
E�cient algorithms for line and curve segment intersectionusing restricted predicatesJean-Daniel Boissonnat� Jack SnoeyinkyOctober 19, 1999AbstractWe consider whether restricted sets of geometric predicates support e�cient algorithms tosolve line and curve segment intersection problems in the plane. Our restrictions are based onthe notion of algebraic degree, proposed by Preparata and others as a way to guide the searchfor e�cient algorithms that can be implemented in more realistic computational models thanthe Real RAM.Suppose that n (pseudo-)segments have k intersections at which they cross. We show thatintersection algorithms for monotone curves that use only comparisons and above/below testsfor endpoints, and intersection tests, must take at least 
(npk) time. There are optimalO(n logn + k) algorithms that use a higher-degree test comparing x coordinates of an end-point and intersection point; for line segments we show that this test can be simulated usingCCW() tests with a logarithmic loss of e�ciency. We also give an optimal O(n logn + k) algo-rithms for red/blue line and curve segment intersection, in which the segments are colored redand blue so that there are no red/red or blue/blue crossings.1 IntroductionAll too often, a proof that a geometric algorithm is correct for the Real RAM computationalmodel [22] does not imply that a correct implementation will run correctly on the limited precisionarithmetic of a real computer. This fact has spurred three branches of research: First, researchershave studied how to correctly and e�ciently evaluate predicates used by geometric algorithms.Much recent work has been devoted to combining 
oating point �lters and exact evaluation ofpredicates; exact computation is performed when the 
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23, 24, 26], and various 
oating point �lters, both static and dynamic, have been experimentallytested [8, 15, 6]. Second, researchers have investigated algorithms that give approximate results withprovable properties and guarantees on e�ciency [16, 20, 25]. Third, researchers have consideredthe computational requirements of the problems themselves and developed algorithms that use\simpler" predicates. Our notion of \simpler" is found in Section 2.It is this third branch that we follow in this paper. Following Boissonnat and Preparata [5], westudy the classic problem of segment intersection: Given a set of n segments in the plane, reportall pairs of intersecting segments. We consider this problem for sets of line segments and sets ofsegments of x-monotone curves in which any pair intersects in at most one point, at which theycross. That is, we restrict our attention to what may be called pseudo-segments. Some extensionsto segments that intersect in two or more points are possible.Forrest [14] has said, \Mathematically, the problem of reporting intersecting segments is trivial.Computationally, the problem is far from easy, and may be impossible to solve reliably and con-sistently." This comment may seem surprising, since there is a simple �(n2) time algorithm thatis optimal in the worst case: check all pairs for intersection. If only k pairs intersect, however, wemight prefer an algorithm whose running time is sensitive to the output size k as well as its inputsize n. A running time of O(n log n + k) would be optimal, since 
(k) time is required to writethe output, and any algorithm that reports if any intersection occurs can solve element uniqueness,which takes 
(n log n) time [18].An important question is whether a set of predicates allow an e�cient algorithm. It is clearthat the choice of predicates can a�ect the possibility of performing a computation: For exam-ple, if predicates are linear polynomials then it is impossible to determine whether two segmentsintersect|there is no algorithm for segment intersection at all. We show that e�ciency is alsoa�ected. In Section 3 we establish an 
(npk) lower bound for curve intersection algorithms thatuse predicates only to test order and orientation of curve endpoints, whether endpoints are aboveor below other curves, and whether two curves intersect (we do not allow predicates that orderintersection points). Balaban's algorithm [3] can beat the lower bound and solve this problemoptimally for curves using an additional predicate that compares orders of intersection points andendpoints. For line segments, we can adapt Balaban's algorithm to achieve O(n log2 n + k log n)time using only CCW() tests.In Section 4 we consider the special case of the red/blue curve intersection problem, which isto �nd the intersecting pairs in a set of curves that have been colored red and blue so that thereare no red/red or blue/blue crossings. In this case, we obtain an optimal O(n log n+ k) algorithmfor line and curve segments by adapting the trapezoid sweep algorithm of Chan [10].
2



2 Preliminaries and history of segment intersectionIn this section, we discuss the predicates that our algorithms and lower bounds will be using.2.1 Algebraic degreeWe limit the computational predicates by algebraic degree. As formulated by Preparata and oth-ers [19, 5], an elementary predicate used by an algorithm is a test of the sign of a homogeneousmultivariate polynomial whose arguments are a subset of the input variables; its degree is the max-imum degree of its polynomial factors that are irreducible over the rationals and have non-constantsign. For example, the commonly-used orientation test for three points in the plane is an elementarypredicate of degree 2:CCW(p; q; r) = sign det ������� 1 px py1 qx qy1 rx ry ������� = sign�(qx � px)(ry � py)� (rx � px)(qy � py)�:
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g hFigure 1: Predicates a{hA predicate, which is a boolean combination of a constant number of elementary predicates, hasdegree equal to the maximum degree of its elementary predicates. The degree of an algorithm isthe maximum degree of its predicates, and the degree of a problem is the minimum degree of anyalgorithm that solves the problem.2.2 Predicates for segment intersectionAlgorithms for computing the intersections of line segments or monotone curve segments typicallyuse a subset of the following predicates, which are all to be found in Figure 1.a. x-order of endpoints: Compare the x-coordinates of endpoints of two curves.b. endpoint above/below curve: Given a monotone curve segment s and an endpoint p whose xcoordinate lies between the x-coordinates of s, determine if p is above or below s.c. curve intersection test: Determine whether two monotone curve segments intersect at all. If itis known that the curves cross an odd number of times, then intersection can be tested usingthe x-order and above/below predicates.d. orientation CCW(): Given three points, p, q, and r, determine if 4pqr has a counter-clockwiseorientation. This predicate is typically used to implement above/below or intersection testsfor line segments. 3



e. x-order of endpoint & intersection point: Compare the x coordinates of an endpoint and anintersection point of two curves. This endpoint/intersection order test seems to be importantfor e�ciency of segment intersection algorithms.f. intersect in slab: Determine if the intersection of two curves occurs in the vertical slab de�nedby endpoints of two curves. Directly reducible to the previous endpoint/intersection ordertest.g. order of intersections on curve: Given a monotone curve s, determine the order of partic-ular intersection points with curves t and u. This predicate is required in order to buildarrangements of curves.h. x-order of intersections: Compare the x-coordinates of a pair of intersection points. Thispredicate is required in order to build trapezoidations of curves.2.3 Degree of the segment intersection problemBoissonnat and Preparata [5] have done an extensive study of the degrees of predicates and algo-rithms for segment intersection in the case where line segments are speci�ed by the coordinates oftheir endpoints. We summarize their �ndings in this subsection, then consider their extension tocircular arcs as an example.Algorithm Degree O(�) time Space Solvescheck pairs 2 n2 n seg intersectionBentley-Ottmann [4] 5 (n+ k) log n n trapezoidationChazelle-Edelsb. [12] 4 n log n+ k n+ k arrangementBoiss.-Preparata [5] 3 (n+ k) log n n seg intersectionBalaban [3] 3 n log n+ k n seg intersectionthis paper 2 n log2 n+ k log n n line seg inter.Boiss.-Preparata [5] 2 (n+ k) log n n red/blue seg int.this paper 2 n log n+ k n red/blue seg int.Table 1: Degrees of selected line segment intersection algorithmsSince the intersection test can be reduced to the evaluation of degree 2 polynomials (e.g., byfour orientation tests), the algorithm that checks all pairs demonstrates that the line segmentintersection problem has degree 2.Bentley and Ottmann's sweep algorithm [4] uses the predicates for endpoint x-order (degree 1),endpoint/intersection order (degree 3), and intersection x-order (degree 5). Chazelle and Edels-brunner's algorithm [12] avoids the last, but does use the predicate for intersection order alongeach segment (degree 4). These two algorithms actually solve harder problems: Bentley-Ottmann4



can produce a trapezoidation of the line segments, which is a degree 5 problem, and Chazelle-Edelsbrunner can produce the arrangement of segments, which is a degree 4 problem [5].Boissonnat and Preparata [5] describe a degree 3 \lazy sweep" algorithm that uses at most theendpoint/intersection order predicate; they observe that Balaban's optimal algorithm, which wedescribe in detail in Section 3.2, uses the intersect in slab predicate of the same degree. Table 1lists degrees, running times, and working space requirements (excluding output size) for thesealgorithms.The general algorithms of Bentley and Ottmann, of Balaban, and of Boissonnat and Preparatacan compute the intersections of monotone curves that are pseudo-segments; it su�ces to adaptthe same predicates to curves. When the curves may intersect in more than one point, we canstill adapt the algorithms of Bentley and Ottmann (or of Balaban) to perform a linear number ofadditional intersection tests during the sweep to make sure that no even parity intersections aremissed.As would be expected, predicates for curves have higher
1. 2. 3.Figure 2: Representations for arcsdegree. To be more precise, we must specify the curvesand their input representation. Table 2 lists bounds on thedegrees of various predicates for line segments, as well asfor three simple examples of representations of monotonecircular arcs that are illustrated in Figure 2.1. semi-circles de�ned by center, radius, and one bit to denote upper or lower half,2. arcs of circles de�ned by center, radius, the x coordinates of endpoints, and one bit to denoteupper or lower arc, and3. arcs of circles de�ned by two endpoints and a middle point.The proofs can be found in the appendix. Line Semi- Circle/ 3-pointPredicate test Segments Circles x-range Arca. x-order of endpoints 1 1 1 1b. endpoint above/below curve 2 2 2 4c. curve intersection test 2 2 4 12e. x-order of end & intersection 3 4 4 12g. order of intersections on curve 4 6 6 16h. x-order of intersections 5 12 12 44Table 2: Degrees of predicates for circular arcs under three di�erent representations
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3 General segment intersectionBoissonnat and Preparata [5] asked whether there is an O(n log n+k) algorithm of degree 2 for linesegment intersection. We show that there is none for curve segments by giving a lower bound of
(npk) in Section 3.1. Then, after describing Balaban's optimal, degree 3 algorithm in Section 3.2,we show in Section 3.3 that for line segments, Balaban's algorithm can be made degree 2 with alogarithmic loss in e�ciency.Under restricted predicates, it can be helpful to consider how
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Figure 3: Witness p for r \ s1
the input curves can be deformed without changing the resultsof any predicates. If an algorithm uses only the predicates forendpoint orientation and whether endpoints are above or belowa curve, then the dashed curve segment in Figure 3 is equivalentto the line segment r|an algorithm cannot distinguish betweenthem.Since the intersection point does not have a de�nite locationwhen the segment r is deformed, we de�ne the witness for the intersection of r and s to be theleftmost endpoint p that certi�es that the order has changed from the initial order. In Figure 3,endpoint r is initially below segments s1 and s2, which can be checked by applying the above/belowtest to curves and left endpoints. Point p is the witness for the intersection of r with s1, since r isabove and s1 is below p. The right endpoint of r is the witness for intersection with s2.Under di�erent terminology, witnesses also play an important role in Boissonnat and Preparata'slazy sweep [5]. When a point p is the next endpoint to be processed, then they call prime the pairsof consecutive segments having p as witness.3.1 A lower bound for curvesIn this subsection, we give a lower bound for algorithms that must compute the intersection ofcurves from arbitrary computational tests on curve segment endpoints, tests whether an endpointof one curve is above or below another curve, and tests that determine whether, but not where,two curves intersect. Using the deformability of the curves, it is not hard to show that any suchalgorithm requires 
(npk) tests even to count the number of intersections. (Mention of intersectiontests in the following theorem is actually redundant for pseudo-segments, since we can implementthe intersection test with a contant number of above/below predicates.)Theorem 1 Any algorithm that counts all k intersecting pairs among a set of n segments anduses only order and orientation tests on endpoints, above/below tests for endpoints and curves, andintersection tests for curves, requires 
(npk) time.Proof: Suppose that the algorithm asks for test results from an adversary. We describe thebehavior of an adversary that holds n+m curves and answers in such a way that the algorithm6



must ask nm queries to determine whether there are �m2 � or �m2 �+ 1 intersections.The adversary �xes all the curve endpoints so that
m

nFigure 4: The n+m curves of theadversary
m long curve segments that all cross each other passfrom left to right above n shorter curve segments, as inFigure 4. The algorithm can perform whatever com-putation it wishes on endpoints. For above/below orintersection tests involving two long segments, the ad-versary reports the order or intersection. For queriesinvolving one or two short segments, the adversaryreports \no intersection."Because a reported intersection says nothing about the coordinates of the intersection, ifthe algorithm fails to ask one of the nm queries about the intersection of a short segment swith a long curve 
, then the adversary can deform the arrangement of long curves so that 
has its minimum y coordinate immediately above the upper endpoint of s. Without changingthe intersection patterns or witnesses for any other curves, the adversary has the freedom tomake 
 intersect s or not, so the algorithm cannot have the correct number of intersections.Chan, in private communication, [11] has given a randomized algorithm that will run in expectedO(npk log n) time.3.2 Balaban's algorithmIn 1995, Balaban gave a clever algorithm for the line segment intersection problem [3]. He �rstdescribed an algorithm that runs in O((n + k) log n) time and uses O(n) space, then used ideasfrom fractional cascading to remove the log n factor from the k. We give a high-level descriptionof his �rst algorithm, and a more detailed count of the types of predicates that it uses.Balaban applies his algorithm to a slab consisting of all points with x coordinates in the half-open interval (a; b], where a and b are x coordinates of endpoints of segments. Given a set S ofsegments that intersect the slab and whose vertical order along the line x = a is known (for thosesegments that end to left of the slab), he computes all intersections in the slab and the order of thesegments along the line x = b.Segments that intersect both lines x = a and x = b are said to span the slab. If all the segmentsspan the slab, then we have a portion of an arrangement of lines, and the algorithm can �nd theintersections and order along x = b by a sorting procedure that will be given in detail in Lemma 3.Thus, we �rst focus on the more interesting case in which some segments end inside the slab.A subset A � S of the segments spanning a slab is called a staircase if no two of the segmentsof A intersect, and A is maximal|any other segment of S spanning the slab intersects a segmentof A. To �nd a staircase, Balaban uses a simple greedy procedure that he calls Split(). Figure 57



illustrates segments spanning a slab, and the staircase found by Split().Lemma 2 Given the segments S that intersect a slab (a; b], and the order of those that intersectthe line x = a, a staircase can be found by O(jSj) endpoint/intersection order tests.

Figure 5: Staircase found by Split()Proof: Consider the segments that span slab (a; b] in order of increasing y coordinate alongthe vertical line x = a. We create a staircase that contains the �rst segment, then repeatedlytest whether the next spanning segment s intersects the top segment in the staircase within theslab. If not, then add s to the staircase.It should be clear that the segments added are disjoint|If s does not intersect the topsegment in the slab, then it does not intersect any segment in the slab. They also form amaximal set|any segment not added intersects at least one segment in the staircase. Since wehave assumed that endpoints de�ne slab boundaries, we may use predicates that compare x-coordinates of endpoints to other endpoints and intersection points to determine which segmentsspan the slab and check for intersection with the top segment in O(1) time per segment.Balaban's algorithm recursively �nds intersecting pairs among the segments not in the staircase.It cuts the slab into two at the median x coordinate of endpoints in the slab. Recursively �ndingthe intersections in the left slab also produces the order along the cutting line. This allows thealgorithm to recursively �nd the intersections in the right slab, which in turn gives the order ofsegments along the line x = b. The segments of the staircase can be merged into this order.Lemma 3 Let S be set of segments intersecting slab (a; b] and S0 be a staircase for (a; b] such thatthere are k0 intersecting pairs with a segment from each of S and S0. If the order of all segmentsintersecting x = a is known, and, in each set, the order of segments that intersect x = b is known,then the intersections between S and S0 and the merged order along x = b can be found usingO(jSj log jS0j+ jSj+ jS0j) above/below tests and O(jSj+ jS0j+ k0) endpoint/intersection order tests.Proof: Endpoints of S can be located in the staircase by binary search using above/below tests.For any segment with both endpoints in the slab, we report intersections with every staircase8



segment between the two endpoints. We can do the same for segments that intersect x = a butnot x = b, since we know the order along x = a.For segments that intersect x = b, we must �nd the merged order and intersections. Thisis quite easy to do in O(jSj + jS0j + k0) operations. First, merge S and S0 using the orderingalong x = a or of endpoints in the slab. This will be the correct y-order along x = b if there areno intersections (k0 = 0), and it can be checked by asking whether adjacent segments intersectin the slab using endpoint/intersection x-order tests. Whenever an intersection is found, it isreported, and the intersecting pair are swapped in the y-order and new adjacencies are tested.This produces the correct order along x = b by a sort algorithm whose running time is linearin jSj+ jS0j plus the number of inversions, which is the number of intersections, k0.Theorem 4 Balaban's algorithm applies O(n log2 n) above/below tests and O(n log n+k) endpoint/intersection order tests.Proof: Consider the recursion tree in which each node corresponds to a recursive call for aparticular slab. The recursion tree splits the endpoints in a balanced fashion, and thus hasdepth O(log n).We can account for above/below tests that arise in the merge (Lemma 3) by charging themto endpoints. Each of the 2n endpoints appears in the slab of at most one node per level, whereit is charged for O(log n) tests, for a total of O(n log2 n).Endpoint/intersection order tests from splitting and merging (Lemmas 2 and 3) can becharged to intersections and segments. Each intersection point appears as a charge in themerge (Lemma 3) in at most one node: The nodes whose slabs contain intersection point qform a path from root to leaf; the charge for q is applied either at the leaf, or in the �rst nodewhere one of the segments de�nes q joins the staircase|once a segment appears in a staircaseat a node, it does not appear in a subtree of that node, so q cannot be charged twice.Each segment s appears in O(log n) nodes where s ends in the corresponding slab, in O(log n)nodes where s spans the slab but does not span the parent, and in nodes where s spans theslab and the parent, because it intersects a segment in the staircase of the parent. Thus,the total number of endpoint/intersection tests charged against intersections and segments isO(n log n+ k).We can see that Balaban's algorithm is degree 3 for line segments; it makes heavy use of thepredicate for comparing x coordinates of endpoints and intersection points to determine whetherintersection points occur in the slab of a node. It can apply to curves as well as line segments if wesimply provide correct implementations of the predicates.
9



3.3 An output-sensitive, degree-2 algorithm for segmentsThe lower bound of Section 3.1 shows that Balaban's algorithm cannot be modi�ed to �nd theintersections of pseudo-segments without the predicate for endpoint/intersection order. We weresurprised to �nd that it can �nd the intersections of segments using only the degree-two CCW() testand with a logarithmic loss of e�ciency. The key observation is that the lower-bound adversary canuse the 
exibility of the pseudo-segments to force the algorithm to explicitly obtain \no" answersto all intersection tests. With line segments, a group of \no" answers can be obtained by usingCCW() tests to form convex hulls of endpoints and then testing tangents to the hulls. We describethis modi�cation in this section.

Figure 6: Convex hulls used by Split()We can conceptually deform the curves to push intersections to the right without crossingendpoints. This deformation preserves the witness for each intersection. Figure 6 shows the defor-mation applied to the slab of Figure 5. Notice that this is equivalent to assume that two segments\intersect in a slab" if and only if1. they intersect and2. the witness belongs to the slab.We assume that for a slab (a; b] the vertical order received along x = a and produced along x = bare the orders of the deformed curves. We must modify the split and merge operations to respectthis new order.For Split(), we again consider the segments spanning the slab in increasing order and start byadding the �rst segment s to the staircase; s will always denote the highest segment in the staircase.To keep track of potential witnesses in a slab, we maintain two convex hull structures: a deletion-only hull structure A [17] that contains all endpoints in the slab above s, and an insertion-only hullstructure B [22], that contains all endpoints below s. (It is su�cient to store the lower hull for Aand the upper hull for B.) 10



A spanning segment t that enters the slab above s has a witness to intersection with s in theslab if and only if a point of B lies above t. It is su�cient to test one point|the vertex of the hullB whose tangent is parallel to t|and this test point can be found on the hull in O(log n) time.If there is no witness, then t can be added to the staircase. We remove the points below t fromA|by repeatedly deleting the vertex of A with tangent parallel to t|and insert these points intoB. Then segment t becomes the new s. This completes the Split() operation; the �nal hulls areshaded in Figure 6.Lemma 5 Given the segments S that intersect a slab (a; b], and the order of those that intersectthe line x = a, we can compute a staircase using O(jSj log n) CCW() tests.We employ the convex hulls A and B again to �nd the intersections of the staircase with theremaining segments and determine the ordering along the line x = b. Notice that the convex hullshave already solved problem of locating the endpoints in the slab in the staircase. Furthermore, forsegments whose right endpoint is in the slab, knowing the endpoint location and the order alongthe line x = a is su�cient to �nd all intersections. We therefore assume that we have a staircase inwhich we have located the left endpoints of segments and we want to �nd their order as they crossthe line x = b.Recall that we cannot determine the true order, but want the order consistent with movingintersections to the right while respecting witnesses and the monotonicity condition. Fortunately,this is easier than it sounds. We use two symmetric passes to �nd intersections; one for segments\going up the staircase" and the second for segments \going down." To go up, build the lowerhull A of points above the lowest segment s of the staircase, and test each segment t whose leftendpoint is below the stair s to see whether any point of A is also below t. The answer is yes ifand only if s and t intersect in the slab; if they intersect then we can exchange their order alongthe line x = b. Thus, in O(log n) time for each segment and each intersection discovered, we obtainthe intersections and the order.Lemma 6 Let S be a set of segments intersecting slab (a; b] and S0 be a staircase for (a; b] such thatthere are k0 intersecting pairs with a segment from each of S and S0. If the order of all segmentsintersecting x = a is known, and, in each set, the order of segments that intersect x = b is known,then the intersections between S and S0 and the merged order along x = b can be found usingO((jSj+ jS0j+ k0) log n) CCW() tests.Theorem 7 Balaban's algorithm can be modi�ed to solve the line segment intersection problemusing O(n log2 n+ k log n) CCW() tests.Proof: As in the proof of Theorem 4, we account for the tests from split and merges by chargingthem to endpoints and segments in the recursion tree. We describe only the modi�cations.Each endpoint is now charged for convex hull insertion and deletion in each of the O(log n)slabs that contain it. The total cost of convex hull operations is bounded by O(n log2 n).11



Because we have replaced each of Balaban's constant-time \intersection-in-slab" test by atangent computation, each segment and intersection is now charged O(log n) instead of O(1).Thus, the total number of tests in the algorithm is O(n log2 n+ k log n).Balaban was able to obtain an optimal algorithm by shaving a factor of log n o� the chargeto endpoints by using the location of endpoints in slabs to help the location in their parents.Unfortunately, our extra logarithmic factor enters also on the charges to segments; it is not clearto us how to remove it.4 Red/blue curve intersectionAn important special case of the segment intersection problem is the red/blue segment intersection,in which the input is given as two sets of curves, one red and one blue, such that there are nored/red or blue/blue crossings. When the curves are pseudo-segments, having at most one crossingper pair, we can obtain an optimal O(n log n+k) running time by modifying Chan's trapezoid-sweepalgorithm [10].4.1 Chan's algorithmChan's algorithm for red/blue segment intersection [10] works as follows. First, compute a trape-zoidation of the blue segments and the red endpoints. That is, compute the decomposition of theplane that results from extending vertical segment upwards and downwards from every red andblue endpoint to the �rst blue segment. This can be done in O(n log n) time by a standard planesweep that keeps track of the ordering of blue segments crossing a vertical line as it sweeps acrossthe plane.Next, sweep over the trapezoids, where the sweep front is the boundary between those trapezoidsthat are entirely to the right of the vertical line x = xs and those that contain some point withx-coordinate at most xs (shaded in Figure 7). During the sweep, maintain the invariant that allred/blue intersections have been reported for red segments to the left of the sweep front, up to the�rst (leftmost) intersection with the sweep front. In Figure 7, the intersections for dashed portionsof the red segments have not been reported; this includes where the lowermost red segment recrossesthe front.
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The sweep front changes when xs reaches the left side

Figure 7: Sweeping trapezoids;\blue" segments are darker

of a trapezoid. We re-establish the invariant by tracingany red segment that enters this trapezoid (whether fromthe top, bottom, or left side) through the trapezoidationuntil the red segment ends or reaches the sweep front. Seg-ments that enter or leave through the top and bottomcan be charged to intersections; segments that enter atleft and leave at right can be considered as a group. Theendpoint/intersection order test is su�cient to determinewhere a segment enters or leaves a trapezoid.As its data structures, Chan's algorithm needs only twoordered lists, one of trapezoids and one of red segments,ordered along sweep line x = xs or, equivalently, along the front. This makes his algorithmrelatively easy to program, and causes it to perform considerably better than Bentley-Ottmann [4]or hereditary segment trees [21] on practical data [1]. It also works for curve segments wheremore than one intersection point is allowed, provided the endpoint/intersection order test has beenimplemented correctly.4.2 Eliminating the test for endpoint/intersection orderWith only above/below tests, it is impossible to de-

Figure 8: Push intersections to right

termine where red segments enter and leave the trape-zoids on the front. Figure 8 shows a deformation of thefour red curves from Figure 7 that is consistent with theabove/below tests on endpoints, even though the curvescross di�erent sets of trapezoids. Once again, we must useendpoints as witnesses of intersection.Conceptually deform the red curves, while respectingmonotonicity and above/below tests, so that all intersec-tions occur as far to the right as possible. This is how thedeformation of Figure 8 was chosen. Then sweep with amodi�ed invariant: that intersections with a red segmentwhose witnesses are in or behind the sweep front have been reported, up to the �rst chance for thesegment to leave the sweep front.To maintain the invariant, our algorithm maintains the ordered list of blue segments thatintersect the sweep line x = x2, and, for each trapezoid on the front, a bundle of the deformed redsegments that have entered that trapezoid from the left. The blue list supports logarithmic-timeinsertion and deletion. Bundles support logarithmic-time insertion, deletion, and binary search for13



a point on the sweep line (with constant time if the point is above or below all segments of thebundle) and split and merge in time proportional to the size of the bundle split o� or merged, witha maximum of logarithmic time. Both lists and bundles can be implemented as standard balancedsearch trees.Our algorithm maintains pointers between adjacent bundles and blue segments, and assumesthat each red segment can discover its bundle in logarithmic time. In Chan's original algorithm,bundles and their pointers were located when needed by searching lists of red and blue segments; we�nd it easier to establish correctness for sweeping deformed red curves if the algorithm maintainsbundles explicitly.Theorem 8 The red/blue segment intersection problem for x-monotone pseudo-segments can besolved in optimal O(n log n+ k) time using endpoint x-order and above/below tests.Proof: As noted in the previous section, work must be performed to re-establish the invariantwhen, and only when, the sweep line reaches a new trapezoid|that is, when it reaches anendpoint of a segment. We can assume, by using y coordinates to break ties in x coordinates,that if segments begin or end at the same x coordinate, then they begin or end at the samepoint. Thus, we distinguish cases by the color of this endpoint.Red endpoint r: At a red endpoint one trapezoid, � , ends and another, � 0, begins. Also, somered segments may end at r and others may begin.Let rH and rL denote the highest and lowest red segments ending at r. If the bundle for rHis above � , then rH and all segments between rH and � must be traced through blue segmentsbelow until they enter � . We can split the bundle of rH , collect all bundles below rH , and mergeinto the bundle for �|this work can be charged to red/blue intersections that are discovered.On the other hand, if the bundle for rL is below � , then rL and all segments between rL and �must be traced through blue segments above in a similar manner.Finally, red segments ending at r can be deleted, and those beginning at r can be inserted.The total time for data structure manipulation is proportional to the number of intersectionsdetected plus O(log n) times the number of segments beginning and ending.Blue endpoint b: At a blue endpoint where i blue segments end and j begin, we have i + 1trapezoids end (all but two of which are triangles) and j + 1 trapezoids begin (again, all buttwo are triangles).Let �H denote the ending trapezoid whose upper right vertex is not b, and let �L denote theending trapezoid whose lower right vertex is not b. Note that �H = �L if blue segments start,but do not end at b. By binary search on the bundles for all trapezoids, we can �nd whichbundle to split by the point b, and then split it. If this bundle is below �H , then it and bundlesabove are merged into �H and red/blue intersections are reported. Similarly, if this bundle isbelow �L, then bundles are merged into �L and intersections are reported.14



Next, blue segments ending at b are deleted and those starting at b are inserted into theblue list. If no blue segment starts at b, the bundles for �H and �L are merged.Searching, and splitting and merging bundles for �H and �L take O(log n) time. All othersplitting and merging can be charged to intersections reported.By induction, we can show that the invariants are correctly maintained. The total time isO(n log n+ k).4.3 Di�culties with red/blue curvesSince the modi�cation above treats red segments as deformable curves, it should be no surprisethat it works for pseudo-segments. When a pair of red and blue curves can intersect in more thanone point, there are additional complications.
(a) (b) (c)

α α

β

β
γ

Figure 9: No witnessThe primary di�culty is how to de�ne a deformation of the red curves that moves intersectionpoints to the right. Figure 9(a) illustrates that with two crossings the intersection can appearbefore or after another curve's endpoints without changing above/below relationships. Since manyshort curves may come between two longer, intersecting curves as in (b), there is no simple witnessthat limits how far an intersection can move.5 Conclusions and open problemsWe have shown that endpoint orientation tests, above/below tests, and intersection tests are notsu�cient to give e�cient, output-sensitive algorithms for the general problem of curve segmentintersection, although they are su�cient to give an O(n log2 n+ k log n) time algorithm for �ndingthe k intersections of n line segment. In the red/blue case|where curves are colored red or blueand there are no red/red or blue/blue crossings|the k intersections for n line segments or n curvepseudo-segments can be found in optimal O(n log n+ k) time.Some open problems remain.1. Is the logarithmic loss in e�ciency necessary, or is there an optimal O(n log n+ k) algorithmfor line segment intersection using degree 2 predicates?15



2. Is there an algorithm that achieves �(npk) for curve segment intersection using only endpointorientation, above/below, and intersection tests? Chan [11] has recently communicated analgorithm that achieves O(npk log n).3. Is there an e�cient algorithm for red/blue curve segment intersections when pairs of curvesmay intersect in more than one point, using only endpoint orientation, above/below, andintersection tests?A Establishing degree bounds for curvesIn this appendix, we give the computations for the degree bounds listed in Table 2 for predi-cates for line segments and for the three example representations of monotone circular arcs fromsubsection 2.3 that are illustrated in Figure 2.In all three representations of circular arcs, the x coordinates of endpoints are represented inthe input, so comparing the x-order of endpoints is a degree 1 predicate.When a circle is represented by center (a2 ; b2 ) and radius r, its standard equation isx2 + y2 = ax+ by + (r2 � a24 � b24 ) = ax+ by � c: (1)When a circle is represented by three points, p = (xp; yp), q = (xq; yq) and s = (xs; ys), thecoe�cients a, b and c are the solutions of the following system of three linear equations0BB@ xp yp 1xq yq 1xs ys 1 1CCA 0BB@ ab�c 1CCA = 0BB@ x2p + y2px2q + y2qx2s + y2s 1CCAand we have a = 1D �������� x2p + y2p yp 1x2q + y2q yq 1x2s + y2s ys 1 �������� ; b = 1D �������� xp x2p + y2p 1xq x2q + y2q 1xs x2s + y2s 1 �������� ; (2)c = � 1D �������� xp yp x2p + y2pxq yq x2q + y2qxs ys x2s + y2s �������� ; with D = �������� xp yp 1xq yq 1xs ys 1 �������� :It follows from Equations (1) and (2) that the incircle predicate that decides whether a pointlies inside a circle has degree 2 when the circle is de�ned by its center and its radius, and degree 4if it is de�ned by three points.To decide if a point A is above or below an arc 
, we �rst test if the point lies inside thecircle � supporting 
. If it does, then we can determine above or below, otherwise we compare the16



y-coordinates of A and the center of �. Thus, the degree of this predicate is again 2 when the circle� is de�ned by its center and its radius, and 4 if it is de�ned by three points.Consider now checking if two circles C1 and C2 intersect. Subtracting the equations for twocircles in standard form gives a line, called the chordal line of the two circles, whose equation is(b1 � b2) y = �(a1 � a2)x+ c1 � c2: (3)Using Equation (3), we can eliminate the y variable in one of the equations of the circles (1). Wethen obtain a univariate polynomial of degree 2 in x, namely P (x) = Ax2 +Bx+ C whereA = (a1 � a2)2 + (b1 � b2)2B = (b1 � b2) (a1b2 � a2b1)� 2(a1 � a2)(c1 � c2) (4)C = (c1 � c2)2 + (b1 � b2)(b1c2 � b2c1)The two circles intersect if and only if the discriminant � = B2 � 4AC of P (x) is positive. Easycomputations show that� = (b1 � b2)2 �(a1b2 � a2b1)2 � 4(a1 � a2)(a1c2 � a2c1)� 4(b1 � b2)(b1c2 � b2c1)� 4(c1 � c2)2� :It follows that evaluating the sign of � is a degree 2 computation when the circles are de�ned bycenters and radii, or a degree 12 computation when the circles are de�ned by three points.Consider now checking if two (monotone) circle segments 
1 and 
2 intersect, which can onlyhappen if the supporting circles �1 and �2 intersect. Let I and J be the intersection points ofthose circles. If the two endpoints A1 and B1 of 
1 lie on opposite sides of the chordal line H of�1 and �2, 
1 contains either I or J . Otherwise, if 
1 is an upper arc, 
1 contains both I and J ornone of them depending whether the y-coordinate of A1 is below or above L. The case of a lowerarc is similar. Since the same discussion can be applied to 
2, we conclude that the degree of theintersection predicate for circle segments is the same as the degree of the intersection predicate forcircles.We next evaluate the degrees of the predicates for endpoint/intersection order and intersectionx-order. Consider two intersecting circles. The roots of P (x) = 0 are the x-coordinates of theintersection points of the circles. It then follows that sorting the x-coordinate xE of an endpointwith respect to the x-coordinates of the intersection points reduces to evaluating the signs of(Ax2E + BxE + C) and (2AxE + B). Sorting the x-coordinates of the intersection points of twopairs of circles reduces to evaluating the sign ofA(�B0 +pB02 � 4A0C 0)�A0(�B +pB2 � 4AC):By squaring twice, it can be seen that this is equivalent to evaluating the sign of�(AB0 �A0B)2 �A2(B02 � 4A0C 0)�A02(B2 � 4AC)�2 � 4A2A02(B2 � 4AC)(B02 � 4A0C 0);17
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