Efficient algorithms for line and curve segment intersection

using restricted predicates

Jean-Daniel Boissonnat* Jack Snoeyink!

October 19, 1999

Abstract

We consider whether restricted sets of geometric predicates support efficient algorithms to
solve line and curve segment intersection problems in the plane. Our restrictions are based on
the notion of algebraic degree, proposed by Preparata and others as a way to guide the search
for efficient algorithms that can be implemented in more realistic computational models than
the Real RAM.

Suppose that n (pseudo-)segments have k intersections at which they cross. We show that
intersection algorithms for monotone curves that use only comparisons and above/below tests
for endpoints, and intersection tests, must take at least Q(n\/E) time. There are optimal
O(nlogn + k) algorithms that use a higher-degree test comparing z coordinates of an end-
point and intersection point; for line segments we show that this test can be simulated using
CCW() tests with a logarithmic loss of efficiency. We also give an optimal O(nlogn + k) algo-
rithms for red/blue line and curve segment intersection, in which the segments are colored red

and blue so that there are no red/red or blue/blue crossings.

1 Introduction

All too often, a proof that a geometric algorithm is correct for the Real RAM computational
model [22] does not imply that a correct implementation will run correctly on the limited precision
arithmetic of a real computer. This fact has spurred three branches of research: First, researchers
have studied how to correctly and efficiently evaluate predicates used by geometric algorithms.
Much recent work has been devoted to combining floating point filters and exact evaluation of
predicates; exact computation is performed when the floating point filter fails to provide a certified
answer, which is usually rare. New methods have been designed for the exact evaluation of signs

of determinants and arithmetic expressions [13, 2, 7], and various exact, adaptive arithmetics [9,

“INRIA, BP 93, 06902 Sophia Antipolis, France. Jean-Daniel.Boissonnat@sophia.inria.fr Research partially

supported by ESPRIT TV LTR Project No 28155 (Galia).
TUniversity of British Columbia, Department of Computer Science, and University of North Carolina, Department

of Computer Science, CB 3175 Sitterson Hall, Chapel Hill, NC, USA, 27599-3175. snoeyink@cs.unc.edu Research
partially supported by grants from NSERC, the Killam Foundation, and CIES.

23, 24, 26|, and various floating point filters, both static and dynamic, have been experimentally
tested [8, 15, 6]. Second, researchers have investigated algorithms that give approximate results with
provable properties and guarantees on efficiency [16, 20, 25]. Third, researchers have considered
the computational requirements of the problems themselves and developed algorithms that use
“simpler” predicates. Our notion of “simpler” is found in Section 2.

It is this third branch that we follow in this paper. Following Boissonnat and Preparata [5], we
study the classic problem of segment intersection: Given a set of n segments in the plane, report
all pairs of intersecting segments. We consider this problem for sets of line segments and sets of
segments of z-monotone curves in which any pair intersects in at most one point, at which they
cross. That is, we restrict our attention to what may be called pseudo-segments. Some extensions
to segments that intersect in two or more points are possible.

Forrest [14] has said, “Mathematically, the problem of reporting intersecting segments is trivial.
Computationally, the problem is far from easy, and may be impossible to solve reliably and con-
sistently.” This comment may seem surprising, since there is a simple ©(n?) time algorithm that
is optimal in the worst case: check all pairs for intersection. If only k£ pairs intersect, however, we
might prefer an algorithm whose running time is sensitive to the output size k as well as its input
size n. A running time of O(nlogn + k) would be optimal, since Q(k) time is required to write
the output, and any algorithm that reports if any intersection occurs can solve element uniqueness,
which takes Q(nlogn) time [18].

An important question is whether a set of predicates allow an efficient algorithm. It is clear
that the choice of predicates can affect the possibility of performing a computation: For exam-
ple, if predicates are linear polynomials then it is impossible to determine whether two segments
intersect there is no algorithm for segment intersection at all. We show that efficiency is also
affected. In Section 3 we establish an Q(nv/k) lower bound for curve intersection algorithms that
use predicates only to test order and orientation of curve endpoints, whether endpoints are above
or below other curves, and whether two curves intersect (we do not allow predicates that order
intersection points). Balaban’s algorithm [3] can beat the lower bound and solve this problem
optimally for curves using an additional predicate that compares orders of intersection points and
endpoints. For line segments, we can adapt Balaban’s algorithm to achieve O(nlog?n + klogn)
time using only CCW() tests.

In Section 4 we consider the special case of the red/blue curve intersection problem, which is
to find the intersecting pairs in a set of curves that have been colored red and blue so that there
are no red/red or blue/blue crossings. In this case, we obtain an optimal O(nlogn + k) algorithm

for line and curve segments by adapting the trapezoid sweep algorithm of Chan [10].

2 Preliminaries and history of segment intersection

In this section, we discuss the predicates that our algorithms and lower bounds will be using.

2.1 Algebraic degree

We limit the computational predicates by algebraic degree. As formulated by Preparata and oth-
ers [19, 5], an elementary predicate used by an algorithm is a test of the sign of a homogeneous
multivariate polynomial whose arguments are a subset of the input variables; its degree is the max-
imum degree of its polynomial factors that are irreducible over the rationals and have non-constant
sign. For example, the commonly-used orientation test for three points in the plane is an elementary

predicate of degree 2:

I p: Dy
cCW(p, g,) = signdet |1 qu gy | = sign((gs — pa)(ry = py) = (e = p2) (9 = py))-
I ry my
J
a‘ d e g h

Figure 1: Predicates a h

A predicate, which is a boolean combination of a constant number of elementary predicates, has
degree equal to the maximum degree of its elementary predicates. The degree of an algorithm is
the maximum degree of its predicates, and the degree of a problem is the minimum degree of any

algorithm that solves the problem.

2.2 Predicates for segment intersection

Algorithms for computing the intersections of line segments or monotone curve segments typically
use a subset of the following predicates, which are all to be found in Figure 1.

a. x-order of endpoints: Compare the z-coordinates of endpoints of two curves.

b. endpoint above/below curve: Given a monotone curve segment s and an endpoint p whose =
coordinate lies between the z-coordinates of s, determine if p is above or below s.

c. curve intersection test: Determine whether two monotone curve segments intersect at all. If it
is known that the curves cross an odd number of times, then intersection can be tested using
the z-order and above/below predicates.

d. orientation CCW(): Given three points, p, ¢, and r, determine if Apgr has a counter-clockwise
orientation. This predicate is typically used to implement above/below or intersection tests

for line segments.

e. x-order of endpoint & intersection point: Compare the = coordinates of an endpoint and an
intersection point of two curves. This endpoint/intersection order test seems to be important
for efficiency of segment intersection algorithms.

f. entersect in slab: Determine if the intersection of two curves occurs in the vertical slab defined
by endpoints of two curves. Directly reducible to the previous endpoint/intersection order
test.

g. order of intersections on curve: Given a monotone curve s, determine the order of partic-
ular intersection points with curves ¢ and u. This predicate is required in order to build
arrangements of curves.

h. z-order of intersections: Compare the z-coordinates of a pair of intersection points. This

predicate is required in order to build trapezoidations of curves.

2.3 Degree of the segment intersection problem

Boissonnat and Preparata [5] have done an extensive study of the degrees of predicates and algo-
rithms for segment intersection in the case where line segments are specified by the coordinates of
their endpoints. We summarize their findings in this subsection, then consider their extension to

circular arcs as an example.

Algorithm Degree O(-) time Space Solves

check pairs 2 n? n seg intersection
Bentley-Ottmann [4] 5 (n+k)logn n trapezoidation
Chazelle-Edelsb. [12] 4 nlogn + k n+k arrangement
Boiss.-Preparata [5] 3 (n+k)logn n seg intersection
Balaban [3] 3 nlogn + k n seg intersection
this paper 2 nlog?n + klogn n line seg inter.
Boiss.-Preparata [5] 2 (n+k)logn n red/blue seg int.
this paper 2 nlogn+ k n red/blue seg int.

Table 1: Degrees of selected line segment intersection algorithms

Since the intersection test can be reduced to the evaluation of degree 2 polynomials (e.g., by
four orientation tests), the algorithm that checks all pairs demonstrates that the line segment
intersection problem has degree 2.

Bentley and Ottmann’s sweep algorithm [4] uses the predicates for endpoint z-order (degree 1),
endpoint/intersection order (degree 3), and intersection z-order (degree 5). Chazelle and Edels-
brunner’s algorithm [12] avoids the last, but does use the predicate for intersection order along

each segment (degree 4). These two algorithms actually solve harder problems: Bentley-Ottmann

can produce a trapezoidation of the line segments, which is a degree 5 problem, and Chazelle-
Edelsbrunner can produce the arrangement of segments, which is a degree 4 problem [5].

Boissonnat and Preparata [5] describe a degree 3 “lazy sweep” algorithm that uses at most the
endpoint/intersection order predicate; they observe that Balaban’s optimal algorithm, which we
describe in detail in Section 3.2, uses the intersect in slab predicate of the same degree. Table 1
lists degrees, running times, and working space requirements (excluding output size) for these
algorithms.

The general algorithms of Bentley and Ottmann, of Balaban, and of Boissonnat and Preparata
can compute the intersections of monotone curves that are pseudo-segments; it suffices to adapt
the same predicates to curves. When the curves may intersect in more than one point, we can
still adapt the algorithms of Bentley and Ottmann (or of Balaban) to perform a linear number of
additional intersection tests during the sweep to make sure that no even parity intersections are
missed.

As would be expected, predicates for curves have higher
degree. To be more precise, we must specify the curves /\ '/_\
and their input representation. Table 2 lists bounds on the -/ m
degrees of various predicates for line segments, as well as &
for three simple examples of representations of monotone Figyre 2: Representations for arcs
circular arcs that are illustrated in Figure 2.

1. semi-circles defined by center, radius, and one bit to denote upper or lower half,

2. arcs of circles defined by center, radius, the x coordinates of endpoints, and one bit to denote

upper or lower arc, and

3. arcs of circles defined by two endpoints and a middle point.

The proofs can be found in the appendix.

Line Semi- Circle/ 3-point

Predicate test Segments Circles z-range Arc
a. z-order of endpoints 1 1 1 1

b. endpoint above/below curve 2 2 2 4

c. curve intersection test 2 2 4 12
e. z-order of end & intersection 3 4 4 12
g. order of intersections on curve 4 6 6 16
h. z-order of intersections) 12 12 44

Table 2: Degrees of predicates for circular arcs under three different representations

3 General segment intersection

Boissonnat and Preparata [5] asked whether there is an O(nlogn+ k) algorithm of degree 2 for line
segment intersection. We show that there is none for curve segments by giving a lower bound of
Q(nVk) in Section 3.1. Then, after describing Balaban’s optimal, degree 3 algorithm in Section 3.2,
we show in Section 3.3 that for line segments, Balaban’s algorithm can be made degree 2 with a
logarithmic loss in efficiency.

Under restricted predicates, it can be helpful to consider how
the input curves can be deformed without changing the results
of any predicates. If an algorithm uses only the predicates for
endpoint orientation and whether endpoints are above or below

a curve, then the dashed curve segment in Figure 3 is equivalent

to the line segment » an algorithm cannot distinguish between
them. . .
Figure 3: Witness p for r N s;
Since the intersection point does not have a definite location
when the segment r is deformed, we define the witness for the intersection of r and s to be the
leftmost endpoint p that certifies that the order has changed from the initial order. In Figure 3,
endpoint r is initially below segments s; and sy, which can be checked by applying the above/below
test to curves and left endpoints. Point p is the witness for the intersection of r with sy, since r is
above and s; is below p. The right endpoint of r is the witness for intersection with ss.
Under different terminology, witnesses also play an important role in Boissonnat and Preparata’s
lazy sweep [5]. When a point p is the next endpoint to be processed, then they call prime the pairs

of consecutive segments having p as witness.

3.1 A lower bound for curves

In this subsection, we give a lower bound for algorithms that must compute the intersection of
curves from arbitrary computational tests on curve segment endpoints, tests whether an endpoint
of one curve is above or below another curve, and tests that determine whether, but not where,
two curves intersect. Using the deformability of the curves, it is not hard to show that any such
algorithm requires Q(nvk) tests even to count the number of intersections. (Mention of intersection
tests in the following theorem is actually redundant for pseudo-segments, since we can implement
the intersection test with a contant number of above/below predicates.)
Theorem 1 Any algorithm that counts all k intersecting pairs among a set of n segments and
uses only order and orientation tests on endpoints, above/below tests for endpoints and curves, and
intersection tests for curves, requires Q(n\/E) time.

Proof: Suppose that the algorithm asks for test results from an adversary. We describe the

behavior of an adversary that holds n +m curves and answers in such a way that the algorithm

must ask nm queries to determine whether there are (%)) or (%) 4 1 intersections.
The adversary fixes all the curve endpoints so that
m long curve segments that all cross each other pass

from left to right above n shorter curve segments, as in

Figure 4. The algorithm can perform whatever com- "

putation it wishes on endpoints. For above/below or

intersection tests involving two long segments, the ad- ST
versary reports the order or intersection. For queries n

involving one or two short segments, the adversary
Figure 4: The n + m curves of the

adversary
Because a reported intersection says nothing about the coordinates of the intersection, if

reports “no intersection.”

the algorithm fails to ask one of the nm queries about the intersection of a short segment s
with a long curve ~, then the adversary can deform the arrangement of long curves so that ~
has its minimum gy coordinate immediately above the upper endpoint of s. Without changing
the intersection patterns or witnesses for any other curves, the adversary has the freedom to

make 7 intersect s or not, so the algorithm cannot have the correct number of intersections. =

Chan, in private communication, [11] has given a randomized algorithm that will run in expected

O(nvklogn) time.
3.2 Balaban’s algorithm

In 1995, Balaban gave a clever algorithm for the line segment intersection problem [3]. He first
described an algorithm that runs in O((n + k)logn) time and uses O(n) space, then used ideas
from fractional cascading to remove the logn factor from the k. We give a high-level description
of his first algorithm, and a more detailed count of the types of predicates that it uses.

Balaban applies his algorithm to a slab consisting of all points with = coordinates in the half-
open interval (a,b], where a and b are = coordinates of endpoints of segments. Given a set S of
segments that intersect the slab and whose vertical order along the line = a is known (for those
segments that end to left of the slab), he computes all intersections in the slab and the order of the
segments along the line z = b.

Segments that intersect both lines & = a and x = b are said to span the slab. If all the segments
span the slab, then we have a portion of an arrangement of lines, and the algorithm can find the
intersections and order along = = b by a sorting procedure that will be given in detail in Lemma 3.
Thus, we first focus on the more interesting case in which some segments end inside the slab.

A subset A C S of the segments spanning a slab is called a staircase if no two of the segments
of A intersect, and A is maximal any other segment of S spanning the slab intersects a segment

of A. To find a staircase, Balaban uses a simple greedy procedure that he calls Split(). Figure 5

illustrates segments spanning a slab, and the staircase found by Split().
Lemma 2 Given the segments S that intersect a slab (a,b], and the order of those that intersect

the line x = a, a staircase can be found by O(|S|) endpoint/intersection order tests.

Figure 5: Staircase found by Split()

Proof: Consider the segments that span slab (a,b] in order of increasing y coordinate along
the vertical line x = a. We create a staircase that contains the first segment, then repeatedly
test whether the next spanning segment s intersects the top segment in the staircase within the
slab. If not, then add s to the staircase.

It should be clear that the segments added are disjoint If s does not intersect the top
segment in the slab, then it does not intersect any segment in the slab. They also form a
maximal set any segment not added intersects at least one segment in the staircase. Since we
have assumed that endpoints define slab boundaries, we may use predicates that compare z-
coordinates of endpoints to other endpoints and intersection points to determine which segments

span the slab and check for intersection with the top segment in O(1) time per segment. m

Balaban’s algorithm recursively finds intersecting pairs among the segments not in the staircase.
It cuts the slab into two at the median coordinate of endpoints in the slab. Recursively finding
the intersections in the left slab also produces the order along the cutting line. This allows the
algorithm to recursively find the intersections in the right slab, which in turn gives the order of
segments along the line x = b. The segments of the staircase can be merged into this order.
Lemma 3 Let S be set of segments intersecting slab (a,b] and S’ be a staircase for (a,b] such that
there are k' intersecting pairs with a segment from each of S and S’. If the order of all segments
intersecting © = a 1s known, and, in each set, the order of segments that intersect x = b s known,
then the intersections between S and S’ and the merged order along x = b can be found using
O(|S]log |S'| +|S| +|5'|) above/below tests and O(]S|+ |S'| + k') endpoint/intersection order tests.
Proof: Endpoints of S can be located in the staircase by binary search using above/below tests.

For any segment with both endpoints in the slab, we report intersections with every staircase

segment between the two endpoints. We can do the same for segments that intersect x = a but
not x = b, since we know the order along = = a.

For segments that intersect x = b, we must find the merged order and intersections. This
is quite easy to do in O(|S| + |S'| + k') operations. First, merge S and S’ using the ordering
along x = a or of endpoints in the slab. This will be the correct y-order along = = b if there are
no intersections (k' = 0), and it can be checked by asking whether adjacent segments intersect
in the slab using endpoint/intersection z-order tests. Whenever an intersection is found, it is
reported, and the intersecting pair are swapped in the y-order and new adjacencies are tested.
This produces the correct order along x = b by a sort algorithm whose running time is linear

in |S| + |5’ plus the number of inversions, which is the number of intersections, k'. m

Theorem 4 Balaban’s algorithm applies O(nlog?n) above/below tests and O(nlogn+k) endpoint/

intersection order tests.

Proof: Consider the recursion tree in which each node corresponds to a recursive call for a
particular slab. The recursion tree splits the endpoints in a balanced fashion, and thus has
depth O(logn).

We can account for above/below tests that arise in the merge (Lemma 3) by charging them
to endpoints. Each of the 2n endpoints appears in the slab of at most one node per level, where
it is charged for O(logn) tests, for a total of O(nlog?n).

Endpoint /intersection order tests from splitting and merging (Lemmas 2 and 3) can be
charged to intersections and segments. Each intersection point appears as a charge in the
merge (Lemma 3) in at most one node: The nodes whose slabs contain intersection point g
form a path from root to leaf; the charge for ¢ is applied either at the leaf, or in the first node
where one of the segments defines ¢ joins the staircase—once a segment appears in a staircase
at a node, it does not appear in a subtree of that node, so g cannot be charged twice.

Each segment s appears in O(log n) nodes where s ends in the corresponding slab, in O(logn)
nodes where s spans the slab but does not span the parent, and in nodes where s spans the
slab and the parent, because it intersects a segment in the staircase of the parent. Thus,
the total number of endpoint/intersection tests charged against intersections and segments is

O(nlogn+k). =

We can see that Balaban’s algorithm is degree 3 for line segments; it makes heavy use of the
predicate for comparing x coordinates of endpoints and intersection points to determine whether
intersection points occur in the slab of a node. It can apply to curves as well as line segments if we

simply provide correct implementations of the predicates.

3.3 An output-sensitive, degree-2 algorithm for segments

The lower bound of Section 3.1 shows that Balaban’s algorithm cannot be modified to find the
intersections of pseudo-segments without the predicate for endpoint/intersection order. We were
surprised to find that it can find the intersections of segments using only the degree-two CCW() test
and with a logarithmic loss of efficiency. The key observation is that the lower-bound adversary can
use the flexibility of the pseudo-segments to force the algorithm to explicitly obtain “no” answers
to all intersection tests. With line segments, a group of “no” answers can be obtained by using
CCW() tests to form convex hulls of endpoints and then testing tangents to the hulls. We describe

this modification in this section.

Figure 6: Convex hulls used by Split()

We can conceptually deform the curves to push intersections to the right without crossing
endpoints. This deformation preserves the witness for each intersection. Figure 6 shows the defor-
mation applied to the slab of Figure 5. Notice that this is equivalent to assume that two segments
“intersect in a slab” if and only if

1. they intersect and

2. the witness belongs to the slab.

We assume that for a slab (a, b] the vertical order received along = = a and produced along x = b
are the orders of the deformed curves. We must modify the split and merge operations to respect
this new order.

For Split(), we again consider the segments spanning the slab in increasing order and start by
adding the first segment s to the staircase; s will always denote the highest segment in the staircase.

To keep track of potential witnesses in a slab, we maintain two convex hull structures: a deletion-
only hull structure A [17] that contains all endpoints in the slab above s, and an insertion-only hull
structure B [22], that contains all endpoints below s. (It is sufficient to store the lower hull for A

and the upper hull for B.)

10

A spanning segment t that enters the slab above s has a witness to intersection with s in the
slab if and only if a point of B lies above t. It is sufficient to test one point the vertex of the hull
B whose tangent is parallel to t—and this test point can be found on the hull in O(logn) time.

If there is no witness, then ¢ can be added to the staircase. We remove the points below ¢ from
A by repeatedly deleting the vertex of A with tangent parallel to ¢ and insert these points into
B. Then segment t becomes the new s. This completes the Split() operation; the final hulls are

shaded in Figure 6.

Lemma 5 Given the segments S that intersect a slab (a,b], and the order of those that intersect

the line x = a, we can compute a staircase using O(|S|logn) CCW() tests.

We employ the convex hulls A4 and B again to find the intersections of the staircase with the
remaining segments and determine the ordering along the line z = b. Notice that the convex hulls
have already solved problem of locating the endpoints in the slab in the staircase. Furthermore, for
segments whose right endpoint is in the slab, knowing the endpoint location and the order along
the line x = a is sufficient to find all intersections. We therefore assume that we have a staircase in
which we have located the left endpoints of segments and we want to find their order as they cross
the line z = b.

Recall that we cannot determine the true order, but want the order consistent with moving
intersections to the right while respecting witnesses and the monotonicity condition. Fortunately,
this is easier than it sounds. We use two symmetric passes to find intersections; one for segments
“going up the staircase” and the second for segments “going down.” To go up, build the lower
hull A of points above the lowest segment s of the staircase, and test each segment ¢t whose left
endpoint is below the stair s to see whether any point of A is also below ¢. The answer is yes if
and only if s and ¢ intersect in the slab; if they intersect then we can exchange their order along
the line = b. Thus, in O(logn) time for each segment and each intersection discovered, we obtain
the intersections and the order.

Lemma 6 Let S be a set of segments intersecting slab (a,b] and S’ be a staircase for (a,b] such that
there are k' intersecting pairs with a segment from each of S and S'. If the order of all segments
intersecting T = a 1s known, and, in each set, the order of segments that intersect x = b is known,

then the intersections between S and S' and the merged order along x = b can be found using
O((|S] + |S'| + k') logn) CCW() tests.
Theorem 7 Balaban’s algorithm can be modified to solve the line segment intersection problem

using O(nlog?n + klogn) CCW() tests.

Proof: As in the proof of Theorem 4, we account for the tests from split and merges by charging
them to endpoints and segments in the recursion tree. We describe only the modifications.
Each endpoint is now charged for convex hull insertion and deletion in each of the O(logn)

slabs that contain it. The total cost of convex hull operations is bounded by O(nlog? n).

11

Because we have replaced each of Balaban’s constant-time “intersection-in-slab” test by a
tangent computation, each segment and intersection is now charged O(logn) instead of O(1).

Thus, the total number of tests in the algorithm is O(nlog?n + klogn). m

Balaban was able to obtain an optimal algorithm by shaving a factor of logn off the charge
to endpoints by using the location of endpoints in slabs to help the location in their parents.
Unfortunately, our extra logarithmic factor enters also on the charges to segments; it is not clear

to us how to remove it.

4 Red/blue curve intersection

An important special case of the segment intersection problem is the red/blue segment intersection,
in which the input is given as two sets of curves, one red and one blue, such that there are no
red/red or blue/blue crossings. When the curves are pseudo-segments, having at most one crossing
per pair, we can obtain an optimal O(nlog n+k) running time by modifying Chan’s trapezoid-sweep

algorithm [10].

4.1 Chan’s algorithm

Chan’s algorithm for red/blue segment intersection [10] works as follows. First, compute a trape-
zoidation of the blue segments and the red endpoints. That is, compute the decomposition of the
plane that results from extending vertical segment upwards and downwards from every red and
blue endpoint to the first blue segment. This can be done in O(nlogn) time by a standard plane
sweep that keeps track of the ordering of blue segments crossing a vertical line as it sweeps across
the plane.

Next, sweep over the trapezoids, where the sweep front is the boundary between those trapezoids
that are entirely to the right of the vertical line x = z, and those that contain some point with
x-coordinate at most =5 (shaded in Figure 7). During the sweep, maintain the invariant that all
red /blue intersections have been reported for red segments to the left of the sweep front, up to the
first (leftmost) intersection with the sweep front. In Figure 7, the intersections for dashed portions
of the red segments have not been reported; this includes where the lowermost red segment recrosses

the front.

12

The sweep front changes when x4 reaches the left side
of a trapezoid. We re-establish the invariant by tracing
any red segment that enters this trapezoid (whether from
the top, bottom, or left side) through the trapezoidation
until the red segment ends or reaches the sweep front. Seg-
ments that enter or leave through the top and bottom

can be charged to intersections; segments that enter at

left and leave at right can be considered as a group. The

endpoint /intersection order test is sufficient to determine

where a segment enters or leaves a trapezoid. ‘ —

As its data structures, Chan’s algorithm needs only two . . .
Figure 7: Sweeping trapezoids;

“blue” segments are darker
ordered along sweep line x = x4 or, equivalently, along the front. This makes his algorithm

ordered lists, one of trapezoids and one of red segments,

relatively easy to program, and causes it to perform considerably better than Bentley-Ottmann [4]
or hereditary segment trees [21] on practical data [1]. It also works for curve segments where
more than one intersection point is allowed, provided the endpoint/intersection order test has been

implemented correctly.

4.2 Eliminating the test for endpoint/intersection order

With only above/below tests, it is impossible to de-
termine where red segments enter and leave the trape-
zoids on the front. Figure 8 shows a deformation of the
four red curves from Figure 7 that is consistent with the
above/below tests on endpoints, even though the curves
cross different sets of trapezoids. Once again, we must use
endpoints as witnesses of intersection.

Conceptually deform the red curves, while respecting

monotonicity and above/below tests, so that all intersec-

tions occur as far to the right as possible. This is how the | —
deformation of Figure 8 was chosen. Then sweep with a
modified invariant: that intersections with a red segment Figure 8: Push intersections to right
whose witnesses are in or behind the sweep front have been reported, up to the first chance for the
segment to leave the sweep front.

To maintain the invariant, our algorithm maintains the ordered list of blue segments that
intersect the sweep line x = x9, and, for each trapezoid on the front, a bundle of the deformed red
segments that have entered that trapezoid from the left. The blue list supports logarithmic-time

insertion and deletion. Bundles support logarithmic-time insertion, deletion, and binary search for

13

a point on the sweep line (with constant time if the point is above or below all segments of the
bundle) and split and merge in time proportional to the size of the bundle split off or merged, with
a maximum of logarithmic time. Both lists and bundles can be implemented as standard balanced
search trees.

Our algorithm maintains pointers between adjacent bundles and blue segments, and assumes
that each red segment can discover its bundle in logarithmic time. In Chan’s original algorithm,
bundles and their pointers were located when needed by searching lists of red and blue segments; we
find it easier to establish correctness for sweeping deformed red curves if the algorithm maintains

bundles explicitly.

Theorem 8 The red/blue segment intersection problem for x-monotone pseudo-segments can be

solved in optimal O(nlogn + k) time using endpoint x-order and above/below tests.

Proof: As noted in the previous section, work must be performed to re-establish the invariant
when, and only when, the sweep line reaches a new trapezoid that is, when it reaches an
endpoint of a segment. We can assume, by using y coordinates to break ties in x coordinates,
that if segments begin or end at the same z coordinate, then they begin or end at the same

point. Thus, we distinguish cases by the color of this endpoint.

Red endpoint r: At a red endpoint one trapezoid, 7, ends and another, 7/, begins. Also, some
red segments may end at r and others may begin.

Let rg and rz denote the highest and lowest red segments ending at r. If the bundle for rg
is above 7, then rg and all segments between ry and 7 must be traced through blue segments
below until they enter 7. We can split the bundle of rg, collect all bundles below 77, and merge
into the bundle for 7—this work can be charged to red/blue intersections that are discovered.
On the other hand, if the bundle for rp, is below 7, then 7, and all segments between rp, and 7
must be traced through blue segments above in a similar manner.

Finally, red segments ending at r can be deleted, and those beginning at r can be inserted.
The total time for data structure manipulation is proportional to the number of intersections

detected plus O(logn) times the number of segments beginning and ending.

Blue endpoint b: At a blue endpoint where 7 blue segments end and j begin, we have i 4+ 1
trapezoids end (all but two of which are triangles) and j 4+ 1 trapezoids begin (again, all but
two are triangles).

Let 7 denote the ending trapezoid whose upper right vertex is not b, and let 7, denote the
ending trapezoid whose lower right vertex is not b. Note that 7y = 77, if blue segments start,
but do not end at b. By binary search on the bundles for all trapezoids, we can find which
bundle to split by the point b, and then split it. If this bundle is below 74, then it and bundles
above are merged into 7 and red/blue intersections are reported. Similarly, if this bundle is

below 77, then bundles are merged into 77, and intersections are reported.

14

Next, blue segments ending at b are deleted and those starting at b are inserted into the
blue list. If no blue segment starts at b, the bundles for 77 and 77, are merged.

Searching, and splitting and merging bundles for 77 and 77, take O(logn) time. All other
splitting and merging can be charged to intersections reported.

By induction, we can show that the invariants are correctly maintained. The total time is

O(nlogn+k). m

4.3 Difficulties with red/blue curves

Since the modification above treats red segments as deformable curves, it should be no surprise

that it works for pseudo-segments. When a pair of red and blue curves can intersect in more than

HE

@ (b) ©

one point, there are additional complications.

Figure 9: No witness

The primary difficulty is how to define a deformation of the red curves that moves intersection
points to the right. Figure 9(a) illustrates that with two crossings the intersection can appear
before or after another curve’s endpoints without changing above/below relationships. Since many
short curves may come between two longer, intersecting curves as in (b), there is no simple witness

that limits how far an intersection can move.

5 Conclusions and open problems

We have shown that endpoint orientation tests, above/below tests, and intersection tests are not
sufficient to give efficient, output-sensitive algorithms for the general problem of curve segment
intersection, although they are sufficient to give an O(nlog?n + klogn) time algorithm for finding
the k intersections of n line segment. In the red/blue case—where curves are colored red or blue
and there are no red/red or blue/blue crossings the k intersections for n line segments or n curve
pseudo-segments can be found in optimal O(nlogn + k) time.

Some open problems remain.

1. Is the logarithmic loss in efficiency necessary, or is there an optimal O(nlogn + k) algorithm

for line segment intersection using degree 2 predicates?

15

2. Is there an algorithm that achieves ©(nv/k) for curve segment intersection using only endpoint
orientation, above/below, and intersection tests? Chan [11] has recently communicated an
algorithm that achieves O(n/klogn).

Is there an efficient algorithm for red/blue curve segment intersections when pairs of curves
may intersect in more than one point, using only endpoint orientation, above/below, and

intersection tests?

A Establishing degree bounds for curves

In this appendix, we give the computations for the degree bounds listed in Table 2 for predi-
cates for line segments and for the three example representations of monotone circular arcs from
subsection 2.3 that are illustrated in Figure 2.

In all three representations of circular arcs, the x coordinates of endpoints are represented in

the input, so comparing the z-order of endpoints is a degree 1 predicate.

When a circle is represented by center (g, %) and radius r, its standard equation is
2 2 , a’ b
r°+y° =axr+by+ (r —Z—Z):am—l-by—c. (1)

When a circle is represented by three points, p = (2p,yp), ¢ = (24,y,) and s = (xy,ys), the

coefficients a, b and ¢ are the solutions of the following system of three linear equations

Tp Yp 1 a mf,-l—yf,
Tqg Yq 1 = .rg—l—yg
Ts Ys 1 —c z2 + y?
and we have
X rz:lz,—i-yé yp 1 | rz:lz,—i-yé 1
« = 5 a:g—i—yg yg 11, b:B Tq :cg—i-yg 1],
oty ys 1 rs x5 +y; 1
(2)
1 Tp Yp x;%"'yp% Tp Yp 1
c = "D | Ta Y mg—l—yg , with D=1 2, y, 1
Ty ys T3 +Y; zs ys 1

It follows from Equations (1) and (2) that the incircle predicate that decides whether a point

lies inside a circle has degree 2 when the circle is defined by its center and its radius, and degree 4

if it is defined by three points.

To decide if a point A is above or below an arc 7, we first test if the point lies inside the

circle 7 supporting . If it does, then we can determine above or below, otherwise we compare the

16

y-coordinates of A and the center of 7. Thus, the degree of this predicate is again 2 when the circle
? is defined by its center and its radius, and 4 if it is defined by three points.
Consider now checking if two circles C; and Cy intersect. Subtracting the equations for two

circles in standard form gives a line, called the chordal line of the two circles, whose equation is
(b1 —b2)y = —(a1 —az)x +c1 — ca. (3)

Using Equation (3), we can eliminate the y variable in one of the equations of the circles (1). We

then obtain a univariate polynomial of degree 2 in =, namely P(z) = Az? 4+ Bx + C where

A = (a1 — (1,2)2 + (bl — b2)2
B = (b1 - b2) ((lle — (I,le) - 2((11 — (1,2)(61 — 62) (4)
C = (Cl - 62)2 + (bl - b2)(b162 — bgcl)

The two circles intersect if and only if the discriminant A = B? — 4AC of P(z) is positive. Easy
computations show that

A = (bl — b2)2 ((ale — a2b1)2 — 4((11 — (lg)((hCQ — (1201) — 4(b1 — bz)(blcg — b2C1) — 4(01 — C2)2) .

It follows that evaluating the sign of A is a degree 2 computation when the circles are defined by
centers and radii, or a degree 12 computation when the circles are defined by three points.

Consider now checking if two (monotone) circle segments ; and -9 intersect, which can only
happen if the supporting circles 71 and 79 intersect. Let I and J be the intersection points of
those circles. If the two endpoints Ay and B; of 7, lie on opposite sides of the chordal line H of
71 and 79, 71 contains either I or J. Otherwise, if v; is an upper arc, 1 contains both I and J or
none of them depending whether the y-coordinate of Ay is below or above L. The case of a lower
arc is similar. Since the same discussion can be applied to v2, we conclude that the degree of the
intersection predicate for circle segments is the same as the degree of the intersection predicate for
circles.

We next evaluate the degrees of the predicates for endpoint/intersection order and intersection
z-order. Consider two intersecting circles. The roots of P(x) = 0 are the x-coordinates of the
intersection points of the circles. It then follows that sorting the z-coordinate zp of an endpoint
with respect to the z-coordinates of the intersection points reduces to evaluating the signs of
(Az% + Bz + C) and (2Azp + B). Sorting the z-coordinates of the intersection points of two

pairs of circles reduces to evaluating the sign of

A(=B' +V/B? —4A4/C") — A'(=B + V/B? — 4AC).

By squaring twice, it can be seen that this is equivalent to evaluating the sign of

((AB' — A'B)” — A>(B” — 4A'C") — A*(B? — 4AC))° — 4A”A” (B> — 4AC)(B” — 4A'C"),

17

which can be rewritten as

16424 ((AC' — A'C)? ~ (AB' —~ A'B)(BC' - B'C)).

Equations (4) show that, when circles are represented by center and radius, P(z) has integral

coefficients A, B, C of degrees 2, 3, and 4, respectively. It follows that the degree of the end-

point/intersection predicate is 4 and that the degree of the intersection/intersection predicate is

12. When circles are represented by three points, the degrees of A, B, C' become 10, 11 and 12

respectively, and the degree of the endpoint/intersection and intersection/intersection predicates
are 12 and 44.

To order the intersections along one circle segment, we decide whether the two corresponding

intersection lines cross inside the circle or outside. This takes degree 6 or degree 16.

References

1]

2]

D. S. Andrews et al. Further comparison of algorithms for geometric intersection problems.
In Proc. 6th Internat. Sympos. Spatial Data Handling, pages 709-724, 1994.

Francis Avnaim, Jean-Daniel Boissonnat, Olivier Devillers, Franco P. Preparata, and Mariette
Yvinec. Evaluating signs of determinants using single-precision arithmetic. Algorithmica,
17(2):111-132, 1997.

Ivan J. Balaban. An optimal algorithm for finding segment intersections. In Proc. 11th Annu.
ACM Sympos. Comput. Geom., pages 211 219, 1995.

J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersec-
tions. IEEE Trans. Comput., C-28(9):643-647, September 1979.

Jean-Daniel Boissonnat and Franco P. Preparata. Robust plane sweep for intersecting seg-
ments. Technical Report RR 3270, INRIA Sophia Antipolis, September 1997. http://
www.inria.fr:80/RRRT/publications-eng.html.

Hervé Bronnimann, Christoph Burnikel, and Sylvain Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry. In Proc. 14th Annu. ACM Sympos. Comput.
Geom., pages 165—-174, 1998.

Hervé Bronnimann, loannis Emiris, Victor Pan, and Sylvain Pion. Sign determination in
Residue Number Systems. Theoret. Comput. Sci., 210(1):173 197, 1999. Special Issue on Real
Numbers and Computers.

C. Burnikel. Ezact Computation of Voronoi Diagrams and Line Segment Intersections. Ph.D
thesis, Universitat des Saarlandes, March 1996.

Christoph Burnikel, Jochen Konnemann, Kurt Mehlhorn, Stefan Naher, Stefan Schirra, and
Christian Uhrig. Exact geometric computation in LEDA. In Proc. 11th Annu. ACM Sympos.
Comput. Geom., pages C18 C19, 1995.

18

[10]

[14]

[15]

[16]

[17]

[18]

[19]

[24]

[25]

[26]

T. M. Chan. A simple trapezoid sweep algorithm for reporting red/blue segment intersections.
In Proc. 6th Canad. Conf. Comput. Geom., pages 263 268, 1994.

Timothy M. Y. Chan. private communication, August 1998.

Bernard Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments
in the plane. J. ACM, 39(1):1-54, 1992.

K. L. Clarkson. Safe and effective determinant evaluation. In Proc. 88rd Annu. IEEE Sympos.
Found. Comput. Sci., pages 387 395, October 1992.

A. Robin Forrest. Invited talk on computational geometry and software engineering. 2nd
Annu. ACM Sympos. Comput. Geom., 1986.

S. Fortune and C. J. Van Wyk. Static analysis yields efficient exact integer arithmetic for
computational geometry. ACM Trans. Graph., 15(3):223-248, July 1996.

Leonidas J. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust algorithms
from imprecise computations. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 208

217, 1989.

J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. BIT,
32:249 267, 1992.

D. T. Lee and F. P. Preparata. Computational geometry: a survey. IEEE Trans. Comput.,
(C-33:1072-1101, 1984.

Giuseppe Liotta, Franco P. Preparata, and Roberto Tamassia. Robust proximity queries: an
illustration of degree-driven algorithm design. In Proc. 15th Annu. ACM Sympos. Comput.
Geom., pages 156-165, 1997.

Victor Joseph Milenkovic. Verifiable Implementations of Geometric Algorithms Using Finite
Precision Arithmetic. PhD thesis, Carnegie Mellon University, Pittsburg, Penn., 1988.

L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment intersections. CVGIP:
Graph. Models Image Process., 56(4):304-311, 1994.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, New York, NY, 1985.

D. Priest. On properties of floating point arithmetics: numerical stability and the cost of
accurate computations. Ph.D. thesis, Dept. of mathematics, Univ. of California at Berkeley,
1992.

Jonathan R. Shewchuk. Robust adaptive floating-point geometric predicates. In Proc. 12th
Annu. ACM Sympos. Comput. Geom., pages 141-150, 1996.

K. Sugihara and M. Iri. A robust topology-oriented incremental algorithm for Voronoi dia-
grams. Internat. J. Comput. Geom. Appl., 4(2):179 228, 1994.

C. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl., 7(1):3-23, 1997.

19

