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1. INTRODUCTION

(Linear) constraint solving is naturally undirected, in the precise sense that there
is no explicit set of input/output variables. As an example, let c be the linear
constraint F = 9/5 * C + 32 stating the Fahrenheit-Celsius conversion rule. A
constraint solver provided with c and a Celsius value C = 30 returns F = 86 as the
solved constraint. Conversely, a constraint solver provided with c and a Fahrenheit
value F = 77 returns C = 25 as the solved constraint. This extends to intervals,
lower bounds and upper bounds as well. Assume that the Celsius temperature is
known with some approximation (e.g., due to measurement error of a sensor) C =
30 ± 1, or, by adopting a different syntax, that 29 =< C, C =< 31. A constraint
solver provided with c and a Celsius interval 29 =< C, C =< 31 returns as the
solved constraint 84.2 =< F, F =< 87.8, or F = 86 ± 1.8.
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2 · S. Ruggieri and F. Mesnard

Programming with constraints allows then for declaratively modelling a problem
by generating the set of constraints among the variables at hand, and then letting
a constraint solver find a solved form. Constraint generation can be as simple as
feeding a constraint solver with a predetermined system of linear equalities and in-
equalities, as in the example above. Or it can assume more complex forms, requiring
iteration, recursion or non-determinism. Constraint logic programming languages,
for instance, adopt recursion, non-determinism and intertwined constraint genera-
tion & solving.

The objective of this paper is twofold. As the first main contribution, we propose
a type system that allows for reasoning on the input-output directionality of vari-
ables occurring in a linear constraint. The types considered include definiteness of
a variable, namely it assumes a unique value; lower bound; upper bound; and maxi-
mum range width. These types allow for verifying that the solved form returned by
a constraint solver satisfies the intended directionality, e.g., that a certain variable
is definite, or that it has a variability range within a maximum threshold, or that
it is upper/lower bounded. Recalling the Fahrenheit-Celsius conversion example,
we will be able to conclude that if C is definite, then in the solved form of c also F
is definite; or that if C is known with an approximation of ± 1, then in the solved
form of c we have that F is known with an approximation of ± 1.8. Formally, type
assertions are introduced in order to derive types implied by a constraint and a set
of typed variables. The semantics of a type assertion is provided as a first order
formula over the theory of the reals. However, a geometric view based on parameter-
ized polyhedra will be considered in order to reason on type assertions. Validity of
type assertions is thoroughly investigated by devising several checking and inference
procedures. We proceed incrementally by first considering lower and upper bound
types: the inference procedure relies on solving homogeneous linear programming
problems. Next, we add definiteness by reasoning on the set of implicit equalities
of the underlying linear constraint. Third, we tackle range width by computing the
Minkowski’s form of a parameterized polyhedron. The procedures are sound and
complete with respect to the appropriate subset of types. Moreover, the approach
is extended to deal with constraints containing strict inequalities and disequalities.
Finally, parameters are added to the languages of types in order to express range
widths of parametric size. Recalling again the Fahrenheit-Celsius conversion exam-
ple, we will be able to show that if C is known with an approximation of ±s, then
in the solved form of c we have that F is known with an approximation of ±1.8s.

The considered types can be useful for reasoning about variable directionality in
programs and systems loosely coupled with a constraint solving library. Even more
challenging is the case of programming languages that tightly integrate constraint
solving. As another main contribution of this paper, we study how the type sys-
tem can be adopted for reasoning over constraint logic programs, which represent
a sophisticated scheme for programming with constraints. Modern constraint logic
programming languages, such as Mercury [Somogyi et al. 1996; Becket et al. 2006],
offer the notion of moding [Apt 1997] as program annotations allowing the pro-
grammer to specify the input-output behavior of predicate arguments. Modes are
at the basis of compiler optimizations, program transformations and termination
analyses. As an example, consider the MORTGAGE program over CLP(R).
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(m1) mortgage(P,T,R,B) ←
T = 0,

B = P.

(m2) mortgage(P,T,R,B) ←
T >= 1,

NP = P + P * 0.05 - R,

NT = T - 1,

mortgage(NP,NT,R,B).

The query ← mortgage(100, 5, 20, B) is intended for calculating the balance
of a mortgage of 100 units after giving back 20 units per year for a period of 5 years.
The answer provides an exact value (i.e., a real number) for the required balance,
namely B = 17.12. Using the moding terminology, we say that given definite val-
ues for principal, time and repayment, in every (non-deterministically computed)
answer we obtain a definite value for the balance. However, this is only one mode we
can query the program above. The query ← 3 <= T, T <= 5, mortgage(100,
T, 20, B) is intended for calculating the balance at the end of the third, fourth
and fifth year. Principal and repayment are now definite, whilst time is (upper
and lower) bounded. Again, for each of the three answers: T=3, B=52.71; T=4,
B=35.35; and T=5, B=17.12 we get a definite value for the balance. Intuitively,
this mode is more general than the previous one, since definiteness of time has been
replaced by boundedness. Finally, consider the query ← 0 <= B, B <= 10, 15
<= R, R <= 20, mortgage(P, 5, R, B). It is intended for calculating the prin-
cipal that a person could be granted under the condition of repaying from 15 to
20 units per year, and with the requirement that after 5 years the final balance is
of at most 10 units. The answer is P=0.78*B+4.33*R, which is not definite, but,
since B and R are bounded, it is (upper and lower) bounded. This mode is not
comparable to the previous ones, since we now provide a definite value for time
and a range for balance and repayment, and we wish to compute a range for the
principal of the answer. These examples give only a few hints about the flexibility
of the constraint logic programming (CLP) scheme when compared to pure logic
programming, where definiteness of variables corresponds to groundness, but upper
and lower bounds have no direct counterpart. Type assertions are at the basis of
moding programs in constraint logic programming languages with linear constraints
over reals and rationals, as in CLP(R) [Jaffar et al. 1992; Holzbaur 1995], ECLiPSe,
SICStus Prolog, SWI-Prolog, and many others. We conservatively extend the no-
tion of well-moding [Apt 1997] from pure logic programming to CLP(R), proving
useful properties in support of static analysis, including persistence, call pattern
characterization and answer constraint characterization. Moreover, we show how
to deal with programs mixing linear constraints and logic terms, and how the notion
generalizes in the presence of parametric types.

Besides discussing the computational complexity of the procedures presented in
the paper, we have implemented, in standard C++, all the type assertion checking
and inference procedures, and the well-moding checking procedures. Experimental
results are reported over a large collection of CLP programs to demonstrate the
efficiency in practice of the proposed approach. Proof obligations generated by
the notion of well-moding turn out to be a representative testbed for experimental
evaluation of the type checking and inference procedures. The software developed,
called clpt, is released as open source. The experimental evaluation of the designed
procedures represents the third main contribution of this paper.
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Organization of the paper. We start by recalling in Section 1.1 basic notions for
linear algebra, linear programming and constraint logic programming. In Section 2
we introduce syntax and semantics of types, type declarations and type assertions.
The problems of checking validity of type assertions and of inferring the most
general types for variables are formally introduced. In Section 3, we rephrase the
problems in a geometric view, which is the basis for designing several checking
and inference procedures. Also, extensions to strict inequalities and disequalities,
and to parametric types are reported. Finally, the computational complexity of
the procedures is discussed. In Section 4, modes and well-moding for CLP(R)
programs, possibly with logic terms, are introduced, with type assertions as the
basic proof mechanism. The implementations of the type inference procedures
and of the well-mode checking procedures are presented in Section 5 together with
an extensive experimentation over several testbed programs. Related work and
conclusions follow in Section 6 and Section 7. For readability reasons, all proofs of
the paper are reported in Appendix A.

1.1 Preliminaries

We adhere to standard notations for linear algebra [Schrijver 1986], linear program-
ming [Murty 1983] and (constraint) logic programming [Apt 1997; Jaffar and Maher
1994; Jaffar et al. 1998].

Linear algebra. R denotes the set of real numbers. Small capital letters (a, b,
. . . ) denote column vectors, while capital letters (A, B, . . . ) denote matrices. 0
and 1 are column vectors with all elements equal to 0 and 1 respectively. ai denotes
the ith element in a, Ai the ith column in A, and row(A, i) the row vector consisting
of the ith row of A. aT (resp., AT ) denotes the transposed vector (resp., matrix) of
a (resp., A). cT x denotes the inner product of the transposed vector cT and x. Σv
is the sum of all the elements in v. Ax ≤ b denotes a system of linear inequalities
(or, a linear system) over the variables in x. We assume that the dimensions of
vectors and matrices in inner products and linear systems are of the appropriate
size. The solution set of points that satisfy a formula/linear system ψ over Rn is
defined as Sol(ψ) = {x ∈ Rn | ψ(x)}. A polyhedron is the solution set of a linear
system, namely Sol(Ax ≤ b). Polyhedra are both closed and convex sets. The
vectorial sum of two sets of vectors is defined as: A + B = {x + y | x ∈ A,y ∈ B}.

Linear programming. A linear programming problem consists of determining
max{cT x | Ax ≤ b}, if it exists. The problem is infeasible when {x | Ax ≤ b} = ∅.
If feasible, but {cT x | Ax ≤ b} has no upper bound, the problem is unbounded,
and we write max{cT x | Ax ≤ b} = ∞. Otherwise, it is bounded. We write
max{cT x | Ax ≤ b} ∈ R when the problem is feasible and bounded.

Constraint logic programming. The CLP Scheme defines a family of languages,
CLP(C), that are parametric in the constraint domain C. We are interested here
in CLP(R), namely the constraint domain over the reals1. All results apply to the

1We assume that the underlying constraint solver is ideal, namely without rounding errors. For
CLP(R) this is achieved by adopting exact arithmetic libraries. For CLP(Q) this is achieved by
adopting rationals and exact integer arithmetic libraries.
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constraint domain of rationals as well, namely to CLP(Q) programming languages.
A primitive linear constraint is an expression a1 · x1 + . . . an · xn ' a0, where ' is
in {≤, =,≥}, a1, . . . , an are constants in R and x1, . . . , xn are variables. We will
use the inner product form by rewriting it as cT x ' α. A linear constraint c is a
sequence of primitive linear constraints, whose interpretation is their conjunction.
We write R |= ψ to denote that the first order formula ψ is true in the domain of
the reals [Shoenfield 1967]. A CLP(R) program is a finite set of clauses of the form
A← c,B1 , . . . , Bn , where A is an atom, c a linear constraint, and B1 , . . . , Bn

(n ≥ 0) a sequence of atoms. We assume that atoms are in flat form, namely an
atom is of the form p(x1, . . . , xn) where p is a predicate of arity n and x1, . . . , xn are
(not necessarily distinct) variables. A query ← c,B1 , . . . , Bn consists of a linear
constraint and a sequence of atoms.

2. BOUND TYPES FOR LINEAR CONSTRAINTS

2.1 Syntax and Semantics

We introduce a static typing for variables in linear constraints. The set of types
BT is defined first.

Definition 2.1 (Types). A type is an element of BT = {?,t,u,2}∪{2r | r ∈
R, r ≥ 0}. We use ! as a shorthand for 20. Moreover, we denote by BT2 the subset
{?,t,u,2}, and by BT ! the subset {?,t,u, 2, !}.

The intuitive meaning of a type is to label variables occurring in a constraint on
the basis of the values that they can assume in the set of solutions of the constraint.
! is intended for typing variables that show at most one single value in every solution,
a property known as definiteness; 2r is intended for typing variables that assume
a range of values of width at most r or, as an alternative interpretation, that are
known with an approximation of ±r/2; 2 is intended for typing variables that
assume a range of values of unknown width, yet lower and upper bounds for those
values still exist; t (resp., u) is intended for variables that have a lower bound
(resp., an upper bound); and finally, ? is to be used when no upper or lower bound
can be stated. Let us introduce syntactic means to assert the type of variables.

Definition 2.2 (Types assertions). An atomic type declaration (atd, for sho-
rt) is an expression x : τ , where x is a variable and τ ∈ BT . We define vars(x :
τ) = {x}, and say that x is typed as τ .

A type declaration is a sequence of atd’s d1, . . . , dn, with n ≥ 0. We define
vars(d1, . . . , dn) = ∪ i=1..nvars(di).

A type assertion is an expression d1 ` c→ d2, where d1,d2 are type declarations
and c is a linear constraint.

Type declarations assign a type to variables. Such a typing is used in type
assertions as an hypothesis (to the left of `) or as a conclusion (to the right of → ).
Intuitively, the type assertion d1 ` c→ d2 states that given the type declaration
d1, the type declaration d2 holds under the linear constraint c.

Example 2.3. The type assertion z :! ` y−x ≤ z, y+x ≤ z,−y−2x ≤ 5−z → y :
u, x : t intuitively states that if z has a fixed value then the set of solutions of the
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Fig. 1. Solutions of sample linear constraints for a fixed value of the z variable.

involved constraint is either empty or such that y has an upper bound and x has a
lower bound. Figure 1 (left) shows graphically the set of solutions for z = 1.

The type assertion z :! ` y − x ≤ z, y + x ≤ z, z ≤ y→ y :!, x :! states that if z
has a fixed value then either the set of solutions of the involved constraint is empty
or both x and y assume a unique value in it. Figure 1 (right) shows graphically the
set of solutions for z = 1.

For a type declaration d, we write d|x to denote the subsequence of d consisting
only of atd’s typing variables in x. Analogously, we write d|τ (resp., d|B) to denote
the subsequence consisting only of atd’s typing variables as τ (resp., as any τ ∈
B ⊆ BT ). The intuition on the meaning of type assertions is formalized by the next
definition. Notice that we are redundant about the type !.

Definition 2.4 (Semantics). We associate with an atd d = x : τ a formula
φ(d) over fresh variables υ(d), called parameters, as follows:

φ(x :!) = x = a υ(x :!) = {a}
φ(x : 2r) = a ≤ x ∧ x ≤ a + r υ(x : 2r) = {a}
φ(x : 2) = a ≤ x ∧ x ≤ b υ(x : 2) = {a, b}
φ(x : t) = a ≤ x υ(x : t) = {a}
φ(x : u) = x ≤ b υ(x : u) = {b}
φ(x : ?) = true υ(x : ?) = ∅.

φ and υ extend to type declarations as follows:

φ(d1, . . . , dn) = ∧ i=1..nφ(di) υ(d1, . . . , dn) = ∪ i=1..nυ(di).

A type assertion d1 ` c→ d2 is valid if for v = vars(c) ∪ vars(d1) ∪ vars(d2), the
following formula is true in the domain of the reals:

∀υ(d1)∃υ(d2) \ υ(d1)∀v.(φ(d1) ∧ c)→ φ(d2). (1)

Notice that, for the υ() function defined so far, we have that υ(d2)\υ(d1) = υ(d2),
since we consider fresh parameters. Later on in Section 3.6, the syntax will be
extended, and then the general formulation of (1) will be required.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.
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Example 2.5. For the type assertion z :! ` y−x ≤ z, y +x ≤ z, z ≤ y→ y :!, x :!,
the formula to be shown is:

∀a ∃b, c ∀x, y, z (z = a ∧ y − x ≤ z ∧ y + x ≤ z ∧ z ≤ y)→ (y = b ∧ x = c).

The set of variables is fixed to v = vars(c) ∪ vars(d1) ∪ vars(d2) in order to take
into account variables that appear in d1 or d2 but not in c. E.g., for the (valid)
type assertion x : u ` true→ x : u, we have the formula ∀a ∃b ∀x x ≤ a→ x ≤ b.

A natural ordering over types is induced by the semantics above. For instance,
it is readily checked that d ` c→ x :! implies d ` c→ x : 2 for any d, c and x, or
that d ` c→ x : 22 implies d ` c→ x : 23. Similar implications lead to define an
order ≥t over types, which models type preciseness.

Definition 2.6. The ≥t partial order over BT is defined as the reflexive and
transitive closure of the following relation → :

u
↗ ↘

! → 2 ? ! → 2r → 2s → 2

↘ ↗ for every r < s.
t

We write τ >t µ when τ ≥t µ and τ 6= µ. We define lub(∅) = ? and for n > 0:

lub({τ1, . . . , τn}) = min{τ | τ ≥t τi, i = 1..n}.
Next, the ≥t relation is extended to type declarations.

Definition 2.7. We write d1 ≥t d2 if for every x : τ in d2 there exists x : µ in
d1 such that µ ≥t τ .

Using the notation ≥t, the intuition behind the ordering can be formalized in a
monotonicity lemma.

Lemma 2.8 (Monotonicity). Assume that d1 ` c→ d2 is valid. If d′1 ≥t d1,
d2 ≥t d′2 and R |= c′→ c for a linear constraint c′, then d′1 ` c′→ d′2 is valid.

Normal forms for type declarations are introduced by assigning to each variable
the least upper bound of its types. When the least upper bound is ?, the type
assignment provides no actual information and then it can be discarded. Normal
forms are unique modulo reordering of atd’s.

Definition 2.9. We define nf (d) as any type declaration d′ such that x : τ is
in d′ iff τ = lub({µ | x : µ is in d }) and τ 6= ?.

Example 2.10. Notice that x : 2 ≥t x : u, x : t holds, while x : u, x : t ≥t x : 2

does not hold. Actually, ≥t does not capture semantic implication. We have to
move to normal forms to conclude that nf (x : u, x : t) = x : 2 ≥t x : 2.

Normal forms precisely characterize validity when it only depends on type dec-
larations, i.e. for the constraint true.

Lemma 2.11. d1 ` true→ d2 is valid iff nf (d1) ≥t nf (d2).

Finally, transitivity of the ` relation is readily checked.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.
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Lemma 2.12 (Transitivity). Assume that d1 ` c→ d2 and d1,d2 ` c→ d3

are valid. Then d1 ` c→ d3 is valid.

2.2 Checking and Inferring Type Assertions

Let us concentrate now on the problem of checking the validity of a type assertion.
In principle, formulas as in (1) can be checked by real quantifier elimination meth-
ods [Dolzmann et al. 1998b; Renegar 1992]. Quantifier elimination traces back
to Tarski’s decision procedure [Van Den Vries 1988] for first order formula over
real polynomials. The core of the procedure in the case of linear polynomials over
reals is the Fourier-Motzkin projection method [Schrijver 1986]. Although in the
worst case quantifier elimination is doubly exponential [Basu et al. 1996; Davenport
and Heintz 1988], approaches efficient-in-practice have been proposed and success-
fully applied to theorem proving and program verification. We mention partial
cylindrical algebraic decomposition as provided in the QEPCAD/QEPCAD-B sys-
tems [Collins and Hong 1991; Brown 2003] and available in the Mathematica tool
[Strzebonski 2000] and virtual substitution of test terms [Dolzmann et al. 1998a] as
provided in the REDLOG system [Dolzmann and Sturm 1997] and specialized for
low-degree polynomials.

While quantifier elimination represents a direct solution to the checking problem
and it allows for generalizing to the non-linear case, we observe that formulas in
(1) represent a quite restricted class. We will be looking then for a specialized and
efficient approach to check them. In addition, provided with a type declaration d,
a linear constraint c, and a set of variables v, we are interested in the problem of
inferring type declarations d′ for variables in v such that d ` c→ d′ is valid. More
precisely, we are interested in the largest d′ (w.r.t. the ≥t order), if it exists. The
inference problem cannot be directly tackled by real quantifier elimination.

Definition 2.13 (Checking and inference problems). The type checking
problem consists of deciding whether a given type assertion d1 ` c→ d2 is valid.

The type inference problem consists of computing, given d1, c and a set of
variables v, a type declaration d2 with vars(d2)⊆ v such that for every d′2 with
vars(d′2)⊆ v: d1 ` c→ d′2 is valid iff d2 ≥t d′2 holds.

A procedure is sound for the type inference problem if the type declaration d2

returned by the procedure is such that vars(d2)⊆ v and d1 ` c→ d2 is valid2. For
a subset of types B ⊆ BT , we say that a procedure is complete for B if d2 is such
that d2 ≥t d′2 for every valid d1 ` c→ d′2 with vars(d′2)⊆ v and all types in d′2
belonging to B. The next result shows that a solution exists for the type inference
problem and there is a standard representation obtained as the normal form of any
solution. Notice, however, that the proof of the lemma is non-constructive.

Lemma 2.14. Given d1, c and a set of variables v, there exists at least one
solution d2 to the type inference problem. Moreover, for any two solutions d2 and
d′2, we have that nf (d2) = nf (d′2) (modulo reordering of atd’s).

Assume d1 be x :!, and c be y = x, z ≤ w and v be y, z. A solution to the
inference problem is y :!, z : ?. By adding less precise typings we can obtain other

2As a consequence, d1 ` c→ d′2 is valid for every d′2 such that d2 ≥t d′2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.
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Input: a type assertion d1 ` c→ d2

Step 0. d = χ(d1, c, vars(d2)).
Step 1. If d ≥t d2 Then output “Valid”

Else output “Not valid”.

Fig. 2. Check(χ) procedure.

solutions, such as y : 2, y :!, z : ?. All of them have the same normal form y :!.

Example 2.15. Consider the type assertion x : 22 ` x − 1 ≤ z ≤ x→ z : τ .
What is the most general type inferrable for τ? Since x ranges in [a, a+2] for some
a ∈ R, by simply varying x we have that z ranges in the interval [a−1, a+2], hence
τ = 23 is the most accurate type inferrable for z. In other words, τ = 23 makes
the assertion above valid (soundness), and 23 ≥t τ holds for every τ such that the
type assertion above is valid (completeness).

An inference procedure returning z : 2 is sound, albeit it cannot be complete for
the full BT type system.

Notice that type inference can be tricky, especially when 2r types are involved.

Example 2.16. For x : 22 ` −x ≤ z ≤ x→ z : τ , we can only infer τ = 2. In
fact, assume that x ranges in [a, a + 2] for a ≥ 0. Then z ranges in [−a− 2, a + 2],
whose width (i.e., 2(a + 2)) is unbounded since a ≥ 0.

As another example, let c be x−w ≤ z, z ≤ x + w. From x : 22, w : 23 ` c→ z :
τ, w : µ, we can only infer τ = 2, µ = 23. However, by adding w ≤ 0 to c, we can
infer τ = 22, µ = !.

A solution to the inference problem can be easily turned into a solution to the
checking problem. Given d1 ` c→ d′2 to be checked for validity, we first compute
the type declaration d2 returned by the type inference procedure, and then we
check whether d2 ≥t d′2 holds. This meta-procedure is summarized in Figure 2.

Lemma 2.17. Let χ be a type inference procedure that is sound, and complete for
B ⊆ BT . Check(χ) is a decision procedure for the type checking problem w.r.t. type
assertions d1 ` c→ d2 such that all types in d2 belong to B.

3. INFERENCE PROCEDURES FOR TYPE ASSERTIONS

3.1 First Intuitions

Our approach switches from the logical view of constraints-as-formulas to a geo-
metric view of constraints-as-polyhedra. Consider a linear constraint c and a type
declaration d. We observe that c can be equivalently represented as a linear system
of inequalities Acv ≤ bc where v = vars(c) ∪ vars(d). The set of solutions of c
coincides then with the polyhedron represented by Acv ≤ bc, which we call the
geometric representation of c. Analogously, the linear constraint φ(d) can be rep-
resented as Adv ≤ Bdad, where ad is the symbolic vector of parameters in υ(d).
The resulting system φ(d) ∧ c is a parameterized system of linear inequalities P,
where variables in υ(d) play the role of parameters:

(
Ac

Ad

)
v ≤

(
bc

0

)
+

(
0

Bd

)
ad (2)
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The notion of parameterized polyhedron models the solutions of a parameterized
linear system.

Definition 3.1 (Parameterized polyhedron). A parameterized polyhedron
is a collection of polyhedra defined by fixing the value for the parameters in a param-
eterized system of linear inequalities: Sol(Ax ≤ b+Ba,u) = {x | Ax ≤ b+Bu}.

Sol() is now a binary function. In addition to a system of parameterized linear
inequalities, an assignment to parameters is required.

Example 3.2. Let d be z :! and c be y − x ≤ z, y + x ≤ z,−y − 2x ≤ 5− z. We
have that φ(d) is z = a, and then the parameterized system for φ(d) ∧ c is:




−1 1 −1
1 1 −1

−2 −1 1
0 0 1
0 0 −1







x
y
z


 ≤




0
0
5
0
0




+




0
0
0
1

−1




a

Under this interpretation, validity of d ` c→ x : τ has an intuitive geometric
interpretation. Assume that x = vi. d ` c→ x : τ is valid iff for every u ∈ R|υ(d)|,
the set of solution points Su = Sol(P,u) is empty or, with Mu = max{vi | v ∈ Su}
and mu = min{vi | v ∈ Su}, the following statements hold:

—if τ = 2r then Mu ∈ R, mu ∈ R, and Mu −mu ≤ r, namely x assumes a range
of values of width at most r; an alternative formulation is to require that for
every x, y ∈ Su, abs(x− y) ≤ r;

—as a special case of the previous one, if τ = ! then x assumes a single value;
—if τ = 2 then Mu ∈ R and mu ∈ R, namely both an upper and a lower bound

exist for x;
—if τ = t then mu ∈ R, namely a lower bound exists for x;
—if τ = u then Mu ∈ R, namely an upper bound exists for x;
—if τ = ? then we have nothing to show.

Unfortunately, this procedure is not effective, since there are infinitely many Su to
be checked. In the next two subsections, we will develop approaches for turning
the intuitions above into effective procedures.

Example 3.3. Let us consider an example explaining the difference between the
2r and the 2 types. The type assertion x :! ` 0 ≤ z ≤ x→ z : 2 is valid,
since for every a ∈ R, z is lower bounded (by 0) and upper bounded (by x = a)
in Sa = Sol((x = a, 0 ≤ z ≤ x), (a)). However, the width of the variability
range of z is a. Thus, for any r ≥ 0 by choosing a = r + 1 the type assertion
x :! ` 0 ≤ z ≤ x→ z : 2r is invalidated.

3.2 A Linear Programming Approach for BT2

In this section we develop an inference algorithm which does not explicitly take into
account parameters. We will be able to reason on type assertions over BT2. First
of all, let us consider the case of unsatisfiable constraints.
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


−1 1 −1
1 1 −1

−2 −1 1
0 0 1
0 0 −1




(
x
y
z

)
≤




0
0
0
0
0




-3

-2

-1

 0

 1

 2

-3 -2 -1  0  1  2  3

y

x

z = 0

y - x ≤ 0
y + x ≤ 0

-y - 2x ≤ 0

Fig. 3. The homogeneous version of the parameterized linear system in Example 3.2.

Lemma 3.4. Consider the parameterized linear system P = φ(d) ∧ c in (2).
There exists a parameter instance u such that Sol(P,u) 6= ∅ iff Sol(Acv ≤ bc) 6= ∅.

As a consequence, if Sol(Acv ≤ bc) = ∅ (i.e., c is unsatisfiable) then there is no
chance to obtain a non-empty polyhedron by some instantiation of the parameters
in φ(d). In this case, we can infer assertions of the form d ` c→ x :!, for every
variable x. Hence, from now on, we will concentrate on satisfiable constraints.

As it will be recalled later on, a non-empty polyhedron Sol(Ax ≤ b) can be
decomposed into the vectorial sum of its characteristic cone Sol(Ax ≤ 0) with a
polytope, a polyhedra bounded along every dimension. Therefore, the existence of
an upper/lower bound for a linear function over a polyhedron depends only on its
characteristic cone. It is immediate from Definition 3.1 that for every parameter
instance u, the polyhedra Sol(P,u) share the same characteristic cone. As a con-
sequence, proving the existence of an upper bound relies only on the homogeneous
version of P, which is not anymore parameterized.

Lemma 3.5. Consider the parameterized polyhedron P in (2). Let H be its ho-
mogeneous version: Acv ≤ 0, Adv ≤ 0, and assume that Sol(Acv ≤ bc) 6= ∅.

We have that max{cT v | v ∈ Sol(H)} = 0 iff for every parameter instance u,
Sol(P,u) = ∅ or max{cT v | v ∈ Sol(P,u)} ∈ R.

When c is always 0 except for the ith position where it is 1, we have cT v = vi.
Lemma 3.5 solves then the problem of deciding whether d ` c→ vi : u, without
having to take into account parameters. By reasoning similarly for types t and 2,
we can state an effective procedure, called LPInfer and summarized in Figure 4.

Example 3.6. The homogeneous version of the parameterized linear system in
Example 3.2 and its graphical representation are reported in Figure 3. It is readily
checked that x has a lower bound and y has an upper bound.

Notice that, in general, the homogeneous version of φ(x :!), φ(x : 2r) and φ(x : 2)
collapse to x = 0. Also, the homogeneous version of φ(x : t) is x ≥ 0, and the one
of φ(x : u) is x ≤ 0.

Soundness and a relative form of completeness of LPInfer follow. As a conse-
quence of Lemma 2.17, Check(LPInfer) is a decision procedure for d1 ` c→ d2

when d2 is defined in the BT2 type system.
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Input: a type declaration d1, a linear constraint c, and a set of variables v

Step 0. Define vc = vars(c), n = nf (d1), d = n|vc .
Step 1. Let Acvc ≤ bc be the geometric representation of c, and Advc ≤ Bdad the geometric

representation of φ(d).
Step 2. If Sol(Acvc ≤ bc) = ∅ Then For every x in v, output “x :!”

Else
Step 3. For every x in v \ vc:

(a). output “x : τ” if x : τ is in n;
(b). output “x : ?” otherwise.

Step 4. For every x in v ∩ vc,
let M = max{x | Acvc ≤ 0,Advc ≤ 0}, m = max{−x | Acvc ≤ 0,Advc ≤ 0}:

(a). output “x : 2” if M = 0 and m = 0;
(b). output “x : t” if M = ∞ and m = 0;
(c). output “x : u” if M = 0 and m = ∞;
(d). output “x : ?” if M = ∞ and m = ∞.

Fig. 4. LPInfer procedure.

Theorem 3.7 (LPInfer - soundness and completeness). LPInfer is so-
und for the type inference problem, and it is complete for BT2.

The LPInfer procedure is not tied to any underlying linear programming solver.
One straight choice is to adopt the Simplex-based approach [Murty 1983; Schrijver
1986], with at most 2|v ∩ vc| + 1 calls to the Simplex algorithm, namely one call
to test satisfiability at Step 2 and two calls per variable to test upper and lower
bounds at Step 4. Due to the approach that we will follow later on for dealing with
parameters, we present here an instantiation of LPInfer relying on the generating
matrix and the vertex matrix of polyhedra. This is an alternative representation
of polyhedra, known as the explicit representation or the Minkowski’s form [Schri-
jver 1986, Section 8.9]. Later on in Sect. 3.7, we will discuss the computational
complexity of this instantiation compared to a linear programming based one.

Theorem 3.8 (Minkowski’s decomposition theorem for polyhedra).
There exists an effective procedure that given Ax ≤ b decides whether or not the
polyhedron Sol(Ax ≤ b) is empty and, if not, it yields a generating matrix R and
a vertex matrix V such that:

Sol(Ax ≤ b) = {x | x = Rλ,λ ≥ 0 }+ {x | x = Vγ, γ ≥ 0, Σγ = 1 },
and Sol(Ax ≤ 0) = {x | x = Rλ, λ ≥ 0 }.

A column of R is called a ray: for any x0 ∈ Sol(Ax ≤ b) and ray r, it turns out
that rλ + x0 ∈ Sol(Ax ≤ b) for every λ ≥ 0. A column of V is called a vertex.
The set ConvexHull(V) = {x | x = Vγ,γ ≥ 0,Σγ = 1 }, where V is a matrix
or a finite set of vectors, is the convex hull of the vertices, namely the smallest
convex set which contains all vertices. A procedure to extract minimal R and V
is the double description method, also known as the Motzkin-Chernikova-Le Verge
algorithm [Motzkin et al. 1953; Chernikova 1965; Le Verge 1992].

Turning back to the LPInfer procedure, the satisfiability test at Step 2 is per-
formed as part of the construction of the explicit representation of the polyhedron.
The maximization problems at Step 4 can easily be solved given the explicit repre-
sentation as follows.
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Lemma 3.9. Consider a characteristic cone Sol(Ax ≤ 0), and let R be its gen-
erating matrix. We have that max{cT x | Ax ≤ 0} = 0 iff cT R ≤ 0.

Since in our context c is always zero except for the ith element, which is 1 or −1,
we can conclude that a variable vi (the ith variable in v) is bounded from above
by 0 (resp., bounded from below by 0) iff all values in row(R, i) are non-positive
(resp., non-negative).

Example 3.10. The Minkowski’s form of the homogeneous system in Figure 3 is
the following:








x
y
z


 |




x
y
z


 =




1 1
−2 −1

0 0




(
λ1

λ2

)
, λ1 ≥ 0, λ2 ≥ 0





Intuitively, the two columns in the generating matrix R correspond to vectors lying
on the border of the cone in the graph of Figure 3. Using Lemma 3.9, it is readily
checked that when cT is one of (−1 0 0), (0 1 0), (0 0 1) or (0 0 −1) then cT R ≤ 0,
i.e. x is bounded from below, y from above, and z from both.

3.3 An Implicit Equality Approach for BT !

The LPInfer procedure is sound, and it is complete except for the 2r types.
Thus, we can build on the results of the last subsection by concentrating on in-
ference/checking of type assertions d ` c→ x : 2r. In this section, we restrict to
consider 20, i.e. the ! type. In such a case, a solution to the type inference problem
without taking into account parameters is still possible.

Example 3.11. Consider x : 2 ` z = x, z − y = 2, z + y = 0→ x :!, y :!, z :!.
Starting from the involved constraint, by Gauss-Jordan elimination, we derive:
x = z, y = z − 2, 2z = 2 and then z = 1, y = −1, x = 1. Hence the type assertion
is valid.

Notice that we made no use of x : 2 in proving validity of the type assertion.
This fact can be generalized in a result that separates type inference/checking for
BT ! into proofs for the BT2 subset and for the ! type.

Theorem 3.12 (Definiteness I). d ` c→ x :! is valid iff d|! ` c→ x :! is
valid.

Another intuition from Example 3.11 is that we can use Gauss-Jordan elimination
to infer definiteness of variables.

Example 3.13. Consider x :! ` c→ y :!, z :!, where c is z − y = x, z + y =
x, k + h = x + 1, x = 0. We have that φ(x :!) ∧ c is x = a, z − y = x, z + y =
x, k + h = x + 1, x = 0. By Gauss-Jordan elimination, we replace z by x + y to
obtain x = a, z = x + y, y = 0, k + h = x, x = 0. Finally, we replace back y by 0 to
obtain x = a, z = x, y = 0, h = x + 1− k, x = 0. Hence z = x = a and y = 0 imply
that the type assertion is valid.

Notice that Gauss-Jordan elimination provided us with a constructive proof of
definiteness, i.e., we can express definite variables as linear expressions over the
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parameters. In general, consider a constraint c with equalities only, i.e., with ge-
ometric representation Acv = bc. Since φ(d|!) is of the form x = a, the overall
system φ(d|!) ∧ c is a linear system of equalities x = a,Acv = bc. By Gauss-
Jordan elimination of variables in v \ x, the system can be transformed into the
following form:

x = a, Iw = b′ + A′z + B′x,0 = b′′ + B′′x,

where I is a diagonal matrix, w and z are a partition of variables in v \ x with z
free to assume any value, and 0 = b′′ + B′′x is the condition of satisfiability of the
system. It is immediate to observe that, given this form, a variable x is definite in
the original system iff it is in x or it is in w and it is defined in terms of b′ and
x only. Moreover, notice that we can rule out x = a from the system, since we
implicitly assume that variables in x are definite by eliminating only variables in
v \ x. Also, we can rule out bc since b′ and b′′ play no role in definiteness.

Lemma 3.14. Let c be a satisfiable linear constraint whose geometric represen-
tation is Acvc = bc, where vc = vars(c), and x ∈ vc.

d|! ` c→ x :! is valid iff x is in x = vars(d|!) or, called Iw = A′z+B′x,0 = B′′x
the system obtained by Gauss-Jordan elimination from Acvc = 0 of variables in
vc \ x, there exists i such that x = wi and row(A′, i) = 0.

Example 3.15. Continuing Example 3.13, Gauss-Jordan elimination of z, y, k, h
yields the system:



1 0 0
0 1 0
0 0 1
0 0 0







z
y
h


 =




0
0
1
0


 +




0
0

−1
0




(
k

)
+




1
0
1
1




(
x

)
.

The satisfiability condition of the system is x = 0. z and y are defined in terms of
x only, hence they are defined. k is free to assume any value, hence it cannot be
definite. Finally, h is defined in terms of x and k, hence it can assume any value.

So far we considered equality constraints only. In the presence of inequalities, as
in x :! ` x ≤ y, y ≤ x→ y :!, Gaussian elimination alone is not enough. We recall
the following well-known result (see [Stuckey 1991] or the survey [Greenberg 1996]).

Theorem 3.16 (Implicit equalities). Assume that Sol(Ax ≤ b) 6= ∅. There
exists an effective procedure that given Ax ≤ b yields an equivalent system A=x =
b=,A+x ≤ b+ such that for every cT x ≤ b from A+x ≤ b+ there exists x0 ∈
Sol(Ax ≤ b) such that cT x0 < b.

As an example, the system x ≤ y, y ≤ x is equivalent to x = y, hence x :! `
x ≤ y, y ≤ x→ y :! is valid iff x :! ` x = y→ y :! is valid, which can be shown
by Gaussian elimination. An inequality cT x ≤ b such that cT x0 = b for every
x0 ∈ Sol(Ax ≤ b) is called an implicit equality.

Definition 3.17. We denote by ie(Ax ≤ b) the linear system A=x = b=

obtained by any fixed procedure implementing Theorem 3.16.

Intuitively, ie(c) contains all the information about (implicit) equalities in c. If x
is constant in every solution of c, then the same holds for ie(c). Stated otherwise,
we can reason about definiteness by restricting to ie(c) only.
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Input: a type declaration d1, a linear constraint c, and a set of variables v

Step 0. Define vc = vars(c), d = d1|!, x = vars(d).
Step 1. Let Acvc ≤ bc be the geometric representation of c.
Step 2. Let A=vc = b= be ie(Acvc ≤ bc).
Step 3. Rewrite A=vc = 0 into Iw=A′z + B′x,0=B′′x by Gauss-Jordan elimination of vc\x.
Step 4. For every x : τ in output from LPInfer(d1, c,v):
Step 5. If τ 6= 2 or x 6∈ vc Then output “x : τ”
Step 6. Else

(a). output “x :!” if x is in x or there exists i such that x=wi, and row(A′, i)=0;
(b). output “x : 2” otherwise.

Fig. 5. IEInfer procedure

Lemma 3.18. Let c be a satisfiable linear constraint. d|! ` c→ x :! is valid iff
d|! ` ie(c)→ x :! is valid.

Summarizing, Figure 5 reports a procedure, called IEInfer, which first com-
putes ie(c) and then transform it by Gauss-Jordan elimination. Soundness and
completeness of IEInfer is stated next.

Theorem 3.19 (IEInfer - soundness and completeness). IEInfer is so-
und for the type inference problem, and it is complete for BT !.

The IEInfer procedure is parametric to a specific implementation of the ie()
function for deriving the set of (implicit) equalities of c. Again, we have two alter-
natives. One is a Simplex-based algorithm for detecting implicit equalities, such as
the one proposed in [Stuckey 1991] and refined in [Refalo 1998]. Another choice is
to rely, again, on the Minkowski’s form of polyhedra.

Lemma 3.20. Assume Sol(Ax ≤ b) 6= ∅, and let R and V be the generating and
vertex matrices of Ax ≤ b. The system A=x = b= can be calculated as the system
of equalities cT x = b, where cT x ≤ b is from Ax ≤ b and such that cT R = 0 and
cT V = b1T .

The condition cT R = 0, known as the saturation of the inequality by the rays,
is typically checked by double description method implementations in order to
remove redundant inequalities and to simplify implicit inequalities into equalities.
In practice, those implementations maintain and transform both the Minkwoski’s
form and the explicit form (this is the “double” description) of Theorem 3.16. In
addition, they reduce to consider homogeneous systems by transforming forth and
back Ax ≤ b into the form A′x′ ≤ 0 with x ⊆ x′ (see [Goldman 1956; Wilde
1993] for details on the transformation). For homogeneous systems, the additional
condition cT V = b1T of Lemma 3.20 is trivially satisfied, since b = 0 and V = 0.

The implementation that later on we will adopt, namely the polylib library
[Loechner 2010], performs both the homogeneous transformation and the saturation
condition check. In addition to the Minkowski’s form, it returns a system of linear
inequalities that is equivalent to the original one and such that all implicit equalities
are detected. As a practical consequence, there is no need to apply Lemma 3.20 on
the output of the polylib library.
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3.4 A Parameterized Polyhedra Approach for BT
In this section, we reason on the full type system BT by explicitly dealing with the
parameterized system in (2) through an extension of the Minkowski’s decomposition
theorem. As done in the last subsection, we would like to build on the existing
LPInfer procedure. A direct extension of Theorem 3.12, however, does not hold
for the 2r type when r > 0.

Example 3.21. The type assertion x : 22 ` y = x/2→ y : 21 is valid. Intuitively,
if x ∈ [a, a + 2] then x/2 ∈ [b, b + 1] for b = a/2. However, ` y = x/2→ y : 21 is
not valid.

Nevertheless, a similar result can be stated which allows for separating type
inference/checking for BT into proofs for BT2 and for its complement.

Theorem 3.22 (Definiteness II). Let B = BT \ BT2 = {2s | s ∈ R, s ≥ 0}.
We have that: d ` c→ x : 2r is valid iff d|B ` c→ x : 2r is valid.

Let us consider now an example which illustrates the Fourier-Motzkin elimination
method for linear inequalities applied in the presence of parameters [Keerthi and
Sridharan 1990].

Example 3.23. Consider the constraint c defined as y + x ≤ z, y − x ≤ z, z ≤
y, 0 ≤ z, w ≤ z, and the type declaration z :!. We start by isolating variable y in
φ(z :!) ∧ c, as shown at (a) in the figure below.

y ≤ z − x

y ≤ z + x

z ≤ y

0 ≤ z

w ≤ z

z = a

(a)

z ≤ y ≤ min{z − x, z + x}
x = 0

0 ≤ z

w ≤ z

z = a

(b)

y = a

x = 0
w ≤ a

z = a

0 ≤ a

(c)

The bounds for y can then be summarized as: (∗) z ≤ y ≤ min{z − x, z + x}.
Moreover, the inequality e1 ≤ e2 is implied for any e1, e2 such that e1 ≤ y ≤ e2

is in (∗). Actually, the original set of linear inequalities over y is equivalent to
z ≤ y ≤ min{z− x, z + x} plus such bounds. The new inequality set is reported at
(b) in the figure above. By replacing backward x = 0 and z = a, we end up with
the final system at (c) in the figure above, where no further elimination is possible.
The final system is feasible when the condition 0 ≤ a holds. In this system, we
have x = 0, y = a, z = a. Moreover, w ≤ a can be rewritten as: w = −λ1 + a for
some λ1 ≥ 0. Put in a geometrical form, the solution set of φ(z :!) ∧ c is:








x
y
z
w


 |




x
y
z
w


 =




0
0
0

−1




(
λ1

)
+




0
a
a
a




for every λ1 ≥ 0, when a ≥ 0




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Input: a type declaration d1, a linear constraint c, and a set of variables v

Step 0. Define vc = vars(c), n = nf (d1), d = n|B, where B = {2r | r ∈ R, r ≥ 0}.
Step 1. Let Acvc ≤ b be the geometric representation of c, and Advc ≤ Bdad the geometric

representation of φ(d).

Step 2. For the parameterized linear system

(
Ac

Ad

)
vc ≤

(
bc

0

)
+

(
0

Bd

)
a, compute

its generating matrix R and pairs (va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck).
Step 3. For every x : τ in output from LPInfer(d1, c,v):
Step 4. If τ 6= 2 or x 6∈ vc Then output “x : τ”
Step 5. Else let i such that x = vci:

(a). output “x : 2r” if row(R, i) = 0 and for 1 ≤ m < n ≤ k, either Pm,n = ∅ or
there exists s such that va(m)i 's va(n)i over Pm,n, and:

r = max({0} ∪ {s | 1 ≤ m < n ≤ k, Sol(Pm,n) 6= ∅,
va(m)i 's va(n)i over Pm,n}),

where Pm,n = Cma ≤ cm,Cna ≤ cn;
(b). output “x : 2” otherwise.

Fig. 6. POLYInfer procedure

Summarizing, the values of x, y and z are univocally determined once the param-
eter a has been fixed and the system is feasible. Under the same hypotheses, the
value of w is bounded from above (by a), but it is not definite. With our notation,
z :! ` c→ x :!, y :!, z :!, w : u is valid.

The final form reached in the example resembles the Minkowski’s form for poly-
hedra, but with a parameterized vector appearing in the vertex matrix. The gen-
eralization of the Minkowski’s theorem to parameterized polyhedra is provided in
[Loechner and Wilde 1997] and implemented in the polylib library [Loechner 2010].

Theorem 3.24 (Minkowski’s theorem for parameterized polyhedra).
For a parameterized linear system Ax ≤ b + Ba, there exist a generating matrix
R and finitely many pairs (va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck) where, for
i = 1..k, va(i) is a vector parametric in a and Sol(Cia ≤ ci) 6= ∅, such that:

Sol(Ax ≤ b + Ba,u) = {x |x = Rλ, λ ≥ 0 }+
ConvexHull({vu(i) | i = 1..k,Ciu ≤ ci }),

and Sol(Ax ≤ 0) = {x | x = Rλ, λ ≥ 0 }.
The vertex matrix is now replaced by a set of pairs where the first element is a

parameterized vertex and the second one is its validity domain. For a parameter
instance u, the vertex matrix is built from the (instantiated) vertices whose validity
domain includes u. The special case k = 0 models empty parameterized polyhedra,
which are empty for any instance of the parameters.

Provided with an explicit form for parameterized polyhedra, we proceed by de-
signing a procedure to check whether a variable has a bounded variability range
for every parameter instance. First, we introduce a notion to model the variability
range r of two expressions over the solutions of a polyhedron.

Definition 3.25. We say that cT
1 x + α1 'r cT

2 x + α2 over Ax ≤ b if for every
x0 ∈ Sol(Ax ≤ b), abs(cT

1 x0 + α1− cT
2 x0−α2) ≤ r, and for some x0 ∈ Sol(Ax ≤
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b), abs(cT
1 x0 + α1 − cT

2 x0 − α2) = r.

A direct implementation of the 'r operator relies on standard linear program-
ming problems. Called M = max{(c1 − c2)T x + (α1 − α2) | Ax ≤ b} and
m = min{(c1 − c2)T x + (α1 −α2) | Ax ≤ b}, we have that cT

1 x + α1 'r cT
2 x + α2

over Ax ≤ b iff M ∈ R,m ∈ R and max{M,−m} = r.
Under the hypothesis that we are provided with the Minkowski’s form of Ax ≤ b,

an alternative implementation is stated by the next result.

Definition 3.26. The maximum norm of a vector v = (v1, . . . , vn) is defined
as: ‖v‖∞ = max{abs(vi) | i = 1..n}.

Lemma 3.27. Assume Sol(Ax ≤ b) 6= ∅. We have that cT
1 x + α1 'r cT

2 x + α2

over Ax ≤ b iff called R and V the generating and vertex matrices of Ax ≤ b,
(c1 − c2)T R = 0 and ‖(c1 − c2)T V + (α1 − α2)1T ‖∞ = r.

We point out that Lemma 3.20 is a special case of this result, obtained for r = 0.
Also, notice that checking c1 = c2 and abs(α1 − α2) = r is a computationally

fast calculation, yet being a sufficient condition. In the actual implementation of
the 'r operator, we first check such a sufficient condition and, if not satisfied, will
check the more elaborated condition of Lemma 3.27.

Consider now the problem of computing the range width of a variable x over
a parameterized polyhedron. The next result states that it can be computed by
considering the pairs of parameterized vertices of the polyhedron. For each pair,
we calculate the range width of x over the intersection of the domains of the two
vertices, if not empty. The maximum width over all the pairs of vertices is then the
maximum range width of x over any instance of the parameterized polyhedron.

Lemma 3.28. Consider the Minkowski’s form of a non-empty parameterized poly-
hedron as in Theorem 3.24, and let us denote Pm,n = Cma ≤ cm,Cna ≤ cn. Let
Su = {cT x | x ∈ Sol(Ax ≤ b + Ba,u)}. For r ∈ R, the following are equivalent:

—for every u, for every x, y ∈ Su, abs(x−y) ≤ r; and there exist u, and x, y ∈ Su,
such that abs(x− y) = r

—cT R = 0; and, for 1 ≤ m < n ≤ k, Sol(Pm,n) = ∅ or cT va(m) 's cT va(n) over
Pm,n for some s ≤ r; and,

r = max({0} ∪ {s | 1 ≤ m < n ≤ k, Sol(Pm,n) 6= ∅,
cT va(m) 's cT va(n) over Pm,n}).

Summarizing, Lemma 3.28 provides us with a necessary and sufficient condi-
tion for inferring r in a type assertion d ` c → x : 2r, by directly reasoning on
the Minkowski’s form of the parameterized system in (2). We point out that the
polylib library provides the validity domains Cia ≤ ci in their Minkowski’s form
as well as basic operators on polyhedra, including intersection. Therefore, checking
cT va(m) 's cT va(n) can be implemented using Lemma 3.27.

Example 3.29. The type declaration z :!, w :! and the linear constraint z + w ≥
y, y ≥ z, y ≥ w, x = z + 1 give rise to a parameterized polyhedron over parameters
(a b) and variables (x y) (we omit z and w for space) with generating matrix 0,
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.



Typing Linear Constraints · 19

and with pairs of vertices and domains:

(
(

a + 1
b

)
, b ≥ a ≥ 0) (

(
a + 1

a

)
, a ≥ b ≥ 0) (

(
a + 1
a + b

)
, a ≥ 0 ∧ b ≥ 0).

Let us reason about definiteness of variables x and y by using Lemma 3.28. x is
definite, since a + 1 '0 a + 1 over any polyhedron. In fact, a + 1 expressed as a

linear function of the parameters is (1 0)
(

a
b

)
+ 1. The conclusion then holds by

Lemma 3.27 using the sufficient condition c1 = (1 0) = c2 and abs(α1 − α2) = 0.
Consider now y. For the first two vertices, we have b 6= a, thus we cannot use the

sufficient condition as in the last case. Since the intersection of the domains of the
vertices, namely a = b ≥ 0, is not empty, by Lemma 3.27 we proceed by computing
its generating and vertex matrices. The vertex matrix is 0, so we simply have:

Sol(a = b ≥ 0) = {(a b) |
(

a
b

)
=

(
1
1

) (
λ1

)
, λ1 ≥ 0},

and we calculate:

‖(( 0 1
)− (

1 0
)
)
(

1
1

)
+ 0 1T ‖∞ = 0.

Therefore, a '0 b over a = b ≥ 0. Consider now the first and the third vertex.
Since b 6= a + b , we compute, as before, the Minkowski’s form of the intersection
of their domains:

Sol(b ≥ a ≥ 0) = {(a b) |
(

a
b

)
=

(
1 0
1 1

)(
λ1

λ2

)
+

(
0
0

)
, λ1, λ2 ≥ 0}.

The vertex matrix V clearly satisfies ‖(c1−c2)T V+(α1−α2)1T ‖∞ = 0. However,
for the generating matrix R, the condition (c1 − c2)T R = 0 does not hold:

(
(

0 1
)− (

1 1
)
)
(

1 0
1 1

)
=

( −1 0
)
.

Summarizing, by Lemma 3.27, b 6'r a + b for any r, and then, by Lemma 3.28, y
cannot be typed as 2r for any r.

The overall procedure, called POLYInfer, is shown in Figure 6. The procedure
is sound and complete for inferring validity of type assertions.

Theorem 3.30 (POLYInfer - soundness and completeness).
POLYInfer is sound for the type inference problem, and it is complete for BT .

3.5 Extension to Strict Inequalities and to Disequalities

So far, we considered equality and non-strict inequality primitive constraints. A
generalized linear constraint admits also primitive constraint over the operators <,
> (strict inequalities) and 6= (disequalities). Without any loss of generality, we
write a generalized constraint as c ∧ ∧m

i=1 ei 6= αi, where c is a linear constraint
and for i = 1..m, ei 6= αi is a disequality. We now extend type assertions to admit
generalized constraints. The next result shows that validity of type assertions for a
satisfiable generalized constraint can be reduced to validity of the type assertions
over the linear constraint obtained by removing the disequalities in it.
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Theorem 3.31. Let g = c ∧ ∧m
i=1 ei 6= αi be a satisfiable generalized linear

constraint. d1 ` g→ d2 is valid iff d1 ` c→ d2 is valid.

The conclusion does not hold for unsatisfiable constraints.

Example 3.32. The type assertion ` x < 3, x ≥ 3, y ≤ 0→ y :! is valid, since the
generalized constraint is unsatisfiable. When removing the disequalities (namely,
turning x < 3 into x ≤ 3), only validity of ` x ≤ 3, x ≥ 3, y ≤ 0→ y : u follows.

Checking satisfiability of g can easily be accomplished. In fact, by indepen-
dence of negative constraints [Lassez and McAllon 1992], it reduces to show that
Sol(Acv ≤ bc) 6= ∅, and that for every e 6= α in g, e '0 α over Acv ≤ bc does not
hold. Lemma 3.27 provides us with a procedure to show that by using the explicit
form of polyhedra. Alternatively, the same result can be obtained by linear pro-
gramming. Called M = max{e−α | Acv ≤ bc} and m = min{e−α | Acv ≤ bc},
we have already noted that e '0 α holds iff M,m ∈ R and max{M,−m} = 0, i.e.,
iff M = m = 0. When the generalized constraint contains strict inequalities but no
disequality, a single linear programming problem can be devised to cover all strict
inequalities at once (see [Greenberg 1996, Theorem 4]).

3.6 Extension to Parametric Types PT
The next example introduces type variables in type assertions.

Example 3.33. When writing the following (valid) type assertion:

x : 21 ` y = x + 2, x ≤ z ≤ x + 2→ y : 21, z : 23

it is natural to observe that it holds in more general terms: the range of variability
for y is the same as x, and the range of variability for z is the one for x plus 2.
By introducing a “type variable” s, and assuming s ≥ 0, we can write the general
statement as: x : 2s ` y = x + 2, x ≤ z ≤ x + 2→ y : 2s, z : 2s+2.

Notice that the kind of involved expressions can be linear combinations of type
variables, as in x : 2s, y : 21 ` z = 2x + y→ z : 22s+1.

Let us formally introduce type variables in the syntax and semantics of type
assertions.

Definition 3.34. Let V be a set of variables distinct from constraint variables,
called type variables. A parametric type is 2e, where e = cT a + r is a linear
expression over variables a from V. We define the set of types PT as BT augmented
with parametric types.

The syntax of type declarations and type assertions readily extend to PT .
The semantics of type assertions over PT is defined by extending the φ and υ

functions in Definition 2.4 as follows:

φ(x : 2e) = a ≤ x ∧ x ≤ a + e ∧ 0 ≤ e υ(x : 2e) = {a} ∪ vars(e).

For a type assertion d1 ` c→ d2, a type variable that appears (with non-zero coef-
ficient) in d2 but that does not appear in d1 is called a local type variable.
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Intuitively, type variables in parametric3 types are compiled into parameters of
the parameterized linear system underlying the type assertion. Notice that the
conjunct 0 ≤ e is syntactically satisfied for 2r in the BT type system, since we
assumed r ∈ R and r ≥ 0. Therefore, the above φ() and υ() definitions are
conservative extensions of the ones for 2r. Also, notice that, for a type assertion
d1 ` c→ d2, the restriction υ(d2) \ υ(d1) in Definition 2.4 (1) is now fundamental,
since a same type variable can appear both in d1 and in d2.

Example 3.35. The type assertion x : 2s ` y = x + 2→ y : 2p states that if
x has a range of variability of s then y has some range of variability p, i.e., there
exists a and p ≥ 0 such that a ≤ y ≤ a + p. But this is equivalent to require a and
b such that a ≤ y ≤ b, i.e., to state that x : 2s ` y = x + 2→ y : 2 is valid.

Local type variables in a type assertion are existentially quantified. Therefore,
there is no loss of generality in assuming no local type variable in a type assertion
d1 ` c→ x : 2e.

Lemma 3.36. A type assertion d1 ` c→ x : 2e with local type variables is valid
iff d1 ` c→ x : 2 is valid.

In general, admitting local type variables makes type assertions non-compositional,
in the sense highlighted by the following example.

Example 3.37. The type assertion ` 0 ≤ x ≤ 2, 0 ≤ y ≤ 1→ x : 2s, y : 21−s

is invalid. In fact, x has a variability range of 2 in the solutions of the linear
constraint, whilst the existentially quantified s is required s ≥ 0 and 1 ≥ s. On the
contrary, by Lemma 3.36, both ` 0 ≤ x ≤ 2, 0 ≤ y ≤ 1→ x : 2s and ` 0 ≤ x ≤
2, 0 ≤ y ≤ 1→ y : 21−s are valid.

The property of compositionality holds for type assertions without local type
variables. For the rest of this section we restrict to type assertions of the form
d1 ` c→ x : 2e.

Lemma 3.38. A type assertion d1 ` c→ (d2,d3) with no local type variable is
valid iff d1 ` c→ d2 and d1 ` c→ d3 are valid.

The introduction of parametric types breaks also the basic Lemma 3.4, i.e., sat-
isfiability of the parameterized linear system P = φ(d) ∧ c in (2) does not reduce
to satisfiability of c.

Example 3.39. For the type assertion x : 2s, y : 2−s−1 ` true → x :!, we have
that φ(x : 2s, y : 2−s−1)∧true is a ≤ x ≤ a+s, b ≤ y ≤ b−s−1, 0 ≤ s, 0 ≤ −s−1.
In particular, the last two primitive constraints can be rewritten as: s + 1 ≤ 0 ≤ s,
which is unsatisfiable.

Lemma 3.4 conservatively generalizes to parametric types by adding the condition
that both c and φ(d) are satisfiable. For a type declaration d in BT , φ(d) is always
satisfiable.

3Notice that we will use the word ‘parametric’ for types and ‘parameterized’ for linear systems in
order to resolve possible linguistic ambiguities in the text.
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Lemma 3.40. Consider the parameterized linear system P = φ(d) ∧ c in (2),
with d type declaration in PT . There exists a parameter instance u such that
Sol(P,u) 6= ∅ iff Sol(Acv ≤ bc) 6= ∅ and Sol(Adv ≤ Bda) 6= ∅.

Concerning type inference, the following example shows that complete procedures
have to lift to piecewise linear expressions, which is beyond our syntax of type
declarations.

Example 3.41. What parametric type τ can be inferred for the type assertion
x : 2s ` 0 ≤ x ≤ 2→ x : τ?

When 0 ≤ s ≤ 2, the range width s for x is stricter than the range width
2 imposed by the constraint 0 ≤ x ≤ 2. Hence, τ = 2s should be inferred.
Nevertheless, inferring τ = 22 is sound, i.e., it yields a valid type assertion.

When s ≥ 2, the range width 2 imposed by 0 ≤ x ≤ 2 is stricter than s . Hence,
τ = 22 should be inferred. Nevertheless, inferring τ = 2s is sound.

Summarizing, sound procedures for type inference could return either τ = 2s or
τ = 22. A complete procedure, however, should return:

τ =
{

22 if s ≥ 2
2s otherwise

i.e., a piecewise linear expression, which is beyond our syntax.

The notions of lub() and normal form of type declarations are also affected by
the same problem.

Example 3.42. By reasoning as in the last example, lub({2s,22}) cannot be
expressed as 2e for some linear expression e. Rather, we should generalize the
syntax of parametric types to allow 2min{s,2}. Similarly, one concludes that nf (x :
2s, x : 22) cannot be expressed with the syntax of linear expressions.

Concerning type checking, however, we are in the position to design a decision
procedure. First, an extension of the Theorem 3.22 (Definiteness II) holds.

Theorem 3.43 (Definiteness III). Let B = PT \ BT2. A type assertion d `
c→ x : 2e with no local type variable is valid iff d|B ` c→ x : 2e is valid.

On the contrary, Theorem 3.12 (Definiteness I) does not extend to parametric
types, i.e., definiteness cannot be dealt with separately.

Example 3.44. The type assertion x : 2s, x : 2−s ` true→ x :! is valid. In fact,
the corresponding formula to be shown is:

∀a, b, s ∃c ∀x (a ≤ x ≤ a + s ∧ b ≤ x ≤ b− s ∧ s ≥ 0 ∧ − s ≥ 0→ x = c).

From the left hand side of the implication, we obtain: s = 0 ∧ a + b ≤ 2x ≤ a + b,
and then x = (a + b)/2 is the only value that x can assume.

However, the type assertion ` true→ x :! is not valid. This shows that Theo-
rem 3.12 does not extend to parametric types. As a consequence, completeness of
the Check(IEInfer) procedure is lost for type assertions d ` c→ x :! such that
parametric types appear in d.

Next, we revisit Lemma 3.27 and Lemma 3.28.
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Input: a type assertion d1 ` c→ x : 2e with no local type variable

Step 0. Define d = d1|B, with B = PT \ BT2, v = vars(c) ∪ vars(d) ∪ {x}, and let i s.t. x=vi.
Step 1. Let Acv ≤ bc be the geometric representation of c, and Adv ≤ Bdad the geometric

representation of φ(d).
Step 2. If Sol(Acv ≤ bc) = ∅ or Sol(Adv ≤ Bdad) = ∅ Then output “Valid”

Else

Step 3. For the parameterized linear system

(
Ac

Ad

)
v ≤

(
bc

0

)
+

(
0

Bd

)
a, compute

its generating matrix R and pairs (va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck):
Step 4. (a). output “Valid” if

(i) row(R, i) = 0;
(ii) and for every 1 ≤ m < n ≤ k, va(m)i ¹e va(n)i over Cma ≤ cm,Cna ≤ cn;
(iii) and for i = 1..k, min{e | Cia ≤ ci} ≥ 0;

(b). output “Not valid” otherwise.

Fig. 7. ParCheck procedure

Definition 3.45. Let e = cT
e x + r. We say that cT

1 x + α1 ¹e cT
2 x + α2 over

Ax ≤ b if for every x0 ∈ Sol(Ax ≤ b), abs(cT
1 x0 + α1 − cT

2 x0 − α2) ≤ cT
e x0 + r.

¹e is a weakening of the relation 'r from Definition 3.25 in two ways. First, any
upper bound is now required, whilst 'r holds for the least upper bound. Second,
the upper bound may be expressed using variables of the system, as in x ¹z x + z.
As in the case of 'r, the ¹e relation can be checked by means of linear programming
problems or, if we are provided with the Minkowski’s form of Ax ≤ b, by means of
the following result.

Lemma 3.46. Let e = cT
e x + r, and assume Sol(Ax ≤ b) 6= ∅.

We have that cT
1 x+α1 ¹e cT

2 x+α2 over Ax ≤ b iff called R and V the generating
and vertex matrices of Ax ≤ b, (c1−c2−ce)T R ≤ 0 and (c2−c1−ce)T R ≤ 0 and
(c1−c2−ce)T V+(α1−α2−r)1T ≤ 0 and (c2−c1−ce)T V+(α2−α1−r)1T ≤ 0.

Notice that, when e = r, then the necessary and sufficient condition can be stated
in a simpler form as: (c1 − c2)T R = 0 and ‖(c1 − c2)T V + (α1 − α2)1T ‖∞ ≤ r,
which closely resembles the one in Lemma 3.27. Lemma 3.28 is extended to the
checking problem in the presence of parametric types as follows.

Lemma 3.47. Consider the Minkowski’s form of a non-empty parameterized poly-
hedron as in Theorem 3.24, and let us denote Pm,n = Cma ≤ cm,Cna ≤ cn.

Let Su = {cT x | x ∈ Sol(Ax ≤ b + Ba,u)}, and e = cT
e a + r.

We have that for every u, for every x, y ∈ Su, abs(x − y) ≤ cT
e u + r iff the

following hold: (i) cT R = 0; (ii) and, for 1 ≤ m < n ≤ k, cT va(m) ¹e cT va(n)
over Pm,n; (iii) and, for i = 1..k, min{e | Cia ≤ ci} ≥ 0.

Example 3.48. Given the Fahrenheit-Celsius constraint c from the introduction
fr = 9/5cl + 32, let us show that cl : 2s ` c→ fr : 21.8s is valid by exploiting
Lemma 3.47. The parameterized linear system φ(cl : 2s)∧c is a ≤ cl , cl ≤ a+s, 0 ≤
s, fr = 9/5cl + 32, and the corresponding parameterized polyhedron is non-empty
(e.g., for the parameter values a = s = 0 there is a solution: cl = 0, fr = 32).
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Fixed x =
(

fr
cl

)
and a =

(
a
s

)
, its Minkowski’s form consists of:

R =
(

9 −9
5 −5

)
,

and of the following two parameterized vertices:

va(1) =
(

9/5a + 32
a

)
, if s ≥ 0 va(2) =

(
9/5s + 9/5a + 32

s + a

)
, if s ≥ 0.

For c =
(

1
0

)
, ce =

(
0

1.8

)
and r = 0, we have cT x = fr and e = cT

e a + r =

1.8s. Therefore, showing that cl : 2s ` c→ fr : 21.8s is valid consists of showing
conditions (i)-(iii) from Lemma 3.47.

(i) is immediate. (iii) trivially holds, since min{1.8s | s ≥ 0} ≥ 0. Finally, let
us show (ii), namely cT va(1) = 9/5a + 32 ¹e 9/5s + 9/5a + 32 = cT va(2) over
P1,2 = Sol(s ≥ 0). By Definition 3.45, this amounts at showing that for every
s ≥ 0, abs(9/5s) ≤ 1.8s. This is trivially true since 9/5 = 1.8.

As in the case of Lemma 3.28, we point out that the polylib library provides
the validity domains Cia ≤ ci in their Minkowski’s form as well as basic operators
on polyhedra, including intersection. Therefore, condition (ii) can be implemented
using Lemma 3.46. Analogously, condition (iii) can be checked by solving linear
programming problems or as follows.

Lemma 3.49. Let e = cT
e x + r, and assume Sol(Ax ≤ b) 6= ∅. We have that

min{e | Ax ≤ b} ≥ 0 iff called R and V the generating and vertex matrices of
Ax ≤ b, cT

e R ≥ 0 and cT
e V + r1T ≥ 0.

Condition (iii) covers contrived instances of types variables, as shown in the next
example. We refer the reader to Appendix A.7 for additional details.

Example 3.50. Consider the type assertion x : 2s, y : 2r ` z = 0→ z : 2s−r.
By instantiating s = 0, r = 1, we obtain x :!, y : 21 ` z = 0→ z : 2−1, which is
syntactically malformed as a type assertion in BT (since the syntactic requirement
−1 ≥ 0 does not hold). As a type assertion in PT , however, it is well-formed, yet
invalid. In fact, φ(x :!, y : 21)∧ z = 0 is a ≤ x ≤ a + 0∧ 0 ≥ 0∧ b ≤ y ≤ b + 1∧ 1 ≥
0 ∧ z = 0, which admits solutions. However, φ(z : 2−1) is c ≤ z ≤ c− 1 ∧ −1 ≥ 0,
which is unsatisfiable.

Figure 7 summarizes the checking procedure ParCheck, in the case of input
type assertion d1 ` c→ x : 2e. We will implement (see Sect. 5) Step 4 (a)(ii) by
means of Lemma 3.46, and Step 4 (a)(iii) by means of Lemma 3.49.

Theorem 3.51 (ParCheck - soundness and completeness).
ParCheck is a decision procedure for the type checking problem of type assertions
d1 ` c→ x : 2e with no local type variable.

When local type variables exists, d1 ` c→ x : 2e is equivalent to d1 ` c→ x : 2,
as shown in Lemma 3.36. In general, for a type assertion d1 ` c→ x : τ with
τ ∈ BT2, the checking procedure can resort to Check(LPInfer) by reducing the
problem to type assertions for which Check(LPInfer) is sound and complete.
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Lemma 3.52. Let d1 be a type declaration (in PT ) such that φ(d1) is satisfiable.
Let d′1 be the type declaration (in BT2) obtained from d1 by replacing every y : 2e

with y : 2. For τ ∈ BT2, d1 ` c→ x : τ is valid iff d′1 ` c→ x : τ is valid.

3.7 Computational Complexity Issues

Let us consider the issue of computational complexity of the type checking problem.
First, we observe that the LPInfer procedure has a polynomial time complex-

ity when a polynomial time algorithm (such as the one in [Khachiyan 1979]) is
adopted for solving the required linear programming problems. By Theorem 3.7,
Check(LPInfer) is then a polynomial time decision procedure for type assertions
d1 ` c→ d2 such that types in d1 belong to BT , and types in d2 belong to BT2.
The conclusion can be strengthened to BT ! since the additional computations of
IEInfer consist of extracting implicit equalities and of performing Gaussian elim-
ination, both of which have polynomial time complexity.

Theorem 3.53. The problem of checking whether d1 ` c→ d2 is valid is poly-
nomial time decidable, if all types in d2 belong to BT !.

Notice that the instantiation of LPInfer using the Minkowski’s form of polyhe-
dra has an exponential time complexity, since the number of vertices of a (not even
parameterized) polyhedron can be exponential in the worst case. A fortiori, neither
Check(LPInfer) nor Check(IEInfer), can have polynomial time complexity
when they rely on computing the Minkowski’s form of polyhedra.

Example 3.54. Consider linear constraints of the form: cwn = 0 ≤ x1 ≤ 1,
. . . , 0 ≤ xn ≤ 1, for n ≥ 0. The polyhedra Sol(cwn) is called an hypercube,
since it consists of 2n vertices of the form (a1 a2 . . . an) such that for i = 1..n,
ai ∈ {0, 1}. Computing the vertex matrix of Sol(cwn) has then an exponential time
computational complexity.

When restricting to homogeneous systems, as required in LPInfer, the worst
case is still exponential.

Example 3.55. The transformation of [Goldman 1956; Wilde 1993] over cwn

yields the homogeneous constraint hwn = 0 ≤ x1, 0 ≤ ξ − x1, . . . , 0 ≤ xn, 0 ≤
ξ − xn, 0 ≤ ξ. For each vertex v of Sol(cwn), Sol(hwn) has a ray of the form
(λv, λ), for some λ > 0. Therefore, complexity of computing the vertex matrix of
Sol(cwn) has been shifted to the computation of the generating matrix of Sol(hwn).

We refer the reader to [Borgwardt 2007] for a discussion of the average-case com-
plexity of the double description method, the core algorithm for the extraction of
the Minkowski’s form of (parameterized) polyhedra. Under a reasonable stochastic
model over the input linear system of inequalities, the average computational com-
plexity of the method is shown to be polynomial in the number of inequalities (but
not in the number of variables, which is the case of the last two examples).

Let us consider now Check(POLYInfer) and ParCheck. They require to
compute the pairs (va(1),C1a ≤ c1), . . ., (va(k),Cka ≤ ck) as from Theorem 3.24.
The algorithm proposed in [Loechner and Wilde 1997] for the purpose consists of
first computing the vertices of Sol(P) where P is the linear system (2) in the space
of variables plus parameters; then to project each vertex over the parameter space.
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The first step leads to conclude non-polynomial time complexity, as for LPInfer.
The second step leads to conclude that the number of parameterized vertices k is
bounded by the number of vertices in Sol(P). Since the projection at the second
step requires polynomial time [Loechner and Wilde 1997, Section 5.3], under the
assumptions of [Borgwardt 2007], the computation of the parameterized vertices
has a polynomial time average complexity in the number of inequalities.

Later on in Section 5 we report an experimental evaluation of the execution times
of the various decision procedures over several testbeds.

4. MODING CLP(R) PROGRAMS

Constraint logic programming provides an elegant scheme for dynamically building
complex constraints by exploiting recursion, non-determinism and intertwined con-
straint generation & solving. It is then a natural candidate as an application area
for the type system theory developed in the previous sections. Here, we propose an
extension of the notion of well-moding from pure logic programming.

4.1 Well-moding

Modes for pure logic programs assign to every predicate argument an input-output
behavior. Input means that the predicate argument is ground on calls. Output
means that it is ground on answers. As discussed in the introduction, groundness
(i.e., definiteness) is restrictive in the CLP context. Based on types, we can extend
the notion of moding to upper and/or lower bounds as well.

Definition 4.1 (Moding). A mode for an n-ary predicate p is a function dp

from {1, . . . , n} to BT ×BT . We write dp as p(τ1×µ1, . . . , τn×µn), where dp(i) =
(τi, µi) for i = 1..n.

A mode for a CLP(R) program P is a set of modes, one for each predicate in
P . For an atom p(x), we write p(x : τ × µ) to denote that x is the collection of
variables occurring in the atom, and p(τ × µ) is the mode of p. Types in τ are
called input modes while types in µ are called output modes.

By fixing a predicate argument mode to !×! or to ?×! we get back to the logic
programming input-output behavior, respectively denoted by + and −. Also the
mode ? × ? means that the predicate argument is of no relevance in the analysis,
a case denoted by ? in logic programming. We recall that programs are assumed
in flat form. Several notions of moding have been proposed (see [Apt 1997] for a
review) for logic programs. We extend here the notion of well-moding to CLP(R).

Definition 4.2 (Well-moding). A CLP(R) clause:

p0(x0 : τ0 × µ0)← c, p1(x1 : τ1 × µ1), . . . , pn(xn : τn × µn)

is well-moded if the following type assertions are valid:

for i = 1..n, x0 : τ0,x1 : µ1, . . . ,xi−1 : µi−1 ` c→ xi : τi,

x0 : τ0,x1 : µ1, . . . ,xn : µn ` c→ x0 : µ0.

A CLP(R) program P is well-moded if every clause in it is well-moded.
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The definition of well-moding constrains the “flow of data” through the atoms in
a clause to follow a left-to-right sequence, starting with input position in the head
of the clauses and ending with output positions in the head.

Example 4.3. The MORTGAGE program is well-moded with moding mortgage(!×!,
2×!, !×!, ?×!), which is intended for covering the first two queries in the intro-
duction. For clause (m1) we have to show that:

P :!, T : 2, R :!, B : ? ` T = 0, B = P → P :!, T :!, R :!, B :!

is valid, which is immediate. For clause (m2), called c the constraint T >= 1, NP
= P + P * 0.05 - R, NT = T - 1, we have to show validity of:

P :!, T : 2, R :!, B : ? ` c→ NP :!, NT : 2, R :!, B : ?
P :!, T : 2, R :!, , B : ?, NP :!, NT :!, B :! ` c→ P :!, T :!, R :!, B :!

which are both readily checked. Analogously, MORTGAGE is well-moded with the
moding mortgage(? × 2, 2×!, 2× 2, 2× 2), which is intended for covering
the third query in the introduction.

We recall that the operational semantics of CLP consists of a transition system
from states to states (see Appendix A.9 for details). A state is a pair 〈Q‖c〉 where
Q is a query and c is a constraint, called the constraint store. Initial states are of
the form 〈Q‖true〉. An answer constraint is the constraint store of a final state (if
any) with an empty query. The definition of well-moding extends to states.

Definition 4.4. A state 〈 ← c, p1(x1 : τ1 ×µ1), . . . , pn(xn : τn ×µn)‖ c′〉, with
n ≥ 0, is well-moded if for i = 1..n the type assertion:

x1 : µ1, . . . ,xi−1 : µi−1 ` (c ∧ c′)→ xi : τi

is valid. A query Q is well-moded if the state 〈Q‖ true〉 is well-moded.

4.2 Well-moding for Static Analysis

Widely studied properties of well-moding in logic programming include persistency
along derivations, call pattern characterization and computed answer characteri-
zation. They are at the basis of several methods for program analysis, including
termination [Etalle et al. 1999], transformation and optimization [Somogyi et al.
1996] techniques. The next result shows that the mentioned properties hold for
the proposed extension of well-moding to CLP(R). By a left-derivation we mean a
derivation via the leftmost selection rule.

Theorem 4.5. Let P be a well-moded CLP(R) program and Q = ← c, p1(x1 :
τ1 × µ1), . . . , pn(xn : τn × µn) a well-moded query. We have that:

—Every state selected in a left-derivation of P and Q is well-moded (persistency).
—For every state of the form 〈 ← q(x : τ × µ), R‖ c′〉 selected in a left-derivation

of P and Q, ` c′→ x : τ is valid (call patterns).
—For every c′ answer constraint of P and Q, ` c′→ x1 : µ1, . . . ,xn : µn is valid

(answers).

The next two examples provide hints on the kind of analyses that well-moding
allows for by exploiting the properties above.
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Example 4.6. Consider the two queries from the introduction ← mortgage(100,
5, 20, B) and ← 3 <= T, T <= 5, mortgage(100, T, 20, B). They are well-
moded with the moding mortgage(!×!, 2×!, !×!, ?×!). Since the MORTGAGE
program has been shown to be well-moded in Example 4.3, by Theorem 4.5 we
conclude definiteness of balance in every answer constraint store.

The third query from the introduction ← 0 <= B, B <= 10, 15 <= R, R <=
20, mortgage(P, 5, R, B) is well-moded with the moding mortgage(? × 2,
2×!, 2×2, 2×2). Again, by Theorem 4.5 we conclude boundedness of principal
in every answer constraint store.

Example 4.7. The full version of the MORTGAGE program takes the interest rate
as a further predicate argument.
(n1) mortgage(P,T,I,R,B) ←

T = 0,

B = P.

(n2) mortgage(P,T,I,R,B) ←
T >= 1,

NP = P + P * I - R,

NT = T - 1,

mortgage(NP,NT,I,R,B).

However, this leads to a non-linear constraint appearing in clause (n2). How
can we reason on it? Our framework is heavily based on linearity. Also, many
constraint solvers are incomplete with respect to non-linear constraints and delay
their evaluation until they become linear: even an approach explicitly dealing with
non-linear constraints fails with such constraint solvers. We exploit the call pattern
characterization property of well-moding by factoring out the P * I term.
(n2′) mortgage(P,T,I,R,B) ←

T >= 1,

NP = P + M - R,

NT = T - 1,

mult(P, I, M),

mortgage(NP,NT,I,R,B).

(mu) mult(P,I,M) ←
P * I = M.

Consider now as if the predicate mult is a built-in of the system, and the input-
output properties of Theorem 4.5 are guaranteed for the mode mult( !×!, !×!,
?×!). The rest of the program, namely clauses (n1) and (n2′), is readily checked
to be well-moded with moding mortgage(!×!, 2×!, !×!, !×!, ?×!). Therefore,
for every call to mult the first and the second arguments are definite, and then
the non-linear constraint P * I = M becomes linear at run-time. Finally, notice
that we can fold back the mult predicate in (n2′) to conclude that the non-linear
constraint in (n2) becomes linear at run-time.

Notice, however, that the approach requires an appropriate choice of the mode
of mult and of the position of the call to mult. For instance, consider the mode
mortgage(? × 2, 2×!, !×!, 2× 2, 2× 2), where we intend to calculate the
principal given the other arguments. The non-linear constraint NP = P + P*I -
R in (n2) can be rewritten as P*(I+1) = NP + R. This suggests that mult(P,
I+1, NP+R) can be called to compute P from I+1 and NP+R. There are two issues,
however. First, the mode of mult must be mult(? × 2, !×!, 2 × 2), since the
input arguments are now the second and the third ones. Second, the argument NP+R
has type 2 only after the recursive call. As a consequence, the call to mult must
occur after the recursive call to mortgage. Summarizing, we have the following
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version of the (n2) clause:

(n2′′) mortgage(P,T,I,R,B) ←
T >= 1,

I1 = I + 1,

M = NP + R,

NT = T - 1,

mortgage(NP,NT,I,R,B),

mult(P, I1, M).

With the provided modes, the non-linear constraint in mult becomes linear at
run-time. It is worth noting that the position of the call to mult in (n2′′) can be
interpreted as the point in the left-to-right flow of the calls where the non-linear
constraint in (n2) becomes linear. Finally, notice that the approach of rearrang-
ing body atoms to fit the declared modes is a well-studied technique, adopted for
instance in the Mercury programming language [Somogyi et al. 1996].

4.3 Extension to CLP(R) with Terms

Several existing CLP(R) languages and systems actually adopt a multisorted con-
straint domain, usually including at least the domain Term of pure logic program-
ming terms. In those languages, terms are trees whose leaves are either symbolic
constants from Term or linear expressions over R. Definitions and results for multi-
sorted domain extends naturally from the single-sorted ones4. More specifically, an
atom is now of the form p(t1, . . . , tn) where p is a predicate of arity n and t1, . . . , tn
are terms.

Example 4.8. The following LISTSUM program calculates the sum of the elements
in a list.
(s1) listsum([], S) ←

S = 0.

(s2) listsum([X|Xs], S) ←
S = X+S1 ,

listsum(Xs, S1).

Intuitive modes for listsum include listsum(2×2, ?×2) and listsum(!×!,
?×!). The former states that the sum is upper and lower bounded if every element
of the list is upper and lower bounded. The latter states that the sum is definite if
every element in the list is definite.

The definition of well-moding readily extends to programs with terms, provided
that the notion of type declaration is lifted to type terms. Let us denote by vars(t)
the set of variables of a term t. The following definition extends atd’s (and a fortiori,
type assertions) to terms.

Definition 4.9. Let t be a term and vars(t) = {x1, . . . , xn}. We write t : τ as
a shorthand for x1 : τ, . . . , xn : τ .

4Predicates occurring in two or more sorts need to be renamed apart or to be syntactically
distinguished. As an example, the unification predicate = (defined by the clause X = X. which is
implicitly part of any program with terms) is used also as the linear equality predicate. Other
examples are concerned with Prolog arithmetic built-in’s. In order to distinguish the two sorts,
concrete programming languages, such as SWI-Prolog, write constraints between curly brackets.
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The definition is conservative: when t is a variable, the shorthand reduces to an
atd. The semantics underlying the definition is that a term is typed as τ if every
variable over the reals in it is typed as τ , and every variable over terms in it is
typed as τ .

Example 4.10. The LISTSUM program is well-moded w.r.t. listsum(!×!, ?×!).
For instance, for clause (s2), the type assertions:

X :!, Xs :!, S1 : ? ` S = X + S1→ Xs :! X :!, Xs :!, S1 :! ` S = X + S1→ S :!

are readily checked to be valid.

Using this notation, it is readily checked that the proposed notion is a conserva-
tive extension of well-moding for pure logic programs [Apt 1997]. In fact, consider
a clause with constraint true:

p0(t0 : τ0 × µ0)← p1(t1 : τ1 × µ1), . . . , pn(tn : τn × µn).

By Lemma 2.11, the type assertions to be checked by Definition 4.2 are valid iff:

for i = 1..n, nf (t0 : τ0, t1 : µ1, . . . , ti−1 : µi−1) ≥t nf (ti : τi),
nf (t0 : τ0, t1 : µ1, . . . , tn : µn) ≥t nf (t0 : µ0).

Assume now that only pairs !×! (input) and ?×! (output) are used. By expanding
the definition of typed terms, the conditions can be rewritten as follows:

for i = 1..n, ∪i−1
j=1 vars(outp(tj)) ∪ vars(inp(t0)) ⊇ vars(inp(ti))),

∪i−1
j=1vars(outp(tj)) ∪ vars(inp(t0)) ⊇ vars(outp(t0)).

where, for i = 0..n, inp(ti) is the subset of ti typed as !×! in pi(ti : τi × µi), and
outp(ti) is the subset typed as ?×!. This is exactly the formulation of well-moding
for pure logic programs.

Theorem 4.5 readily extends to programs and queries with terms by the following
fact, which states that validity of type assertions is monotonic w.r.t. term instanti-
ation. For a term substitution θ and an atd d = t : τ , we write dθ to denote tθ : τ .
This naturally extends to type declarations.

Lemma 4.11. Assume that d1 ` c→ d2 is valid, and let θ be a term substitution
such that cθ = c. Then d1θ ` c→ d2θ is valid.

Intuitively, this lemma allows for concluding that an instance of a well-moded
clause is well-moded, provided that variables (over the reals) in the clause constraint
are not instantiated. A run-time error is typically raised if a variable over the reals
is instantiated to a term.

4.4 Extension to Parametric Types

In this section, the definition of well-moding is extended to admit parametric types.
The resulting moding system allows for more expressive analyses.

Definition 4.12 (Parametric moding). A parametric mode for an n-ary pred-
icate p is a function dp from {1, . . . , n} to PT ×PT . We extend the notation used
for modes to parametric modes.

We assume that, for a parametric mode p(τ × µ), if s is a type variable in µ
then s is a type variable in τ , i.e., no “local to output” type variable exist.
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Let us first discuss the case of local to output type variables.

Example 4.13. Consider the simple DOUBLE program:

double(X, Y) ← Y = 2 * X.

The mode double(2b × 2b, ? × 22b) is intended to model the first argument
as input with a variability range of b, and the second argument as output with a
variability range of 2b. Dually, the mode double(? × 2b/2, 2b × 2b) swaps the
input-output roles of the two arguments. What about the mode double(2b ×2s,
?×22s) containing local to output type variables?

First, this mode is somehow weaker than double(2b × 2b, ? × 22b), which
explicitly states the relations between input-output variability ranges. Thus, it
would be more informative to use the stronger mode.

Second, double(2b×2s, ?×22s) states that given the first argument as input,
the second argument is output and, after resolution, its variability range is twice
the one of the first argument. Using type assertions, this amounts at stating that
x : 2b ` y = 2x→ x : 2s, y : 22s is valid. This highlights how the local to
output type variable s turns out into a local type variable in a parametric type
assertion. Since we aim at a compositional notion of well-moding, and recalling the
compositionality limitations highlighted in Section 3.6, we prevent local to output
type variables in Definition 4.12.

In the following, we omit the adjective parametric when it is clear from the
context. Let us consider now an example adopting a direct extension of the notion
of well-moding in presence of parametric types.

Example 4.14. Consider the program ACKERMANN for computing the Ackermann
function.
(a1) ack(M, N, R) ←

M = 0, R = N+1.

(a2) ack(M, N, R) ←
M >= 1, N = 0,

N1 = 1, M1 = M-1,

ack(M1, N1, R).

(a3) ack(M, N, R) ←
M >= 1, N >= 1,

N1 = N-1, M1 = M - 1,

ack(M, N1, T),

ack(M1, T, R).

The mode ack(?×!, 2b×2b, ?×2b) states that if ack(M, N, R) is called with
a variability range of b for N then, after it is completely resolved, M is definite and R
has a variability range of b. Consider clause (a2), and let c be M >= 1, N >= 1,
N1 = N-1, M1 = M - 1. In order to show that the program is well-moded using
Definition 4.2, the following parametric type assertions must be valid: M : ?, N :
2b, R : ? ` c→ M1 : ?, N1 : 2b, R : ?; and M : ?, N : 2b, R : ?, M1 :!, N1 : 2b, R : 2b `
c→ M :!, N : 2b, R : 2b. They are both readily checked.

The query ← 0 <= M, M <= 5, 1 <= N, N <= 2, ack(M, N, R) is well-mod-
ed, with b = 1. In fact, ` 0 <= M, M <= 5, 1 <= N, N <= 2→ N : 21 holds. For
every constraint store c in a final state, the type assertion ` c→ R : 2b, with b = 1,
is then valid. Stated in other words, if we start with a value for N known with
an approximation of at most ±0.5, in each computed answer the result R has the
same approximation. Notice that this does not mean that two results R from two
different computed answers differ by at most ±0.5.
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As outlined at the end of the example, however, when calling a predicate with
a parametric mode it may be necessary to instantiate type variables, e.g., b = 1 in
the example query. In the general case, this requires an extended formulation of
Definition 4.2.

Example 4.15. Consider the program ACKERMANN with the additional clause:

(a4) ack2(N, R) ← ack(N, N, R).

and mode ack2(2a × 2a, ? × 2a). Is (a4) well-moded? Using Definition 4.2,
we should show validity of the type assertions N : 2a, R : ? ` true→ N : 2b, R : ?
and N : 2a, R : ?, N : 2b, R : 2b ` true→ N : 2a, R : 2a, which is not the case
since b and a are distinct type variables. Intuitively, however, b has a meta-level
usage, in the sense that when calling the predicate ack the type variable b can be
instantiated to satisfy the call context. By instantiating b = a, the type assertions
above become N : 2a, R : ? ` true→ N : 2a, R : ? and N : 2a, R : ?, N : 2a, R : 2a `
true→ N : 2a, R : 2a, which are trivially valid. Similarly , consider:

(a5) ack3(M, R) ← N=1, ack(M, N, R).

with mode ack3(?×!, ?×!). The type assertions to be shown are M : ?, R : ? `
N=1→ M : ?, N : 2b, R : ? and N : 2b, R : 2b, M : 2b ` N=1→ R :!, M :!, where the former
is valid and the latter is not. By instantiating b = 0, the type assertions become
M : ?, R : ? ` N=1→ M : ?, N :!, R : ? and N :!, R :!, M :! ` N=1→ R :!, M :!, which are both
valid.

Let us formalize type variable instantiation by means of type substitutions.

Definition 4.16. A type substitution ϑ is a function mapping type variables
into linear expressions over type variables.

Type substitutions readily lift to parametric types, by setting ϑ(2e) = 2ϑ(e) and
ϑ(τ) = τ for τ ∈ BT2. We are now in the position to (conservatively) extend the
notion of well-moding.

Definition 4.17 (Well-moding with parametric types). A CLP(R) clau-
se with parametric modes:

p0(x0 : τ0 × µ0)← c, p1(x1 : τ1 × µ1), . . . , pn(xn : τn × µn)

is well-moded if there exist type substitutions ϑ1, . . . , ϑn such that the following type
assertions have no local type variable and are valid:

for i = 1..n, x0 : τ0,x1 : ϑ1(µ1), . . . ,xi−1 : ϑi−1(µi−1) ` c→ xi : ϑi(τi),
x0 : τ0,x1 : ϑ1(µ1), . . . ,xn : ϑn(µn) ` c→ x0 : µ0.

A CLP(R) program P is well-moded if every clause in it is well-moded.

The requirement that there is no local type variable formalizes the intuitions of
Example 4.15 that type variables in the modes of body atoms must be instances of
type variables occurring in the mode of the head of the clause.

Similarly, well-moding for a state (and then for a query) 〈 ← c, p1(x1 : τ1 ×
µ1), . . . , pn(xn : τn×µn)‖ c′〉 is extended by assuming type substitutions ϑ1, . . . , ϑn

such that the following type assertions have no local type variable and are valid:

for i = 1..n, x1 : ϑ1(µ1), . . . ,xi−1 : ϑi−1(µi−1) ` c ∧ c′→ xi : ϑi(τi).
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The basic property of persistency holds for the revised notions of well-moded pro-
grams and queries. Call pattern and computed answer characterizations readily
follow from persistency.

Theorem 4.18 (Persistency). Let P be a CLP(R) program and Q a query,
both well-moded with parametric modes. Every state selected in a left-derivation of
P and Q is well-moded.

The natural question with the revised definition of well-moding is: how to derive
the type substitutions ϑ? In some sense, a form of type inference is needed for
checking well-moding.

For an atomic query ← c, p1(x1 : τ × µ) to be well-moded, we have that ϑ1(τ )
must have no type variable, namely all types are in BT . Thus, the POLYInfer
procedure can be adopted to infer ϑ1. Since we assume no local to output type
variables, ϑ1(µ) is also in BT . As a consequence, the approach can be iterated for
non-atomic queries ← c, p1(x1 : τ × µ), . . . , p(xn : τ × µ) for n = 2 . . . n.

For a single program clause , however, we cannot resort to an inference procedure
for BT , since type assertions are in the PT type system. As discussed in Section 3.6,
a complete inference procedure does not exist if we restrict to (non-piecewise) linear
expressions. Therefore, either the type substitutions ϑ are provided by the user (as
a further input in addition to modes) in a computer-assisted proof, or an inference
procedure in an extended syntax must be devised.

Finally, for a program, we have simply to show the proof obligations of each
program clause in isolation, since the type substitutions ϑ are local to each clause.

5. EXPERIMENTAL RESULTS

5.1 The clpt system

Proof obligations of well-moding consist of repeatedly calling a decision procedure
for checking validity of type assertions syntactically built from the clauses of the
program under consideration. Checking well-moding is then a representative test-
bed for testing the efficiency in practice of the procedures designed in the paper.

We have implemented, in standard C++, the checking procedure for well-moding,
including the extension to CLP(R) with terms, and the following decision and in-
ference procedures: Check(χ), LPInfer, IEInfer, POLYInfer, ParCheck.
Validity of a type assertion d1 ` c→ d2 is checked on the basis of the type system
d1 and d2 are defined in: by Check(IEInfer) for BT ! ; by Check(POLYInfer)
for BT ; and by the ParCheck procedure for PT . For non-valid type assertions,
the POLYInfer procedure is called to provide the most general type that can
be inferred for variables in d2. The implementation relies on the polylib li-
brary [Loechner 2010] for the calculation of the Minkowski’s form of (parameter-
ized) polyhedra. The overall system, called clpt, is available as open source from
http://www.di.unipi.it/∼ruggieri/software.
5.2 Testbeds and Experiments

Tables I-IV report the execution times over several testbeds of programs. Tests
were run on a PC Xeon 2.8GHz with Linux 2.6.17. In brief, those results provide
us with confidence on the efficiency of the proposed approach in practice. More in
depth, let us consider the various testbeds.
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program C A mode of the main predicates time

ack 3 6 ack(?× 2, 2× 2, ?× 2) 0.0008

ack 3 6 ack(?×!, !×!, ?×!) 0.0010

ack 3 6 ack(?×!, 22 × 22, ?× 22) 0.0025

ack 3 6 ack(?×!, 2b × 2b, ?× 2b) 0.0030

fib 2 4 fib(!×!, ?×!) 0.0007

fib 2 4 fib(?× 21, ?×!) 0.0019

mc91 2 4 mc(u × 2, ?× 2) 0.0005

mc91 2 4 mc(!×!, ?×!) 0.0005

mortgage 2 3 mortgage(?× 2,u×!, 2× 2, 2× 2) 0.0007

mortgage 2 3 mortgage(!×!,u×!, !×!, ?×!) 0.0007

mortgage 2 4 mortgage(!×!,u×!, !×!, !×!, ?×!) mult(!×!, !×!, ?×!) 0.0009

schedule 10 21 schedule(2× 2, ?× u, ?× t) 0.0020
into(2× 2, 2× 2, ?× u, ?× t)

schedule 10 21 schedule(2b × 2b, ?× u, ?× t) 0.0080
into(2b × 2b, 2b × 2b, ?× u, ?× t)

send+more 4 9 solve(?× 2, ?× 2, ?× 2, ?× 2, ?× 2, ?× 2, 0.0633
=money ?× 2, ?× 2)

send+more 4 9 solve(?× 21, ?× 29, ?× 29, ?× 29, ?×!, ?× 29, 0.4846
=money ?× 29, ?× 29)

send+more 4 9 solve(2b × 2b, ?× 29, ?× 29, ?× 29, ?×!, ?× 29, 1.1526
=money ?× 29, ?× 29)

tak 3 8 tak(!×!, !×!, !×!, ?×!) 0.0010

Table I. The folk testbed. Elapsed time in seconds, C = no. of clauses, A = no. of atoms.

program C A mode of the main predicates time

listsum 2 3 listsum(2× 2, ?× 2) 0.0005

listsumpos 2 3 listsumpos(?× 2, u × 2) 0.0005

nqueens 13 25 nqueens( !×!, ?×!) 0.0016

plate 6 11 gp192( ?× t) 0.0024

quicksort 7 14 quicksort(!×!, ?×!) 0.0010

quicksort 7 14 quicksort(21 × 21, ?× 21) 0.0015

quicksort 7 14 quicksort(2b × 2b, ?× 2b) 0.0017

sequence 15 32 sequence problem( ?×! ) 0.0017

tree layout 35 82 gp207( ?×!, ?× t, ?× ?) 0.0053

Table II. The term testbed. Elapsed time in seconds, C = no. of clauses, A = no. of atoms.

The folk testbed. This testbed consists of small-size programs with linear con-
straints only, from the CLP(R) folklore. For a same program, we considered dif-
ferent modes of usage, as done for the MORTGAGE example throughout the paper.
Also, we consider different type systems for specifying modes. For instance, the
ack program is tested for modes whose types belong to BT2, BT !, BT , and PT .
Notice how the execution times in Table I increase with the expressiveness of the
type system and, a fortiori, with the complexity of the checking procedure adopted.
Running times are very low on average. The send+more=money program is the most
demanding one, due to the presence of a worst-case constraint in it (see later on
the worst testbed).

The term testbed. It includes programs mixing linear constraints and terms,
mainly from CLP textbooks [Marriott and Stuckey 1998]. As a special case, when
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program C A mode of the main predicates time

assoc 13 23 assoc to list( !×!, ?× t) 0.0039

credit 33 63 credit( !×!, ?×!) 0.0094

sequence 5 18 q(?×!) 0.0041

ttt 36 75 play(?×!) 0.0136

Ackermann 7 14 all arguments moded as !×! 0.0015

CaffeineMark 4944 9888 all arguments moded as !×! 3.1226

JLex 850 1700 all arguments moded as !×! 0.5400

Kitten 2320 4640 all arguments moded as !×! 0.6115

NQueens 290 580 all arguments moded as !×! 0.0970

RayTracer 75 150 all arguments moded as !×! 0.0300

Table III. The mlsize testbed. Elapsed time in seconds, C = no. of clauses, A = no. of atoms.

program C A mode of the main predicates time

worst 10 1 1 worst(?× 2) 0.07

worst 11 1 1 worst(?× 2) 0.32

worst 12 1 1 worst(?× 2) 1.23

worst 13 1 1 worst(?× 2) 7.00

worst 14 1 1 worst(?× 2) 33.50

worst 15 1 1 worst(?× 2) 135.52

Table IV. The worst testbed. Elapsed time in seconds, C = no. of clauses, A = no. of atoms.

clauses contain no constraint, pure Prolog programs belong to this testbed. Table II
shows very low execution times, better than in the folk testbed. In fact, we observe
that a variable x representing a term (e.g., a list) does not typically occur in a
clause constraint, hence proving validity of a type assertion d ` c→ x : τ reduces
to checking d ` true→ x : τ which, by Lemma 2.11, reduces to checking whether
τ = ?, or x : τ belongs to nf (d).

The mlsize testbed. This set of medium-to-large size programs is automatically
generated from Prolog and Java programs. Prolog programs are transformed into
CLP(R) programs by applying the term-size or the list-size norm to predicate
arguments, a basic abstract interpretation technique used by some termination
analysers [Lagoon et al. 2003; Mesnard and Ruggieri 2003]. Java bytecode programs
are transformed into CLP(R) programs by applying the Julia+BinTerm system
[Spoto et al. 2010]. This analyzer combines information from sharing, cyclicity,
and path-length analysis to generate binary CLP programs, the termination of
which ensures termination of the original Java programs.

The execution times reported in Table III show that the clpt system scales up to
large-size programs. This is theoretically justified by noting that proof obligations
of well-moding consider each clause in isolation.

The worst testbed. This testbed consists of programs worst n with only one
rule of the form worst(y)← cwn, y = 1, where cwn is the worst-case constraint
from Example 3.54 yielding an exponential number of vertices in n, even for non-
parameterized polyhedra. Such an exponential grow is reflected by the execution
times shown in Table IV. Notice that, due to the mode worst(?×2), the clpt sys-
tem actually adopts the Check(LPInfer) procedure for programs in this testbed.
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time

program C A modes T2 ratio

ack 3 6 ack(?× 2, 2× 2, ?× 2) 0.0049 6.33

listsum 2 3 listsum(2× 2, ?× 2) 0.0027 6.13

mc91 2 4 mc(u × 2, ?× 2) 0.0028 5.18

nqueens 13 25 nqueens( 2× 2, ?× 2) 0.0089 5.94

schedule 10 21 schedule(2× 2, ?× u, ?× t) 0.0139 6.95
into(2× 2, 2× 2, ?× u, ?× t)

send+more 4 9 solve(?× 2, ?× 2, ?× 2, ?× 2, 0.0102 0.16
=money ?× 2, ?× 2, ?× 2, ?× 2)

tree layout 35 82 gp207( ?× 2, ?× t, ?× ?) 0.0305 5.75

worst 13 1 1 worst(?× 2) 0.0020 0.00028

worst 14 1 1 worst(?× 2) 0.0021 0.00007

Ackermann 7 14 all arguments moded as 2× 2 0.0115 7.67

CaffeineMark 4944 9888 all arguments moded as 2× 2 19.013 6.45

JLex 850 1700 all arguments moded as 2× 2 3.088 6.01

Kitten 2320 4640 all arguments moded as 2× 2 4.241 7.30

NQueens 290 580 all arguments moded as 2× 2 0.632 6.87

RayTracer 75 150 all arguments moded as 2× 2 0.172 6.02

Table V. Elapsed times for the Check(LP2Infer) procedure, and ratio over Check(LPInfer).
Elapsed time in seconds, C = no. of clauses, A = no. of atoms. T2 = time of Check(LP2Infer),
ratio = T2 /(time of Check(LPInfer)).

5.3 Polyhedra-based vs Simplex-based Implementations

We are interested in comparing performances of the polyhedra-based implemen-
tation of the checking procedures with a Simplex-based one. This can be done
for the BT2 type system by comparing the Check(LPInfer) procedure (using
the Minkowski’s form of polyhedra) with an implementation using a Simplex-based
linear programming solver, which we call Check(LP2Infer).

We have implemented the Check(LP2Infer) procedure as part of the clpt
system by relying on the lpsolve library [Berkelaar et al. 2010]. Table V reports
the execution times for some programs from the previously introduced testbeds
moded with types in BT2. Apart from the worst-case scenario (we recall that
send+more=money contains a worst case constraint), on average the polyhedra-
based approach is 5 to 7 times faster than a Simplex-based one.

Although the results may be biased by (in)efficiencies of the adopted libraries, we
observe that, on average, the size of the constraints appearing in a program clause
is quite small, as per number of variables and number of inequalities. Moreover, a
same constraint is involved in n+1 type assertions, where n is the number of atoms
in a clause body. Therefore, an approach computing the set of (parameterized)
vertices once and for all the n + 1 type assertions can reasonably outperform a
Simplex-based one requiring a relatively large setup time for each of the n+1 type
assertions. Finally, a polyhedra-based implementation shares some computations5

with the Check(POLYInfer) and ParCheck procedures. A polyhedra-based

5Since the double description method, adopted to compute the Minkowski’s form of (parameter-
ized) polyhedra, is incremental, the Check(POLYInfer) and ParCheck procedures benefit from
the availability of the Minkowski’s form of Acv ≤ bc computed by Check(LPInfer).
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implementation of Check(LPInfer) can then speed up those procedures, which
do not have a linear programming equivalent.

6. RELATED WORK

A class of formulas, called parametric queries, is investigated in [Huynh et al. 1991].
It includes formulas ∃a∀v c→ x ∼ a, where ∼ ∈ {≤,=,≥}, or, with our no-
tation, type assertions of the form ` c→ x : τ with τ ∈ BT2. The approach
switches from the problem of checking max{cT x | Acv ≤ bc} ≤ a to its dual form
max{0 | yT Ac = c, a = yT bc + q,y ≥ 0, q ≥ 0} = 0, namely on checking feasibility
of yT Ac = c, a = yT bc + q,y ≥ 0, q ≥ 0. This requires to solve a distinct linear
programming problem for each variable to be typed. By switching to the homoge-
neous problem, our approach allows for concentrating on maximizing several linear
functions on a single polyhedron, for which we need to extract its Minkowski’s form
only once. More importantly, as soon as general type assertions d1 ` c→ d2 are
considered, switching to the dual form yields a non-linear problem.

The problem of maximizing a linear function over a parameterized system of
linear inequalities is addressed by (multi)parameterized linear programming. The
solution of the problem can be expressed as a piecewise linear function of the
parameters [Gal and Nedoma 1972; Gal 1995], or as the maximum of a finite set of
linear functions of the parameters [Borrelli et al. 2003; Keerthi and Sridharan 1990;
Schechter 1987]. Therefore, an approach alternative to the Check(POLYInfer)
procedure would consist of computing (for each variable to be typed) the max
and min functions of a parameterized linear programming problem and then of
comparing the resulting piecewise linear functions on each pair of breaks they are
defined on. It is worth mentioning that, even for a single parameter, the number
of breaks can be exponential [Murty 1983].

Definiteness analysis for CLP(R) has been investigated in several works [Baker
and Søndegaard 1993; Codish et al. 2001; Garcia de la Banda et al. 1996; Howe and
King 2000], and it is used as a basic tool in CLP(R) compiler optimizations [Kelly
et al. 1998]. Here we have extended the concept from definite values, namely the !
type, to ranges, namely the 2r type. The cited papers adopt abstract interpretation
techniques to infer boolean expressions relating definiteness of predicate arguments.
E.g., an inferred p(x, y) = x→ y states that if x is definite when p(x, y) is called
then y is definite when it is completely resolved. Compared to the notion of well-
moding, inference does not need modes to be specified. However, the mentioned
approaches restrict to consider equality constraints only. Also, it is worth noting
that groundness inference for logic programs is shown to be exponential in the
worst case [Genaim et al. 2001]. Finally, we include in this stream of research also
the work [Hanus 1995] which adopts abstract interpretation to detect non-linear
constraints that become linear at run-time.

A survey of applications of polyhedra and their Minkowski’s form to the analysis
and verification of hardware and software systems is reported in [Bagnara et al.
2009]. The definition of the Minkowski’s form has been extended in [Bagnara
et al. 2005] to explicitly take into account strict inequalities. Finally, we refer the
reader to [Bagnara et al. 2008] for an experimental comparison of several libraries,
including polylib, for reasoning about polyhedra.
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7. CONCLUSIONS

We have introduced a type system for linear constraints over the reals that is able
to reason about definiteness, upper bounds, lower bounds, range width (or approx-
imatively known values) of variables. The problems of inferring and checking va-
lidity of type assertions have been investigated and solved by proposing specialized
procedures of increasing complexity and expressiveness. Extensions to generalized
constraints and parametric types are also presented.

As an application area, types are used for annotating (moding) CLP(R) pro-
grams, while type assertions represent the basic tool for extending the notion of
well-moding from logic programming to CLP(R). The extension is conservative,
since it can reason on programs mixing linear constraints and logic terms.

We have implemented in standard C++ all the type assertion checking and infer-
ence procedures, and the well-moding checking procedure. The system developed,
called clpt, is released as open source. We have conducted an experimental evalu-
ation of clpt over several testbeds of programs. The results show the efficiency of
the proposed approach in practice.
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A. PROOFS

A.1 Section 2.1

The proofs in this section follow a proof-theoretic approach based on first order
predicate calculus. We denote by φ[t/x] the substitution of free occurrences of the
variable x with the term t within the formula φ.

To keep the notation simple, we will exploit the fact that, since the υ() function
assumes fresh variables, the quantification ∃υ(d2)\υ(d1) in (1) from Definition 2.4
is equivalent to ∃υ(d2) as far as the type system BT is considered. When writing
instances of (1), v will denote vars(c) ∪ vars(d1) ∪ vars(d2) where c is the con-
straint and d1,d2 are the type declarations involved.

Lemma 2.8.

Proof. Assume that d1 ` c→ d2 is valid, i.e. ∀υ(d1) ∃υ(d2) ∀v. φ(d1) ∧ c →
φ(d2) holds. The result follows from the parts (a), (b) and (c) below.

(a). Since d′1 ≥t d1 implies φ(d′1)→ φ(d1) (modulo renaming of parameters),
we have that φ(d′1) ∧ c→ φ(d1) ∧ c. By validity of d1 ` c→ d2, we conclude that
∀υ(d′1) ∃υ(d2) ∀v. φ(d′1) ∧ c→ φ(d2) is true, i.e. d′1 ` c→ d2 is valid.

(b). If R |= c′→ c holds, then ∀υ(d′1) ∃υ(d2) ∀v. φ(d′1) ∧ c→ φ(d2) implies
∀υ(d′1) ∃υ(d2) ∀v. φ(d′1) ∧ c′→ φ(d2), i.e. d′1 ` c′→ d2 is valid.

(c). Since d2 ≥t d′2 implies φ(d2)→ φ(d′2) (modulo renaming of parameters),
then ∀υ(d′1) ∃υ(d2) ∀v. φ(d′1) ∧ c′→ φ(d2) implies ∀υ(d′1) ∃υ(d′2) ∀v. φ(d′1) ∧ c′

→ φ(d′2), i.e. d′1 ` c′→ d′2 is valid.

We state a few intuitive properties of the ` relation.

Lemma A.1. Let d2 be x1 : τ1, . . . , xn : τn. The following are equivalent:

(i). d1 ` c→ d2 is valid;
(ii). d1 ` c→ nf (d2) is valid;
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(iii). nf (d1) ` c→ d2 is valid;
(iv). for i = 1..n, d1 ` c→ xi : τi is valid.

Proof. (i) is equivalent to (ii) and to (iii) since in order to obtain the normal
form, we have to go through a sequence of deletions (remove duplicate atd’s or
that assign lower types than existing ones) and/or mergings (merge x : u, x : t into
x : 2). Merging has no change on φ(). Removing duplicates or lower types yields an
equivalent formula. For instance, ∀a, b∃c, d∀xi.xi ≤ a ∧ xi = b→ xi ≤ c ∧ xi = d
holds iff ∀b∃d∀xi.xi = b→ xi = d. The if part follows by setting c = d. The only-if
part follows by setting a = b.

(i) is equivalent to (iv) since, by distributivity laws, we can rewrite ∀υ(d1) ∃υ(d2)
∀v.φ(d1) ∧ c→ φ(d2) into

∧
i=1..n ∀υ(d1)∃υ(xi : τi)∀v.φ(d1) ∧ c→ φ(xi : τi),

which is our conclusion.

When showing validity of d1 ` c→ d2, atd’s in d2 typing variables not in vars(c)
can be dealt with by means of the ≥t relation.

Lemma A.2. Let d1 ` c→ d2 be a type assertion with c satisfiable. Called
vc = vars(c), we have that: d1 ` c→ d2 is valid iff (i) d1|vc ` c→ d2|vc is valid;
and (ii) nf (d1) ≥t nf (d2|vars(d2)\vc

).

Proof. By Lemma A.1(i-iii), we can assume that d1 and d2 are in normal form.
Also, by Lemma A.1 (iv), we have to show that for every x : τ in d2: d1 ` c→ x : τ
is valid iff (i) d1|vc ` c→ x : τ is valid if x ∈ vars(c); and (ii) nf (d1) ≥t nf (x : τ)
if x 6∈ vars(c). The result is immediate for τ = ?, so we can assume τ 6= ? in the
following. Let us distinguish two cases.

(x ∈ vars(c)).
Let v = vars(d1) ∪ vars(c). By definition, d1 ` c→ x : τ is valid iff:

∀υ(d1)∃υ(x : τ)∀v.(φ(d1) ∧ c)→ φ(x : τ). (3)

Called d1|−vc = d1|vars(d1)\vc
, it can be rewritten as:

∀υ(d1)(∃υ(x : τ)∀vc.(φ(d1|vc) ∧ c)→ φ(x : τ)) ∨ (∀v \ vc.¬φ(d1|−vc)).

The formula ∀v \ vc.¬φ(d1|−vc) is false for any instance of υ(d1). A solution for
φ(d1|−vc) can be found by setting variables to the values of the parameters they
are constrained by. As an example, for a ≤ x ≤ a + 2, set x = a. Since d1 is in
normal form, this definition is well-formed. Therefore, (3) reduces to ∀υ(d1)∃υ(x :
τ)∀vc.(φ(d1|vc) ∧ c)→ φ(x : τ). Since universal quantification over υ(d1|−vc) has
no effect, this is equivalent to the desired conclusion: d1|vc ` c→ x : τ is valid.

(x 6∈ vars(c)).
Let v = vars(d1) ∪ vars(c) ∪ {x}. By definition, d1 ` c→ x : τ is valid iff (3)

holds. Called d1
x = d1|{x} and d1

−x = d1|v\{x}, (3) can be rewritten as:

∀υ(d)(∃υ(x : τ)∀x.φ(d1
x)→ φ(x : τ)) ∨ (∀v \ {x}.¬(φ(d1

−x) ∧ c)).

since vars(d1
x) ∪ vars(x : τ) ⊆ {x} and vars(d1

−x) ∪ vars(c) ⊆ v \ {x}. Moreover,
by factoring out universal quantification over υ(d), it can be further rewritten as:

(∀υ(d1
x)∃υ(x : τ)∀x.φ(d1

x)→ φ(x : τ)) ∨ (∀υ(d1
−x)∀v \ {x}.¬(φ(d1

−x) ∧ c)).
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The formula ∀υ(d1
−x)∀v \ {x}.¬(φ(d1

−x) ∧ c) is false, since c is satisfiable. In fact,
a solution of c can be extended to a solution of φ(d1

−x) ∧ c by setting the value of
a parameter in υ(d1

−x) to the value of the variable it constraints, e.g., by setting a
to the value of y if a ≤ y ≤ a + 2 is in φ(d1

−x). Since d1 is in normal form, this
definition is well-formed.

Therefore, (3) reduces ∀υ(d1
x)∃υ(x : τ)∀x.φ(d1

x)→ φ(x : τ), namely to validity
of d1

x ` true→ x : τ . We have then to show that d1
x ` true→ x : τ is valid iff

d1
x ≥t x : τ holds, where, since d1 is in normal form, d1

x is either empty or x : µ,
with µ 6= ?. If d1

x is empty, then neither d1
x ` true→ x : τ can be valid nor

d1
x ≥t x : τ holds, since τ 6= ?. If d1

x is x : µ, then d1
x ≥t x : τ iff µ ≥t τ which, by

definition of ≥t, holds iff x : µ ` true→ x : τ .

We are now in the position to show the other results of Section 2.1.

Lemma 2.11.

Proof. An immediate instance of Lemma A.2, by noting that vars(c) = ∅.
Lemma 2.12.

Proof. Let v = vars(c) ∪ vars(d1) ∪ vars(d2) ∪ vars(d3). Consider an in-
stance u1 of parameters in υ(d1). By validity of d1 ` c→ d2, there exists u2 in-
stance of parameters in υ(d2) such that ∀v.φ(d1)[υ(d1)/u1] ∧ c→ φ(d2)[υ(d2)/u2]
is true. This implies that:

∀v.φ(d1)[υ(d1)/u1] ∧ c→ φ(d1)[υ(d1)/u1] ∧ c ∧ φ(d2)[υ(d2)/u2]

is true. By validity of d1,d2 ` c→ d3, there exists u3 instance of parameters in
υ(d3) such that:

∀v.φ(d1)[υ(d1)/u1] ∧ φ(d2)[υ(d2)/u2] ∧ c→ φ(d3)[υ(d3)/u3]

is true. By transitivity of implication, we conclude that:

∀v.φ(d1)[υ(d1)/u1] ∧ c→ φ(d3)[υ(d3)/u3]

is true. By eliminating from the quantification over v those variables not in
vars(c) ∪ vars(d1) ∪ vars(d3) and by reintroducing existential quantification over
υ(d3) and universal quantification over υ(d1), we get the desired conclusion.

A.2 Section 2.2

Lemma 2.14.

Proof. (One solution) By Lemma A.1 (iv), we can restrict to the case d1 `
c→ x : τ , for x ∈ v. Let V = {r ∈ R | d1 ` c→ x : 2r is valid}.

If V = ∅, then by defining τ = lub{µ ∈ BT2 | d1 ` c→ x : µ is valid}, we have
that d2 = x : τ satisfies the requirements of Definition 2.13.

If V 6= ∅, we distinguish two cases based on r = inf V, the infinum of V .
Assume first that r ∈ V. Then d1 ` c→ x : τ is valid iff τ ∈ BT2 or τ = 2r with

r ∈ V iff 2r ≥t τ iff x : 2r ≥t x : τ . Thus, d2 = x : 2r satisfies the conclusion.
Assume now that r 6∈ V. Consider an instance u of parameters in υ(d1). Since

(φ(d1) ∧ c)[υ(d1)/u] is a linear constraint, the set of its solutions Su is a closed set
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.



App–4 · S. Ruggieri and F. Mesnard

(actually, it is a polyhedron). For some a, Su is included in the set of solutions of
φ(x : 2r) = a ≤ x ≤ a+ r for any r ∈ V, namely for any r > r. Since Su is a closed
set, it is included in the set of solutions of φ(x : 2r) = a ≤ x ≤ a + r as well. Since
this holds for any u, we conclude that d1 ` c→ x : 2r is valid, namely that r ∈ V,
which is absurd.

(Only one normal form) Assume there exist two type declarations d2 and d′2 sat-
isfying the inference problem. Since vars(d2)⊆ v and d2 ≥t d2, by the assumption
that d2 is a solution we have d1 ` c→ d2 is valid. This and the assumption that d′2
is a solution imply d′2 ≥t d2, from which we have nf (d′2) ≥t nf (d2). Analogously,
one shows nf (d2) ≥t nf (d′2). By definition of ≥t, we conclude that x : τ is in
nf (d2) iff it is in nf (d′2), i.e. nf (d2) = nf (d′2) modulo reordering of atd’s.

Lemma 2.17.

Proof. (Output “valid”) By soundness of χ, d1 ` c→ d is valid. By the mono-
tonicity Lemma 2.8 and the test d ≥t d2 at Step 1, d1 ` c→ d2 is valid as well.

(Output “not valid”) By completeness of χ for B, if d1 ` c→ d2 were valid, then
the test d ≥t d2 would have passed.

A.3 Section 3.2

Lemma 3.4.

Proof. The only-if part is trivial. Concerning the if part, we observe that, given
x ∈ Sol(Acv ≤ bc), we can choose parameter values that are exactly equal to the
value of variables they constraint in φ(d), e.g., when a ≤ x ≤ a + 2 is in φ(d) we
fix a to the value of x in x. Since parameters in υ(x : τ) are fresh variables, this
definition is well-formed.

We recall the following result, which relates the solutions of a linear programming
problem over Ax ≤ b to the ones over its homogeneous version Ax ≤ 0.

Theorem A.3. Let Sol(Ax ≤ b) be a non-empty polyhedron. We have:

max {cT x | Ax ≤ b} ∈ R iff max {cT x | Ax ≤ 0} = 0

Proof. See [Murty 1983, Corollary 3.1].

Lemma 3.5.

Proof. Consider the if part. By Lemma 3.4, there exists some u such that
Sol(P,u) 6= ∅. By hypothesis, we have max{cT v | v ∈ Sol(P,u)} ∈ R. By
Theorem A.3, we conclude max{cT v | v ∈ Sol(H)} = 0. Consider now the only-
if part. Let u be such that Sol(P,u) 6= ∅. By Theorem A.3, max{cT v | v ∈
Sol(H)} = 0 implies max{cT v | v ∈ Sol(P,u)} ∈ R.

Theorem 3.7 (LPInfer - soundness and completeness).

Proof. (Soundness) Working on n = nf (d1) at Step 0 is correct by Lemma A.1.
By the same lemma, each variable x in v can be considered separately.

Step 2 is justified by Lemma 3.4.
If x 6∈ vc = vars(c) then, by Lemma A.2, validity of n ` c→ x : τ is equivalent

to nf (n) = n ≥t x : τ . This holds iff either x : τ is in n, which justifies Step 3 (a),
or τ = ?, which justifies Step 3 (b).
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If x ∈ vc then validity of n ` c→ x : τ is equivalent to validity of n|vc ` c→ x : τ ,
i.e., by the definition of d at Step 0, to validity of d ` c→ x : τ . The outputs at
Step 4 are then justified by Lemma 3.5.

(Completeness) By Lemma A.1 we can consider each variable x in v separately.
Assume that d1 ` c→ x : τ is valid. If c is unsatisfiable, completeness follows by
Lemma 3.4 and Step 2. If x 6∈ vc, completeness follows since Step 3 in the soundness
part hold as if and only-if by Lemma A.2. If x ∈ vc and τ ∈ BT2, completeness
follows since Step 4 holds as if and only-if by Lemma 3.5.

Lemma 3.9.

Proof. If cT R ≤ 0 then cT Rλ ≤ 0 for every λ ≥ 0. Moreover, for λ = 0 we
have cT Rλ = 0. Summarizing, max{cT x | Ax ≤ 0} = max{cT Rλ | λ ≥ 0} = 0.

Conversely, if cT R 6≤ 0 then there exists a column Rj of R such that cT Rj > 0.
By choosing λ′i = 0 for i 6= j and λ′j = 1, for x = Rλ′ we get cT Rλ′ = cT Rj > 0.
Summarizing, max{cT x | Ax ≤ 0} = max{cT Rλ | λ ≥ 0} ≥ cT Rλ′ > 0.

A.4 Section 3.3

We recall that a polyhedron is a convex set, namely for x,y in Sol(Ax ≤ b) and
any 0 ≤ λ ≤ 1 the vector λx + (1− λ)y belongs to Sol(Ax ≤ b) as well. Geomet-
rically, this means that the segment from x to y is included in the polyhedron.

Theorem 3.12 [(Definiteness I)].

Proof. The if-part is immediate by Lemma 2.8 since d ≥t d|!.
Consider now the only-if part. If c is unsatisfiable, the conclusion readily follows.

Also, we can assume that d is in normal form. In fact, let d ` c→ x :! be valid. By
Lemma A.1, nf (d) ` c→ x :! is valid as well. If we could show the conclusion for
normal forms, we get that nf (d)|! ` c→ x :! is valid. Finally, since nf (d)|! = d|!,
we conclude that d|! ` c→ x :! is valid.

Let v = vars(c) ∪ vars(d) ∪ {x}, and let i such that vi = x. Since the order
of atd’s in d is irrelevant for validity, we can assume that d = d1,d|!, with d1

assigning no variable with the ! type. We reason by induction on the length of
d1. When d1 is the empty sequence, the conclusion is immediate since d = d|!.
Assume now that d1 = y : τ,d2, with τ 6= !, and let j such that vj = y. We will
show that d2,d|! ` c→ x :! is valid, and then, by inductive hypothesis, we have
that d|! ` c→ x :! is valid. Let us consider the possible cases for τ .

(τ = ?). This cannot occur, since d is in normal form.
(τ = u). Assume, by absurd, that d2,d|! ` c→ x :! is not valid. Called d =

d2,d|!, there exists an instance u of parameters a = υ(d) of the parameterized
system φ(d) ∧ c such that the instantiated system has at least two solution points
w and z which differ on the value of x, i.e., in formulas:

Acw ≤ bc,Adw ≤ Bdu and Acz ≤ bc,Adz ≤ Bdu,

and wi 6= zi. Let m = max{wj , zj}. We have: Acw ≤ bc,Adw ≤ Bdu,wj ≤ m
and Acz ≤ bc,Adz ≤ Bdu, zj ≤ m, where wj ≤ m and zj ≤ m correspond to the
instantiation of φ(y : u). Therefore, there exists a parameter instance (u m) in the
parameter space augmented by one dimension (needed since y is not typed in d as
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d is in normal form) such that φ(d) ∧ c admits two solutions with distinct values
for x. Summarizing, d ` c→ x :! is not valid, contrarily to the hypothesis.

(τ = t). Analogous to τ = u, but considering m = min{wj , zj}.
(τ = 2). Analogous to τ = u, but now consider both an upper bound m1 =

max{wj , zj} and a lower bound m2 = min{wj , zj}.
(τ = 2s, with s > 0). Analogous to τ = 2, under the assumption that abs(wj −

zj) ≤ s. Let us show that such an assumption holds. Let w and z be any two
solutions such that wi 6= zi. If abs(wj − zj) ≤ s, we are done. Otherwise, since
polyhedra are convex sets, z = λw+(1−λ)z is also a solution for every 0 ≤ λ ≤ 1.
In particular, for λ0 = 1− s/abs(wj − zj), we have:

abs(wj − zj) = abs((1− λ0)(wj − zj)) = (1− λ0)abs(wj − zj) = s.

Moreover, s > 0 implies λ0 < 1, and then zi = λ0wi + (1 − λ0)zi 6= wi, since
wi 6= zi. Summarizing, the assumptions that w and z are two solutions with
wi 6= zi and abs(wj − zj) ≤ s are satisfied.

Lemma 3.14

Proof. Since φ(d|!) is of the form x = a, the overall system φ(d|!) ∧ c is a linear
system of equalities x = a,Acv = bc. By Gauss-Jordan elimination of variables in
v \ x, the system can be transformed into the equivalent following form:

x = a, Iw = b′ + A′z + B′x,0 = b′′ + B′′x, (4)

where I is a diagonal matrix, w and z are a partition of variables in v \ x with z
free to assume any value, and 0 = b′′ + B′′x is the condition of satisfiability of the
system (4). If we show the conclusion for (4), then it holds for the system:

Iw = A′z + B′x,0 = B′′x,

since the proof obligations do not involve a, b′ nor b′′.
(Only-if part). Assume d|! ` c→ x :! valid. If x is in x, we are done. x cannot be

in z otherwise it would be a variable free to assume any value, fixed any u instance
of a such that the system (4) is satisfiable. Finally, let x be wi, for some i. Then
x = b′i + row(A′, i)z + row(B′, i)x is in (4). If rT = row(A′, i) = 0, we are done.
Otherwise, assuming rj 6= 0 for some j, we can fix z = 0 except for zj which is free
to assume any value. This results in x = b′i + rjzj + row(B′, i)x, which leads to
infinitely many distinct solutions for x.

(If-part). For any u instance of a such that the system (4) is satisfiable, every
variable in x trivially assumes a single value. This property extends to variables
wi for which row(A′, i) = 0, since wi is defined as:

wi = b′i + row(A′, i)z + row(B′, i)x

and x = u.

A linear system A=x = b=,A+x ≤ b+ as in Theorem 3.16 has a solution x0 for
which A+x0 < b+. x0 is called an inner point.

Lemma A.4. Assume that Sol(Ax ≤ b) 6= ∅, and let A=x = b=,A+x ≤ b+

as in Theorem 3.16. There exists x0 ∈ Sol(Ax ≤ b) such that A+x0 < b+.
Moreover, for every y0 such that A=y0 = b= there exists 0 < λ ≤ 1 such that for
every 0 < λ0 ≤ λ, z0 = λ0y0 + (1− λ0)x0 is in Sol(Ax ≤ b).
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Proof. Assume that A+x ≤ b+ consists of cT
i x ≤ bi for i = 1, . . . , n. Let

x1, . . . ,xn ∈ Sol(Ax ≤ b) such that cT
i xi < bi for i = 1 . . . n. Let x0 = (x1 + . . . +

xn)/n. We calculate A=x0 = (A=x1+. . .+A=xn)/n = (nb=)/n = b=. Moreover,
for i = 1 . . . n we calculate cT

i x0 = (cT
i x1+. . .+cT

i xn)/n ≤ (cT
i xi+(n−1)bi)/n < bi

since cT
i xi < bi and cT

i xj ≤ bi for j 6= i.
Consider now the second part of the lemma. First, for any 0 ≤ λ ≤ 1, we have

A=z0 = λA=y0 + (1− λ)A=x0 = λb= + (1− λ)b= = b=. Let now fix:

λ = min({1} ∪ {(bi − cT
i x0)/(cT

i y0 − cT
i x0) | i = 1 . . . n, cT

i y0 > cT
i x0}).

We have λ > 0 since cT
i x0 < bi for i = 1..n. Let us now calculate, for i = 1..n:

—if cT
i y0 ≤ cT

i x0, then cT
i z0 = λcT

i y0 + (1 − λ)cT
i x0 ≤ λcT

i x0 + (1 − λ)cT
i x0 =

cT
i x0 < bi;

—if cT
i y0 > cT

i x0, then cT
i z0 = λcT

i y0 + (1− λ)cT
i x0 = λ(cT

i y0 − cT
i x0) + cT

i x0 ≤
(bi − cT

i x0) + cT
i x0 = bi.

Summarizing, z0 ∈ Sol(A=x = b=,A+x ≤ b+) = Sol(Ax ≤ b). The same
conclusion readily follows for any 0 < λ0 ≤ λ.

Lemma 3.18

Proof. The if-part follows by the monotonicity Lemma 2.8, sinceR |= c→ ie(c).
We show the only-if part by contraposition. Let Acv ≤ bc be the geometric repre-
sentation of c and A=v ≤ b= be the one of ie(c), where v = vars(c)∪vars(d|!)∪{x}.
Also, let i such that vi = x. Called x = vars(d|!), φ(d|!) is of the form x = a.

Assume that d|! ` ie(c)→ x :! is not valid. Since c is satisfiable, this implies
that there exist u instance of a, and w0,w1 ∈ Sol(x = u,A=v ≤ b=) such that
w0

i 6= w1
i . Consider now the linear constraint c′ = x = a ∧ c in the space of

variables plus parameters. We have that ie(c′) is x = a,A=v ≤ b=. Also, (w0,u)
and (w1,u) belong to Sol(x = a,A=v ≤ b=).

Let (v0,u0) be the inner point as from Lemma A.4 applied to c′. Then there
exists 0 < λ ≤ 1 such that:

for every 0 < λ0 ≤ λ,

(
λ0w0 + (1− λ0)v0

λ0u + (1− λ0)u0

)
∈ Sol(c′).

Analogously, there exists 0 < λ′ ≤ 1 such that:

for every 0 < λ′0 ≤ λ′,
(

λ′0w
1 + (1− λ′0)v0

λ′0u + (1− λ′0)u0

)
∈ Sol(c′).

For λ1 = min(λ, λ′) > 0, we then have:
(

λ1w0 + (1− λ1)v0

λ1u + (1− λ1)u0

)
,

(
λ1w1 + (1− λ1)v0

λ1u + (1− λ1)u0

)
∈ Sol(c′).

Called u1 = λ1u+(1−λ1)u0, z0 = λ1w0+(1−λ1)v0 and z1 = λ1w1+(1−λ1)v0, we
have that u1 is an instance of parameters a such that z0, z1 ∈ Sol(x = u1,Acv ≤
bc). Moreover, z0

i 6= z1
i since w0

i 6= w1
i and λ1 > 0. Summarizing, d|! ` c→ x :! is

not valid.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.



App–8 · S. Ruggieri and F. Mesnard

Theorem 3.19 [(IEInfer - soundness and completeness)]

Proof. Working on d = d1|! at Step 0 is sound and complete by Theorem 3.12.
Also, by Lemma A.1, each variable x in v can be considered separately.

(Soundness) Step 2 is justified by Lemma 3.18. Step 5 is justified by Soundness
of LPInfer. Finally, Step 6 is justified by the if-part of Lemma 3.14.

(Completeness) Assume that d|! ` c→ x : τ is valid.
If x 6∈ vc = vars(c) then the output of LPInfer is complete, since validity of

d1 ` c→ x : τ is equivalent to check nf(d1) ≥t x : τ , which is dealt with at Step 3
of LPInfer, as shown in the proof of Theorem 3.7.

If τ 6= 2 then the output of LPInfer is complete again: for τ = ! there cannot
be any more general answer type; for 2 >t τ there cannot be any more general
answer, otherwise LPInfer would have answered τ = 2.

If x ∈ vc and τ = 2 the test at Step 6 (a,b) is complete by the only-if part of
Lemma 3.14.

We conclude by showing how to compute the set of implicit equalities starting
from the Minkowski’s form of a polyhedron.

Lemma 3.20

Proof. We have to show that: {cT x | x = Rλ + Vγ,λ,γ ≥ 0, Σγ = 1T γ =
1} = {b} iff cT R = 0 and cT V = b1T .

The if part easily follows since cT Rλ + cT Vγ = b1T γ = b. We show the only-if
part by contraposition.

If cT R 6= 0 then for some column Ri, cT Ri 6= 0. By fixing any γ = 0 except
for γ1 = 1, and λ = 0 except for the ith element, we have cT x = cT Rλ + cT Vγ =
cT Riλi + cT V1, which can assume infinitely many values, since λi can be any
non-negative number. Hence, cT x cannot constantly be equal to b.

If cT R = 0 and cT V 6= b1T , then for some column Vi, cT Vi 6= b. By fixing
γ = 0 except for γi = 1, we have cT x = cT Rλ + cT Vγ = cT Vi 6= b.

A.5 Section 3.4

Theorem 3.22 [(Definiteness II)].

Proof. The if-part is immediate by Lemma 2.8 since d ≥t d|B.
Consider the only-if part. If c is unsatisfiable, the conclusion readily follows.

Also, we can assume that d is in normal form. In fact, let d ` c→ x : 2r be valid.
By Lemma A.1, nf (d) ` c→ x : 2r is valid as well. If we could show the conclusion
for normal forms, we get that nf (d)|B ` c→ x : 2r is valid. Finally, due to the
structure of B, we observe that d|B ≥t nf (d)|B holds, and then, by Lemma 2.8
again, we conclude that d|B ` c→ x : 2r is valid.

Let v = vars(c) ∪ vars(d) ∪ {x}, and let j such that vi = x. Since the order
of atd’s in d is irrelevant for validity, we can assume that d = d1,d|B, with d1

assigning no variable to types in B. We reason by induction on the length of d1.
When d1 is the empty sequence, the conclusion is immediate since d = d|B. Assume
now that d1 = y : τ,d2, with τ 6∈ B, and let j such that vj = y. We will show
that d2,d|B ` c→ x : 2r is valid, and then, by inductive hypothesis, we have that
d|B ` c→ x : 2r is valid. Let us consider the possible cases for τ .
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(τ = ?). This cannot occur, since d is in normal form.
(τ = u). Assume, by absurd, that d2,d|B ` c→ x : 2r is not valid. Called

d = d2,d|B, there exists an instance u of parameters a = υ(d) of the parameterized
system φ(d) ∧ c such that the instantiated system has at least two solution points
w and z which differ on the value of x by at least r, i.e., in formulas:

Acw ≤ bc,Adw ≤ Bdu and Acz ≤ bc,Adz ≤ Bdu,

and abs(wi − zi) > r. Let m = max{wj , zj}. We have: Acw ≤ bc,Adw ≤
Bdu,wj ≤ m and Acz ≤ bc,Adz ≤ Bdu, zj ≤ m, where wj ≤ m and zj ≤ m
correspond to the instantiation of φ(y : u). Therefore, there exist a parameter
instance (u m) in the parameter space augmented by one dimension (needed since
y is not typed in d as d is in normal form) such that φ(d) ∧ c admits two solutions
w and z with abs(wi−zi) > r. Summarizing, d ` c→ x : 2r is not valid, contrarily
to the hypothesis.

(τ = t). Analogous to τ = u, but considering m = min{wj , zj}.
(τ = 2). Analogous to τ = u, but now consider both an upper bound m1 =

max{wj , zj} and a lower bound m2 = min{wj , zj}.
The next results characterizes the 'r relation in terms of the Minkowski’s form

of a polyhedron.

Lemma 3.27.

Proof. Notice that since Sol(Ax ≤ b) 6= ∅, its generating and vertex matrices
R and V exist. Let us set c = c1− c2 and α = α1−α2. It is immediate to observe
that cT

1 x + α1 'r cT
2 x + α2 iff cT x + α 'r 0.

Consider the if-part. For every x0 such that Ax0 ≤ b holds, there exists λ,µ ≥ 0
with Σµ = 1 such that x0 = Rλ+Vµ. We calculate: abs(cT x0+α) = abs(cT Rλ+
cT Vµ + α) = abs(cT Vµ + α1T µ) = abs((cT V + α1T )µ), since cT R = 0 and
1T µ = Σµ = 1. Since 1 ≥ µ, we have abs(cT x0 + α) = abs((cT V + α1T )µ) ≤
‖cT V + α1T ‖∞ = r. Moreover, by fixing µ = 0 except for µi = 1, where i is such
that abs(cT Vi + α1T

i ) = r, we obtain an x0 = Vµ such that abs(cT x0 + α) =
abs((cT V + α1T )µ) = abs(cT Vi + α1T

i ) = r.
Consider now the only-if part. Let Vk be any column of V. Hence, Vk ∈

Sol(Ax ≤ b) and then abs(cT Vk + α) ≤ r.
If cT R 6= 0 then there exists a column Rj of R such that cT Rj 6= 0. By

choosing λi = 0 for i 6= j, µi = 0 for i 6= k and µk = 1, for x0 = Rλ + Vµ we get
cT x0 + α = cT Rλ + cT Vµ + α = cT Rjλj + cT Vk + α 6'r 0, since cT Rj 6= 0 and
λj can be any positive real number.

If cT R = 0 and ‖cT V + α1T ‖∞ 6= r, we distinguish two cases. If for some
i, abs(cT Vi + α1T

i ) > r, then cT x + α 6'r 0 over Ax ≤ b since every vertex
Vi is in Sol(Ax ≤ b). If for all i, abs(cT Vi + α1T

i ) < r, then there cannot
exist x0 ∈ Sol(Ax ≤ b) such that abs(cT x0 + α) = r. In fact, since cT R = 0,
such an x0 can be rewritten as x0 = Vµ for some µ ≥ 0 with Σµ = 1. Then,
abs(cT x0 + α) = abs(cT Vµ + α) ≤ max{abs(cT Vi + α1T

i )} < r.

The next result states that the range width of a linear function over the solutions
of a polytope (a polyhedron whose generating matrix is empty), can be computed
as the maximum range width between two vertices.
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Lemma A.5. Let α ≥ 0, and V be a matrix of k columns such that for 1 ≤ m <
n ≤ k, abs(cT Vm−cT Vn) ≤ α. Then for every µ′ ≥ 0,Σµ′ = 1, µ′′ ≥ 0,Σµ′′ = 1,
we have abs(cT V(µ′ − µ′′)) ≤ α.

Proof. Without any loss of generality, we can assume abs(cT V(µ′ − µ′′)) =
cT V(µ′ − µ′′) (otherwise, simply swap µ′ and µ′′).

When k = 1, we have µ′ = µ′′ = 1 and then abs(cT V(µ′ − µ′′)) = 0 ≤ α.
When k > 1, we reason by contraposition. Assume cT V(µ′ − µ′′) > α for

some µ′,µ′′. Let m be such that cT Vm is maximum, and n be such that cT Vn is
minimum. We have α < cT V(µ′ − µ′′) = cT Vµ′ − cT Vµ′′ ≤ cT Vm − cT Vn ≤
abs(cT Vm − cT Vn) = abs(cT Vn − cT Vm). This show our conclusion for some
m ≤ n. Moreover, we claim that m 6= n. Otherwise we have cT Vi = cT Vj for
every 1 ≤ i, j ≤ k, and then we can use any other index pair i, j such that i < j.

Lemma 3.28.

Proof. For a parameter instance u let us denote by Vu the set of (instances of
the) parameterized vertices whose domain includes u, namely: Vu = {vu(i) | i =
1..k,Ciu ≤ ci }. If Vu 6= ∅, let us denote by Vu a matrix whose columns are the
vectors in Vu.

(If-part). Notice that the hypotheses imply that r ≥ 0. We first show the for-all
statement. Let u be fixed. If Su = ∅, we are done. Otherwise, by Theorem 3.24,
Vu is not empty. Since cT R = 0, we calculate:

Su = {cT x | x = Rλ + Vuµ, λ ≥ 0,µ ≥ 0, Σµ = 1}
= {z | z = cT Vuµ,µ ≥ 0, Σµ = 1}.

Moreover, since u belongs to the domains of all the vertices in Vu, for every pair
vu(m),vu(n) of them Sol(Pm,n) 6= ∅. By hypothesis, we then have:

abs(cT vu(m)− cT vu(n)) ≤ r. (5)

For x, y ∈ Su, abs(x− y) can be rewritten as abs(cT Vu(µx − µy)), for some µx ≥
0, Σµx = 1,µy ≥ 0,Σµy = 1. By Lemma A.5, this and (5) imply abs(x− y) ≤ r.

Next, let us show the existential statement.
If r = 0 the conclusion holds by considering any u such that Su 6= ∅ (at least one

exists, since the parameterized polyhedron is assumed not to be empty). For any
x ∈ Su, we have abs(x− x) = 0.

If r > 0, by assumption there exists m,n be such that cT va(m) 'r cT va(n) over
Pm,n, with Sol(Pm,n) 6= ∅. By Definition 3.25, there exists u ∈ Sol(Pm,n) such
that abs(cT vu(m) − cT vu(n)) = r. The conclusion then follows by noting that
x = cT vu(m) and y = cT vu(n) belong to Su since vu(m) and vu(n) are in Vu.

(Only-If part). We show the contrapositive of the three conclusions.
First, if cT R 6= 0, consider any u in Sol(C1a ≤ c1). Notice that k ≥ 1 since the

parameterized polyhedron is assumed not to be empty, and Sol(C1a ≤ c1) 6= ∅ by
Theorem 3.24. We have:

Su = {cT x | x = Rλ + Vuµ, λ ≥ 0, µ ≥ 0,Σµ = 1}
= {z | z = cT Rλ + cT Vuµ, λ ≥ 0, µ ≥ 0, Σµ = 1}.
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Let Rj be a column of R such that cT Rj = α 6= 0. By fixing λi = 0 for i 6= j, we
get that cT Rλ = αλj . By fixing µ in any way such that µ ≥ 0, Σµ = 1, we also
have cT Vuµ = β, for some β. Summarizing, Su includes αλj +β for every λj ≥ 0.
Hence, abs(x− y) cannot be bounded by any r for every x, y ∈ Su.

Second, assume that there exist 1 ≤ m < n ≤ k such that Sol(Pm,n) 6= ∅ and for
every s ≤ r, cT va(m) 6's cT va(n) over Pm,n. This implies that there exists u in
Sol(Pm,n) such that abs(cT vu(m)− cT vu(n)) > r. By fixing µi = 0 for i 6= m and
µm = 1, we define x = Vuµ = vu(m). Analogously, by fixing µi = 0 for i 6= n and
µn = 1, we define y = Vuµ = vu(n). It turns out x = cT x, y = cT y belong to:

{cT x | x = Vuµ, µ ≥ 0,Σµ = 1} = {z | z = cT Vuµ, µ ≥ 0,Σµ = 1} ⊆ Su,

and abs(x− y) > r.
Third, we have to show that if r 6= r̂, where:

r̂ = max({0} ∪ {s | 1 ≤ m < n ≤ k, Sol(Pm,n) 6= ∅,
cT va(m) 's cT va(n) over Pm,n}),

then: (a) for some u, and some x, y ∈ Su, abs(x − y) > r; or (b) for every u, and
every x, y ∈ Su, abs(x−y) < r. Without any loss of generality, we can assume that
for 1 ≤ m < n ≤ k, Sol(Pm,n) = ∅ or cT va(m) 's cT va(n) over Pm,n for some
s ≤ r (otherwise, we can apply the previous part of the proof to obtain (a)). This
trivially implies r̂ ∈ R and r ≥ r̂. Therefore, we can assume r > r̂. We will show
(b) by absurd. Assume that (b) does not hold, namely there exist u and x, y ∈ Su,
abs(x− y) ≥ r > r̂. Since we can assume cT R = 0 (already shown), we calculate:

Su = {cT x | x = Rλ + Vuµ, λ ≥ 0,µ ≥ 0, Σµ = 1}
= {z | z = cT Vuµ,µ ≥ 0, Σµ = 1}.

Thus, abs(x − y) > r̂ can be rewritten as abs(cT Vu(µx − µy)) > r̂, for some
µx ≥ 0,Σµx = 1, µy ≥ 0, Σµy = 1. By Lemma A.5, there exist m′, n′ such that
abs(cT Vu

m′−cT Vu
n′) > r̂. For some m, the column Vu

m′ corresponds to an instance
of a parameterized vertex vu(m), i.e., Vu

m′ = vu(m). Analogously, for some n,
Vu

n′ = vu(n). Also, we can assume m < n since we are considering absolute values.
Therefore, we can conclude that there exist 1 ≤ m < n ≤ k such that Sol(Pm,n) 6=

∅, since u ∈ Sol(Pm,n), and such that abs(cT vu(m) − cT vu(n)) > r̂. This is
impossible by definition of r̂.

Theorem 3.30 [(POLYInfer - soundness and completeness)].

Proof. Working on n = nf (d1) at Step 0 is sound and complete by Lemma A.1;
while working on d = n|B is sound and complete by Theorem 3.22. Also, by
Lemma A.1, each variable x in v can be considered separately. Finally, we recall
that Lemma 3.28 provides necessary and sufficient conditions for computing the
minimum r such that d ` c→ x : 2r is valid.

(Soundness) Step 4 is justified by Soundness of LPInfer.
Step 5 is justified by the if-part of Lemma 3.28 instantiated by fixing cj = 0 for

j 6= i, and ci = 1, so that cT vc = x. Notice that, since r ≥ 0 by its definition, 2r

is a type (in BT ).
(Completeness) Assume that d ` c→ x : τ is valid.
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If x 6∈ vc = vars(c) then the output of LPInfer is complete, since validity of
d1 ` c→ x : τ is equivalent to check nf(d1) ≥t x : τ . This is dealt with at Step 3
of LPInfer, as shown in the proof of Theorem 3.7.

If τ 6= 2 then the output of LPInfer is complete again: for τ = ! there cannot
be any more general answer type; for 2 >t τ there cannot be any more general
answer, otherwise LPInfer would have answered τ = 2.

If x ∈ vc and τ = 2 the test at Step 5 (a,b) is complete by the only-if part of
Lemma 3.28.

A.6 Section 3.5

Next lemma states that if we are given a point x in an hyperplane and a point y
outside it, the segment from x to y lies outside the hyperplane, except for x.

Lemma A.6. Let cT x = α and cT y 6= α. For every 0 ≤ λ < 1, called z =
λx + (1− λ)y, we have cT z 6= α.

Proof. We have cT z > α iff λcT x+ (1− λ)cT y > α iff λα + (1− λ)cT y > α iff
(1 − λ)cT y > α(1 − λ) and finally, since λ < 1, iff cT y > α. The case of cT z < α
is analogous.

Let us provide a set oriented characterization of generalized constraints.

Lemma A.7. Let g = c ∧ ∧m
i=1 ei 6= αi be a generalized linear constraint. We

have:

Sol(g) =
m⋂

i=1

Sol(c) \ Sol(ei = αi).

Proof.

Sol(g) = Sol(
m∧

i=1

(c ∧ ei 6= αi)) =
m⋂

i=1

Sol(c ∧ ei 6= αi)

=
m⋂

i=1

Sol(c) ∩ Sol(ei 6= αi) =
m⋂

i=1

Sol(c) \ Sol(ei = αi).

The next result can be interpreted geometrically as follows. Given a point x in
the solution set of a generalized linear constraints c ∧ ∧m

i=1 ei 6= αi, and a point y
in the polyhedron Sol(c), the hyperplanes ei = αi intersect the segment from x to
y in finitely many points.

Lemma A.8. Let g = c ∧ ∧m
i=1 ei 6= αi be a generalized linear constraint. For

every x ∈ Sol(g) and y ∈ Sol(c) there exists 0 < λ < 1 such that, for every
0 < λ0 ≤ λ, λ0x + (1− λ0)y ∈ Sol(g).

Proof. The proof is by induction on m. For m = 0 the result is immediate for
any 0 < λ < 1 since Sol(g) = Sol(c) is a convex set. Consider the inductive step.

If for every 0 < λ0 < 1, λ0x + (1 − λ0)y ∈ Sol(g) then we are done with any
0 < λ < 1. Assume then some 0 < λ1 < 1 such that y1 = λ1x+(1−λ1)y 6∈ Sol(g).
Let J be the set of all j ∈ {1, . . . , m} such that y1 ∈ Sol(ej = αj). By Lemma A.7,
J 6= ∅. We observe that y 6∈ Sol(ej = αj) for every j ∈ J . Otherwise, since x is
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a linear combination of y and y1 (namely, x = y1/λ1 − (1 − λ1)/λ1y), it would
belong to some Sol(ej = αj) with j ∈ J . But this is impossible since x ∈ Sol(g)
implies, by Lemma A.7, x 6∈ Sol(ej = αj) for j = 1..m.

By Lemma A.6 applied to y1 and y, we have that for every 0 ≤ λ0 < 1 and
j ∈ J , z = λ0y1 + (1 − λ0)y 6∈ Sol(ej = αj), i.e., the segment from y1 to y does
not belong to Sol(ej = αj), except for y1.

By inductive hypothesis on g1 = c ∧ ∧
i∈{1,...,m}\J ei 6= αi, y1 (which is in

Sol(g1)) and y (which is in Sol(c)), there exists 0 < λ2 < 1 such that, for every
0 < λ0 ≤ λ2, z = λ0y1 + (1 − λ0)y ∈ Sol(g1). In addition, we have shown that
z 6∈ Sol(ej = αj), for j ∈ J . Therefore, by Lemma A.7, z ∈ Sol(g). The conclusion
now follows by obvserving that z can be rewritten as λ0x+(1−λ0)y for 0 < λ0 ≤ λ,
where λ = λ1λ2.

Since Sol(g) can be an open set, we write sup{cT x | x ∈ Sol(g)} to denote the
supremum, instead of max{cT x | x ∈ Sol(g)} to denote the maximum.

Lemma A.9. Let g = c ∧ ∧m
i=1 ei 6= αi be a satisfiable generalized linear con-

straint. We have: sup{cT x | x ∈ Sol(g)} ∈ R iff max{cT x | x ∈ Sol(c)} ∈ R.

Proof. The if part follows since ∅ ⊂ Sol(g)⊆ Sol(c). Consider now the only-if
part. Let α = sup{cT x | x ∈ Sol(g)} ∈ R. Since g is satisfiable, there exists x0 ∈
Sol(g), and α ≥ cT x0. Since Sol(g)⊆ Sol(c), we have that {cT x | x ∈ Sol(c)} 6= ∅.
We claim that max{cT x | x ∈ Sol(c)} ≤ α, which yields the conclusion. Assume,
by absurd, that there exists x1 ∈ Sol(c) such that cT x1 = β > α ≥ cT x0. By
Lemma A.8, there exists 0 < λ < 1 such that z = λx0 + (1 − λ)x1 ∈ Sol(g) for
every 0 < λ0 ≤ λ. For λ0 = min{λ, (β/2 − α/2)/(β − cT x0)}, we have: cT z =
λ0cT x0 + (1− λ0)cT x1 = λ0(cT x0 − β) + β ≥ −(β/2− α/2) + β = (β + α)/2 > α.
But this is impossible by definition of α.

Theorem 3.31.

Proof. The if-part is immediate: since R |= g→ c, by reasoning as in the proof
of Lemma 2.8, which does not rely on linearity of the underlying constraints, we
have the conclusion. Consider now the only-if part. The proof is by induction on
the length of d2. When it is empty, there is nothing to be shown. Assume now
d2 = x : τ,d3. By inductive hypothesis, we have d1 ` c→ d3. Thus we are left
with showing d1 ` c→ x : τ . Let us consider the possible values for type τ .

(x : ?) There is nothing to be shown.
(x : u) Since g is satisfiable, g ∧ φ(d1) is satisfiable as well in the space of

variables plus parameters. Let [x0|u0] ∈ Sol(g ∧ φ(d1)). Since d1 ` g→ x : u is
valid, sup{x | x ∈ Sol(g ∧ φ(d1) ∧ υ(d1) = u0)} ∈ R. By Lemma A.9, we have:

max{x | x ∈ Sol(c ∧ φ(d1) ∧ υ(d1) = u0)} ∈ R.

Since c contains no disequality, this can be rewritten in the space of variables as
max{x | x ∈ Sol(c ∧ φ(d1),u0)} ∈ R. We are now in the hypotheses of Theo-
rem A.3 to conclude that max{x | x ∈ Sol(H)} = 0, where H is the homogeneous
version of c ∧ φ(d1). By Lemma 3.5, we conclude that d1 ` c→ x : u.

(x : t) Same reasoning as in (x : u) but maximizing −x instead of x.
(x : 2) It reduces to the cases (x : u) and (x : t).
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(x : 2r) Since g is satisfiable, g ∧ φ(d1) is satisfiable as well in the space of
variables plus parameters. Let [x0|u0] ∈ Sol(g ∧ φ(d1)).

Consider now an instance u of parameters in υ(d1). In order to conclude d1 `
c→ x : 2r, we have to show that for every y, z ∈ {x | x ∈ Sol(c ∧ φ(d1),u)},
abs(y−z) ≤ r. By absurd, assume that, without any loss of generality, y−z > r for
some y, z. Then, there exist [y|u], [z|u] ∈ Sol(c ∧ φ(d1)) such that the x dimension
values of y and z are y and z respectively. By Lemma A.8, there exist 0 < λy and
0 < λz such that for every 0 < λy ≤ λy and 0 < λz ≤ λz:[

λyx0 + (1− λy)y
λyu0 + (1− λy)u

]
,

[
λzx0 + (1− λz)z
λzu0 + (1− λz)u

]
∈ Sol(g ∧ φ(d1)).

By choosing λ < min{λy, λz, 1− r/(y − z)}, and called:

y1 = λx0 + (1− λ)y, z1 = λx0 + (1− λ)z, u1 = λu0 + (1− λ)u,

we have: [y1|u1], [z1|u1] ∈ Sol(g ∧ φ(d1)). This implies that:

{x | x ∈ Sol(g ∧ φ(d1),u1)} ⊇ {y1, z1},
where, called x0 the value of the x dimension of x0, y1 = λx0 + (1 − λ)y and
z1 = λx0+(1−λ)z. We have that y1−z1 = (1−λ)(y−z) > r since λ < 1−r/(y−z).
But this is impossible.

A.7 Section 3.6

First, we introduce notation for denoting type variables occurring in an atd x : 2e,
and for denoting the primitive constraint e ≥ 0 which is part of φ(x : 2e).

Definition A.10. We define the set of type variables occurring in an atd as:
pvars(x : 2e) = vars(e) and pvars(x : τ) = ∅ for τ ∈ BT2.

Also, we define the constraint on parametric expressions in an atd as: Φ(x : 2e)
is e ≥ 0, and Φ(x : τ) is true for τ ∈ BT2.

The notions readily extend to type declarations by defining:

pvars(d1, . . . , dn) = ∪i=1..npvars(di) Φ(d1, . . . , dn) = ∧i=1..nΦ(di).

Let us show first two results dealing with local type variables.

Lemma 3.36.

Proof. Let us denote pv = pvars(d1). Called s a local type variable in e,
and l the remaining local type variables (possibly none), e can be written as e =
αs + cT

1 l + cT
2 pv + r, where α 6= 0 and r ∈ R. Validity of d1 ` c→ x : 2e consists

of showing the formula (1) in Definition 2.4, which can be rewritten as follows:

∀pv∀υ(d1) \ pv∃a, s, l ∀v.(φ(d1) ∧ c)→ (a ≤ x ≤ a + e ∧ e ≥ 0). (6)

If this is true, by defining b = a + e (all the variables in υ(d1) being fixed) the
following holds:

∀pv∀υ(d1) \ pv∃a, b ∀v.(φ(d1) ∧ c)→ (a ≤ x ≤ b),

namely d1 ` c→ x : 2 is valid. Conversely, if this is true, by defining l = 0, s =
(b− a− cT

2 pv − r)/α, we have that e = b− a and then (6) holds.
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Lemma 3.38.

Proof. Let us denote pv = pvars(d1). Validity of d1 ` c→ (d2,d3) consists of
showing the formula (1) in Definition 2.4, which can be rewritten as follows:

∀pv∀υ(d1) \ pv∃υ(d2,d3) \ pv∀v.(φ(d1) ∧ c)→ (φ(d2) ∧ φ(d3)).

No local type variable means that an existentially quantified variable in υ(d2,d3) \
pv appears either in φ(d2) or in φ(d3), but not in both. Therefore, the formula
above can be rewritten as:

∀pv∀υ(d1) \ pv (∃υ(d2) \ pv∀v.(φ(d1) ∧ c)→ φ(d2))
∧(∃υ(d3) \ pv∀v.(φ(d1) ∧ c)→ φ(d3)),

which reduces to validity of both d1 ` c→ d2 and d1 ` c→ d3.

Lemma 3.40.

Proof. The only-if part is trivial. Concerning the if part, consider any solution
(v0,a0) ∈ Sol(Adv ≤ Bda) 6= ∅. Let u0 be the restriction of a0 to variables in
pv = pvars(d). Let d′ be obtained by replacing every x : 2e in d by x : 2e[pv/u0].
Since e[pv/u0] ≥ 0 is in Adv0 ≤ Bda0, we have that e[pv/u0] reduces to a non-
negative real number. Thus, d′ is a type declaration in BT , and:

φ(d′) = φ(d)[pv/u0] υ(d′) = υ(d) \ pv,

modulo trivially true primitive constraints e[pv/u0] ≥ 0. Consider now the param-
eterized linear system P ′ = φ(d′) ∧ c. By Lemma 3.4, c satisfiable implies that
there exists u1 instance of parameters υ(d′) such that Sol(P ′,u1) 6= ∅. By observ-
ing that P ′ = P[pv/u0], we conclude that (u0,u1) is an instance of υ(d) such that
Sol(P, (u0,u1)) = Sol(P ′,u1) 6= ∅.

Type assertions in presence of parametric types can be instantiated by assigning
real number values u to type variables pv. The instantiation is a type assertions
in the type system BT if all instantiated type expressions e[pv/u] satisfy the re-
quirement e[pv/u] ≥ 0, namely if 2e[pv/u] ∈ BT . Next definition introduces such
instances for type assertions without local variables.

Definition A.11. Let d1 ` c→ d2 be such that pvars(d2) ⊆ pvars(d1).
A consistent instance of pv = pvars(d1) is any u ∈ R|pv| such that Φ(d1)[pv/u]∧

Φ(d2)[pv/u] is true.

The requirement pvars(d2) ⊆ pvars(d1) is equivalent to assume no local type
variable in the type assertion. We are now in the position to restate validity of type
assertions with parametric types in terms of validity of type assertions in the BT
type system and a further condition. Condition (ii) in the next lemma is needed to
cover contrived type assertions, such as the one highlighted in Example 3.50, where
for the type assertion x : 2s, y : 2r ` z = 0→ z : 2s−r: all consistent instances
lead to valid type assertions, i.e., (i) holds; but the type assertion is not valid due
to inconsistent instances such as s = 0, r = 1.

Lemma A.12. Let d1 ` c→ d2 be a type assertion such that pvars(d2) ⊆
pvars(d1). d1 ` c→ d2 is valid iff called pv = pvars(d1):

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.



App–16 · S. Ruggieri and F. Mesnard

(i). for every u consistent instance of pv we have that d1[pv/u] ` c→ d2[pv/u]
is valid in the BT type system;

(ii). and, Sol(c) = ∅ or ∀pv.Φ(d1) → Φ(d2) is valid in the domain of the reals.

Proof. Validity of d1 ` c→ d2 consists of showing validity of the formula (1)
in Definition 2.4, which can be rewritten as:

∀pv∀υ(d1) \ pv∃υ(d2) \ pv∀v.(φ(d1) ∧ c)→ φ(d2).

This holds iff for every u ∈ R|pv|, the following holds:

∀υ(d1) \ pv∃υ(d2) \ pv∀v.(φ(d1)[pv/u] ∧ c)→ φ(d2)[pv/u]. (7)

(If-part). We show that (7) holds. When u is a consistent instance, this follows
from (i), since (7) is equivalent to the Definition 2.4 (1) formula of d1[pv/u] `
c→ d2[pv/u], except for the fact that the Φ(d1) and Φ(d2) constraints appear in
the formula. However, since u is a consistent instance, they are trivially satisfied.

Assume now that u is not a consistent instance.
If Sol(c) = ∅ then the conclusion readily follows. Also, it follows if Φ(d1)[pv/u]

is false, since it is a conjunct of φ(d1)[pv/u]. Finally, when Φ(d1)[pv/u] is true, the
hypothesis ∀pv.Φ(d1) → Φ(d2) implies that Φ(d2)[pv/u] is true as well. However,
this and Φ(d1)[pv/u] contradict the assumption that u is not a consistent instance.

(Only-if part). (i) follows from (7), which is equivalent to the Definition 2.4 (1)
formula of d1[pv/u] ` c→ d2[pv/u], except for the fact that the Φ(d1) and Φ(d2)
constraints appear in the formula. However, since u is a consistent instance, we
have that they reduce to the true constraint.

(ii) If Sol(c) = ∅ then then (ii) readily follows. Assume then Sol(c) 6= ∅ and
that for some u0 instance of pv we have that Φ(d1)[pv/u0] → Φ(d2)[pv/u0] is
false, namely Φ(d1)[pv/u0] ∧ ¬Φ(d2)[pv/u0] is true. Given v0 ∈ Sol(c), it can be
extended to a solution of φ(d1)[pv/u0]∧ c by setting parameters in a = υ(d1) \pv
to the value of variables in v0 they constraint. As an example, for φ(x : 2s) = a ≤
x ≤ a + s ∧ s ≥ 0 we choose for a the value of x in v0 (this choice also satisfies
x ≤ a + s since s ≥ 0 is assumed by Φ(d1)[pv/u0]). By (7), φ(d1)[pv/u0] ∧ c
implies φ(d2)[pv/u0], and then Φ(d2)[pv/u0] which is part of it. This is absurd
since ¬Φ(d2)[pv/u0] was assumed.

By using the characterization of validity of type assertions with parametric types
in terms of validity of type assertions in BT , we can extend to parametric types
results that hold in BT .

Theorem 3.43 [(Definiteness III)].

Proof. In the following we can ignore condition (ii) of Lemma A.12 since either
it holds for both d ` c→ x : 2e and d|B ` c→ x : 2e or for none.

By Lemma A.12, d ` c→ x : 2e is valid iff for every u consistent instance of
pv = pvars(d1), the type assertion d[pv/u] ` c→ x : 2e[pv/u] is valid. By
Theorem 3.22, called B′ = BT \ BT2, this holds iff d[pv/u]|B′ ` c→ x : 2e[pv/u]
is valid. Since the restriction to B′ simply removes atd’s with types in BT2, we
observe that d[pv/u]|B′ = d|B[pv/u]. Summarizing, d ` c→ x : 2e is valid iff for
every u consistent instance of pv, the type assertion d|B[pv/u] ` c→ x : 2e[pv/u]
is valid. By Lemma A.12, this is equivalent to validity of d|B ` c→ x : 2e.
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Lemma 3.46.

Proof. Notice that since Sol(Ax ≤ b) 6= ∅, its generating and vertex matrices
R and V exist. Let us set c = c1− c2 and α = α1−α2. It is immediate to observe
that cT

1 x + α1 ¹e cT
2 x + α2 iff cT x + α ¹e 0.

(If-part). For every x0 such that Ax0 ≤ b holds, there exists λ, µ ≥ 0 with
Σµ = 1T µ = 1 such that x0 = Rλ + Vµ. We distinguish two cases.

First, consider abs(cT x0 + α) = cT x0 + α. We have cT x0 + α = cT Rλ +
cT Vµ + 1T µα ≤ cT

e Rλ + cT
e Vµ + 1T µr = cT

e x0 + r by exploiting the hypotheses
(c− ce)T R ≤ 0 and (c− ce)T V + (α− r)1T ≤ 0.

Second, consider abs(cT x0 + α) = −cT x0−α. We have −cT x0−α = −cT Rλ−
cT Vµ− 1T µα ≤ cT

e Rλ + cT
e Vµ + 1T µr = cT

e x0 + r by exploiting the hypotheses
(−c− ce)T R ≤ 0 and (−c− ce)T V + (−α− r)1T ≤ 0.

(Only-if part) Let Vk be any column of V.
If (c−ce)T R 6≤ 0 then there exists a column Rj of R such that (c−ce)T Rj > 0.

By choosing λi = 0 for i 6= j, µi = 0 for i 6= k and µk = 1, for x0 = Rλ + Vµ we
get cT x0 +α = cT Rλ+cT Vµ+α = cT Rjλj +cT Vk +α 6≤ cT

e Rjλj +cT
e Vk +r =

cT
e x0 + r, since (c− ce)T Rj > 0 and λj can be any positive real number. For some

λj , we can then conclude abs(cT x0 + α) ≥ cT x0 + α > cT
e x0 + r.

If (−c−ce)T R 6≤ 0 then there exists a column Rj of R such that (−c−ce)T Rj >
0. By choosing λi = 0 for i 6= j, µi = 0 for i 6= k and µk = 1, for x0 = Rλ+Vµ we
get −cT x0−α = −cT Rλ−cT Vµ−α = −cT Rjλj−cT Vk−α 6≤ cT

e Rjλj +cT
e Vk +

r = cT
e x0 + r, since (−c−ce)T Rj > 0 and λj can be any positive real number. For

some λj , we can then conclude abs(cT x0 + α) ≥ −cT x0 − α > cT
e x0 + r.

If (c − ce)T V + (α − r)1T 6≤ 0 then there exists a column Vj of V such that
(c − ce)T Vj + (α − r) > 0. By choosing λ = 0, µi = 0 for i 6= j and µj = 1, for
x0 = Rλ + Vµ we get cT x0 + α = cT Rλ + cT Vµ + α = cT Vj + α 6≤ cT

e Vj + r =
cT

e x0 + r. This implies abs(cT x0 + α) ≥ cT x0 + α > cT
e x0 + r.

If (−c− ce)T V + (−α− r)1T 6≤ 0 then there exists a column Vj of V such that
(−c − ce)T Vj + (−α − r) > 0. By choosing λ = 0, µi = 0 for i 6= j and µj = 1,
for x0 = Rλ + Vµ we get −cT x0 − α = −cT Rλ − cT Vµ − α = −cT Vj − α 6≤
cT

e Vj + r = cT
e x0 + r. This implies abs(cT x0 + α) ≥ −cT x0 − α > cT

e x0 + r.

Lemma 3.47.

Proof. For a parameter instance u let us denote by Vu the set of (instances of
the) parameterized vertices whose domain includes u, namely: Vu = {vu(i) | i =
1..k,Ciu ≤ ci }. If Vu 6= ∅, let us denote by Vu the matrix whose columns are the
vectors in Vu.

Consider the if-part. Let u be fixed. If Su = ∅, we are done. Otherwise, Vu

cannot be empty. Since cT R = 0 (assumption (i)), we calculate:

Su = {cT x | x = Rλ + Vuµ, λ ≥ 0,µ ≥ 0, Σµ = 1}
= {z | z = cT Vuµ,µ ≥ 0, Σµ = 1}.

Notice that for x, y ∈ Su, abs(x−y) can then be rewritten as abs(cT Vu(µx−µy)),
for some µx ≥ 0, Σµx = 1,µy ≥ 0,Σµy = 1. Moreover, by (iii), cT

e u + r ≥ 0.
These last two statements and assumption (ii) allow for applying Lemma A.5 to
conclude abs(x− y) ≤ cT

e u + r for every x, y ∈ Su.
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Consider now the only-if part. We show the contrapositive.
(i). If cT R 6= 0, consider any u in Sol(C1a ≤ c1). Notice that k ≥ 1 since the

parameterized polyhedron is assumed not to be empty, and Sol(C1a ≤ c1) 6= ∅ by
Theorem 3.24. We have:

Su = {cT x | x = Rλ + Vuµ, λ ≥ 0, µ ≥ 0,Σµ = 1}
= {z | z = cT Rλ + cT Vuµ, λ ≥ 0, µ ≥ 0, Σµ = 1}.

Let Rj be a column of R such that cT Rj = α 6= 0. By fixing λi = 0 for i 6= j, we
get that cT Rλ = αλj . By fixing µ in any way such that µ ≥ 0, Σµ = 1, we also
have cT Vuµ = β, for some β. Summarizing, Su includes αλj +β for every λj ≥ 0.
Hence, abs(x− y) cannot be bounded by cT

e u + r for every x, y ∈ Su.
(ii). Consider a pair 1 ≤ m < n ≤ k such that cT va(m) 6¹e cT va(n) over Pm,n.

Then there exists u ∈ Sol(Pm,n) such that abs(cT vu(m)−cT vu(n)) > cT
e u+r. By

fixing µi = 0 for i 6= m and µm = 1, we define x = Vuµ = vu(m). Analogously,
by fixing µi = 0 for i 6= n and µn = 1, we define y = Vuµ = vu(n). It turns out
x = cT x, y = cT y belong to:

{cT x | x = Vuµ, µ ≥ 0,Σµ = 1} = {z | z = cT Vuµ, µ ≥ 0,Σµ = 1} ⊆ Su,

and abs(x− y) > cT
e u + r.

(iii) By Theorem 3.24, Sol(Cia ≤ ci) 6= ∅ for i = 1..k. Therefore, the negation
of condition (iii) is equivalent to assume that for some i in 1..k, there exists u ∈
Sol(Cia ≤ ci) such that cT

e u + r < 0. By Theorem 3.24 again, Su 6= ∅ – at least
vu(i) belongs to it. Therefore, for any x ∈ Su, we have abs(x−x) = 0 > cT

e u+r.

Lemma 3.49.

Proof. x0 ∈ Sol(Ax ≤ b) iff x0 = Rλ + Vµ for some λ, µ ≥ 0 and Σµ =
1T µ = 1. Then: cT

e x0 + r = cT
e Rλ + cT

e Vµ + r1T µ = cT
e Rλ + (cT

e V + r1T )µ.
The if part is immediate, namely cT

e x0 + r ≥ 0 since cT
e R, λ, (cT

e V + r1T ) and
µ contains only non-negative elements. The only-if part follows by contraposition.
If for some x0, we have cT

e x0 + r < 0 then cT
e Rλ or (cT

e V + r1T )µ is a negative
number. Since λ,µ ≥ 0, this implies that cT

e R 6≥ 0 or (cT
e V + r1T ) 6≥ 0.

Theorem 3.51 [(ParCheck - soundness and completeness)].

Proof. Working on d = d1|B is sound and complete by Theorem 3.43.
(Soundness) Step 2 is justified by the if-part of Lemma 3.40.
Step 4 is justified by the if-part of Lemma 3.47 instantiated by fixing cj = 0 for

j 6= i, and ci = 1, so that cT v = x. Also, since there is no local type variable
in x : 2e, e can be written as a linear combination of type variables in d1. Since
pvars(d1) ⊆ υ(d1) = a, the assumption of Lemma 3.47 that e is of the form cT

e a+r
is satisfied.

(Completeness) Assume that d ` c→ x : 2e is valid, and consider the parame-
terized system P = φ(d) ∧ c.

Unsatisfiability of P is checked by Step 2, using the conditions of Lemma 3.40.
Step 4 deals with the case when P is satisfiable by checking the conditions of

Lemma 3.47.
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Lemma 3.52.

Proof. Let P be the parameterized linear system φ(d1) ∧ c. Since φ(d1) is
satisfiable, by Lemma 3.40, P is satisfiable iff c is satisfiable. Therefore, for P
unsatisfiable the conclusion holds since both d1 ` c→ x : τ and d′1 ` c→ x : τ
are valid. Assume now P satisfiable. Let P ′ be the parameterized linear system
φ(d′1) ∧ c. By construction of d′1, the homogeneous versions of P and P ′ coincide.
For instance, the homogeneous version of φ(x : 2e) = a ≤ x ≤ a + e ∧ 0 ≤ e is x =
0 ∧ 0 ≤ 0, which (up to the true inequality 0 ≤ 0) coincides with the homogeneous
version of φ(x : 2) = a ≤ x ≤ b. By Lemma 3.5: d′1 ` c→ x : u is valid iff
max{vi | v ∈ Sol(H′)} = 0, where vi = x an H′ is the homogeneous version of P ′.
Since P is satisfiable, an immediate extension of Lemma 3.5 to parametric types
allows for concluding: d1 ` c→ x : u is valid iff max{vi | v ∈ Sol(H)} = 0, where
H is the homogeneous version of P. Our conclusion then follows since H = H′.
A.8 Section 3.7

Theorem 3.53.

Proof. By Theorem 3.19 and Lemma 2.17, Check(IEInfer) is a decision pro-
cedure, complete for BT !. Its complexity is polynomial by observing that:

—LPInfer has polynomial time complexity when adopting a polynomial time
algorithm for linear programming [Khachiyan 1979];

—computing the set of implicit equalities for a system of n inequalities can be done
by solving at most n linear programming problems [Greenberg 1996, Corollary
7.4], which, again, requires polynomial time;

—Gaussian elimination has polynomial time complexity [Schrijver 1986].

A.9 Section 4.2

The operational semantics of CLP(R) programs is specified in terms of derivations
from states to states [Jaffar and Maher 1994; Jaffar et al. 1998]. Here, we con-
sider derivations via the leftmost selection rule. A state 〈 ← [c, ]A1 , . . . , An ‖c′〉 is
reduced to another state, called a resolvent, as follows:

R1. If a linear constraint c appears at the left of the query, and c ∧ c′ is satisfi-
able, the resolvent is 〈 ←A1, . . . , An‖c′ ∧ c〉.
R2. If an atom A1 = p(x1, . . . , xh) appears at the left of the query, and p(y1, . . . , yh)

← c,B1 , . . . , Bk is a renamed apart clause from P , then the resolvent is:

〈 ← c,B1, . . . , Bk, A2, . . . , An‖c′ ∧
∧

i=1..h

xi = yi〉.

A derivation from a state S is a (finite or infinite) maximal sequence of states
S0 = S, S1 , . . . , Sn , . . . such that there is a reduction from Si to Si+1, for i ≥ 0.
A derivation for a query Q is a derivation from 〈Q‖true〉. The last state of a
finite derivation is of the form 〈Q‖c〉. If Q is not empty, the derivation is failed.
Otherwise, it is successful, or a refutation, and c is called the answer constraint.
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Theorem 4.5.

Proof. (Persistency). It is a special case of the more general Theorem 4.18,
which will be shown in Appendix A.11.

(Call patterns). The state 〈 ← q(x : τ × µ), R‖ c′〉 is well-moded by persis-
tency. From the definition of well-moded states (i = 1 and c = true), we have that
` c′→ x : τ is valid.

(Answers). Consider the program P ′ defined as P plus the unit clause:

p(x1 : µ1 × ?, . . . ,xn : µn × ?)← true.

where p is a fresh predicate symbol, and the query Q′ = Q, p(x1, . . . ,xn). P ′ and
Q′ are well-moded since P and Q are well-moded. Under our hypotheses, there
exists a derivation from the query Q′ to the state 〈 ← p(x1, . . . ,xn) | c′〉. By the
call pattern conclusion, we obtain ` c′→ x1 : µ1, . . . ,xn : µn.

A.10 Section 4.3

We recall that a term substitution θ is represented by a finite set {x1/t1, . . . , xn/tn}
with x1, . . . , xn distinct variables, and t1, . . . , tn terms, and n ≥ 0. Also, we can
assume ti 6= xi. dom(θ) = {x1, . . . , xn} is called the domain of variables in θ.

Lemma 4.11.

Proof. By Lemma A.1, we have to show that d1θ ` c→ (x : τ)θ is valid for
every x : τ in d2. Also, we can assume τ 6= ?, otherwise the conclusion is trivial.
Moreover, notice that the assumption cθ = c implies that vars(c) ∩ dom(θ) = ∅.

First, consider the case x/t ∈ θ for some t. Thus, x 6∈ vars(c). By Lemma A.2
and τ 6= ?, d1 ` c→ x : τ valid implies that there exists x : µ in nf (d1) such that
µ ≥t τ . By Definition 4.9, for every y ∈ vars(t), y : µ is in nf (d1)θ = nf (d1θ).
By Lemma 2.11, this and µ ≥t τ imply that d1θ ` true→ y : τ is valid. By
monotonicity, d1θ ` c→ y : τ is valid for every y ∈ vars(t). By Definition 4.9 and
Lemma A.1, this is equivalent to validity of d1θ ` c→ (x : τ)θ.

Consider now the case x 6∈ dom(θ). Thus, (x : τ)θ is x : τ .
If x 6∈ vars(c), by Lemma A.2 and τ 6= ?, d1 ` c→ x : τ valid implies that there

exists x : µ in nf (d1) such that µ ≥t τ . Since x 6∈ dom(θ), x : µ is in nf (d1θ) as
well. Again by Lemma A.2, we conclude that d1θ ` c→ x : τ valid.

If x ∈ vars(c), by Lemma A.2, d1 ` c→ x : τ valid implies d ` c→ x : τ
valid, where d = d1|vars(c). Since vars(c) ∩ dom(θ) = ∅, we have dθ = d, and
then dθ ` c→ x : τ is valid. By monotonicity, from d1θ ≥t dθ, we conclude that
d1θ ` c→ x : τ is valid.

A.11 Section 4.4

Theorem 4.18 [(Persistency)].

Proof. Let S = 〈 ← [c, ] A1, . . . , An‖c′〉 be well-moded using type substitutions
ϑs

1, . . . , ϑ
s
n. For Ai = p(x : τ × µ), i = 1..n, we denote pre(Ai) = x : ϑs

i (τ ) and
post(Ai) = x : ϑs

i (µ). We will show that every resolvent of S and a well-moded
clause is well-moded. The final result follows since the initial state 〈Q‖true〉 is well-
moded by hypothesis. If rule R1 is applied, the result is trivial since, by definition,
S is well-moded iff 〈 ←A1, . . . , An‖c′ ∧ c〉 is well-moded.
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Consider now rule R2. Let A1 = p(x1, . . . , xh) and let:

〈 ← c, B1, . . . , Bk, A2, . . . , An‖c′ ∧
∧

i=1..h

xi = yi〉

be the resolvent obtained by a renamed apart clause H ← c,B1 , . . . , Bk , where
H = p(y1, . . . , yh). It is readily checked that renaming apart a well-moded clause
yields a well-moded clause as well. Let ϑr

1, . . . , ϑ
r
k be the type substitutions as in

Definition 4.17. For Bi = p(x : τ ×µ), i = 1..k, we denote pre(Bi) = x : ϑr
i (τ ) and

post(Bi) = x : ϑr
i (µ). Also, for H = p(y : τ × µ), we define pre(H) = y : τ and

post(H) = y : µ.
We will show that the resolvent is well-moded by using the type substitutions

ϑ1, . . . , ϑk+n−1 defined as follows: ϑi = ϑs
1◦ϑr

i for i = 1..k; ϑk+i−1 = ϑs
i for i = 2..n.

By well-moding of S, ` c′→ pre(A1) is valid and has no local type variable. Since
c′ is satisfiable (it is a simple induction on the length of derivations), this implies
that pre(A1) is a type declaration in BT , namely ϑs

1(e) ≥ 0 for every 2e in pre(A1).
Called c1 = c′ ∧ ∧

i=1..h xi = yi, this implies that ` c1 → pre(H) is valid, where,
for H = p(y : τ × µ), pre(H) = y : ϑs

1(τ ) is a type declaration in BT .
Let us split the rest of the proof in two steps (a) and (b).
(a) For i = 1..k, from well-moding of the (renamed-apart) clause, we have that:

pre(H), post(B1), . . . , post(Bi−1) ` c→ pre(Bi)

is valid and has no local type variable. Since R |= c1 ∧ c→ c, this implies that:

pre(H), post(B1), . . . , post(Bi−1) ` c1 ∧ c→ pre(Bi) (8)

is valid and has no local type variable. By recalling that no local to output type
variable is admitted in parametric modes (see Definition 4.12), a simple induction
on i reveals that all type variables in (8) are included in pre(H). We instantiate
all of them by ϑs

1 as follows: for i = 1..k and Bi = p(x : τ × µ), we denote
pre(Bi) = x : ϑs

1(ϑ
r
i (τ )) and post(Bi) = x : ϑs

1(ϑ
r
i (µ)). The following is an

instance of (8):

pre(H), post(B1), . . . , post(Bi−1) ` c1 ∧ c→ pre(Bi) (9)

and it is valid. This comes directly from Definition 2.4 of validity of type assertions.
Moreover, since pre(H) is in BT , and (9) is an instance of (8), there is no type
variable at all in (9). Assume for the moment that it is a type assertion in BT . By
monotonicity in BT , ` c1 → pre(H) valid implies that:

post(B1), . . . , post(Bi−1) ` c1 ∧ c→ pre(H) (10)

is valid, and in BT . By the transitivity Lemma 2.12, (9) and (10) imply that:

post(B1), . . . , post(Bi−1) ` c1 ∧ c→ pre(Bi) (11)

is valid. This concludes the proof, since this is the proof obligation of well-moding
for type substitutions ϑ1, . . . , ϑk+n−1 and i = 1..k.

Assume now that (9) is not a type assertion in BT . If c1∧c is not satisfiable, then
validity of (11) is immediate. Let c1 ∧ c be satisfiable. Since (9) contains no type
variable, it is not in BT only if for some type 2e in post(B1), . . . , post(Bi−1), pre(Bi)
we have e < 0, namely (9) is not in BT due to malformed syntax.
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If some type 2e in post(B1), . . . , post(Bi−1) is such that e < 0, then (11) is
valid, since φ(post(B1), . . . , post(Bi−1)) has no solution (it includes the always false
constraint e ≥ 0).

Finally, consider the case that for all types 2e in post(B1), . . . , post(Bi−1), we
have e ≥ 0. This means that there is some type 2e in pre(Bi) such that e < 0. Since
c1 ∧ c is satisfiable, we can extend one of its solutions to a solution of φ(d)∧ c1 ∧ c,
where d is pre(H), post(B1), . . . , post(Bi−1). This solution would show that d `
c1 ∧ c→ pre(Bi) is invalid (as a type assertion in PT ), which is absurd since such
a type assertion is (9), which was shown to be valid.

(b) Since S is well-moded, for i = 1..n:

post(A1), post(A2), . . . , post(Ai−1) ` c′→ pre(Ai) (12)

is valid and has no local type variable. By recalling that no local to output type
variable is admitted in parametric modes (see Definition 4.12), a simple induction
on i reveals that there is no type variable at all. Also, by reasoning as in (a):

post(B1), . . . , post(Bk) ` c1 ∧ c→ post(H)

is valid and contains no type variable, where post(H) = y : ϑs
1(µ) for H = p(y :

τ ×µ). Since A1 = p(x : τ ×µ), post(A1) = x : ϑs
1(µ), and x = y is in c1, validity

of the last type assertion implies that:

post(B1), . . . , post(Bk) ` c1 ∧ c→ post(A1) (13)

is valid and contains no type variable. Assume for the moment that the type
assertions (12) and (13) are in BT . First, by monotonicity on (12), for i = 2..n:

post(B1), . . . , post(Bk), post(A1), post(A2), . . . , post(Ai−1) ` c1 ∧ c→ pre(Ai)(14)

is valid. Second, by monotonicity on (13), for i = 2..n:

post(B1), . . . , post(Bk), post(A2), . . . , post(Ai−1) ` c1 ∧ c→ post(A1) (15)

is valid. By the transitivity Lemma 2.12, (15) and (14) imply, for i = 2..n:

post(B1), . . . , post(Bk), post(A2), . . . , post(Ai−1) ` c1 ∧ c→ pre(Ai) (16)

is valid. This concludes the proof, since this is the proof obligation of well-moding
for type substitutions ϑ1, . . . , ϑk+n−1 and i = k + 1..k + n− 1.

Assume now that (12) or (13) is not in BT . If c1 ∧ c is unsatisfiable then (16)
is trivially valid. Let c1 ∧ c be satisfiable. Since (12) and (13) contain no type
variable, this means that for some type 2e in (12) or in (13), we have e < 0.

If for some type 2e in post(B1), . . . , post(Bk), post(A2), . . ., post(Ai−1) we have
e < 0, then (16) is trivially valid.

Also, post(A1) does not contain any 2e with e < 0. Otherwise, since c1 ∧ c is
satisfiable, we can extend one of its solutions to a solution of φ(d) ∧ c1 ∧ c, where
d is post(B1), . . . , post(Bk). This solution would show that d ` c1 ∧ c→ post(A1)
is invalid (as a type assertion in PT ), which is absurd since such a type assertion
is (13), which was shown to be valid.

Finally, with the same reasoning we can show that pre(Ai) in (12) does not
contain any 2e with e < 0.
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