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Abstract

We consider the problem of embedding finite metrics with slack: we seek to produce embeddings
with small dimension and distortion while allowing a (small) constant fraction of all distances to be
arbitrarily distorted. This definition is motivated by recent research in the networking community,
which achieved striking empirical success at embedding Internet latencies with low distortion into low-
dimensional Euclidean space, provided that some small slack is allowed.

Answering an open question of Kleinberg, Slivkins, and Wexler [27], we show that provable guar-
antees of this type can in fact be achieved in general: any finite metric can be embedded, with constant
slack and constant distortion, into constant-dimensional Euclidean space. We then show that there exist
stronger embeddings into `1 which exhibit gracefully degrading distortion: there is a single embedding
into `1 that achieves distortion at most O(log 1

ε ) on all but at most an ε fraction of distances, simulta-
neously for all ε > 0. We extend this with distortion O(log 1

ε )1/p to maps into general `p, p ≥ 1 for
several classes of metrics, including those with bounded doubling dimension and those arising from the
shortest-path metric of a graph with an excluded minor. Finally, we show that many of our constructions
are tight, and give a general technique to obtain lower bounds for ε-slack embeddings from lower bounds
for low-distortion embeddings.
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1 Introduction

Over the past decade, the field of metric embeddings has gained much importance in algorithm design. The
central genre of problem in this area is the mapping of a given metric space into a “simpler” one, in such
a way that the distances between points do not change too much. More formally, an embedding of a finite
metric space (V, d) into a target metric space (V ′, d′) is a map ϕ : V → V ′. Recent work on embeddings
has used distortion as the fundamental measure of quality; the distortion of an embedding is the worst
multiplicative factor by which distances are increased by the embedding1. The popularity of distortion has
been driven by its applicability to approximation algorithms: if the embedding ϕ : V → V ′ has a distortion
of D, then the cost of solutions to some optimization problems on (V, d) and on (ϕ(V ), d′) can only differ
by some function of D; this idea has led to numerous approximation algorithms [23].

In parallel with theoretical work on embeddings, there has been a surge of interest in the networking
community on network embedding problems closely related to the framework above (see e.g. [13, 37, 42]).
This work is motivated by different applications: one takes the point-to-point latencies among nodes in a
network such as the Internet, treats this as a distance matrix,2 and embeds the nodes into a low-dimensional
space so as to approximately preserve the distances. In this way, each node is assigned a short sequence
of virtual “coordinates,” and distances between nodes can be approximated simply by looking up their
coordinates and computing the distance, rather than having to interact with the relevant nodes themselves. As
location-aware applications in networks become increasingly prevalent — for example, finding the nearest
server in a distributed application with replicated services, or finding the nearest copy of a file or resource in
a peer-to-peer system — having such distance information in a compact and easily usable form is an issue
of growing importance (see e.g. the discussion in [13]).

In the context of these networking applications, however, distortion as defined above has turned out to
be too demanding an objective function — many metrics cannot be embedded into Euclidean space with
constant distortion; many of those that can be so embedded require a very large number of dimensions; and
the algorithms to achieve these guarantees require a type of centralized coordination (and extensive measure-
ment of distances) that is generally not feasible in Internet settings. Instead, the recent networking work has
provided empirical guarantees of the following form: if we allow a small fraction of all distances to be arbi-
trarily distorted, we can embed the remainder with (apparently) constant distortion in constant-dimensional
Euclidean space. Such guarantees are natural for the underlying networking applications; essentially, a very
small fraction of the location-based lookups may yield poor performance (due to the arbitrary distortion),
but for the rest the quality of the embedding will be very good.

These types of results form a suggestive contrast with the theoretical work on embeddings. In particular,
are the strong empirical guarantees for Internet latencies the result of fortuitous artifacts of this particular
set of distances, or is something more general going on? To address this, Kleinberg, Slivkins, and Wexler
[27] defined the notion of embeddings with slack: in addition to the metrics (V, d) and (V ′, d′) in the initial
formulation above, we are also given a slack parameter ε, and we want to find a map ϕ whose distortion is
bounded by some quantity D(ε) on all but an ε fraction of the pairs of points in V × V . (Note that we allow
the distortion on the remaining εn2 pairs of points to be arbitrarily large.) Roughly, Kleinberg et. al. [27]
showed that any metric of bounded doubling dimension — in which every ball can be covered by a constant
number of balls of half the radius — can be embedded with constant distortion into constant-dimensional
Euclidean space, allowing a constant slack ε. Such metrics, which have been extensively studied in their

1Formally, for an embedding ϕ : V → V ′, the distortion is the smallest D so that ∃α, β ≥ 1 with α · β ≤ D such that
1
α

d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ β d(x, y) for all pairs x, y ∈ V × V . Note that this definition of distortion is slightly non-
standard—since α, β ≥ 1, it is no longer invariant under arbitrary scaling; however, this is merely for notational convenience, and
all our results can be cast in the usual definitions of distortion.

2While the triangle inequality can be violated by network latencies, empirical evidence suggests that these violations are small
and/or infrequent enough to make metric methods a useful approach.
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own right, have also been proposed on several occasions as candidates for tractable abstractions of the set of
Internet latencies (see e.g. [16, 25, 37, 39]).

There were two main open questions posed in [27].

(1) There was no evidence that the main embedding result of [27] needed to be restricted to metrics of
bounded doubling dimension. Could it be the case that for every finite metric, and every ε > 0, there
is an embedding of the metric with distortion f(ε) into Euclidean space?

(2) Rather than have the embedding depend on the given slack parameter ε, a much more flexible and
powerful alternative would be to have a single embedding of the metric with the property that, for
some (slowly growing) function D(·), it achieved distortion D(ε) on all but an ε fraction of distance
pairs, for all ε > 0. We call such an embedding gracefully degrading [27], and ask whether such an
embedding (with a polylogarithmic function D(·)) could exist for all metrics.

In this paper, we resolve the first of these questions in the affirmative, showing constant distortion with
constant slack for all metrics. Moreover, the embedding we design to achieve this guarantee is beacon-
based, requiring only the measurement of distances involving a small set of distinguished “beacon nodes”;
see Section 2. Approaches that measure only a small number of distances are crucial in networking appli-
cations, where the full set of distances can be enormous; see, e.g., [21, 17, 28, 37, 38, 43] for beacon-based
approaches and further discussions. We then resolve the second question in the affirmative for metrics that
admit an O(1)-padded decomposition (a notion from previous work on embeddings that we specify pre-
cisely in Section 1.1); this includes several well-studied classes of metrics including those with bounded
doubling dimension and those arising from the shortest-path metric of a graph with an excluded minor. We
further show that gracefully degrading distortion can be achieved in the `1 norm for all metrics. The second
question has been subsequently solved in full in [2] (see also the bibliographic notes in the sequel), pro-
viding an embeddings with gracefully degrading distortion for all metrics in `p for every p ≥ 1 . Finally,
we show that many of our constructions are tight, and give a general technique to obtain lower bounds for
ε-slack embeddings from lower bounds for low-distortion embeddings.

Basic Definitions. Before we formally present our results, let us present some of the notions that will be
used throughout the paper. We will assume that the metric (V, d) is also represented as a graph on the nodes
V , with the length of edge uv being d(u, v) = duv. We imagine this graph as having n2 edges, one for each
pair u, v ∈ V × V ; this makes the exposition cleaner and does not change the results in any significant way.
For a map ϕ : V → V ′ let us define the notion of the distortion of a set S of edges under embedding ϕ as
the smallest D ≥ 1 such that for some positive constant K and all edges (u, v) ∈ S we have

d(u, v) ≤ d′(ϕ(u), ϕ(v))/K ≤ D · d(u, v).

Note that the distortion of ϕ (as given in Footnote 1) is the same as the distortion of the set of all edges.

Definition 1.1 (ε-slack distortion). Given ε, an embedding ϕ : V → V ′ has distortion D with ε-slack if a
set of all but an ε-fraction of edges has distortion at most D under ϕ.

We will also consider a stronger notion of slack, for which we need the following definition. Let ρu(ε)
be the radius of the smallest ball around u that contains at least εn nodes. Call an edge uv ε-long if duv ≥
min(ρu(ε), ρv(ε)). Then there are at least (1 − ε) n2 edges that are ε-long. For any such edge uv, at least
one endpoint u is at least as far from the other endpoint v as the (εn)-th closest neighbor of v.

Definition 1.2 (ε-uniform slack distortion). Given ε, an embedding ϕ : V → V ′ has distortion D with
ε-uniform slack if the set of all ε-long edges has distortion at most D.
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While the above notions of embeddings with slack allow the map ϕ to depend on the slack ε, the follow-
ing notion asks for a single map that is good for all ε simultaneously.

Definition 1.3 (gracefully degrading distortion). An embedding ψ : V → V ′ has a gracefully degrading
distortion D(e) if for each ε > 0, the distortion of the set of all ε-long edges is at most D(ε).

Our Results. We now make precise the main results described above, and also describe some further results
in the paper. Our first result shows that if we are allowed constant slack, we can indeed embed any metric
into constant dimensions with constant distortion.

Theorem 1.4. For any source metric (V, d), any target metric `p, p ≥ 1 and any parameter ε > 0, we give
the following two O(log 1

ε )-distortion embeddings:
(a) with ε-slack into O(log2 1

ε ) dimensions, and
(b) with ε-uniform slack into O(log n log 1

ε ) dimensions.
Both embeddings can be computed with high probability by randomized beacon-based algorithms.

These results extend Bourgain’s theorem on embedding arbitrary metrics into `p, p ≥ 1 with distortion
O(log2 n) [10], and are proved in a similar manner.

Note that the bounds on both the distortion as well as the dimension in Theorem 1.4(a) are independent
of the number of nodes n, which suggests that they could be extended to infinite metrics; this is further
discussed in Section 2. In part (b), the dimension is proportional to log n; we show that, for arbitrary
metrics, this dependence on n is indeed inevitable. As an aside, let us mention that metrics of bounded
doubling dimension do not need such a dependence on n: in Slivkins [43], these metrics are embedded into
any `p, p ≥ 1 with ε-uniform slack, distortion O(log 1

ε log log 1
ε ) and dimension (log 1

ε )
O(log 1

ε
).

We then study embeddings into trees. We extend the known results of probabilistic embedding into trees
[5, 6, 14, 7] to obtain embeddings with slack. In particular, we use the technique of Fakcharoenphol et
al. [14] to obtain the following two results:

Theorem 1.5. For any input metric (V, d) and any parameter ε > 0 there exists an embedding into a tree
metric with ε-uniform slack and distortion O(1

ε log 1
ε ).

In fact, the tree metric in Theorem 1.5 is induced by a Hierarchically Separated Tree (HST) [5], which
is a rooted tree with edge-weights we such that we < we′/2 whenever edge e′ is on the path from the root to
edge e.

Theorem 1.6. For any input metric (V, d), the randomized embedding of [14] into tree metrics has expected
gracefully degrading distortion D(ε) = O(log 1

ε ).
3 Since tree metrics are isometrically embeddable into

L1, this immediately implies that we can embed any metric into L1 with gracefully degrading distortion
D(ε) = O(log 1

ε ).

However, the dimension of the above embedding into L1 may be prohibitively large. To overcome this
hurdle, and to extend this embedding to `p, p > 1, we explore a different approach:

Theorem 1.7. Consider a metric (V, d) which admits β-padded decompositions. Then it can be embedded
into `p, p ≥ 1 with O(log2 n) dimensions and gracefully degrading distortion D(ε) = O(β)(log 1

ε )
1/p.

3More formally, we show that if an edge uv is ε-long, then duv ≤ ET [dT (u, v)] ≤ O(log 1
ε
) duv , where dT is the tree metric

generated by the randomized algorithm in [14].
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For the reader unfamiliar with padded decompositions, let us mention that β ≤ O(dimV ), the doubling
dimension of the metric, which in turn is always bounded above by O(log n). Moreover, doubling metrics,
and metrics induced by planar graphs have β = O(1); hence Theorem 1.7 implies that such metrics admit
embeddings into `p, p ≥ 1 with gracefully degrading distortion O(log 1

ε )
1/p. Note that for p > 1 this result

can be seen as a strengthening of Theorem 1.4(b) on embeddings with ε-uniform slack.
The proof of Theorem 1.7 is technically the most involved part of the paper; at a high level, we develop

a set of scale-based embeddings which are then combined together (as in most previous embeddings)—
however, since the existing ways to perform this do not seem to guarantee gracefully degrading distortion,
we construct new ways of defining distance scales.

Finally, we prove lower bounds on embeddings with slack: we give a very general theorem that allows
us to convert lower bounds on the distortion and dimension of embeddings that depend only on n = |V | into
lower bounds in terms of the slack parameter ε. This result works under very mild conditions, and allows
us to prove matching or nearly matching lower bounds for all of our results on ε-slack embeddings. These
lower bounds are summarized in Table 1 on page 18.

Related Work. This work is closely related to the large body of work on metric embeddings in theoretical
computer science; see the surveys [23, 24] for a general overview of the area. Our results build on much
of the previous work on embeddings into `p, including [10, 32, 41, 33, 19, 29, 30], and on embeddings of
metrics into distributions of trees [3, 5, 6, 20, 14, 7]. Among the special classes of metrics we consider
are doubling metrics [4, 19, 44, 36]; the book by Heinonen [22] gives more background on the analysis of
metric spaces.

All of these papers consider low-distortion embeddings without slack. Note that an embedding with
(ε = 1/2n2)-slack or (ε = 1/2n)-uniform-slack is the same as an embedding with no slack; for many of
our results, plugging in these values of ε gives us the best known slackless results—hence our results can be
viewed as extensions of these previous results.

The notion of embedding with slack can be viewed as a natural variant of metric Ramsey theory. The
first work on metric Ramsey-type problems was by Bourgain, Figiel and Milman [11] and a comprehensive
study was more recently developed by Bartal et. al. [8, 9]. In the original metric Ramsey problem we
seek a large subset of the points in the metric space which admit a low distortion embedding, whereas an
embedding with slack provides low distortion for a subset of the pairs of points.

Bibliographic note. The results in this paper have been obtained independently by I. Abraham, Y. Bartal
and O. Neiman, which lead to a merged publication [1]. The results on lower bounds (Section 5) and on
embedding into distributions of trees (Theorem 1.6) were proved similarly by both groups. For the rest of
the results, the techniques are quite different. The two groups of authors have agreed to write up the full
versions of their results separately.

Extensions and further directions. The main question left open by this work is whether every metric
admits a low-dimensional embedding into `p, p ≥ 1 with gracefully degrading distortion D(ε). This has
been answered affirmatively in Abraham et al. [2], with D(ε) = O(log 1

ε ) and dimension O(log n), using a
new type of more advanced metric decompositions. They also show a tight result of O(1/

√
ε) distortion for

ε-slack embedding into a tree metric, and improve the distortion in Theorem 1.7 by a factor of β1/p.
For specific families of metrics it is still interesting to provide embeddings into `p with gracefully degrad-

ing distortion D(ε) = o(log 1
ε ); recall that Theorem 4.1 gives such embedding for decomposable metrics.

In particular, we would like to ask this question for embedding arbitrary subsets of `1 into `2.
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1.1 Notation and Preliminaries

Throughout the paper (V, d) is the metric to be embedded, and duv = d(u, v) is the distance between nodes
u, v ∈ V . Define the closed ball Bu(r) = {v ∈ V | duv ≤ r}. The distance between a node u and set
S ⊆ V is denoted d(u, S) = minv∈S duv, and hence d(u, V \Bu(r)) > r. We will assume that the smallest
distance in the metric is 1, and the largest distance (or the diameter) is Φd.

A coordinate map f is a function from V to R; for an edge uv define f(uv) = |f(u)− f(v)|. Call such
map 1-Lipschitz if for every edge f(uv) ≤ duv. For k ∈ N define [k] as the set {0, 1, . . . , k − 1}.
Doubling metrics and measures. A metric (V, d) is s-doubling if every set S ⊆ V of diameter ∆ can be
covered by s sets of diameter ∆/2; the doubling dimension of such a metric is dlog se [22, 19]. A doubling
metric is one whose doubling dimension is bounded. A measure is s-doubling if the measure of any ball
Bu(r) is at most s times larger than the measure of Bu(r/2). It is known that for any s-doubling metric
there exists an s-doubling measure; moreover, such measure can be efficiently computed [22, 36].
Padded Decompositions. Let us recall the definition of a padded decomposition (see e.g. [19, 29]). Given
a finite metric space (V, d), a positive parameter ∆ > 0 and β : V → R, a ∆-bounded β-padded decompo-
sition is a distribution Π over partitions of V such that the following conditions hold.

(a) For each partition P in the support of Π, the diameter of every cluster in P is at most ∆.
(b) If P is sampled from Π, then each ball Bx( ∆

β(x)) is partitioned by P with probability at most 1
2 .

For simplicity, say that a metric admits β-padded decompositions (where β is a number) if for every ∆ > 0
it admits a ∆-bounded β-padded decomposition. It is known that any finite metric space admits O(log n)-
padded decomposition [5]. Moreover, metrics of doubling dimension dimV admit O(dimV )-padded de-
compositions [19]; furthermore, if a graph G excludes a Kr-minor (e.g., if it has treewidth ≤ r), then its
shortest-path metric admits O(r2)-padded decompositions [26, 41, 15].

2 Embeddings with slack into `p

In this section we show that for any ε > 0 any metric can be embedded into `p for p ≥ 1 with ε-slack and
distortion O(log 1

ε ), thus resolving one of the two main questions left open by [27].
Let us fix ε > 0 and write ρu = ρu(ε). Recall that an edge uv is ε-long if duv ≥ min(ρu, ρv); call it

ε-good if duv ≥ 4min(ρu, ρv). We partition all the ε-long edges into two groups, namely those which are ε-
good and those which are not, and use a separate embedding (i.e. a separate block of coordinates) to handle
each of the groups. Specifically, we handle ε-good edges using a Bourgain-style embedding from [27], and
for the rest of the ε-long edges we use an auxiliary embedding such that for any edge uv the embedded
uv-distance is Θ(ρu + ρv). The combined embedding has dimension O(log2 1

ε ) and achieves distortion
O(log 1

ε ) on a set of all but an ε-fraction of edges.
There are several ways in which this result can be refined. Firstly, we can ask for low ε-uniform-slack

distortion, and require distortion O(log 1
ε ) on the set of all ε-long edges; we can indeed get this, but have to

boost the number of dimensions to O(log n log 1
ε ). As Theorem 2.2 shows, this increase is indeed required.

We note that this logarithmic increase in the number of dimensions is not the case for doubling metrics:
Slivkins [43] shows how these metrics are embedded into any `p, p ≥ 1 with ε-uniform slack, distortion
O(log 1

ε log log 1
ε ) and dimension (log 1

ε )
O(log 1

ε
)

Secondly, this embedding can be computed in a distributed beacon-based framework. Here a small
number of nodes are selected independently and uniformly at random, and designated as beacons. Then the
coordinates of each node are computed as a (possibly randomized) function of its distances to the beacons.

Thirdly, note that for the ε-slack result, the target dimension is independent of n, which suggests that
this result can be extended to infinite metrics. To state such extension, let us modify the notion of slack
accordingly. Following [43], let us assume that an infinite metric is equipped with a probability measure µ
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on nodes. This measure induces a product measure µ × µ on edges. We say that a given embedding φ has
distortion D with (ε, µ)-slack if some set of edges of product measure at least 1− ε incurs distortion at most
D under φ. Note that in the finite case, ε-slack coincides with (ε, µ)-slack when µ is the counting measure,
i.e. when all nodes are weighted equally.

In the embedding algorithm, instead of selecting beacons uniformly at random (i.e. with respect to
the counting measure) we select them with respect to measure µ. The proof carries over without much
modification; we omit it from this version of the paper.

Theorem 2.1. For any source metric (V, d), any target metric `p, p ≥ 1 and any parameter ε > 0, we give
the following two O(log 1

ε )-distortion embeddings:
(a) with ε-slack into O(log2 1

ε ) dimensions, and
(b) with ε-uniform slack into O(log n log 1

ε ) dimensions.
These embeddings can be computed with high probability by randomized beacon-based algorithms that use,
respectively, only O(1

ε log 1
ε ) and O(1

ε log n) beacons.

Proof. Let δ > 0 be the desired total failure probability. The embedding algorithm is essentially the same
for both parts, with one difference: we let k = O(log 1

δ + log 1
ε ) for part (a), and k = O(log 1

δ + log n) for
part (b). We describe a centralized algorithm first, and prove that it indeed constructs the desired embedding.
Then we show how to make this algorithm beacon-based.

We use two blocks of coordinates, of size kt and k, respectively, where t = dlog 1
ε e. The first block

comes from a Bourgain-style embedding without the smaller distance scales. For each i ∈ [t] choose k
independent random subsets of V of size 2i each, call them Sij , j ∈ [k]. The first-block coordinates of a
given node u are

fij(u) = (kt)−1/p d(u, Sij), where i ∈ [t], j ∈ [k]. (1)

For every node u and every j ∈ [k], choose a number βui ∈ {−1, 1} independently and uniformly at
random. The second-block coordinates of u are gj(u) = k−1/p ρu βuj , where j ∈ [k]. This completes the
embedding.

For an edge uv, let f(uv) and g(uv) denote the `p-distance between u and v in the first and the second
block of coordinates, respectively. By construction, f(uv) ≤ duv and g(uv) ≤ ρu + ρv. Moreover,

for every ε-good edge uv, f(uv) ≥ Ω(duv/t) with failure probability at most t/2Ω(k). (2)

Indeed, fix an ε-good edge uv and let d = duv. Let αi be the minimum of the following three quantities:
ρu(2−i), ρv(2−i) and d/2. The numbers αi are non-increasing; α0 = d/2. Moreover, since uv is ε-good
we have αt ≤ min(ρu, ρv, d/2) ≤ d/4. By a standard Bourgain-style argument it follows that for each i the
event ∑

j

|d(u, Sij)− d(v, Sij)| ≥ Ω(k)(αi − αi+1)

happens with failure probability at most 1/2Ω(k). (We omit the details from this version of the paper.)
Therefore, with failure probability at most t/2Ω(k), this event happens for all i ∈ [t] simultaneously, in
which case

∑

ij

|d(u, Sij)− d(v, Sij)| ≥
∑

i∈[t]

Ω(k)(αi − αi+1) = Ω(k)(α0 − αt) ≥ Ω(kd),

so f(uv) ≥ Ω(d/t) for the case p = 1. It is easy to extend this to p > 1 using standard inequalities. This
proves the claim (2).
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Furthermore, we claim that for each edge uv, g(uv) = Ω(ρu + ρv) with failure probability at most
1/2Ω(k). Indeed, let Nj be the indicator random variable for the event βuj 6= βvj . Since Nj’s are independent
and their sum N has expectation k/2, by Chernoff Bounds (Lemma A.1a) N ≥ k/4 with the desired failure
probability. This completes the proof of the claim.

Now fix an ε-long edge uv and let d = duv. Without loss of generality assume ρu ≤ ρv; note that ρu ≤ d.
Since Bu(ρu) ⊂ Bv(ρu + d), the cardinality of the latter ball is at least εn. It follows that ρv ≤ ρu + d, so
g(uv) ≤ ρu + ρv ≤ 3d. Since f(uv) ≤ d, the embedded uv-distance is O(d).

To lower-bound the embedded uv-distance, note that with failure probability at most t/2Ω(k) the follow-
ing happens: if edge uv is ε-good then this distance is Ω(d/t) due to f(uv); else it is Ω(d) due to g(uv). For
part (a) we use Markov inequality to show that with failure probability at most δ this happens for all but an
ε-fraction of ε-long edges. For part (b) we take a Union Bound to show that with failure probability at most
δ this happens for all ε-long edges. This completes the proof of correctness for the centralized embedding.

It remains to provide the beacon-based version of the algorithm. Let S be the union of all sets Sij . The
Bourgain-style part of the algorithm depends only on distances to the Θ(k/ε) nodes in S, so it can be seen
as beacon-based, with all nodes in S acting as beacons. To define the second block of coordinates we need
to know the ρu’s, which we do not. However, we will estimate them using the same set S of beacons.

Fix a node u. Let B be the open ball around u of radius ρu, i.e. the set of all nodes v such that duv < ρu.
Let B′ be the smallest ball around u that contains at least 4εn nodes. Note that S is a set of ck/ε beacons
chosen independently and uniformly at random, for some constant c.

In expectation at most ck beacons land in B, and at least 4ck beacons land in B′. By Chernoff Bounds
(Lemma A.1ab) with failure probability at most 1/2Ω(k) the following event Eu happens: at most 2ck
beacons land in B, and at least 2ck beacons land in B′. Rank the beacons according to its distance from
u, and let w be the (2ck)-th closest beacon. Define our estimate of ρu as ρ′u = duw. Note that if event Eu

happens, then ρ′u lies between ρu and ρu(4ε).
Consider a 4ε-good edge uv such that both Eu and Ev happen. Then (as in the non-beacon-based

proof) we can upper-bound the embedded uv-distance by O(duv), and lower-bound it by Ω(duv/t) with
high probability. For part (a) we use Markov inequality to show that with failure probability at most δ event
Eu happens for all but an ε-fraction of nodes. For part (b) we take a Union Bound to show that with failure
probability at most δ this event happens for all nodes.

The following theorem lower-bounds the target dimension required for ε-uniform slack, essentially
showing that in part (b) of the above theorem the dependence on log n is indeed necessary.

Theorem 2.2. For any ε < 1
2 there is a metric (V, d) such that any ε-uniform slack embedding into lp, p ≥ 1

with distortion D requires Ω(logD n) dimensions.

Proof. Take a clique on ε n red and (1 − ε)n blue nodes, assign length two to each of the blue-blue edges,
and assign unit lengths to all the remaining edges. Consider the metric generated by this graph. Now all
the blue-blue edges are ε-long, and thus any distortion-D ε-uniform-slack embedding must maintain all the
distances between the blue vertices. But this is just a uniform metric on (1−ε)n nodes, and the lower bound
follows by a simple volume argument.

3 Embeddings into Trees

Probabilistic embedding of finite metric space into trees was introduced in [5]. Fakcharoenphol et al. [14]
proved that finite metric space embeds into a distribution of dominating trees with distortion O(log n)
(slightly improving the result of[6], other proofs can be found in [7]). In this section we exploit the technique
of [14] to obtain embeddings with slack. First we show that it gives a probabilistic embedding of arbitrary
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metrics into tree metrics with expected gracefully degrading distortion D(ε) = O(log 1/ε). For technical
convenience, we will treat n-point metrics as functions from [n] × [n] to reals. Note that all metrics dT

generated by the algorithm in [14] are dominating, i.e. for any edge uv we have d(u, v) ≤ dT (u, v).

Theorem 3.1. For any input metric (V, d), let dT be the dominating HST metric on V constructed by
the randomized algorithm in Fakcharoenphol et al. [14]. Then the embedding from (V, d) to (V, dT ) has
expected gracefully degrading distortion D(ε) = O(log 1/ε). Specifically, for any parameter ε > 0 and any
ε-long edge uv we have

duv ≤ Eϕ[dT (u, v)] ≤ O(log 1/ε) duv. (3)

Since tree metrics are isometrically embeddable into L1, it follows that we can embed any metric into L1

with gracefully degrading distortion D(ε) = O(log 1
ε ).

Proof. For simplicity let us assume that all distances in (V, d) are distinct; otherwise we can perturb them a
little bit and make them distinct, without violating the triangle inequality; see the full version of this paper
for details. In what follows we will assume a working knowledge of the decomposition scheme in [14].

Let us fix the parameter ε > 0 and an ε-long edge uv, and let d = d(u, v). Let us assume without loss
of generality that ρu(ε) ≤ ρv(ε). Then ρu(ε) ≤ d, so |Bu(d)| ≤ εn.

Run the randomized algorithm of [14] to build a tree T and the associated tree metric dT . The decom-
position scheme will separate u and v at some distance scale 2i ≥ d/2. Let ∆ be the maximum distance in
the input metric. Under the distribution over tree metrics dT that is induced by the algorithm, the expected
distance E[dT (u, v)] between u and v in tree T is equal to the sum

∑log ∆
i≥log d−1 4 · 2i × Pr[(u, v) first separated at level 2i].

Look at the sum for i such that d/2 ≤ 2i < 4d: this is at most 48d. By the analysis of [14], the rest of the
sum, i.e. the sum for i ≥ log 4d, is at most

∑log ∆
i≥log 4d 4 · 2i × 2d

2i log |Bu,2i)|
|Bu,2i−2)|

Since the above sum telescopes, it is at most

8d · 2 log (n/|Bu(d)|) ≤ O(d log 1/ε),

which proves the second inequality in (3). The first inequality in (3) holds trivially because all metrics dT

generated by the algorithm in [14] are dominating.

The above embedding into `1 can be made algorithmic by sampling from the distribution and embedding
each sampled tree into `1 using a fresh set of coordinates; however, the number of trees now needed to give
a small distortion may be as large as Ω(n log n). We will see how to obtain gracefully degrading distortion
with a smaller number of dimensions in the next section.

A slightly modified analysis yields an embedding into a single tree.

Theorem 3.2. For any source metric (V, d) and any parameter ε > 0 there exists an embedding into a
dominating HST metric with ε-uniform slack and distortion O(1

ε log 1
ε ).

4 Low-dimensional Embeddings with Gracefully Degrading Distortion

In this section we prove our result on embeddings into `p, p ≥ 1 with gracefully degrading distortion:
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Theorem 4.1. Consider a metric (V, d) which admits β-padded decompositions. Then it can be embedded
into `p, p ≥ 1 with O(log2 n) dimensions and gracefully degrading distortion D(ε) = O(β)(log 1

ε )
1/p. The

embedding procedure is given as a randomized algorithm which succeeds with high probability.

The proof of this theorem builds on the well-known embedding algorithms of Bourgain [10] and Linial
et al. [32], and combines ideas given in [41, 19, 27, 43, 29] with some novel ones. To the best of our
understanding, the embeddings given in the previous papers do not directly give us gracefully degrading
distortion, and hence the additional machinery indeed seems to be required.

Let us fix k = O(log n), where the constant will be specified later. We will construct an embedding
ϕ : V → `p with 7k2 dimensions; the coordinates of ϕ will be indexed by triples (i, j, l) ∈ [k]× [k]× [7].

We will show how to construct the map ϕ in the rest of this section, which has the following conceptual
steps. We first define a concrete notion of “distance scales” in Section 4.1, in terms of which we can cast
many previous embeddings, and specify the desired properties for the distance scales in our embedding. We
then show how to construct the distance scales as well as the claimed embedding ϕ in Section 4.2, and show
that it has gracefully degrading distortion in Section 4.3.

4.1 Distance Scales and Scale Bundles

Our algorithm, just like the algorithms in [10, 32, 41, 19, 27, 29, 30], operates on distance scales that start
around the diameter of the metric, and go all the way down to the smallest distance in the metric. Informally,
the embedding ϕ has a block of coordinates for each distance scale, such that if the true uv-distance for
some edge uv is within this scale, then the uv-distance in these coordinates of ϕ is roughly equal to the
true distance. These blocks of coordinates are then combined into an embedding that works for all scales
simultaneously.

Different embeddings use very different notions of distance scales; in cases like the Rao-style embed-
dings [41, 19], there are clear coordinates for each distance that is a power of 2—but in Bourgain-style
embeddings, this is not the case. To be able to give a unified picture, let us formally define a distance scale
f to be a coordinate map f : V → R. A scale bundle {fij} is then a collection of coordinate maps fij , such
that for every fixed index j and node u, the values fij(u) are decreasing with i.

We can now cast and interpret previous embeddings in this language: in the Bourgain-style embed-
dings [10, 32], fij(u) is the radius of the smallest ball around u containing 2n−i nodes, and hence the
cardinality of Bu(fij(u)) halves as we increase i. In the Rao-style embeddings, the scales are fij(u) =
diameter(V )/2i, and hence the distance scales halve as we increase i. The measured descent embed-
ding in [29] essentially ensures a judicious mixture of the above two properties: as we increase i, the
ball Bu(fij(u)) either halves in radius, or halves in cardinality, whichever comes first.

For our embedding, we need both the radius and the cardinality of Bu(fij(u)) to halve—and hence
have to define the scale-bundles accordingly. This would be easy to achieve by itself; however, to give good
upper bounds on the embedded distance, we also need each distance scale to be sufficiently smooth, by
which we mean that all the distance scales fij must themselves be 1-Lipschitz. In other words, we want that
|fij(u) − fij(v)| ≤ d(u, v). The construction of the scale bundle {fij} with both halving and smoothness
properties turns out to be a bit non-trivial, the details of which are given in the next section.

4.2 The Embedding Algorithm

Let us construct the embedding for Theorem 4.1. We have not attempted to optimize the multiplicative
constant for distortion, having chosen the constants for ease of exposition whilst ensuring that the proofs
work.
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First we will construct a scale bundle {fij : i, j ∈ [k]}. For a fixed j, the maps fij are constructed
by an independent random process, inductively from i = 0 to i = k − 1. We start with f(0,j)(·) equal to
the diameter Φd of the metric. Given fij , we construct f(i+1,j) as follows. Let Uij be a random set such
that each node u is included independently with probability 1/|Bu(4fij(u))|. Assuming Uij is non-empty,
define f(i+1,j)(u) as the minimum of d(u,Uij) and fij(u)/2. If Uij is empty, set f(i+1,j)(u) = fij(u)/2.
This completes the construction of the scale bundle.

To proceed, let us state a lemma that captures, for our purposes, the structure of the source metric space:
this is the only place in the proof of Theorem 4.1 where we use padded decomposition.

Lemma 4.2. Consider a metric (V, d) which admits β-padded decompositions. Then for any 1-Lipschitz
coordinate map f and any p ≥ 1 there is a randomized embedding g into `p with t = 6 dimensions so that

(a) each coordinate of g is 1-Lipschitz and upper-bounded by f ; and
(b) if f(u)/duv ∈ [14 ; 4] for some edge uv then, with probability Ω(1),

‖g(u)− g(v)‖p ≥ Ω(duv t1/p/β). (4)

In short, this lemma transforms a “smooth” distance scale f into a “smooth” low-dimensional embedding
g which approximately preserves distances along the “relevant” edges. Here “smooth” means “1-Lipschitz”,
an edge (u, v) is relevant to f if duv ≈ f(u) or duv ≈ f(v), and distances are preserved in the sense of (4).
Once the relevant edges are taken care of, we want the coordinates of g to be as small as possible in order to
upper-bound the embedded distance on larger distance scales.

Section 4.4 and Section 4.6 contain two different proofs of this lemma; the first one uses padded decom-
position techniques from [19, 29], and the other uses some Bourgain-style ideas [10, 32] which we believe
are novel and possibly of independent interest.4

Fix a pair i, j ∈ [k]. Apply Lemma 4.2 to the map fij and obtain a 6-dimensional embedding; denote
these 6 coordinates as g(i, j, l), 1 ≤ l ≤ 6. Let Wij be a random set such that each node u is included inde-
pendently with probability 1/|Bu(fij(u)/2)|. Define g(i, j, 0)(u) as the minimum of fij(u) and d(u,Wij).
Finally, we set ϕ(i, j, l) = k−1/p g(i, j, l).

Lemma 4.3. The maps fij , gij and ϕ(i, j, l) are 1-Lipschitz.

Proof. Indeed, f(0,j) is 1-Lipschitz by definition, and the inductive step follows since the min of two 1-
Lipschitz maps is 1-Lipschitz. For the same reason, the maps g(i, j, l) are 1-Lipschitz as well, and therefore
so are the maps ϕ(i, j, l).

Since k = O(log n), it immediately follows that the embedded distance is at most O(log n) times the
true distance. In the next section, we will prove a sharper upper bound of O(duv)(log 1

ε )
1/p for any ε-long

edge uv, and a lower bound Ω(duv/β) for any edge.

4.3 Analysis

In this section, we complete the proof of Theorem 4.1 by giving bounds on the stretch and contraction of the
embedding ϕ. The following definition will be useful: for a node u, an interval [a, b] is u-broad if a or b is
equal to duv for some v, a ≤ b/4 and |Bu(a)| ≤ 1

32 |Bu(b)|.
Let us state two lemmas that capture the useful properties of the maps fij and g(i, j, 0), respectively: note

that these properties are independent of the doubling dimension of the underlying metric. The proofs are
deferred to Section 4.5.

4More precisely, the second proof is for the important special case when β is the doubling dimension. In this proof the target
dimension becomes t = O(β log β), which results in target dimension O(log2 n)(β log β) in Theorem 4.1.
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Lemma 4.4. With high probability it is the case that:
(a) for any 1-Lipschitz maps f ′ij ≤ fij and any ε-long edge uv

∑
ij f ′ij(uv) ≤ O(kduv log 1

ε ).
(b) for each node u, each u-broad interval contains values fij for Ω(k) different j’s.

Lemma 4.5. Fix edge uv and indices ij; let R = fij(u) and d = duv. Given that R ≥ 4d and |Bu(d/4)| =
c |Bu(R)|, the event g(i, j, 0)(uv) ≥ Ω(d) happens with conditional probability Ω(c).

Proof of Theorem 4.1: Fix an ε-long edge uv and let d = duv. Since g(i, j, l) ≤ fij for each l, by
Lemma 4.4a the embedded uv-distance is upper-bounded by O(d log 1

ε ) for p = 1; the same argument
gives an upper bound of O(d)(log 1

ε )
1/p for p > 1.

It remains to lower-bound the embedded uv-distance by Ω(d/β), where β is the parameter in Theo-
rem 4.1 and Lemma 4.2. Denote by gij(uv) the total `p-distance between u and v in the coordinates g(i, j, l),
l ≥ 1. Denote by Eij the event that g(i, j, 0)(uv) or gij(uv) is at least Ω(d/β). It suffices to prove that
with high probability events Eij happen for at least Ω(k) (i, j)-pairs. We consider two cases, depending on
whether ρu(ε/32) ≥ d/4.

Case (a). If ρu(ε/32) ≥ d/4 then the interval I = [d/4; d] is u-broad, so by Lemma 4.4b there are Ω(k)
different j’s such that fij(u) ∈ I for some i. By Lemma 4.2 and Chernoff bounds (Lemma A.1a) for Ω(k)
of these ij pairs we have gij(uv) ≥ Ω(d/β), case (a) complete.

Case (b). Assume ρu(ε/32) < d/4; consider the interval I = [d; max[4d, ρu(32ε)]]. We claim that

Pr [Eij | fij(u) ∈ I] ≥ Ω(1), for each (i, j)-pair. (5)

Indeed, fix ij and suppose f = fij(u) ∈ I . There are two cases, f ∈ [d; 4d] and f ∈ (4d; ρu(32ε)]. In the
first case by Lemma 4.2 gij(uv) ≥ Ω(d/β) with conditional probability at least Ω(1). In the second case

|Bu(d/4)| ≥ εn/32 ≥ 2−10 (32εn) ≥ 2−10 |Bu(f)|,

so by Lemma 4.5 g(i, j, 0)(uv) ≥ Ω(d) with conditional probability Ω(1). This completes the proof of (5).
Let Xj be the indicator variable of the following random event: Eij and fij(u) ∈ I for some i. Since the

interval I is u-broad, by Lemma 4.4b there are Ω(k) different j’s such that fij(u) ∈ I for some i. Let J be
the set of all such j’s. Then conditional on J , {Xj , j ∈ J} are Ω(k) independent 0-1 random variables of
expectation Ω(1). By Chernoff bounds (Lemma A.1a) their sum is Ω(1) with high probability, completing
the proof for case (b).

4.4 Analysis: proof of Lemma 4.2

In this section we use padded decomposition techniques from [19, 29] to prove Lemma 4.2. Let us recall
the definitions of a padded decomposition and a decomposition bundle [19, 29].

Definition 4.6. Given a finite metric space (V, d), a positive parameter ∆ > 0 and a mapping β : V →
R, a ∆-bounded β-padded decomposition is a distribution Π over partitions of V such that the following
conditions hold.

(a) For each partition P in the support of Π, the diameter of every cluster in P is at most ∆.
(b) If P is sampled from Π, then each ball Bx(∆/β(x)) is partitioned by P with probability < 1

2 .
Given a function β : V ×Z→ R, a β-padded decomposition bundle on V is a set of padded decompositions
{η(i) : i ∈ Z} such that each η(i) is a 2i-bounded β(·, i)-padded decomposition of V .

If a metric admits a β-padded decomposition bundle such that β is constant, we simply say that this
metric admits β-padded decompositions.
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The randomized construction. Let η be a β-padded decomposition bundle. For each s ∈ Z, let the
decomposition Ps be chosen according to the distribution η(s). We denote Ps(x) to be the unique cluster in
Ps containing x.

Moreover, for s ∈ Z, let {σs(C) : C ⊆ V } be i.i.d. unbiased {0, 1}-random variables. Let T =
{0, 1, . . . , 5}. Let s(x) := dlog2 f(x)e. For each t ∈ T , we define a (random) subset

W t := {x ∈ V : σs(x)−t(Ps(x)−t(x)) = 0}, (6)

from which we obtain gt(·) = min{d(·,W t), f(·)}.

Bounding the contraction of the embedding. We fix vertices x, y ∈ V and let d = d(x, y). Consider the
embedded distance between them. The aim is to show that under some condition, there exists t such that
|gt(x) − gt(y)| ≥ ρd happens with constant probability, where ρ depends on the β-padded decomposition
bundle.

Lemma 4.7. Suppose f(x) ∈ [d
4 , 4d] and t ∈ T is the integer such that ŝ := s(x) − t satisfies 2ŝ ∈

[d/8, d/4). Let J := {−1, 0, 1} and ρ := min{ 1
32β(x,s) : s ∈ ŝ + J}. Then the event |gt(x)− gt(y)| ≥ ρd

happens with probability at least 1/64.

Proof. Consider the random process that determine the coordinate gt. We like to show that the union of
the following two disjoint events happens with constant probability, which implies our goal. There are two
cases:

Case 1 The set W t contains x but is disjoint with By(ρd).

Case 2 The set W t contains no points from Bx(2ρd) but at least one point from By(ρd).

Let us define the following auxiliary events.

• Event E1 occurs when x is contained in W t.

• Event E2 occurs when W t is disjoint with By(ρd).

• Event E3 occurs when for all z ∈ Bx(2ρd) and s ∈ ŝ + J , x and z are in the same cluster in η(s).

• Event E4 occurs if for all s ∈ ŝ + J , σs(Ps(x)) = 1.

Observe that the event E1 ∩ E2 implies the event in Case 1. Note that given a decomposition η(ŝ), the
point x lies in a cluster different from those intersecting By(ρd), because 2ŝ < d

4 < (1 − ρ)d. Hence the
events E1 and E2 are conditionally independent, given η(ŝ); this in turn implies that

Pr [E1 ∩ E2| η(ŝ)] = Pr [E1| η(ŝ)] Pr [E2| η(ŝ)] = 1
2 Pr [E2| η(ŝ)] .

Since this fact holds for all decompositions η(ŝ), it follows that Pr[E1 ∩ E2] = 1
2Pr[E2]

Observe that the event E3 ∩ E4 ∩ E2 implies the event in Case 2. This follows from the fact that |s(x)−
s(z)| ∈ J . Since f(x) ≥ d

4 , f is 1-Lipschitz and d(x, z) ≤ 2ρd ≤ d
8 , it follows f(x) and f(z) are within

a multiplicative factor of 2 from each other. Hence s(x) and s(z) differ by at most one. Again, given the
decompositions η(s), s ∈ ŝ + J , the event E4 is independent of the event E3 ∩ E2. Hence,

Pr
[E3 ∩ E4 ∩ E2

]
= Pr [E4] Pr

[E3 ∩ E2

]
= 1

8Pr
[E3 ∩ E2

]
.

Finally, it follows that the union of the events in cases 1 and 2 happens with probability at least

1
2Pr[E2] + 1

8Pr[E3 ∩ E2] ≥ 1
8Pr[E3 ∩ E2] + 1

8Pr[E3 ∩ E2] = 1
8Pr[E3].
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In order to show that E3 happens with constant probability, we make use of the properties of β-padded
decomposition bundle. Since for all s ∈ ŝ + J we have

2ρd ≤ 2/32β(x, s) · d ≤ 2s/β(x, s),

it follows that E3 happens with probability at least 1/8. Therefore, it follows the desired event happens with
probability at least 1/64.

4.5 Analysis: maps fij and g(i, j, 0)

Here we prove Lemma 4.4 and Lemma 4.5. First we prove part (a) of Lemma 4.4, which is essentially the
upper bound on the embedded distance for the case p = 1. We start with a local smoothness property of the
sets Uij .

Claim 4.8. Fix i, j ∈ [k] and an edge uv. Condition on the map fij , i.e. pause our embedding algorithm
right after fij is constructed; let r = fij(u). If duv ≤ r/4 then

Pr[v ∈ Uij ] ≤ 1/|Bu(r)| ≤ Pr
[
v ∈ U(i+3,j)

]
.

Proof. Let B = Bu(r). For the RHS inequality, letting r′ = f(i+3,j)(v) we have

4r′ ≤ fij(v)/2 ≤ (r + duv)/2 ≤ 5r/8,

so duv + 4r′ < r. It follows that Bv(r′) ⊂ B, so v ∈ U(i+3,j) with probability 1/|Bv(4r′)| ≥ 1/|B|.
For the LHS inequality, letting r′ = fij(v) we have

4r′ ≥ 4(r − duv) ≥ r + duv,

so B ⊂ Bv(4r′). Therefore v ∈ Uij with probability 1/|Bv(4r′)| ≤ 1/|B|.
Fix a node u; for simplicity assume k = 4k0 +1 for some k0 ∈ N. Let Bij = Bu(fij) and let Xij be the

indicator random variable for the event that |B(4i+4, j)| ≤ |B(4i, j)|/2. Note that for a fixed j, the random
variables Xij are not independent. However, we can show that given all previous history, the ij-th event
happens with at least a constant probability.

Claim 4.9. For each i ∈ [k0], j ∈ [k] and q = 1− e−1/2 we have Pr[Xij = 1 | flj , l < i] ≥ q.

Proof. Indeed, fix ij, let f = f(4i,j)(u) and f ′ = f(4i+4,j)(u), and let B = Bu(r) be the smallest ball
around u that contains at least |B(4i, j)|/2 nodes. Clearly, Xij = 1 if and only if f ′ ≤ r. By definition of
fij’s we have f ′ ≤ f/16, so we are done if r ≥ f/16. Else by Claim 4.8 any node v ∈ B included into the
set U(4i+3,j) with probability at least 1/2|B|, so the probability of including at least one node in B into this
set (in which case f ′ ≤ r) is at least 1− (1− 1/2|B|)|B| ≥ q.

For a random variable X define the distribution function FX(t) = Pr[X < t]. For two random variables
X and Y , say Y stochastically dominates X (written as Y º X , or X ¹ Y ) if FY (t) ≤ FX(t) for all
t ∈ R. Note that if X ≥ Y then X º Y . Consider a sequence of i.i.d. Bernoulli random variables {Yi}
with success probability q. By Claim 4.9 and Lemma A.3 (proved in Section A) we have the following:

t∑

i=0

Xij º
t∑

i=0

Yi, for any t ∈ [k0] and each j ∈ [k]. (7)

We’ll use (7) to prove the following crucial claim:
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Claim 4.10. Fix node u and ε > 0. For each j let Tj be the smallest i such that fij(u) ≤ ρu(ε), or k if no
such i exists. Then

∑
j Tj = O(k log 1

ε ) with high probability.

Proof. Let α = dlog 1
ε e. Let Lj be the smallest t such that

∑t
i=0 Xij ≥ α, or k0 if such t does not exist;

note that Tj ≤ 4Lj . For the sequence {Yi}, let Zr be the number of trials between the (r − 1)-th success
and the r-th success. Let Aj =

∑jα
r=(j−1)α+1 Zr and Z =

∑kα
r=1 Zr. By (7) for any integer t ∈ [k0]

Pr[Lj > t] = Pr

[
t∑

i=0

Xij < α

]
≤ Pr

[
t∑

i=0

Yi < α

]
= Pr

[
α∑

r=1

Zr > t

]
= Pr[A1 > t] (8)

Since {Aj} are i.i.d., by (8) and Lemma A.2 it follows that
∑

j Lj º
∑

j Aj = Z. Therefore by Lemma A.4

Pr
[∑

Tj > 8kα/q
]
≤ Pr

[∑
Lj > 2kα/q

]
≤ Pr[Z > 2kα/q] < (0.782)kα,

which is at most 1/n3 when k = O(log n) with large enough constant.

Now we have all tools to prove Lemma 4.4a.

Proof of Lemma 4.4a: Use Tj = Tj(u) from Claim 4.10. Fix some ε-long edge uv and let d = duv. Let
tj = max(Tj(u), Tj(v)). Then by the 1-Lipschitz property f ′ij(uv) ≤ d for all ij; moreover, for any ij

such that i ≥ tj both fij(u) and fij(v) are at most d/2i−tj . Then f ′ij(uv) is at most twice that much (since
f ′ij ≤ fij), so taking the sum of the geometric series we see that

∑

ij

f ′ij(uv) ≤ ∑
j

(
dtj +

∑
i≥tj

d/2i−tj
)
≤ ∑

j O(dtj) = O
(
kd log 1

ε

)
,

where the last inequality follows by Claim 4.10.

To prove part (b) Lemma 4.4, let us recall the definition of a u-broad interval: for a node u, an interval
[a, b] is u-broad if a or b is equal to duv for some v, a ≤ b/4 and |Bu(a)| ≤ 1

32 |Bu(b)|.
Proof of Lemma 4.4b: It suffices to consider the u-broad intervals [a, b] such that one of the endpoints is
equal to duv for some v, and the other is the largest a or the smallest b, respectively, such that the interval is
u-broad. Call these intervals u-interesting; note that there are at most 2n such intervals for each u.

Fix node u and a u-broad interval I = [a, b], fix j and let ri = fij(u). It suffices to show that with
constant probability some ri lands in I . Indeed, then we can use Chernoff bounds (Lemma A.1a), and then
we can take the Union Bound over all nodes u and all u-interesting intervals.

Denote by Ei the event that ri > b and ri+1 < a; note that these events are disjoint. Since some ri lands
in I if and only if none of the Ei’s happen, we need to bound the probability of ∪Ei away from 1.

For each integer l ≥ 0 define the interval

Il =
[
ρu

(
ε 2l

)
, ρu

(
ε 2l+1

))
, where εn = |Bu(b)|.

For each α ∈ {0, 1, 2, 3} let N(l,α) be the number of i’s such that r4i+α ∈ Il. We claim that E[N(l,α)] ≤ 1/q.
Consider the case α = 0; other cases are similar. Let Nl = N(l,α) and suppose Nl ≥ 1. Let i0 be the

smallest i such that r4i ≤ Il. Then Nl ≥ t implies Xij = 0 for each i ∈ [i0; i0 + t − 2]. Recall that the
construction of the maps fij starts with f(0,j). Given the specific map f = f(i0,j), the construction of the
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maps fij , i > i0 is equivalent to a similarly defined construction that starts with f(i0,j) = f . Therefore, by
(7) (applied to this modified construction) we have

Pr[Nl ≥ t] ≤ Pr
[∑t−2

β=0 X(i0+β, j) = 0
]
≤ Pr

[∑t−2
β=0 Yβ = 0

]
= (1− q)t−1;

E[Nl] =
∑∞

t=1 Pr [Nl ≥ t] ≤ ∑∞
t=1(1− q)t−1 = 1

q ,

claim proved. For simplicity assume k = 4k0 + 1; it follows that
∑k−1

i=0 Pr[ri ∈ Il] =
∑3

α=0

∑k0−1
i=0 Pr[r4i+α ∈ Il] =

∑3
α=0 E

[
N(l,α)

] ≤ 4/q. (9)

By Claim 4.8 if ri ∈ Il then ri+1 ≤ a with conditional probability at most |Bu(a)|/|Bu(ru)| ≤ 2−l/32.
Therefore, Pr[Ei | ri ∈ Il] ≤ 2−l/32. By (9) it follows that

Pr[∪Ei] =
k−1∑

i=0

Pr[Ei] =
k−1∑

i=0

∞∑

l=0

Pr [ri ∈ Il and Ei] ≤
k−1∑

i=0

∞∑

l=0

Pr[ri ∈ Il]× 2−l/32

=
1
32

∞∑

l=0

2−l
k−1∑

i=0

Pr[ri ∈ Il] ≤ 1
8q

∞∑

l=0

2−l =
1
4q

< 1,

so some ri lands in I with at least a constant probability.

It remains to prove Lemma 4.5 about the maps g(i, j, 0).

Proof of Lemma 4.5: Let’s pause our embedding algorithm right after the map fij is chosen, and consider
the probability space induced by the forthcoming random choices. Let Xw = fij(w). First we claim that

Pr
[
g(i, j, 0)(u) ≤ r | r ≤ Xu/8

] ≥ Ω(βr), (10)

where βr = |Bu(r)|/|Bu(Xu)|. Indeed, suppose r ≤ Xu/8, let B = Bu(r) and consider any w ∈ B. Then
by (13):

Pr[w ∈ Wij ] = 1/|Bw(Xw/2)| ≥ 1/|Bu(X)| ≥ βr|B|
Pr

[
g(i, j, 0)(u) ≤ r

]
= Pr[Wij hits B] ≥ 1− (1− βr|B|)|B| ≥ 1− e−βr ≥ Ω(βr),

proving (10). Now let B = Bv(Xv/8); then by (13) any w ∈ B is included into the set Wij with probability
at most 1/B, so

Pr
[
g(i, j, 0)(v) ≥ Xv/8

]
= Pr[Wij misses B] ≥ (1− 1/|B|)|B| ≥ 1/4. (11)

Finally, let’s combine (10) and (11) to prove the claim. Let r = d/4 and suppose X ≥ 4d. Since
Xv ≥ X−duv ≥ 3d, by (11) event g(i, j, 0)(v) ≥ 3d/8 happens with probability at least 1/4. This event and
the one in (10) are independent since they depend only on what happens in the balls Bu(d/4) and Bv(3d/8),
respectively, which are disjoint. Therefore with probability at least Ω(βr) both events happen, in which case
g(i,j,0)(uv) ≥ d/8.
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4.6 A Bourgain-style proof of Lemma 4.2 for doubling metrics.

In this section we use the ideas of [10, 32] to derive an alternative proof of Lemma 4.2 for the important
special case when β is the doubling dimension. In this proof the target dimension becomes t = O(β log β),
which results in target dimension O(log2 n)(β log β) in Theorem 4.1.

Let us note that in the well-known embedding algorithms of Bourgain [10] and Linial et al. [32] any
two nodes are sampled with the same probability, i.e. with respect to the counting measure. Here use
a non-trivial extension of the Bourgain’s technique where we sample with respect to a doubling measure
transformed with respect to a given 1-Lipschitz map.

We state our result as follows:

Lemma 4.11. Consider a finite metric (V, d) equipped with a non-degenerate measure µ and a 1-Lipschitz
coordinate map f ; write fu = f(u). For every node u let

βµ(u) = 2µ[Bu(fu) ] / µ[Bu(fu/16) ].

Then for any k, t ∈ N there is a randomized embedding g into `p, p ≥ 1 with dimension kt so that:
(a) each coordinate map of g is 1-Lipschitz and upper-bounded by f ; and
(b) ‖g(u) − g(v)‖p ≥ Ω(duv/t)(kt)1/p with failure probability at most < t/2Ω(k) for any edge uv

such that
f(u)/duv ∈ [1/4; 4] and max

w∈{u,v}
βµ(w) ≤ 2t. (12)

To prove Lemma 4.2 for a metric of doubling dimension β, recall that for any such metric there exists a
2β-doubling measure µ. Plug this measure in Lemma 4.11, with t = 4β + 1 and k = O(log β); note that
βµ(u) ≤ 2t for every node u. We get the embedding in `p with O(β log β) dimensions that satisfies the
conditions in Lemma 4.2.

We’ll need the following simple fact:

If duv ≤ f(u)/8 for some edge uv, then Bu(f(u)/8) ⊂ Bv(f(v)/2) ⊂ Bu(f(u)) (13)

Indeed, letting fu = f(u) the first inclusion follows since fv/2 ≥ (fu − duv)/2 ≥ fu/8 + duv, and the
second one holds since duv + fv/2 ≤ duv + (fu + duv)/2 < fu.

Proof of Lemma 4.11: Define the transformation of µ with respect to f as µf (u) = µ(u)/2µ(B), where
B = Bu(fu/2). The coordinates are indexed by ij, where i ∈ [t] and j ∈ [k]. For each (i, j)-pair construct
a random set Uij by selecting d2iµf (V )e nodes independently according to the probability distribution
µf (·)/µf (V ). Let us define the ij-th coordinate of u as gij(u) = min (fu, d(u,Uij)).

Note that each map gij is 1-Lipschitz as the minimum of two 1-Lipschitz maps. Therefore part (a) holds
trivially. The hard part is part (b). Fix an edge uv; let d = duv. For any node w let αw(ε) be the smallest
radius r such that µf [Bw(r)] ≥ ε, and let

ρi = max[ψu(2−i), ψv(2−i)], where ψw(ε) = min[αw(ε), d/2, fw].

Claim 4.12. For each i ≥ 1 and each j ∈ [k] with probability Ω(1) we have

gij(uv) := |gij(u)− gij(v)| ≥ ρi − ρi+1.

Then by Chernoff bounds (Lemma A.1(a)) with probability at least 1− 2−Ω(k) we have

∑

ij

gij(uv) ≥
t∑

i=1

Ω(k)(ρi − ρi+1) = Ω(k)(ρ1 − ρt). (14)
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Proof of Claim 4.12: Fix i ≥ 1 and j, and note that if ρi+1 = d/2 then ρi = d/2, in which case the claim
is trivial. So let’s assume ρi+1 < d/2 and without loss of generality suppose ψu(2−i) ≥ ψv(2−i). Consider
the open ball B of radius ρi around u. Since ρi = ψu(2−i) ≤ αu(2−i), it follows that µf (B) ≤ 2−i. Now
there are two cases:

• If ρi+1 = fv then the desired event gij(uv) ≥ ρi − ρi+1 happens whenever Uij misses B, which
happens with at least a constant probability since µf (B) ≤ 2−i.

• If ρi+1 < fv then the desired event happens whenever Uij misses B and hits B′ = Bv(ρi+1). This
happens with at least a constant probability by Claim 4.14 since ρi+1 ≥ ψv(1/2i+1) ≥ αv(1/2i+1)
and therefore µf (B′) ≥ 1/2i+1, and the two balls B and B′ are disjoint.

This completes the proof of the claim.

Claim 4.13. For any node w we have αw(1
2) ≥ fw/8 and αw(1/βµ(w)) ≤ fw/16.

Proof. Let B = Bw(fw/8). By (13) for any w′ ∈ B

µ(w) / 2µ[Bw(fw) ] ≤ µf (w′) ≤ µ(w)/2µ(B),

so µf (B) ≤ 1
2 and µf [Bw(fw/16) ] ≥ 1/βµ(w).

Suppose (12) holds; let x = max(fu, fv). Then by Claim 4.13 and the definitions of ρi and ψw we have:

ρ1 ≥ max
w∈{u,v}

min(fw/8, d/2) ≥ min(x/8, d/2),

ρt ≤ max
w∈{u,v}

αw(2−t) ≤ max
w∈{u,v}

αw (1/βµ(w)) ≤ max
w∈{u,v}

fw/16 ≤ x/16.

By (14) for p = 1 it remains to show that ρ1 − ρt ≥ Ω(d). There are two cases:

• if fv ≤ 4d then ρ1 ≥ x/8, so ρ1 − ρt ≥ x/16 ≥ Ω(d).

• if fv > 4d then ρ1 ≥ d/2 and (since f is 1-Lipschitz)

ρt ≤ fv/16 ≤ (fu + d)/16 ≤ 5d/16,

so ρ1 − ρt ≥ 3d/16.

This completes the proof for the case p = 1. To extend it to p > 1, note that the embedded uv-distance is

(∑
ij gij(uv)p

)1/p
= (kt)1/p

(
1
kt

∑
ij gij(uv)p

)1/p
≥ (kt)1/p

(
1
kt

∑
ij gij(uv)

)
≥ Ω(d/t) (kt)1/p.

This completes the proof of the Lemma.

In the above proof we used the following claim which is implicit in [32] and also stated in [27]; we
prove it here for the sake of completeness.

Claim 4.14. Let µ be a probability measure on a finite set V . Consider disjoint events E,E′ ⊂ V such
that µ(E) ≥ q and µ(E′) ≤ 2q < 1/2 for some number q > 0. Let S be a set of d1/qe points sampled
independently from V according to µ. Then S hits E and misses E′ with at least a constant probability.
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Type of Embedding Our Lower Bound Original Example
All metrics into `p, p ≥ 1 Ω(1

p)(log 1
ε ) Constant-degree expanders [33]

F into `p, p ∈ (1, 2] Ω(p− 1)
√

log 1/ε Laakso fractal [31]
Growth-constrained `1-metrics into `d

1 Ω(
√

logd 1/ε) Laakso fractal [31]
F into distributions of dominating trees Ω(log 1

ε ) n× n grid [3]
All metrics into tree metrics Ω(1/

√
ε ) n-cycle [40, 18]

`2m+1
2 into `2m

2 Ω(1/
√

ε )1/m [35]

Here F is the family of doubling metrics that are induced by planar graphs.
Bounds for ε-uniform slack can be obtained by replacing

√
ε by ε.

Table 1: Embeddings with slack ε: lower bounds on distortion

Proof. Obviously, the probability that S hits E and misses E′ can only decrease if we set Pr[E] = q and
Pr[E′] = 2q. Treat sampling a given point as two independent random events: first it misses E′ with
probability 1 − 2q, and then (if it indeed misses) it hits E with probability q′ = q

1−2q ≤ 2q. Without
loss of generality rearrange the order of events: first we choose whether all points miss E′, and then upon
success choose whether at least one point hits E. These two events happen independently with probabilities,
respectively, (1− 2q)1/q ≥ 2−1/2 and

1− (1− q′)1/q ≥ 1− (1− 2q)1/q ≥ 1− e−2.

So the total success probability is at least c = (1− e−2)/
√

2, which is an absolute constant as required.

5 Lower bounds on embeddings with slack

In this section, we describe a general technique to derive lower bounds for ε-slack embeddings from lower
bounds for ordinary embeddings. For simplicity of exposition, we will first give a concrete example prov-
ing lower bounds for ε-slack embeddings into `p (which will follow from a lower bound for embedding
expanders into `p [33]). Then we provide the general technique; the bounds obtained by this technique
are given in Table 1. Let us mention that allowing arbitrary expansions is crucial to our results: if we in-
sisted that none of the pairwise distances should increase, the lower bound of Ω(1

p log n) distortion [33] for
embeddings into `p holds even with ε-slack (see Section 5.2 for more details).

Theorem 5.1. For an arbitrarily small positive ε there exists a finite metric on arbitrarily many nodes that
requires distortion Ω(1

p log 1
ε ) to embed into `p, p ≥ 1 with ε-slack.

Proof. Given an ε such that 0 < ε ≤ 1/12, let k = 1/(3
√

ε). Fix n, the number of nodes in our counterex-
ample.

We now construct a graph G on n vertices. Consider a constant degree expander graph H on k vertices.
Let (H, d) be the shortest path metric defined by H . For each vertex s ∈ H , let Ls be a path containing
n/k vertices. Attach the path Ls to s at one of its endpoints. The length of each edge of Ls is small enough
so that if δ is the length of path Ls, then δ ·D ≤ 1/2. Let the new graph be G and the shortest path metric
defined on it be (G, d). We now prove that if (G, d) can be embedded into `p with distortion D and ε-slack,
then H can be embedded into `p with distortion 4D without any slack.

Let ϕ : G → `p be the embedding of (G, d) into `p with distortion D and ε-slack. Let E denote the set
of ignored pairs, i.e. let us assume that the complement of E incurs distortion at most D. Note that ε-slack
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means that |E| ≤ εn22. We delete all the vertices that participate in more than
√

εn pairs in E. By a simple
counting argument, at most

√
εn vertices of G can be deleted. Therefore, at least one point from each path

survives. For each s ∈ H , let vs denote a survived vertex from the path Ls. We define an embedding ψ of
H into `p as ψ(s) = ϕ(vs).

We now bound the distortion of the embedding ψ by 4D. Let x, y be two vertices in H . Then vx and vy

are the survivors in Lx and Ly respectively. Note that vx and vy participate in at most
√

εn pairs in E. Since
|Ly| = 3

√
εn, it follows that there is another survivor t ∈ Ly such that neither {t, vx} nor {t, vy} is in E.

Since the distortion of the map ϕ is D, we can assume that for edge (u, v) 6∈ E,

d(u, v) ≤ ‖ϕ(u)− ϕ(v)‖p ≤ D · d(u, v).

Now we can bound ψ(xy) := ‖ψ(x)− ψ(y)‖p as follows:

ψ(xy) = ‖ϕ(vx)− ϕ(vy)‖p

≤ ‖ϕ(vx)− ϕ(t)‖+ ‖ϕ(t)− ϕ(vy)‖
≤ D (d(vx, t) + d(t, vy))
≤ D (1 + 3δ) d(x, y) ≤ 2D d(x, y).

Similarly,

ψ(xy) ≥ ‖ϕ(vx)− ϕ(t)‖p − ‖ϕ(t)− ϕ(vy)‖p

≥ d(vx, t)−Dd(t, vy) ≥ (1−Dδ)d(x, y)
≥ d(x, y)/2.

Hence 1
2d(u, v) ≤ ψ(uv) ≤ 2D · d(u, v), and so ψ is a map from H to `p with distortion 4D.

To finish the proof of the theorem, we note that a constant-degree expander on k vertices requires
Ω(log k/p) distortion to embed into `p [33].

5.1 General lower-bounding technique

The technique used in Theorem 5.1 of starting with a O(1)-degree expander Hk on k vertices, replacing each
vertex with a path on n/k vertices to get G, and for suitable k ≈ O(1/

√
ε) arguing that ε-slack embeddings

of Gn give us slack-less embeddings of Hk with (roughly) the same distortion is quite general. In fact, we
use it to obtain lower bounds on both the distortion and dimensions of embeddings into `p from similar lower
bounds for slack-less embeddings; similar results can be obtained for embeddings into trees, or distributions
of trees. We summarize these results in Table 1.

Theorem 5.2. Suppose for each k there exists a k-node metric Hk such that any embedding of Hk into `p

with L(k) dimensions has distortion at least D(k). Then for an arbitrarily small positive ε there exist finite
metrics M , M∗ on arbitrarily large number of nodes such that:

(a) any embedding of M into `p with L( 1
3
√

ε
) dimensions has ε-slack distortion Ω(D( 1

3
√

ε
)).

(b) any embedding of M∗ into `p with L( 1
3ε) dimensions has ε-uniform slack distortion Ω(D( 1

3ε)).
Moreover, if metrics {Hk} are planar (resp. Kr-minor-free, doubling, `d

p) then so are M and M∗.

Note that this result can be used to translate, e.g., the Brinkman and Charikar [12] lower bound for
dimensionality reduction in `1 into the realm of ε-slack as well.

Similarly, we provide a lower bound theorem for (probabilistic) embeddings into trees:
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Theorem 5.3. Suppose for each k there exists a k-node metric Hk such that any (probabilistic) embedding
of Hk into trees has distortion at least D(k). Then for an arbitrarily small positive ε there exist finite metrics
M , M∗ on arbitrarily large number of nodes such that:

(a) any (probabilistic) embedding of M into trees has ε-slack distortion Ω(D( 1
3
√

ε
)).

(b) any (probabilistic) embedding of M∗ into trees has ε-uniform slack distortion Ω(D( 1
3ε)).

Moreover, if metrics {Hk} are planar (resp. Kr-minor-free, doubling, `d
p) then so are M and M∗.

For instance, we can now derive a lower bound of Ω(1/
√

ε) on the distortion incurred when embedding
the n-cycle into a single tree.

The proofs of the two above theorems are based on the following lemma:

Lemma 5.4 (Master Lemma). Suppose H is a metric on k points and T is a collection of metrics on k
points, such that any embedding of H into T incurs a distortion at least D. Suppose S is a collection of
metrics such that every subset of k points in each metric in S embeds into T with distortion at most ρ.
Setting ε = 1/9k2, there exist arbitrarily large metrics that embed into S with ε-slack distortion Ω(D

ρ ).

Remark. In order to obtain lower bounds for ε-uniform slack embeddings instead of ε-slack embeddings, we
need to set ε = 1/3k instead of ε = 1/9k2; the rest of the proof remains essentially unchanged.

Before we prove Lemma 5.4, let us show how to derive the above results from it.

Proof of Theorem 5.2: Suppose {Hk} is the given family of metrics. Let us fix a large enough k such
that ε = 1/9k2 is small enough. Now in Lemma 5.4, let us set H to be Hk and T to be the collection of
metrics with k points in `p with at most L(k) dimensions. Hence, H embeds into T with distortion at least
D(k) = D( 1

3
√

ε
). We set S to be the family of metrics in `p with at most L(k) = L( 1

3
√

ε
) dimensions. It

follows that any subset of k points in any metric in S embeds into T with distortion 1. Hence, we conclude
that there exists a family of metrics, each of which embeds into `p with at most L( 1

3
√

ε
) dimensions with

ε-slack distortion at least Ω(D( 1
3
√

ε
)).

The application of Lemma 5.4 to prove the lower bounds for embeddings into trees is very similar; we
sketch it here to emphasize the general patterns, as well as the slight changes required.

Proof of Theorem 5.3: Again, we large enough k, and set ε = 1/9k2. As before, H is set to be Hk. We set
T to be the family of tree metrics on k points (or distribution of tree metrics on k points). Again, H embeds
into T with distortion at least D(k) = D( 1

3
√

ε
). We set S to be the family of tree metrics (or distribution of

tree metrics). Note that by a result of Gupta [18], any subset of k points in any metric in S embeds into T
with distortion at most 8. Now the result of Theorem 5.3 follows from Lemma 5.4 as before.

Let us now prove the Lemma 5.4: first we show how to construct a family of metrics with the desired
properties. Suppose H = (S, d) is a metric such that |S| = k. Moreover, H embeds into T with distortion
at least D. Without loss of generality, assume that the pairwise distance in H is at least 1. For each n that
is a multiple of 3k, we define a metric Ĥ with n points in the following way. These would be the family of
metrics that exhibits the lower bound for slack embeddings.

Consider a uniform line metric with point set L of size n
k such that the two terminal points are at distance

δ away from each other, where δ is small and whose value will be specified later. For each s ∈ S, we identify
s with a terminal point of a copy Ls of the line metric L. We call the augmented metric Ĥ = (V, d) with
point set V = ∪s∈SLs. If H is already in some host space X , we just need the condition that for each s ∈ S,
we can embed a copy of L of length δ isomorphically into X that identifies one end point with s. Common
metric spaces like `p certainly satisfy this condition. (Note that to avoid too many symbols, we use d for the
various metrics.) Hence, for u ∈ Lx and v ∈ Ly, |d(u, v)− d(x, y)| ≤ 2δ.
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Proposition 5.5. Let H and Ĥ be metrics defined as above. Then, (a) if H is a metric induced by a Kr-minor
free graph, then so is Ĥ , and (b) if H is a doubling metric, then so is Ĥ .

The next lemma states a crucial property of the edges that are ignored by any ε-slack embedding.

Lemma 5.6. Suppose an ε-slack embedding of some metric (V, d) ignores the set of edges E. Then, there
exists a subset T ⊆ V of size at least (1 − √ε)n such that each vertex in T intersects with at most

√
εn

edges in E.

Proof. It suffices to show that it is impossible to have a subset S ⊆ V of size greater than
√

εn such that
each vertex in S intersects more than

√
εn edges in E. Otherwise, the total number of edges ignored would

be greater than (
√

εn)2/2 > εn2/2 > ε
(
n
2

)
.

Note that for an ε-uniform slack embedding, the number of ignored edges incident on any node is at
most εn by definition; this is one place in the proof which changes when considering uniform slack.

The following lemma implies Lemma 5.4:

Lemma 5.7. Let H = (S, d) be a metric on k points. Suppose T and S are families of metrics such that H
embeds into T with distortion at least D, and every subset of k points in each metric in S embeds into T
with distortion at most ρ.

Suppose δ is small enough such that ( D
4ρ + 2)δ ≤ 1

2 . Let Ĥ = (V, d) be the metric be defined as above.

Let ε := 1/9k2. Then, Ĥ embeds into S with ε-slack distortion at least D/4ρ.

Proof. Suppose, on the contrary, ϕ is an embedding of Ĥ into S with ε-slack distortion R < D/4ρ that
ignores the set E of edges. Then by Lemma 5.6, there exists a subset T of V such that |T | ≥ (1−√ε)n and
for all v ∈ T , v intersects at most

√
εn edges in E.

For each s ∈ S, the set Ls contains n
k = 3

√
εn points and hence there exists some point in T ∩Ls, which

we call vs. We define an embedding ψ of H into S given by ψ(s) := ϕ(vs). We next bound the distortion
of the embedding ψ. Let x, y ∈ S. Since vx and vy are in T , each of them has at most

√
εn neighbors.

Observing that |Ly| = 3
√

εn, it follows that there exists a point t ∈ Ly such that neither {vx, t} nor {vy, t}
is contained in E. We can assume that for {u, v} 6∈ E, d(u, v) ≤ ||ϕ(u)− ϕ(v)|| ≤ Rd(u, v).

Hence, it follows that

‖ψ(x)− ψ(y)‖ =‖ϕ(vx)− ϕ(vy)‖
≤‖ϕ(vx)− ϕ(t)‖+ ‖ϕ(t)− ϕ(vy)‖
≤R(d(vx, t) + d(t, vy)) ≤ R(d(x, y) + 3δ)
≤R(1 + 3δ)d(x, y) ≤ 2Rd(x, y),

and similarly,

‖ψ(x)− ψ(y)‖ ≥‖ϕ(vx)− ϕ(t)‖ − ‖ϕ(t)− ϕ(vy)‖
≥d(vx, t)−Rd(t, vy) ≥ d(x, y)− 2δ −Rδ

≥(1− (R + 2)δ)d(x, y) ≥ d(x, y)/2,

where the last inequality follows from the fact that (R + 2)δ ≤ 1/2. It then follows that ψ embeds H
into S with distortion at most 4R. However, since any metric in S embeds into T with distortion at most
ρ, it follows that H embeds into T with distortion at most 4ρR < D, from which we obtain the desired
contradiction.
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5.2 Lower bounds for contracting embeddings

Let us consider contracting embeddings with slack. Formally, a contracting embedding has distortion D
with ε-slack if no pairwise distance expands and all but ε-fraction of the pairs contract by no more than D.
We show that such embeddings incur an Ω(log n) distortion in order to embed constant-degree expander
graphs into `p, p ≥ 1.

Theorem 5.8. For the shortest-paths metric of a bounded-degree expander on n vertices, distortion of any
contracting embedding into `p, p ≥ 1 is Ω(1

p log n) even if we allow slack ε < 1
2 .

Proof. Let G = (V, E) be a bounded-degree expander on n vertices, and let ρ denote its shortest path
metric. Let ϕ be a contracting embedding of this metric to `p, p ≥ 1 with distortion D and slack ε < 1

2 . Let
σ denote the metric on `p; to simplify the notation, we will denote ϕ(V ) ⊆ `p by V . Define

R(σ) =
√

σ2(V × V )/σ2(E) , where

σ2(S) =
∑

(x,y)∈S σ(x, y)2 for any set S ⊆ V × V .

First we show that R(σ) ≤ O(
√

n). The proof is exactly the same as that of Theorem 15.5.1 in Ma-
tousek [34] and works despite the fact that we allow ε · n2 pairwise distances to be as low as 0. Note
that

σ2(E) =
∑

(x,y)∈E σ(x, y)2 ≤ ∑
(x,y)∈E ρ(x, y)2 = O(n)

Now, we bound σ2(V ×V ) from below. If all n2 pairs were contracted by at most D, then we would get

σ2(V × V ) ≥ ∑
(u,v)

(
ρ(u,v)

D

)2
≥ n2 log2 n

D2

However, we need to take into account the fact that ε ·n2 pairs of vertices could have distance 0 between
them. Therefore, σ2(V × V ) is at least (n/D)2(log2 n) minus the loss due to the slack. To upper-bound
this loss, consider a pair (x, y) of nodes for which the distortion is bigger than D. The pair will contribute 0
instead of ρ(x, y)/D. Thus the loss due to the pair (x, y) is at most (log n)/D. Therefore, the total loss due
to the slack is at most ε(n/D)2(log2 n). Therefore, since R(σ) ≤ O(

√
n), it follows that D = Ω(log n).
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A Tools from Probability Theory

Here we state some tools from Probability Theory that we used in Section 4.

Lemma A.1 (Chernoff Bounds). Consider the sum X of n independent random variables on [0, ∆].

(a) for any µ ≤ E(X) and any ε ∈ (0, 1) we have Pr[X < (1− ε)µ] ≤ exp(−ε2µ/2∆).

(b) for any µ ≥ E(X) and any β ≥ 1 we have Pr[X > βµ] ≤ [
1
e (e/β)β

]µ/∆.

For a random variable X define the distribution function FX(t) = Pr[X < t]. For two random variables
X and Y , say Y stochastically dominates X (written as Y º X , or X ¹ Y ) if FY (t) ≤ FX(t) for all t ∈ R.

Lemma A.2. Consider two sequences of independent random variables, {Xi} and {Yi}, such that all Xi

and Yi have finite domains and Xi ¹ Yi for each i. Then for each k we have
∑k

i=1 Xi ¹
∑k

i=1 Yi.

Lemma A.3. Consider two sequences of Bernoulli random variables, {Xi} and {Yi}, such that variables
{Yi} are independent and

Pr[Xi = 1 | Xj , j < i] ≥ Pr[Yi = 1]

for each i. Then
∑k

i=1 Xi º
∑k

i=1 Yi for each k.

Proof. We first show that for all t ∈ [T ],

Pr

[
t∑

r=1

Xr +
T∑

r=t+1

Yr ≤ m

]
≤ Pr

[
t−1∑

r=1

Xr +
T∑

r=t

Yr ≤ m

]
, (15)

which would immediately imply the lemma. Observe that for any fixed number a (or in general any random
variable that is measurable in the σ-field generated by the random variables {Xr : r < t}), we have

Pr [Xt ≤ a|Xr, r < t] ≤ Pr[Yt ≤ a] = Pr [Yt ≤ a|Xr, r < t] .

Note that the interesting case is when a ∈ [0, 1). The inequality comes from the assumption concerning the
conditional probabilities of the sequence {Xr}, and the equality comes from the fact that Yt is independent
of the sequence {Xr}.
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Since both Xt and Yt are independent of {Yr : r > t}, the above inequality would still hold if we further
condition on the random variables {Yr : r > t}. Finally, setting a = m −∑

i<t Xr −
∑

i>t Yr, which is
measurable in the σ-field generated by J := {Xr : r < t} ∪ {Yr : r > t}, we obtain

Pr

[
t∑

r=1

Xr +
T∑

r=t+1

Yr ≤ m |J
]
≤ Pr

[
t−1∑

r=1

Xr +
T∑

r=t

Yr ≤ m |J
]

.

Taking expectation on both sides gives (15).

Lemma A.4. Consider a sequence of i.i.d. Bernoulli random variables {Yi} with success probability q. Let
Zr be the number of trials between the (r − 1)-th success and the r-th success. Then

Pr

[
k∑

r=1

Zr > 2k/q

]
≤ (0.782)k. (16)

Proof. Each Zr has a geometric distribution with parameter q, so its moment generating function is

E
[
etZr

]
=

qet

q − (1− q)et
.

Let Z =
∑k

r=1 Zr. Since Zr’s are i.i.d, it follows that E
[
etZ

]
= E

[∏
r etZr

]
=

(
E

[
etZ1

])k
.

By Markov inequality for any t > 0 we have

Pr[Z > 2k/q] = Pr
[
etZ > e2tk/q

]
≤ E

[
etZ

]
e−2tk/q ≤

(
qet

(1− (1− q)et)e2t/q

)k

.

Plugging in q = 1− 1/
√

e and t = q we have (16).
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