are given by K	d	xi�q��� and the �t minimizes the criterion of
Equation ���

����� Direct Data Weighting

Our version of directly weighting the data involves the following steps� For computational
and analytical simplicity the origin of the input data is �rst shifted by subtracting the
query point from each data point 	making the query point q � 	�� ���� �� ��T� where the �
is appended for the constant term in the regression�� A distance is calculated from each
of the stored data points to the query point q� The weight for each stored data point is
the square root of the kernel function used in Equation ��� to simplify notation later�

wi �
q
K	d	xi�q�� 	���

Each row i of X and y is multiplied by the corresponding weight wi creating new variables
Z and v� This can be done using matrix notation by creating a diagonal matrix W with
diagonal elements Wii � wi and zeros elsewhere and multiplying W times the original
variables�

zi � wixi 	���

Z � WX 	���

and
vi � wiyi 	���
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v � Wy 	���

Equation �� is solved for � using the new variables��
ZTZ

�
� � ZTv 	���

Formally� this gives us an estimator of the form

�y	q� � qT	ZTZ���ZTv 	���

��� The Relationship of Kernel Regression and Locally Weighted

Regression

For data distributed on a regular grid away from any boundary locally weighted regression
and kernel regression are equivalent 	Lejeune� ����
 M�uller� ������ However� for irregular
data distributions there is a signi�cant di�erence� and LWR has many advantages over
kernel regression 	Hastie and Loader� ����
 Jones et al�� ������ LWR with a planar local
model is often preferred over kernel smoothing because it exactly reproduces a line 	with
any data distribution�� The failure to reproduce a line� or any function used to generate
the training data� indicates the bias of a function approximation method� LWR methods
with a planar local model will fail to reproduce a quadratic function� re�ecting the bias
due to the planar local model� LWR methods with a quadratic local model will fail to
reproduce a cubic function� and so on�

��� The Locally Weighted Regression Literature

Cleveland and Loader 	����a�c�� Fan 	����� and Fan and Gijbels 	����� review the his
tory of locally weighted regression and discuss current research trends� Barnhill 	�����
and Sabin 	����� survey the use of distance weighted nearest neighbor interpolators to
�t surfaces to arbitrarily spaced points� and Eubank 	����� surveys their use in nonpara
metric regression� Lancaster and �Salkauskas 	����� refer to nearest neighbor approaches
as �moving least squares� and survey their use in �tting surfaces to data� H�ardle 	�����
surveys kernel and LWR approaches to nonparametric regression� Farmer and Sidorowich
	����� ����a�b� survey the use of nearest neighbor and local model approaches in modeling
chaotic dynamic systems�

Local models 	often polynomials� have been used for over a century to smooth regularly
sampled time series and interpolate and extrapolate from data arranged on rectangular
grids� Crain and Bhattacharyya 	������ Falconer 	����� and McLain 	����� suggested
using a weighted regression on irregularly spaced data to �t a local polynomial model
at each point a function evaluation was desired� All of the available data points were
used� Each data point was weighted by a function of its distance to the desired point in
the regression� Many authors have suggested �tting a polynomial surface only to nearby
points also using distance weighted regression 	McIntyre et al�� ����
 Pelto et al�� ����

Legg and Brent� ����
 Palmer� ����
 Walters� ����
 Lodwick and Whittle� ����
 Stone�
����� ����
 Benedetti� ����
 Tukey� ����
 Franke and Nielson� ����
 Friedman� �����
Cleveland 	����� proposed using robust regression procedures to eliminate outlying or
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erroneous points in the regression process� Programs implementing a re�ned version of
this approach 	LOCFIT and LOESS� are available directly and also as part of the S�
package 	Cleveland et al�� ����
 Cleveland and Loader� ����a�b�c�� Katkovnik 	�����
also developed a robust locally weighted smoothing procedure� Cleveland et al� 	�����
analyzes the statistical properties of the LOESS algorithm and Cleveland and Devlin
	����� and Cleveland et al� 	����� show examples of its use� Stone 	������ Devroye 	������
Lancaster 	������ Lancaster and �Salkauskas 	������ Cheng 	������ Li 	������ Tsybakov
	����� and Farwig 	����� provide analyses of LWR approaches� Stone 	����� ����� shows
that LWR has an optimal rate of convergence in a minimax sense� Fan 	����� shows that
local linear regression smoothers are the best smoothers� in that they are the asymptotic
minimax linear smoother and have a high asymptotic e�ciency 	which can be ����
with a suitable choice of kernel and bandwidth� among all possible linear smoothers�
including those produced by kernel� orthogonal series� and spline methods� when the
unknown regression function is in the class of functions having bounded second derivatives�
Fan 	����� extends this result to show that LWR has a high minimax e�ciency among
all possible estimators� including nonlinear smoothers such as median regression� Fan
	������ Fan and Gijbels 	������ Hastie and Loader 	����� and Jones et al� 	����� show
that LWR handles a wide range of data distributions and avoids boundary and cluster
e�ects� Ruppert and Wand 	����� derive asymptotic bias and variance formulas for
multivariate LWR� while Cleveland and Loader 	����c� argue that asymptotic results
have limited practical relevance� Fan and Gijbels 	����� explore the use of a variable
bandwidth locally weighted regression� Vapnik and Bottou 	����� give error bounds for
local learning algorithms�

Locally weighted regression was introduced into the domain of machine learning and
robot learning by Atkeson 	Atkeson and Reinkensmeyer� ����� ����
 Atkeson� ����� ������
who also explored techniques for detecting irrelevant features� and Zografski 	Zografski�
����� ����� ����
 Zografski and Durrani� ������ Atkeson and Schaal 	����� explore locally
weighted learning from the point of view of neural networks� Dietterich et al� 	����� report
on a recent workshop on memorybased learning� including locally weighted learning�

� Distance Functions

Locally weighted learning is critically dependent on the distance function� There are
many di�erent approaches to de�ning a distance function� and this section brie�y surveys
them� Distance functions in locally weighted learning do not need to satisfy the formal
mathematical requirements for a distance metric� The relative importance of the input
dimensions in generating the distance measurement depends on how the inputs are scaled
	i�e�� how much they are stretched or squashed�� We use the term scaling for this purpose
having reserved the term weight for the contribution of individual points 	not dimensions�
in a regression� We refer to the scaling factors as mj in this paper� There are many ways
to de�ne and use distance functions 	Scott� ������

� Global distance functions� The same distance function is used at all parts of the
input space�
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� Query�based local distance functions� The form of d	� or the distance function
parameters are set on each query by an optimization process that typicallyminimizes
cross validation error or a related criterion� This approach is referred to as a uniform

metric by Stan�ll 	����� and is discussed in Stan�ll and Waltz 	������ Hastie and
Tibshirani 	����� and Friedman 	������

� Point�based local distance functions� Each stored data point has associated
with it a distance function and the values of corresponding parameters� The training
criterion uses a di�erent di	� for each point xi�

C	q� �
X
i

h
	f	xi� ��� yi�

�K	di	xi�q��
i

	���

The di	� can be selected either by a direct computation or by minimizing cross
validation error� Frequently� the di	� are chosen in advance of the queries and are
stored with the data points� This approach is referred to as a variable metric by
Stan�ll 	������ For classi�ers� one version of a pointbased local distance function is
to have a di�erent distance function for each class 	Waltz� ����
 Aha and McNulty�
����
 Aha� ����� ������ Aha and Goldstone 	����� ����� explore the use of point
based distance functions by human subjects�

Distance functions can be asymmetric and nonlinear� so that a distance along a partic
ular dimension can depend on whether the query point�s value for the dimension is larger
or smaller than the stored point�s value for that dimension 	Medin and Shoben� ������
The distance along a dimension can also depend on the values being compared 	Nosofsky
et al�� ������

��� Feature Scaling

Altering the distance function can serve two purposes� If the feature scaling factors mj

are all nonzero� the input space is warped or distorted� which might lead to more accurate
predictions� If some of the scaling factors are set to zero� those dimensions are ignored
by the distance function� and the local model becomes global in those directions� Zeroing
feature scaling factors can be used as a tool to combat the curse of dimensionality by
reducing the locality of the function approximation process in this way�

Note that a feature scaling factor of zero does not mean the local model ignores that
feature in locally weighted learning� Instead� all points aligned along that direction get
the same weight� and the feature can a�ect the output of the local model� For example�
�tting a global model using all features is equivalent to setting all feature scaling factors
to zero and �tting the same model as a local model� Local model feature selection is
a separate process from distance function feature scaling� Ignoring features using ridge
regression� dimensionality reduction of the entire modeling process� and algorithms for
feature scaling and selection are discussed in later sections�

Stan�ll and Waltz 	����� describe a variant of feature selection 	�predictor restric
tion�� in which the scaling factor for a feature becomes so large that any di�erence from
the query in that dimension causes the training point to be ignored� They also describe
using an initial prediction of the output in an augmented distance function to select
training data with similar or equal outputs 	�goal restriction�� 	Jabbour et al�� ������
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��� Distance Functions For Continuous Inputs

The functions discussed in this section are especially appropriate for ordered 	vs� cate
gorical� symbolic� or nominal� input values� which are either continuous or an ordered set
of discrete values�

� Unweighted Euclidean distance�

dE	x�q� �
sX

j

	xj � qj�
� �

q
	x� q�T	x� q� 	���

� Diagonally weighted Euclidean distance�

dm	x�q� �
sX

j

	mj	xj � qj��
� �

q
	x� q�TMTM	x� q� � dE	Mx�Mq� 	���

where mj is the feature scaling factor for the jth dimension and M is a diagonal
matrix with Mjj � mj�

� Fully weighted Euclidean distance�

dM	x�q� �
q
	x� q�TMTM	x� q� � dE	Mx�Mq� 	���

where M is no longer diagonal but can be arbitrary� This is also known as the
Mahalanobis distance 	Tou and Gonzalez� ����
 Weisberg� ������

� Unweighted Lp norm �Minkowski metric��

dp	x�q� �

�X
i

jxi � qij
p

� �

p

	���

� Diagonally weighted and fully weighted Lp norm� The weighted Lp norm is
dp	Mx�Mq��

A diagonal distance function matrix M 	� coe�cient for each dimension� can make a
radially symmetric scaling function into an axis parallel ellipse 	Figure � shows ellipses
with the axes of symmetry aligned with the coordinate axes�� Figure � shows an example
of how a full distance function matrix M with cross terms can arbitrarily orient the
ellipse 	Ruppert and Wand� ����
 Wand and Jones� ������ Cleveland and Grosse 	������
Cleveland et al� 	����� and Cleveland 	����a� point out that for distance functions with
zero coe�cients 	mi � �� an entire column of M is zero� or M is singular�� the model is
global in the corresponding directions� They refer to this as a conditionally parametric

model�
Fukunaga 	������ James 	����� and Tou and Gonzalez 	����� describe how to choose

a distance function matrix to maximize the ratio of the variance between classes to the
variance of all the cases in classi�cation� Mohri and Tanaka 	����� extend this approach
to symbolic input values� This approach uses an eigenvalue eigenvector decomposition
and can help distinguish relevant attributes from irrelevant attributes and �lter out noisy
data� This approach is localized by Hastie and Tibshirani 	������ Distance functions for
symbolic inputs have been developed and are discussed in Atkeson 	������
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� Smoothing Parameters

A smoothing or bandwidth parameter h de�nes the scale or range over which generaliza
tion is performed� There are several ways to use this parameter 	Scott� ����
 Cleveland
and Loader� ����c��

� Fixed bandwidth selection� h is a constant value 	Fan and Marron� ������ and
therefore volumes of data with constant size and shape are used� In this case h
can appear implicitly in the distance function as the determinant of M for fully
weighted distance functions 	h � jMj� or the magnitude of the vector m in di
agonally weighted distance functions 	h � jmj� and or explicitly in the weighting
function�

K

�
d	xi�q�

h

�
	���

These parameters� although redundant in the explicit case� provide a convenient way
to adjust the radius of the weighting function� The redundancy can be eliminated
by requiring the determinant of the scaling factor matrix to be one 	jMj � ��� or
�xing some element of M�

� Nearest neighbor bandwidth selection� h is set to be the distance to the kth
nearest data point 	Stone� ����
 Cleveland� ����
 Farmer and Sidorowich� ����a�b

Townshend� ����
 Hastie and Loader� ����
 Fan and Gijbels� ����
 Ge et al�� ����

N!s et al�� ����
 N!s and Isaksson� ����
 Wang et al�� ����
 Cleveland and Loader�
����b�� The data volume increases and decreases in size according to the density of
nearby data� In this case changes in scale of the distance function are canceled by
corresponding changes in h� giving a scale invariant weighting pattern to the data�
However� h will not cancel changes in distance function coe�cients that alter the
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shape of the weighting function� and the identity of the kth neighbor can change
with distance function shape changes�

� Global bandwidth selection� h is set globally by an optimization process that
typically minimizes cross validation error over all the data�

� Query�based local bandwidth selection� h is set on each query by an opti
mization process that typically minimizes cross validation error or a related crite
rion 	Vapnik� ������

� Point�based local bandwidth selection� Each stored data point has associated
with it a bandwidth h� The weighted criterion uses a di�erent hi for each point xi�

C	q� �
X
i

�
	f	xi� ��� yi�

�K

�
d	xi�q�

hi

��
	���

The hi can be set either by a direct computation or by an optimization process that
typically minimizes cross validation error or a related criterion� Typically� the hi
are computed in advance of the queries and are stored with the data points�

Fan and Marron 	����b� argue that a �xed bandwidth is easy to interpret� but of
limited use� Cleveland and Loader 	����a� argue in favor of nearest neighbor smoothing
over �xed bandwidth smoothing� A �xed bandwidth and a weighting function that goes
to zero at a �nite distance can have large variance in regions of low data density� This
problem is present at edges or between data clusters and gets worse in higher dimensions�
In general� �xed bandwidth selection has much larger changes in variance than nearest
neighbor bandwidth selection� A �xed bandwidth smoother can also not have any data
within its span� leading to unde�ned estimates 	Cleveland and Loader� ����b�� Fan and
Marron 	����b� describe three reasons to use variable local bandwidths� to adapt to the
data distribution� to adapt for di�erent levels of noise 	heteroscedasticity�� and to adapt to
changes in the smoothness or curvature of the function� Fan and Gijbels 	����� argue for
pointbased in favor of querybased local bandwidth selection� explaining that having a
bandwidth associated with each data point will allow rapid or asymmetric changes in the
behavior of the data to be accommodated� Section �� discusses global and local tuning
of bandwidths�

� Weighting Functions

The requirements on a weighting function 	also known as a kernel function� are straight
forward 	Gasser and M�uller� ����
 Cleveland and Loader� ����c
 Fedorov et al�� ������
The maximumvalue of the weighting function should be at zero distance� and the function
should decay smoothly as the distance increases� Discontinuities in weighting functions
lead to discontinuities in the predictions� since training points cross the discontinuity as
the query changes� In general� the smoother the weight function� the smoother the es
timated function� Weights that go to in�nity when a query equals a stored data point
allow exact interpolation of the stored data� Finite weights lead to smoothing of the
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Figure 
� Some of the ker�

nel shapes described in the

text�

data� Weight functions that go to zero at a �nite distance allow faster implementations�
since points further from the query than that distance can be ignored with no error� As
mentioned previously� kernels with a �xed �nite radius raise the possibility of not having
enough or any points within the nonzero area� a possibility that must be handled by the
locally weighted learning system� It is not necessary to normalize the kernel function� and
the kernel function does not need to be unimodal� The kernel function should always be
nonnegative� since a negative value would lead to the training process increasing training
error in order to decrease the training criterion� The weights 	i�e�� the square root of the
kernel function� can be positive or negative� We have only used nonnegative weights�
Some of the kernel functions discussed in this section are shown in Figure ��

A simple weighting function just raises the distance to a negative power 	Shepard�
����
 Atkeson� ����
 Ruprecht et al�� ����
 Ruprecht and M�uller� ����b�� The magnitude
of the power determines how local the regression will be 	i�e�� the rate of dropo� of the
weights with distance��

K	d� �
�

dp
	���

This type of weighting function goes to in�nity as the query point approaches a stored
data point and forces the locally weighted regression to exactly match that stored point�
If the data is noisy� exact interpolation is not desirable� and a weighting scheme with
limited magnitude is desired� The inverse distance 	Wolberg� �����

K	d� �
�

� � dp
	���
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can be used to approximate functions like Equation �� and the quadratic hyperbola kernel
��	h� � d�� with a well de�ned value at d � ��

Another smoothing weight function is a Gaussian kernel 	Deheuvels� ����
 Wand and
Schucany� ����
 Schaal and Atkeson� ������

K	d� � exp
�
�d�

�
	���

This kernel also has in�nite extent� A related kernel is the exponential kernel� which has
been used in psychological models 	Aha and Goldstone� ������

K	d� � exp �� jdj� 	���

These kernels have in�nite extent� and can be truncated when they become smaller than
a threshold value to ignore data further from a particular radius from the query�

The quadratic kernel� also known as the Epanechnikov kernel and the BartlettPriestley
kernel� is 	Epanechnikov� ����
 Lejeune� ����
 Altman� ����
 Hastie and Loader� ����

Fan and Gijbels� ����b�a
 Fan and Hall� ������

K	d� �

�
	�� d�� if jdj � �
� otherwise

	���

This kernel has �nite extent and ignores data further than a radius of � from the query
when building the local model� Fan and Marron 	����� and M�uller 	����� argue that this
kernel function is optimal in a mean squared error sense� However� there is a discontinuity
in the derivative at d � �� which makes this kernel less attractive in real applications and
analytical treatments�

The tricube kernel is used by Cleveland 	������ Cleveland and Devlin 	������ Diebold
and Nason 	������ LeBaron 	������ N!s et al� 	������ N!s and Isaksson 	������ Wang
et al� 	����� and Ge et al� 	������

K	d� �

��
	
�
�� jdj

�
��

if jdj � �

� otherwise
	���

This kernel also has �nite extent and a continuous �rst and second derivative� which
means the �rst and second derivative of the prediction will also be continuous�

For comparison� the uniform weighting kernel 	or boxcar weighting kernel� is used by
Stone 	������ Friedman 	������ Tsybakov 	����� and M�uller 	������

K	d� �

�
� if jdj � �
� otherwise

	���

and the triangular kernel 	used in locally weighted median regression� is�

K	d� �

�
�� jdj if jdj � �
� otherwise

	���

A variant of the triangular kernel is the following 	Franke and Nielson� ����
 Ruprecht
and M�uller� ����� ����a
 Ruprecht et al�� ������

K	d� �

�
��jdj
jdj

if jdj � �

� otherwise
	���
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In general new kernel functions can be created by raising these kernel functions to a
power� For example� the biquadratic kernel is the square of the quadratic kernel� The
power can be nonintegral� and also less than one� The triangular� biquadratic� and tricube
kernels form a family� Ruprecht and M�uller 	����b� generalize the distance function to a
pointset metric�

In our view� there is no clear evidence that the choice of weighting function is criti
cal 	Scott� ����
 Cleveland and Loader� ����a�c�� however� there are examples where one
can show di�erences 	Fedorov et al�� ������ Cleveland and Loader 	����b� criticize the
uniform kernel for similar reasons as are used in signal processing and spectrum estima
tion� Optimal kernels are discussed by Gasser and M�uller 	������ Gasser et al� 	������
Scott 	������ Blyth 	����� and Fedorov et al� 	������ Finite extent of the kernel func
tion is useful� but other than that� the literature and our own work have not noted any
substantial empirical di�erence in most cases�

� Local Model Structures

So far we have discussed only a few kinds of local models� constant and linear local models�
There are no limits on what model structure can be used as a local model� Models that
are linear in the unknown parameters� such as local polynomials� train faster than more
general models� Since a major component of the lookup cost is the training cost� this is an
important bene�t� Cleveland and Devlin 	������ Atkeson 	������ Farmer and Sidorowich
	����a�b�� Cleveland and Loader 	����a�� N!s et al� 	������ N!s and Isaksson 	����� and
Wang et al� 	����� have applied local quadratic and cubic models� which are analyzed
by Ruppert and Wand 	������ Higher order polynomials reduce the bias but increase
the variance of the estimates� Locally constant models handle �at regions well� while
quadratics and cubics handle areas of high curvature such as peaks and valleys well�

Cleveland and Loader 	����a�c� present an approach to blending polynomial models�
where a nonintegral model order indicates a weighted blend between two integral model
orders� They use cross validation to optimize the local model order on each query�

� Regularization� Insu	cient Data� and Prediction

Bias

To uniquely interpolate between and extrapolate from the training data we must express
a preference or learning bias� In function approximation that preference is typically
expressed as a smoothness criterion to optimize� In the case of locally weighted learning
the smoothness constraint is not explicit� However� there are several �t parameters that
a�ect the smoothness of the predicted outputs� The smoothing bandwidth is an important
control knob� as is a ridge regression parameter� to be described in the next section�
The order of the local model also can serve as a smoothing parameter� The shape of
the distance and weighting functions play a secondary role in smoothing the estimates�
although in general the number of derivatives with respect to x of K	d	x�q�� that exist
determine the order of smoothness of the predicted outputs� There is an important link
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between smoothness control and over�tting� Seifert and Gasser 	����� explore a variety
of approaches to handling insu�cient data in local regression�

��� Ridge Regression

A potential problem is that the data points can be distributed in such a way as to make
the regression matrix ZTZ in Equation �� nearly singular� If there are not enough nearby
points with nonzero weights in all directions� there are not enough di�erent equations to
solve for the unknown parameters �� Ridge regression 	Draper and Smith� ����� is used
to prevent problems due to a singular data matrix� The following equation� instead of
Equation ��� is solved for �� �

ZTZ � "
�
� � ZTv � "#� 	���

where " is a diagonal matrix with small positive diagonal elements ��i �

" �



BBBB�

��� � � � � �
� ��� � � � �
���

���
� � �

���
� � � � � ��n

�
CCCCA 	���

and #� is an apriori estimate or expectation of what the local model parameters will be
	often #� is taken to be a vector of all zeros�� This is equivalent to adding n extra rows
to Z� each having a single nonzero element� �i� in the ith column� The equation Z� � v
becomes� 

�����������������

Z

�� � � � � �
� �� � � � �
���

���
� � �

���
� � � � � �n

�
�����������������

� �


�����������������

v

�� #��
�� #��
���

�n #�n

�
�����������������

	���

Adding additional rows can be viewed as adding �fake� data� which� in the absence
of su�cient real data� biases the parameter estimates to #� 	Draper and Smith� ������
Another view of ridge regression parameters is that they are the Bayesian assumptions
about the apriori distributions of the estimated parameters 	Seber� ������ As described
in Section �� on tuning� optimizing the ridge regression parameters using cross validation
can identify irrelevant dimensions� These techniques also help combat over�tting�

��� Dimensionality Reduction

Principal components analysis 	PCA� can also be used globally to eliminate directions in
which there is no data 	Wettschereck� ������ However� it is rarely the case that there is
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Figure �� ��dimensional input points

scattered on a ��dimensional non�

linear manifold�

absolutely no data in a particular direction� A closely related technique� the singular value
decomposition 	SVD�� is typically used in locally weighted regression to perform dimen
sionality reduction� Cleveland and Grosse 	����� compute the inverse of ZTZ using the
singular value decomposition� and then set small singular values to zero in the calculated
inverse� This corresponds to eliminating those directions from the local model� Principal
components analysis can also be done locally on the weighted data� either around each
stored data point� or in response to a query� Directions can be eliminated in either a hard
fashion� explicitly setting the corresponding parameters to zero� or in a soft fashion 	such
as performing ridge regression in the coordinate system de�ned by the PCA or SVD��

In Bregler and Omohundro 	����� an interesting locally weighted learning approach
is presented for identifying lowdimensional submanifolds on which data is lying� In
Figure � the space has two dimensions� and yet each dot is locally embedded on a one
dimensional curve� Bregler and Omohundro�s method uses locally weighted principal
component analysis 	which performs a singular value decomposition of the Z matrix from
Equation ��� to identify local manifolds� This is a useful analysis tool for identifying local
dependencies between variables in a dataset� But it also has important consequences for
developing a local distance function� the principal component matrix reveals the directions
in input space for which there is no data support�

These approaches only consider the input space 	the space spanned by xi�� It is
often important to also consider the outputs 	the yi� when performing distance function
or smoothing parameter optimization� The outputs can provide more opportunities for
dimensionality reduction if they are �at in some direction� or can be predicted by a
local model� An alternative perspective is to consider the conditional probability p	yjx��
Perhaps one could do local principal components analysis in the joint density space p	x� y�
and eliminate the input directions that contribute least to predicting the outputs� A
potential problem with dimensionality reduction in general is that the new dimensions�
if not aligned with the previous dimensions� are not necessarily meaningful� Our focus is
on reducing prediction error� ignoring comprehensibility of the local models�


 Assessing the Predictions

An important aspect of locally weighted learning is that it is possible to estimate the pre
diction error� and derive con�dence bounds on the predictions� Bottou and Vapnik 	����

Vapnik and Bottou� ����� analyze con�dence intervals for locally weighted classi�ers� We

��



start our analysis of locally weighted regression by pointing out that LWR is an estimator
that is linear in the output data y 	using Equations ��� ��� and ����

�y	q� � qT	ZTZ � "���ZTWy � sTqy �
nX
i��

si	q�yi 	���

The vector sq� also written as s	q�� will be useful for calculating the bias and variance of
locally weighted learning�

��� Estimating the Variance

To calculate the variance of a prediction we assume the training data came from a sampling
process that measures output values with additive random noise�

yi � f	xi� � �i 	���

where the �i are independent� have zero mean� and have variance ��	xi�� Under the
assumption that ��	xi� � �� 	� is a constant� and that the linear model correctly models
the structure of the data� linear regression generates an unbiased estimate of the regression
parameters� Additionally� if the error is normally distributed� �i � N	�� ���� the regression
estimate becomes the best linear unbiased estimate in the maximum likelihood sense�
However� unless stated explicitly� in this paper we will avoid any distributional assumption
on the form of the noise�

Given this model of the additive noise 	and dropping the assumption that a linear
model correctly models the structure of the data�� the expectation and variance of the
estimate �y is 	s is from Equation ����

E	�y	q�� � E	sTqy� � sTqE	y� �
X
i

si	q�f	xi� 	���

Var	�y	q�� � E ��y	q�� E	�y	q���� �
X
i

s�i 	q��
�	xi� 	���

One way to derive con�dence intervals for the predictions from locally weighted learn
ing is to assume a locally constant variance ��	q� at the prediction point q and to use
Equation ��� This equation has to be modi�ed to re�ect both the additive noise in
sampling at the new point 	��	q�� and the prediction error of the estimator 	��	q�sTq sq��

Var	ynew	q�� � ��	q� � ��	q�sTqsq 	���

This expression of the prediction intervals is independent of the output values of the
training data yi� and re�ects how well the data is distributed in the input space� However�
the variance only re�ects the di�erence between the prediction and the mean prediction�
and not the di�erence between the prediction and the true value� which requires knowledge
of the predictor�s bias� Only when the local model structure is correct will the bias be
zero�

To conveniently derive an estimate of ��	x� we will de�ne some additional quantities
in terms of the weighted variables� A locally weighted linear regression centered at a point
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q produces local model parameters �	q�� It also produces errors 	residuals� at all training
points� The weighted residual ri	q� is given by 	vi is de�ned in Equation ����

ri	q� � zTi 	q��	q�� vi	q� 	���

The training criteria� which is the weighted sum of the squared errors� is given by�

C	q� �
X
i

r�i 	q� 	���

A reasonable estimator for the local value of the noise variance is

���	q� �

P
r�i 	q�

nLWR	q�
�

C	q�

nLWR	q�
	���

where nLWR is a modi�ed measure of how many data points there are�

nLWR	q� �
nX
i��

w�
i �

nX
i��

K

�
d	xi�q�

h

�
	���

In analogy to unweighted regression 	Myers� ������ we can reduce the bias of the estimate
���	q� by taking into account the number of parameters in the locally weighted regression�

���	q� �

P
r�i 	q�

nLWR	q�� pLWR	q�
	���

where pLWR is a measure of the local number of free parameters in the local model�

pLWR	q� �
X
i

w�
i z

T
i 	Z

TZ���zi 	���

We have described a variance estimator that uses only local information� An alter
native way to obtain a variance estimate uses global information� i�e�� information from
more than one LWR �t� and assumes a single global value for the additive noise 	Cleveland
et al�� ����
 Cleveland and Grosse� ����
 Cleveland et al�� ������

��� Estimating the Bias

Assessing the bias requires making assumptions about the underlying form of the true
function� and the data distribution� In the case of locally weighted learning this is a weak
assumption� since we need to know only the local behavior of the function and the local
distribution of the data� Let us assume that the real function f is described locally by a
quadratic model�

f	x� � f	q� � gT	x� q� �
�

�
	x� q�TH	x� q� 	���

where q is the query point� g is the true gradient at the query point� and H is the true
Hessian 	matrix of second derivatives� at the query point� The expected value of the
estimate is given by Equation ��� which can be used to �nd the bias�

bias � E	�y	q��� ytrue	q� �
X

�si	q�f	xi��� f	q� 	���
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This equation can be solved if we know the true function� For example� for the locally
quadratic function� we can plug the quadratic function for f	x� in Equation �� into
Equation �� to get�

bias � f	q�
X

�si	q���f	q��gT
X

�si	q�	x� q���
�

�

Xh
si	q�	x� q�TH	x� q�

i
	���

The locally weighted regression process that generates sq guarantees that
P
si	q� � �� and

since the linear local model exactly matches any linear trend in the data�
P
si	q�	x�q� �

�� Therefore� the bias depends only on the quadratic term 	Katkovnik� ����
 Cleveland
and Loader� ����a��

bias �
�

�

X
i

si	q�	xi � q�TH	xi � q� 	���

assuming the ridge regression parameters �i have been set to zero� This formula raises
the temptation to estimate and cancel the bias by estimating the second derivative matrix
H� It is not clear that this is better than simply using a quadratic local model instead
of a linear local model� The quadratic local model would eliminate the local bias due to
the quadratic term 	and also remove the need for the distance metric to compensate for
di�erent curvature in di�erent directions�� Of course� if a quadratic local model is used�
the bias will then be due to cubic terms in the Taylor series for the true function� whose
elimination would require estimation of the cubic terms with a cubic local model� and so
on� We have not yet found a principled termination of this cycle�

��� Assessment Using Cross Validation

We can assess how well locally weighted learning is doing by testing how well each experi
ence 	xi� yi� in the memory is predicted by the rest of the experiences� A simple measure
of the ith prediction error is the di�erence between the predicted output of the input
xi and the observed value yi� However� for nonparametric learners that are over�tting
the data this measure may be deceptively small� For example� a nearest neighbor learner
would always have an error measure of zero because 	xi� yi� will be the closest neighbor
to itself�

A more sophisticated measure of the ith prediction error is the leave�one�out cross

validation error� in which the experience is �rst removed from the memory before predic
tion� Let �ycvi be the output predicted for input xi using the memory with the ith point
removed�

f	x�� y��� 	x�� y��� � � � � 	xi��� yi���� 	xi��� yi���� � � � � 	xn� yn�g 	���

The ith leaveoneout cross validation error is ecvi � 	�ycvi � yi�� With the lazy learning
formalism� in which most work takes place at prediction time� it is no more expensive
to predict a value with one data point removed than with it included� This contrasts
with the majority of learning methods that have an explicit training stage$in these cases
it is not easy to pick an earlier experience and temporarily pretend we did not see it�
Ignoring a training data point typically requires retraining from scratch with a modi�ed
training set� which can be fairly expensive with a nonlinear parametric model such as a
neural network� In addition� the dependence of nonlinear parametric training on initial
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parameter values further complicates the analysis� To handle this e�ect correctly many
training runs with di�erent starting values must be undertaken for each di�erent data set�
All of this is avoided with locally weighted learning with local models that are linear in
the unknown parameters� although tuning of �t parameters does reintroduce the problem�
However� tuning of �t parameters can be a background process that operates on a slower
time scale than adding new data and answering queries�

Cross validation can also be performed locally� i�e� from just �tting a locally linear
model at one query point q 	Cleveland and Loader� ����c�� We �rst consider the lo
cally weighted average of the squared cross validation error MSEcv at each training point
	Myers� ������

MSEcv	q� �

P
	ecvi�xi�

�K	d	xi�q��P
K	d	xi�q��

	���

This estimate requires a locally weighted regression to be performed at each training point
with nonzero weight K	d	xi�q��� One could imagine storing ecvi�xi with each training
point� but this value would have to be updated as new data was learned� We approximate
ecvi�xi � ecvi�q� to generate the following�

MSEcv	q� �

P
	ecvi�q�

�K	d	xi�q��P
K	d	xi�q��

�

P
	rcvi�q�

�

nLWR

	���

where rcvi�q is the weighted cross validation error with point i removed from a locally
weighted regression centered at q� The weighted cross validation residual rcvi�q is related
to the weighted residual 	ri � wiei� by 	Myers� ������

rcvi �
ri

�� zTi 	Z
TZ � "���zi

	���

Thus� we obtain the �nal equation for MSEcv as�

MSEcv	q� �
�

nLWR

X
i

�
ri

�� zTi 	Z
TZ� "���zi

��
	���

This equation is a local version of the PRESS statistic 	Myers� ������ It allows us to
perform leaveoneout cross validation without recalculating the regression parameters
for every excluded point� Often� this is computationally very e�cient�

�� Optimal Fit Parameters� An Example

In this section we will try to �nd optimal �t parameters 	distance metric d	�� weight
ing function K	�� and smoothing bandwidth h� for a simple example� We will make
the restrictive assumption that the data is uniformly spaced on a rectangular grid� We
�rst approach this question by exploring kernel shapes in one dimension� We allow the
weights wi to be unknown� and numerically optimize them to minimize the mean squared
error� We assume the underlying function is quadratic with second derivative H 	Equa
tion ��� and that there is additive independent identically distributed zero mean noise
	Equation ��� with constance variance ��� The sampled data is regularly spaced with a
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Figure ��� The kernel shape that minimizes mean squared error in one dimension� The
large single dot is the predicted value� whose deviation from zero� the correct value� reveals
the bias� The vertical bars show the standard deviation of the prediction 	i�e�� the square
root of the variance�� which is greatly reduced from the standard deviation of �� of the
original data� The set of large dots have been optimized to minimize the mean squared
error of the prediction� and reveal the optimal kernel shape for this criterion� The line
through these points is a quadratic kernel with the appropriate bandwidth to match the
optimized kernel values� The small dots are the value of the quadratic portion of the
underlying function� for comparison�

distance of % between each data point 	in Figure �� % � ����� Equation �� is solved for
s� with the query at x � �� The mean squared error is the sum of the bias 	Equation ���
squared and the variance 	Equation ���� This quantity is minimized by adjusting the
weights wi� The resulting kernel shape K	d� � w�

i is shown in Figure ��� This kernel
shape matches the quadratic kernel�

K	d� �

�
	�� d�� if jdj � �
� otherwise

	���

which has been described in Section ��
Further numerical experimentation in one dimension revealed that the optimal scaling

factor m for the one dimensional distance function is approximately�

m� � cH 	���
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Figure ��� Contour plot of fx��
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Figure ��� Contour plot of optimal kernel�

where c is a constant that takes into account issues such as data spacing % and the
standard deviation of the additive noise�

c �
%�

�
	���

The width of the resulting kernel is directly related to the optimal smoothing bandwidth�
In two dimensions we can explore optimization of the distance metric� Optimizing

the values of the kernel at each of the data points is beyond our current computational
resources� so we will assume the form of the kernel function is the quadratic kernel� We will
choose a particular value for the Hessian H in Equation ��� and then optimize the scaling
matrixM for the multidimensional distance function to minimize the mean squared error�
We found that the optimal M approximately satis�es the following equation�

MTM � cH 	���

where c is the same as the one dimensional case� Figure �� shows how the Hessian matrix
H can orient the quadratic component in an arbitrary orientation� The distance function
matrixMTM needs to be a full matrix in order to allow the optimal kernel 	Figure ��� to
match the orientation of the quadratic component of f	x� 	Figure ���� For this numerical
experimentH was chosen to be�

H �

�
������� ��������
�������� �������

�
	���

The optimal scaling matrix M was found by numerical search to be�

M �

�
������� ��������

��� �������

�
	���

and Equation �� is approximately satis�ed� as 	MTM�H�� is almost a multiple of the
identity matrix for c � �����

	MTM�H�� �

�
������� �������
������ ������

�
	���
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Figure ��� Locally weighted regression

approximating a ��dimensional dataset
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Figure ��� Locally weighted regression

supplemented with outlier removal�

�� Noisy Training Data and Outliers

The averaging performed by the locally weighted regression process naturally �lters out
noise if the weighting function is not in�nite at zero distance� The tuning process can
optimize the noise �ltering by adjusting �t parameters such as smoothing parameters�
weighting function parameters� ridge regression parameters� and choice of local model
structure� However� it is often useful to explicitly identify outliers� training points that
are erroneous or whose noise is much larger than that of neighboring points� An example
of the e�ect of an outlier is given in Figure �� and the e�ect of outlier rejection is shown in
Figure ��� Robust regression 	see� for example Hampel et al�� ����� and cross validation
allow extensions to locally weighted learners in which we can identify or reduce the e�ects
of outliers� Outliers can be identi�ed and removed globally� or they can be identi�ed and
ignored on a query by query basis� Querybased outlier detection allows training points
to be ignored for some queries and used for other queries� Other areas that have been
explored are detecting discontinuities and nonstationarity in the training data�

���� Global Weighting of Stored Points and Finding Outliers

It is possible to attach weights to stored points during the training process and during
lookup that downweight points that are suspected of being unreliable 	Aha and Kibler�
����
 Cost and Salzberg� ������ These weights can multiply the weight based on the
weighting function� Totally unreliable points can be assigned a weight of zero� leading
them to be ignored� The reliability weights can be based on cross validation� whether a
stored point correctly predicts or classi�es its neighbors� Another approach is to only uti
lize stored points that have shown that they can reduce the cross validation error 	Aha�
������ Important issues are when the weighting decision is made and how often the
decision is reevaluated� Global methods typically assign a weight to a point during train
ing� in which case the decision is usually never reevaluated� or during an asynchronous
database maintenance process� in which decisions are reevaluated each time the process
cycles through the entire database�
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���� Local Weighting of Stored Points and Finding Outliers

Local outlier detection methods do not label points as outliers for all queries� as do global
methods� Points can be outliers for some queries and not outliers for others� We can
generate weights for training data at query time based on cross validation using nearby
points� The PRESS statistic 	Myers� ����� can be modi�ed to serve as a local outlier
detector in locally weighted regression� For this� we need the standardized individual
PRESS residual 	also called the Studentized residual��

ePRESS �
ri

��
q
� � zTi 	Z

TZ� "���zi
	���

This measure has zero mean and unit variance and assumes a locally normal distribution
of the error� If� for a given data point it deviates from zero more than a certain threshold�
the point can be called an outlier� A conservative threshold would be ����� discarding all
points lying outside the ��� area of the normal distribution� In our applications� we used
����� cutting o� all data outside the ��� area of the normal distribution�

���� Robust Regression Approaches

Data with outliers can be viewed as having additive noise with longtailed symmetric
distributions� Robust regression is useful for both global and local detection of out
liers 	Cleveland� ������ A bisquare weighting function is used to additionally downweight
points based on their residuals�

ui �

���
�	
�
��

�
ei

�eMED

����
if jeij � �eMED

� otherwise
	���

where eMED is the median of the absolute value of the residuals ei� The weights now be
come wi � uiK	d	xi�q��� This process is repeated about �� times to re�ne the estimates
of ui�

�� Tuning

Like most learning algorithms� locally weighted learning usually needs to be tuned to work
well for a particular problem� Tuning means adjusting the parameters of the learning
algorithm itself� The locally weighted �t criteria is

C	q� �
X
i

�
	f	xi� ��� yi�

�K

�
d	xi�q�

h

��
	���

It includes several ��t� parameters� the bandwidth or smoothing parameter h� the dis
tance metric d	�� and the weighting or kernel function K	�� There are additional �t
parameters such as ridge regression parameters and outlier thresholds� There are several
ways to tune these �t parameters�
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� Global tuning� The �t parameters are set globally by an optimization process that
typically minimizes cross validation error over all the data� and therefore constant
size and shape volumes of data are used to answer queries�

� Query�based local tuning� The �t parameters are set on each query based on
local information�

� Point�based local tuning� The weighted training criteria uses di�erent �t param
eters for each point xi� a bandwidth hi� a distance metric di	�� a weighting function
Ki	�� and possibly a weight wxi�

C	q� �
X
i

�
	f	xi� ��� yi�

�wxiKi

�
di	xi�q�

hi

��
	���

In typical implementations of this approach the �t parameters are computed in
advance of the queries and are stored with the data points�

There are several approaches to computing the �t parameter values�

� Plug�in approach� The �t parameters can be set by a direct computation�

� Optimization approaches� The �t parameters can be set by an optimization
process that either 	Marron� ������

� minimizes the training set error�

� minimizes the test or validation set error�

� minimizes the cross validation error 	CV��

� minimizes the generalized cross validation error 	GCV� 	Myers� ������

� maximizes Akaike�s information criterion 	AIC��

� or adjusts Mallow�s Cp�

Fit parameters cannot be optimized in isolation� The combination of all �t parameters
generates a particular �t quality� If one �t parameter is changed� typically the optimal
values of other parameters change in response� If a locally constant model is used� then the
smoothing parameter and distance function must re�ect the �atness of the neighborhood
in di�erent directions� If the local model is a hyperplane� the smoothing parameter and
distance function must re�ect the second derivative of the neighborhood� If the local
model is quadratic� it is the third spatial derivative of the data that must be dealt with�

For practical purposes it would be useful to have a clear understanding of how accurate
the nonlinear �t parameters should be for a good �t� Our intuition is that approximate
values usually result in barely distinguishable performance from optimal parameters in
practical use� although 	Brockmann et al�� ����� states that this is not true for h in kernel
regression�

The next section considers optimizing a single set of parameters for all possible future
queries 	global tuning�� Section ���� considers optimizing multiple sets of parameters for
speci�c queries 	local tuning��
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���� Global Tuning

Global crossvalidation can be a particularly robust method for tuning parameters� be
cause it does not make any special assumptions� Independent of the noise distribution�
data distribution and underlying function� the crossvalidation value is an unbiased esti
mate of how well a given set of parameters will perform on new data drawn from the same
distribution as the old data� This robustness has lead to the use of global crossvalidation
in applications that attempt to achieve high autonomy by making few assumptions� such
as the General Memory Based Learning 	GMBL� system described in 	Moore et al�� ������
GMBL performs large amounts of cross validation search to optimize feature subsets� the
diagonal elements of the distance metric� the smoothing parameter� and the order of the
regression�

������ Continuous Search

Continuous �t parameters make continuous search possible� Inevitably this is local hill
climbing� with a large risk of getting stuck in local optima� The sum of the squared
cross validation errors is minimized using a nonlinear parameter estimation procedure
	e�g�� MINPACK 	More et al�� ����� or NL�SOL 	Dennis et al�� ������� As discussed
in Section ���� in this locally weighted learning approach computing the cross validation
error for a single point is no more computationally expensive than answering a query�
This is quite di�erent from parametric approaches such as a neural network� where a new
model 	network� must be trained for each cross validation training set with a particular
point removed� In addition� if the local model is linear in the unknown parameters we can
analytically take the derivative of the cross validation error with respect to the parameters
to be estimated� which greatly speeds up the search process�

We can use the optimized distance metric to �nd which input variables are more or
less important to the function being represented� Distance scaling factors that go to zero
indicate directions that are irrelevant or are consistent with the local model structure�
and that a global model will su�ce for those directions� We can also interpret the ridge
regression parameters� The ridge regression parameters for irrelevant terms in the local
model become very large in the �t parameter optimization process� The e�ect of this
is to force the corresponding estimated parameters �i to the apriori values #�i� which
corresponds to a dimensionality reduction�

A relatively unexplored area is stochastic gradient descent approaches to optimizing
�t parameters� Rather than use all the cross validation errors and their associated contri
butions to the derivative� why not use only a small random sample of the cross validation
errors and their associated derivative contributions& Racine 	����� describes an approach
to optimizing �t parameters based on partitioning the training data into subsets� calcu
lating cross validation errors for each subset based only on data in the subset� and then
averaging the results�

������ Discrete Search

Discrete search algorithms for good �t parameters is an active area of research� Maron
and Moore 	����� describe �racing� techniques to �nd good �t parameter values� These
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techniques compare a wide range of di�erent types of models simultaneously� and handle
models with discrete parameters� Bad models are quickly dropped from the race� which
focuses computational e�ort on distinguishing between the good models� Typically any
continuous �t parameters are discretized 	Maron and Moore� ������

Techniques for selecting features in the distance metric and local model have been
developed in statistics 	Draper and Smith� ����
 Miller� ������ including all subsets�
forward regression� backwards regression� and stepwise regression� We have explored
stepwise regression procedures to determine which terms of the local model are useful
with similar results to the gradient based search described above� Feature selection is
a hard problem because the features cannot be examined independently� The value of
a feature depends on which other features are also selected� Thus the goal is to �nd
a set of feature weights� not individual feature weights for each feature� In Maron and
Moore 	����� a number of algorithms for doing this are described and compared� including
methods based on MonteCarlo sampling� Aha 	����� gives an algorithm that constructs
new features� in addition to selecting features� Friedman 	����� gives techniques for query
dependent feature construction�

������ Continuous vs� Discrete Search

Discrete search can explore settings for discrete �t parameters� and even select training
algorithm features or function approximation methods 	e�g�� locally weighted regression�
neural networks� rulebased systems�� It would seem that continuous �t parameter opti
mization cannot make these choices� However� this is not the case� By blending the output
of di�erent approaches with a blending parameter �� continuous search can choose model
order� algorithm features� and approximation method� For example� � could be optimized
to blend two methods f�	� and f�	� in the following equation�

f	q� � �f�	q� � 	�� ��f�	q� 	���

Cleveland and Loader 	����a�c� present an approach to automatically choose the local
model structure 	i�e�� order of the polynomial model� by blending polynomial models�
where a nonintegral model order indicates a weighted blend between two integral model
orders� They use cross validation to optimize the local model order on each query�

���� Local Tuning

Local �t parameter optimization is referred to as �adaptive� or �variable� in the statistics
literature� as in �adaptive bandwidth� or �variable bandwidth� smoothers� There are
several reasons to consider local tuning� although it dramatically increases the number of
degrees of freedom in the training process� leading to increased variance of the predictions
and an increased risk of over�tting the data 	Cleveland and Loader� ����c��

� Adaptation to the data density and distribution� This adaptation is in ad
dition to the adaptation provided by the locally weighted regression procedure it
self 	Bottou and Vapnik� ������
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Figure ��� Performance of various methods on two joint arm dynamics�

� Adaptation to variations in the noise level in the training data� These
variations are known as heteroscedasticity�

� Adaptation to variations in the behavior of the underlying function� The
function may be locally planar in some regions and have high curvature in others�

�Plugin� estimators have been derived and local 	locally weighted� training set error�
cross validation� or validation 	test� set error can drive an optimization of the local model�

�� Interference

Negative interference between old and new training data is one of the most important
motivations for exploring locally weighted learning� To illustrate the di�erences between
global parametric representations and a locallyweighted learning approach� a sigmoidal
feedforward neural network approach was compared to a locally weighted learning ap
proach on the same problem� The architecture for the sigmoidal feedforward neural net
work was taken from 	Goldberg and Pearlmutter� ����� section �� who modeled arm
inverse dynamics� The ability of each of these methods to predict the torques of the
simulated two joint arm at ���� random points was compared 	Atkeson� ������ Figure ��
plots the normalized RMS prediction error� The points were sampled uniformly using
ranges comparable to those used in Miller et al� 	������ which also looked at two joint
arm inverse dynamics modeling� Initially� each method was trained on a training set of
���� random samples� and then the predictions of the torques on a separate test set of
���� random samples of the two joint arm dynamics function were assessed� The solid
bar marked LWR at location � shows the test set error of a locally weighted regression
with a quadratic local model� The light bar marked NN at location � shows the best test
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set error of the neural network� Both methods generalize well on this problem 	bars �
and � have low error��

Each method was then trained on ten attempts to make a particular desired movement�
Each method successfully learned the desired movement� After this second round of
training� performance on the random test set was again measured 	bars at locations �
and ��� The sigmoidal feedforward neural network lost its memory of the full dynamics
	the light bar at location � has a large error�� and represented only the dynamics of the
particular movements being learned in the second training set� This interference between
new and previously learned data was not prevented by increasing the number of hidden
units in the single layer network from �� up to ���� The locally weighted learning method
did not show this interference e�ect 	solid bar at location ���

The interference is caused by the failure of the neural network model structure to
match the arm inverse dynamics structure perfectly� There is no noise in the data� and no
concept drift� so these causes are eliminated as possible sources of the interference� It can
be argued that the sigmoidal neural network forgot the original training data because we
did not include that data in the second training data set 	learning a speci�c movement��
That is exactly our point
 if all past data is retained to combat interference� then the
method becomes a lazy learning method� In that case we argue that one should take
advantage of the opportunity to locally weight the training procedure� and get better
performance 	Vapnik� ����
 Bottou and Vapnik� ����
 Vapnik and Bottou� ������

�� Implementing Locally Weighted Learning

There are several concerns about locally weighted learning systems� including whether
locally weighted learning systems can answer queries fast enough and whether their speed
will unacceptably degrade as the size of the database grows� This section explores these
concerns� We discuss fast ways to �nd relevant data using either kd trees in software�
special purpose hardware� or massively parallel computers� and the current performance
of our LWR implementation� Our goal is to minimize the need for compromises such as
forgetting 	discarding data� to keep the database size under a limit� instance averaging�
which averages similar data� or maintaining an elaborate data structure of intermediate
results to accelerate query processing� We will not discuss LWR acceleration approaches
that are limited to low dimensional problems such as binning 	Fan and Marron� ����a

Turlach and Wand� ������ Other discussions of fast implementations include Seifert et al�
	����� and Seifert and Gasser 	������

���� Retrieving Relevant Data

The choice of method for storing experiences depends on what fraction of the experiences
are used in each locally weighted regression and what computational technology is avail
able� If all of the experiences are used in each locally weighted regression� then simply
maintaining a list or array of experiences is su�cient� If only nearby experiences are
included in the locally weighted regression� then an e�cient method of �nding nearest
neighbors is required� Nearest neighbor lookup can be accelerated on a serial proces
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sor using the kd tree data structure� Parallel processors and special purpose processors
typically use parallel exhaustive search�

�	���� K�d Trees

Naively implemented search for a d dimensional nearest neighbor in a database of size n
requires n distance computations� Nearest neighbor search can be implemented e�ciently
by means of a k�d tree 	Bentley� ����
 Friedman et al�� ����
 Bentley and Friedman� ����

Bentley et al�� ����
 Murphy and Selkow� ����
 Ramasubramanian and Paliwal� ����

Broder� ����
 Samet� ����
 Sproull� ������ A kd tree is a binary data structure that
recursively splits a ddimensional space into smaller subregions� The search for a nearest
neighbor proceeds by initially searching the kd tree in the branches nearest the query
point� Frequently� distance constraints mean there is no need to explore further branches�
Figure �� shows a kd tree segmenting a two dimensional space� The shaded regions
correspond to areas of the kd tree that were not searched�

Figure ��� Generally dur�

ing a nearest neighbor search

only a few leaf nodes need

to be inspected� The query

point is marked by an x and

the distance to the nearest

neighbor is indicated by a

circle� Black nodes are those

inspected on the path to the

leaf node�

The access time is asymptotically logarithmic in n� the size of the memory� although
often overhead costs mean that nearly all the data points will be accessed in a supposed
logarithmic search� for example� with eight dimensions or more and fewer than approx
imately ������� uniformly distributed data points� In fact� given uniformly distributed
data points� the tree size for which logarithmic performance is noticeable increases ex
ponentially with dimensionality� Two things can alleviate this problem� First� the data
points are unlikely to be distributed uniformly� In fact� the less randomly distributed the
training data is the better� Second� there are approximate algorithms that can �nd one
or more nearby experiences� without guaranteeing they are the nearest� that do operate
in logarithmic time� Empirically� these approximations do not greatly reduce prediction
accuracy 	Omohundro� ����
 Moore� ����b�� Bump trees 	Omohundro� ����� are an
other promising e�cient approximation� Cleveland et al� 	������ Farmer and Sidorowich
	����a�b�� Renka 	������ Grosse 	������ Moore 	����a�� Cleveland and Grosse 	������
Karali�c 	������ Townshend 	������ Loader 	������ Wess et al� 	������ Deng and Moore
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	������ Lowe 	����� and van der Smagt et al� 	����� have used trees in memorybased
learning and locally weighted regression�

�	���� Special Purpose Devices

Special purpose hardware for �nding nearest neighbors has a long history 	Taylor� �����
����
 Steinbuch� ����
 Steinbuch and Piske� ����
 Kazmierczak and Steinbuch� ����

Batchelor� ������ These machines calculated either a Manhattan or Euclidean distance
for all stored points� and then did comparisons to pick the winning point� The current
version of this technology is the wafer scale memory'based reasoning devices proposed
by Yasunaga and Kitano 	������ The devices allocate one processor per data point� and
can handle approximately ��� million data points per � inch wafer� The designers have
exploited the properties of memorybased learning in two ways� First� the resolution
of the computed distance is not critical� so analog adders and multipliers are used for
weighting and distance calculations instead of digital circuits� saving much space on the
silicon for other processors� Second� the device is robust to faulty processors� in that a
faulty processor only causes the loss of a single data point� The authors advocate simply
ignoring processor failures� although it would be possible to map the faulty processors
and skip them when loading data�

�	���� Massively Parallel Implementations

Many nearest neighbor systems have been implemented on massively parallel Connec
tion Machines 	Waltz� ������ On a massively parallel computer� such as the CM� and
CM� 	Hillis� ������ exhaustive search is often faster than using kd trees� due to the
limited number of experiences allocated to each processor� The Connection Machine can
have up to ��� 	������ processors� and can simulate a parallel computer with many more
processors� Experiences are stored in the local memory associated with each processor�
An experience can be compared to the desired experience in each processor� with the
processors running in parallel� and then a hardwired globalOR bus can be used to �nd
the closest match in constant time independent of the number of stored experiences� The
search time depends linearly on the number of dimensions in the distance metric� and the
distance metric can be changed easily or made to depend on the current query point�

The critical feature of the massively parallel computer system IXM� is the use of
associative memories in addition to multiple processors 	Higuchi et al�� ������ There are
�� processors 	Transputers� in the IXM�� but each processor has �Kx�� bits of associative
memory� which increases the e�ective number of processors to ���K� This architecture is
well suited for memorybased learning where the distance metric involves exact matches of
symbolic �elds� as that is the operation the associative memory chips can support� Future
associative memories might implement Euclidean distance as a basic operation� There
have been implementations of memorybased translation and parsing on the IXM� 	Kitano
and Higuchi� ����a�b
 Sumita et al�� ����
 Kitano� ����a�b��

The current generic parallel computer seems to be on the order of ��� standard micro
processors tightly connected with a communication network� Examples of this design are
the CM� and the SNAP system 	Kitano et al�� ������ The details of the communication
network are not critical to locally weighted learning� since the time critical processing
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consists of broadcasting the query to the processors and determining which answer is the
best� which can easily be done with a prespeci�ed communication pattern� This form of
communication is not di�cult to implement� This machine does not have the thousands
of processors that make exhaustive search the obvious nearest neighbor algorithm� The
processors will probably maintain some sort of search data structure such as a kd tree�
although the local kd trees may be too small for e�cient search performance� Kitano
et al� 	����� describe an implementation of memorybased reasoning on the SNAP sys
tem� This type of parallel computer is excellent for locally weighted learning� where the
regression calculation dominates the lookup time if a large fraction of the points are used
in each regression�

���� Implementing Locally Weighted Regression

Locally weighted learning minimizes the computational cost of training
 new data points
are simply stored in the memory� The price for trivial training costs is a more expensive
lookup procedure� Locally weighted regression uses a relatively complex regression pro
cedure to form the local model� and is thus more expensive than nearest neighbor and
weighted average memorybased learning procedures� For each query a new local model
is formed� The rate at which local models can be formed and evaluated limits the rate
at which queries can be answered� We have implemented the locally weighted regression
procedure on a ��MHz Intel i��� microprocessor� The peak computation rate of this
processor is �� MFlops� We have achieved e�ective computation rates of �� MFlops on a
learning problem with �� input dimensions and � output dimensions� using a linear local
model� This leads to a lookup time of approximately �� milliseconds on a database of
���� points� using exhaustive search� This time includes distance and weight calculation
for all the stored points� forming the regression matrix� and solving the normal equations�

�� Applications of Locally Weighted Learning

The presence of the LOWESS and LOESS software in the S statistics package has lead to
the use of locally weighted regression as a standard tool in many areas� including modeling
biological motor control� feeding cycles in smokers and nonsmokers� leadinduced anemia�
categories of tonal alignment in spoken English� and growth and sexual maturation during
disease 	Cleveland� ����
 Cleveland et al�� ������

Atkeson et al� 	����� survey our own work in applying locally weighted learning to
robot control� Zografski has explored the use of locally weighted regression in robot con
trol and modeling time series� and also compared LWR to neural networks and other
methods 	Zografski� ����� ����� ����
 Zografski and Durrani� ������ Gorinevsky and
Connolly 	����� compared several di�erent approximation schemes 	neural nets� Koho
nen maps� radial basis functions� and local polynomical �ts� on simulated robot inverse
kinematics with added noise� and showed that local polynomial �ts were more accurate
than all other methods� van der Smagt et al� 	����� learned robot kinematics using lo
cal linear models at the leaves of a tree data structure� Tadepalli and Ok 	����� apply
local linear regression to reinforcement learning� Baird and Klopf 	����� apply nearest
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neighbor techniques and weighted averaging to reinforcement learning and Thrun 	�����
and Thrun and O�Sullivan 	����� apply similar techniques to robot learning� Connell and
Utgo� 	����� interpolated a value function using locally weighted averaging to balance an
inverted pendulum 	a pole� on a moving cart� Peng 	����� performed the cart pole task
using locally weighted regression to interpolate a value function� Aha and Salzberg 	�����
explored nearest neighbor and locally weighted learning approaches to a tracking task in
which a robot pursued and caught a ball� McCallum 	����� explored the use of lazy
learning techniques in situations where states were not completely measured� Farmer and
Sidorowich 	����� ����a�b� apply locally weighted regression to modeling and prediction
of chaotic dynamic systems� Huang 	����� uses nearest neighbor and weighted averaging
techniques to cache simulation results and accelerate a movement planner�

Lawrence et al� 	����� compare neural networks and local regression methods on sev
eral benchmark problems� Local regression outperformed neural networks on half the
benchmarks� Factors a�ecting performance included whether the data had di�ering den
sity over the input space� noise level� dimensionality� and the nature of the function
underlying the data�

Several researchers have applied locally weighted averaging and regression to free form
�D and �D deformation� morphing� and image interpolation in computer graphics 	Gosh
tasby� ����
 Wolberg� ����
 Ruprecht and M�uller� ����� ����� ����a
 Ruprecht et al��
������ Coughran� Jr� and Grosse 	����� describe using locally weighted regression for
scienti�c visualization and auralization of data�

Ge et al� 	����� apply locally weighted regression to predict cell density in a fermenta
tion process� They used nearest neighbor weighting and a tricube weighting function�
They also used principal components and cross validation to select features globally�
Locally weighted regression outperformed other methods� including a global nonlinear
regression� Hammond 	����� used LWR to model fermentation as well�

N!s et al� 	������ N!s and Isaksson 	����� and Wang et al� 	����� apply locally
weighted regression to analytical chemistry� They use global principal components to
reduce the dimensionality of the inputs� and they use cross validation to set the number
of components to use� They also explore several weighted Euclidean distance metrics�
including weighting depending on the range of the data in principal component coordi
nates� weighting depending on how good that dimension is in predicting the output� and a
distance metric that includes the output value� They use a quadratic local model and the
tricube weighting function� They use cross validation to select the number of points to
include in the local regression� They make the important point that optimal experiment
design is quite di�erent when using locally weighted regression as compared to global
linear regression�

Tamada et al� 	����� apply memorybased learning to water demand forecasting� They
select features using Akaike�s Information Criterion 	AIC�� and use locally weighted av
eraging within a neighborhood� They use a default temporally local regression scheme if
no points are found in the neighborhood� They use error rates to set feature weights and
to perform outlier removal�

Townshend 	����� applies locally weighted regression to the analysis� modeling� cod
ing� and prediction of speech signals� He uses a singular value decomposition to reduce
the dimensionality of the regression to a �xed value D� determined from other criteria�

��



He uses the k closest points to form the local model� The distance to the nearest point is
used as an estimate of the con�dence in the prediction� A clustering process on the inputs
and the outputs 	xi� yi� is used to handle noise and one to many mapping problems� A
kd tree is used to speed up nearest neighbor search� This process lead to a signi�cant
improvement over a linear predictor�

Wijnberg and Johnson 	����� apply locally weighted regression to interpolating air
quality measurements� They used cross validation to optimize the smoothing parameter
globally� but did not �nd a well de�ned minimum for the smoothing parameter� Kozek
	����� describe using LWR to model automobile emissions�

Walden and Prescott 	����� use LWR to remove trends in time series involving climate
data� Solow 	����� estimated the variance or noise level in time series climate data after
having removed the mean using LWR�

Locally weighted regression has also been applied in economics and econometrics 	Meese
and Wallace� ����
 LeBaron� ������ Meese and Rose 	����� used LWR to model exchange
rates and conclude that no signi�cant nonlinearity exists in the data� Diebold and Nason
	����� also used LWR to predict exchange rates� without any more success than other
nonparametric regression techniques�

Turetsky et al� 	����� and Raz et al� 	����� use LWR to smooth biological evoked
potential data� and explore approaches to choosing the smoothing parameter� Bottou
and Vapnik 	����� apply locally weighted classi�cation to optical character recognition
	OCR�� Rust and Bornman 	����� apply LWR to marketing data�

There have been a range of applications of locally weighted techniques in statis
tics 	Cleveland� ����b
 Cleveland and Loader� ����c�� The idea of local �tting was ex
tended to likelihoodbased regression models by Tibshirani and Hastie 	����� and Hastie
and Tibshirani 	����� applied locally weighted techniques to many distributional set
tings such as logistic regression and developed general �tting algorithms� Lejeune and
Sarda 	����� applied locally weighted regression to estimation of distribution and density
functions� Cleveland et al� 	����� applied locally weighted regression to density estima
tion� spectrum estimation� and predicting binary variables� Fan and Kreutzberger 	�����
applied locally weighted regression to spectral density estimation�

�� Discussion

���� What Is A Local Learning Approach	

To explore the idea of local learning� it is useful to �rst consider what a global learner is�
A global distributed representation is typically characterized by�

�� Incrementally learning a single new training point a�ects many parameters�

�� A prediction or answer to a query also depends on many parameters�

� and � are characteristics of distributed representations� An additional criterion�

�� There are many fewer parameters than data�
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could serve as a de�nition of a global representation or model� and is a good predictor
that � and � will be true for a particular method� However� it is also possible to have local
methods with attribute �� and not attributes � and �� such as a low resolution tabular
representation with nonoverlapping cells� A part of the design space that has not been
explored are learning algorithms with huge numbers of parameters that use distributed
representations 	� and �� but not ���

There are at least three di�erent views of what constitutes local learning� local repre
sentations� local selection� and locally weighted learning� This has lead to some confusion
and convoluted terminology� In a local representation� each new data point a�ects a small
subset of the parameters and answering a query involves a small subset of the parame
ters as well� This view of local learning stems from the distinction between local and
distributed representations in neuroscience 	Thorpe� ������ Examples of local representa
tions are lookup tables and exemplar prototype based classi�ers� It is not necessarily the
case that the number of parameters in the representation be on the order of the number
of data points 	i�e�� a considerable amount of local averaging can occur��

Local selection methods store all 	or most� of the training data� and use a distance
function to determine which stored points are relevant to the query� The function of
local selection is to select a single output using nearest neighbor or using a distancebased
voting scheme 	knearest neighbor�� Examples of these types of approaches are common�
and include Stan�ll and Waltz 	����� and Aha 	������

Locally weighted learning stores the training data explicitly 	as do local selection
approaches�� and only �ts parameters to the training data when a query is known� The
critical feature of locally weighted learning is that a criterion locally weighted with respect
to the query location is used to �t some type of parametric model to the data 	Vapnik�
����
 Bottou and Vapnik� ����
 Vapnik and Bottou� ������ We have the paradoxical
situation that seemingly global model structures 	e�g�� polynomials� multilayer sigmoidal
neural nets� are being called local models because of the locally weighted training criterion�
All of the data can be involved in training the local model� as long as distant data matters
less than nearby data�

This paper explores locally weighted training procedures� which involves deferring
processing the training data until a query is present� leading to the use of the terms
lazy learning and least commitment learning� There are many global approaches and
representations such as� rules� decision trees� and parametric models 	e�g�� polynomials�
sigmoidal neural nets� radial basis functions� projection pursuit networks�� All of the
above approaches can be transformed into locally weighted approaches by using a locally
weighted training criterion 	Vapnik� ����
 Bottou and Vapnik� ����
 Vapnik and Bottou�
����
 Kozek� ������ so the scope of locally weighted learning is quite broad� We will
discuss locally weighted classi�cation as an example�

���� Locally Weighted Classi
cation

In classi�cation� there are several ways to incorporate distance weighting� In knearest
neighbor approaches� the number of occurrences of each class in the k closest points to
the query are counted� and the class with the most occurrences 	or votes� is predicted�
Distance weighting could be used to weight the votes� so that nearby data points receive
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more votes than distant points�
A second way to incorporate distance weighting in classi�er training is to incorporate

it into the cost criterion that is being minimized by training 	Vapnik� ����
 Bottou and
Vapnik� ����
 Vapnik and Bottou� ������

C	q� �
X
i

�L	�ci� ctruei�K	d	xi�q��� 	���

C is the cost to be minimized and L	�ci� ctruei� is the cost of predicting class �ci on training
point xi when the true class is ctruei� K	� is the weighting or kernel function� A simple
version of this approach is to select the k nearest points and just train a classi�er on
that data� In this case K	� is a uniform or boxcar kernel� The form of the classi�er is
not constrained in any way� Locally weighted learning speci�es the form of the training
criterion only� and not the form of the performance algorithm�

A third way to incorporate distance weighting is to treat classi�cation as a regression
problem� where there are decision functions for each class� and the decision function with
the largest value at the query point determines the class of the query� Training these
decision functions can be distance weighted as well�

C	q� �
X
i


�


�X

j

	gj	xi�� tij�
�

�
AK	d	xi�q��

�
� 	���

where gj	� is the decision function for class j� and tij is the target for decision function
gj	� on training point i� Hastie and Tibshirani 	����� describe an approach in which
global approaches to �nding discriminants are localized by locally weighting the algorithm
directly� rather than the criterion�

In this paper we described �tting simple linear models using distance weighted �t
criterion� One can imagine using distance weighted criterion to train linear decision
functions and linear discriminants to create local classi�ers� It is also possible to train
general models� such as logistic regression� to perform classi�cation in a locally weighted
fashion�

���� Requirements for Locally Weighted Learning

Locally weighted learning has several requirements�

� Distance function� Locally weighted learning systems require a measure of rele
vance� The major assumption made by locally weighted learning is that relevance
can be measured using a measure of distance� Nearby training points are more
relevant� There are many other possible measures of relevance� and also more gen
eral notions of similarity� The distance function d	a� b� needs to input two objects
and produce a number� The distance function does not need to satisfy the formal
requirements for a distance metric�

� Separable criterion� Locally weighted learning systems compute a weight for
each training point� To apply this weight� the training criterion cannot be a general
function of the predictions of the training points�

C � L	�y�� y�� �y�� y�� ���� �yn� yn� � 	���
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but must be separable in some way� We use additive separability�

C �
X
i

�L	�yi� yi�K	d	xi�q��� 	���

although there are other forms of separability�

� Enough data� There needs to be enough data to compute statistics� which is also
true of other statistical learning approaches� How much is enough& We have run
robot learning experiments where performance improvements started to occur with
on the order of ten points in the training set� although we typically collect between
��� and ���� points during an experiment� The amount of training data needed is
highly problem dependent�

� Labelled data� Each training point needs to have an associated output yi� For
classi�cation this is a label� and for regression 	function approximation� it is a
number�

� Representations� Although the above requirements are enough for a system using
nearest neighbor techniques� locally weighted regression requires that each object
produces a �xed length vector of the values 	symbolic or numeric� for a list of
speci�ed features�

x �



BBBB�

x�
x�
���
xn

�
CCCCA 	���

However� more general representations can be handled by locally weighted learning
approaches� For example� a more general training criterion is�

C �
X
i

fL	f	Xi� ��� Yi�K	d	Xi� Q��g 	���

The inputs Xi� outputs Yi� and query Q can be complex objects such as entire semantic
networks� with the distance functions being graph matching algorithms or graph di�er
ence measuring algorithms� and f	� being a graph transformation with � as adjustable
parameters 	Elliot and Scott� ������ Or the objects can be text computer �les� with the
inputs X in Japanese and the outputs Y in English� the distance functions can be the
number of characters in the output of a �le di�erence program such as the UNIX diff�
and the local model f	� can be a machine translation program with adjustable parameters
�� Typical parameters for an expert system might be strengths of rules� so changing �
a�ects which rules are selected for application�

The input space distance d	� can be generalized to take into account the output space
distance between the output values of the training data and a predicted output�

C �
X
i

�
L	f	Xi� ��� Yi�K

�
d

��
Xi

Yi

�
�

�
Q

Ypred

����
	���
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This is useful when the function being approximated has several distinct outputs for
similar inputs�

Although it has not yet been extensively explored by current research� it is possible for
locally weighted learning systems to have stored objects that provide separate information
to the query distance function 	Xi� and to the local model 	Xi� 	Hammond� ����
 Callan
et al�� ����
 Nguyen et al�� ������ In this case the training criterion might be�

C �
X
i

fL	f	Xi� ��� Yi�K	d	Xi� Q��g 	���

One example of this is to use measures of volatility of the stock market to measure distance
between data points and a query d	Xi� Q�� but use price histories and other factors to form
local 	with respect to volatility� predictive models for future prices f	Xi� �� 	LeBaron�
����� ������ Another example is to use nationality as the input to the distance function
	requiring a distance calculation for symbolic values�� and to use numeric features such as
age� height� weight� and blood pressure to build a locally 	with respect to the nationality
distance� weighted regression to predict heart attack risk�

���� Future Research Directions

Our view of interesting areas of future research include�

� Hybrid Tuning Algorithms� We have developed independent continuous and
discrete �t parameter optimization techniques� It is clear that a hybrid approach
can do better than either approach alone� Parameters could initially be treated as
discrete� and then more and more continuous optimization could be performed as
optimal values were approached� for example� Another approach is for the racing
algorithms to allow continuous tuning by each contestant during the race� rather
than racing �xed sets of parameters�

� New forms of local tuning� So far research has focused on locally tuning band
width and smoothing parameters� More work needs to be done on locally tuning
distance metrics� ridge regression parameters� outlier thresholds� etc�� without over
�tting�

� Multiscale local tuning� One dimensional �t parameters such as bandwidth and
model order can be locally optimized using small neighborhoods� Multidimensional
�t parameters such as the distance scale parameters in a distance matrixM or the set
of ridge regression parameters need much larger neighborhoods and di�erent kinds
of regularization to be tuned locally� How should these di�erent tuning processes
interact&

� Stochastic gradient approaches to continuous tuning� Continuous optimiza
tion based on estimates of the gradient using small numbers of random queries
rather than exhaustive query sets seems a promising approach to e�cient tuning
algorithms 	Moore and Schneider� ������
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� Properties of massive cross�validation� We have discussed the use of cross
validation� and why locally weighted learning is particularly well suited to its use�
Better understanding of how much cross validation can take place before it is in
danger of over�tting 	which must be guarded by an extra level of crossvalidation�
would be desirable�

� Probabilistic approaches� We would like to explore further the analogies be
tween locally weighted learning and probabilistic models� including Bayesian mod
els 	Rachlin et al�� ����
 Ting and CameronJones� ������

� Forgetting� So far� forgetting has not played an important role in our implemen
tations of robot learning� as we have not run out of memory� However� we expect
forgetting to play a more important role in the future� and expect it to be necessary
to implement a principled approach to storage control�

� Computational Techniques� For enormous dataset sizes� new data management
algorithms may be needed� They include principled ways to forget or coalesce old
data� compactly represent high dimensional data clouds� ways of using samples
of datasets instead of entire datasets� and� in the case of multigigabyte datasets
hardware and software techniques for managing data on secondary storage�

� Less Lazy Learning� This review has focussed on a pure form of lazy learning�
in which only the data is stored between queries� This purist approach will be
too extreme in some circumstances� and most tuning algorithms for �t parameters
store the optimized �t parameters in between queries� Substantial amounts of data
compression can be achieved by building a set of local models at �xed locations�
using the techniques described in this paper� In addition to computational speedup
in the presence of large datasets there may be statistical advantages to compressing
data instead of merely storing it all 	Fritzke� ����
 Schaal and Atkeson� ������

�� Summary

This paper has surveyed locally weighted learning� Local weighting� whether by weighting
the data or the error criterion� can turn global function approximation into powerful alter
native approaches� By means of local weighting� unnecessary bias of global function �tting
is reduced� higher �exibility is obtained� but desirable properties like smoothness and sta
tistical analyzability are retained� We have concentrated on how linear regression behaves
under local weighting� and surveyed the ways in which tools from conventional regression
analysis in global regression can be used in locally weighted regression� A major question
has concerned the notion of locality� what is a good choice of distance metric� how close
within that metric should points be and how can these decisions be automatically made
from the data� The �eld of local learning is of large interest in the statistics community�
and we have provided entry points into that literature� Locally weighted learning is also
rapidly increasing in popularity in the machine learning community and the outlook is
promising for interesting statistical� computational and applicationoriented development�
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