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AbstractHeap allocation with copying garbage collection is a general storage management technique formodern programming languages. It is believed to have poor memory subsystem performance.To investigate this, we conducted an in-depth study of the memory subsystem performance ofheap allocation for memory subsystems found on many machines. We studied the performance ofmostly-functional Standard ML programs which made heavy use of heap allocation. We found thatmost machines support heap allocation poorly. However, with the appropriate memory subsystemorganization, heap allocation can have good performance. The memory subsystem property crucialfor achieving good performance was the ability to allocate and initialize a new object into the cachewithout a penalty. This can be achieved by having subblock placement with a subblock size of oneword with a write allocate policy, along with fast page-mode writes or a write bu�er. For cacheswith subblock placement, the data cache overhead was under 9% for a 64K of larger data cache;without subblock placement the overhead was often higher than 50%.



1 IntroductionHeap allocation with copying garbage collection is widely believed to have poor memory subsystemperformance [30, 38, 48, 49, 50]. To investigate this, we conducted an extensive study of memorysubsystem performance of heap allocation intensive programs on memory subsystem organizationstypical of many workstations. The programs, compiled with the SML/NJ compiler [4], do tremen-dous amounts of heap allocation, allocating one word every 4 to 10 instructions. The programs useda generational copying garbage collector to manage their heaps. To our surprise, we found thatfor some con�gurations corresponding to actual machines, such as the DECStation 5000/200, thememory subsystem performance was comparable to that of C and Fortran programs [12]: programsran only 3 to 13% slower due to data cache misses than they would have with an in�nitely fastmemory. For other con�gurations, the slowdown due to data cache misses was often higher than50%.The memory subsystem features important for achieving good performance with heap allocationare subblock placement with a subblock size of one word, combined with write-allocate on write-miss, page-mode writes, and cache sizes of 32K or larger. Heap allocation performs poorly onmachines whose caches are smaller than the allocation area of the programs (256K or larger forthe benchmarks studied here) and do not have one or more of the features mentioned above; thisincludes most current workstations.Our work di�ers from previous reported work [30, 38, 48, 49, 50] on memory subsystem per-formance of heap allocation in two important ways. First, previous work used the overall missratio as the performance metric, which is a misleading indicator of performance. The overall missratio neglects the fact that read and write misses may have di�erent costs. Also, the overall missratio does not re
ect the rates of reads and writes, which may substantially a�ect performance.We use memory subsystem contribution to cycles per instruction (CPI) as our performance metric,which accurately re
ects the e�ect of the memory subsystem on program running time. Second,previous work did not model the entire memory subsystem: it concentrated solely on caches. Mem-ory subsystem features such as write bu�ers and page-mode writes interact with the costs of hitsand misses in the cache and should be simulated to give a correct picture of memory subsystembehavior. We simulate the entire memory subsystem.We did the study by instrumenting programs to produce traces of all memory references. We fedthe references into a memory subsystem simulator which calculated a performance penalty due tothe memory subsystem. We �xed the architecture to be the MIPS R3000 [28] and varied cache con-�gurations to cover the design space typical of workstations such as DECStations, SPARCStations,and HP 9000 series 700. We studied eight substantial programs.We varied the following memory subsystem parameters: cache size (8K to 512K), cache blocksize (16 or 32 bytes), write miss policy (write allocate or write no-allocate), subblock placement(with and without), associativity (one and two way), TLB sizes (1 to 64 entries), write bu�er depth(1 to 6 deep), and page-mode writes (with and without). We simulated only split instruction anddata caches, i.e., no uni�ed caches. We report data only for write-through caches but the resultsextend easily to write-back caches.Section 2 gives background information. Section 3 describes related work. Section 4 describesthe simulation methods, the benchmarks, and the metrics used to measure memory subsystemperformance. Section 5 presents the results of the simulation studies, an analysis of those results,validation of those results, and an analytical model which is used to extend the results to programswith di�erent allocation behavior. Section 6 suggests promising areas for future work. Section 7concludes. 1



2 BackgroundThe following sections describe memory subsystems, copying garbage collection, SML, and theSML/NJ compiler.2.1 Memory subsystemsThis section reviews the organization of memory subsystems. Terminology for memory subsystemsis not standardized; we use Przybylski's terminology [39].It is well known that CPUs are getting faster relative to DRAM memory chips [37]; mainmemory cannot supply the CPU with instructions and data fast enough. A solution to this problemis to use a cache, a small fast memory placed between the CPU and main memory that holds asmall subset of memory. If the CPU reads a memory location which is in the cache, the value isreturned quickly. Otherwise the CPU must wait for the value to be fetched from main memory.Caches work by reducing the average memory access time. This is possible since memoryaccesses exhibit spatial and temporal locality. Temporal locality means that a memory locationthat was referenced recently will probably be referenced again soon and is thus worth storing inthe cache. Spatial locality means that a memory location near one which was referenced recentlywill probably be referenced soon. Thus, it is worth moving the neighboring locations to the cache.2.1.1 Memory subsystem organizationThis section describes cache organization for a single level of caching. A cache is divided into blockseach of which has an associated tag. A cache block represents a block of memory. The tag for acache block indicates what memory block it holds. Cache blocks are grouped into sets. A memoryblock may reside in the cache in exactly one set, but may reside in any block within the set. Acache with sets of size n is said to be n-way associative. If n=1, the cache is called direct-mapped.Some caches have valid bits, to indicate what sections of a block hold valid data. A subblock isthe smallest part of a cache with which a valid bit is associated. In this paper, subblock placementimplies a subblock of one word, i.e., valid bits are associated with each word. Moreover, on a readmiss, the whole block is brought into the cache not just the subblock that missed. Przybylski [39]notes that this is a good choice.A memory access to a location which is resident in the cache is called a hit. Otherwise, thememory access is a miss.A read request for memory location m causes m to be mapped to a set. All the tags and validbits (if any) in the set are checked to see if any block contains m. If a cache block contains m, theword corresponding to m is selected from the cache block. A read miss is handled by copying themissing block from the main memory to the cache.The way write requests are handled depends upon the write policy. The write policy describeswhether writes to the cache go immediately to main memory. In a write-through cache, writesto the cache immediately go to main memory. In a write-back cache, writes to the cache do notimmediately go to main memory; they are just written to the cache. The writes eventually goto main memory when a memory block is removed from the cache. Write-back caches use lessbus bandwidth than write-through caches, because multiple writes to the same location may becoalesced into one write to main memory by the write back cache, whereas all the writes wouldgo to main memory with a write through cache. See [27] for a discussion of the relative merits ofwrite back and write through caches.A write hit is always written to the cache. There are several policies for handling a write miss,which di�er in their performance penalties. For each of the policies, the actions taken on a writemiss are:1. write-no-allocate:� Do not allocate a block in the cache 2



� Send the write to main memory, without putting the write in the cache.2. write-allocate, no-subblock placement:� Allocate a block in the cache.� Fetch the corresponding memory block from main memory.� Write the word to the cache (and to memory if write through).3. write-allocate, subblock placement1:If the tag matches but the valid bit is o�:� Write the word to the cache (and to memory if write through).If the tag does not match:� Allocate a block in the cache.� Write the word to the cache (and to memory if write through).� Invalidate the remaining words in the block.Write allocate/subblock placement will have a lower write miss penalty than write allocate/nosubblock placement since it avoids fetching a memory block from main memory. In addition, itwill have a lower penalty than write no allocate if the written word is read before being evictedfrom the cache. See Jouppi [27] for more information on write-miss policies.A miss is a compulsory miss if it is due to a memory block being accessed for the �rst time. Amiss is a capacity miss if it results from the cache not being large enough to hold all the memoryblocks used by a program. The capacity misses for a given cache size correspond to the misses ina fully associative cache of the same size with an LRU replacement policy minus the compulsorymisses. It is a con
ict miss if it results from two memory blocks mapping to the same set. [25]The memory subsystem bandwidth may be increased by using separate caches for instructionsand data. This is called a split instruction-data cache. The memory bandwidth is increased since adata access and an instruction fetch may be handled at the same time. A cache where instructionsand data go to the same cache is called a uni�ed cache. This paper presents results only for splitinstruction-data caches.A write bu�er may be used to reduce the cost of writes to main memory. A write bu�er is aqueue containing writes that are to be sent to main memory. When the CPU does a write, thewrite is placed in the write bu�er and the CPU continues without waiting for the write to �nish.The write bu�er retires entries to main memory using free memory cycles. There are situationswhen the write bu�er is not fully e�ective in preventing stalls on writes to main memory. First, ifthe CPU writes to a full write bu�er, the CPU must wait for an entry to become available in thewrite bu�er. Second, if the CPU reads a location which is queued up in the write bu�er, the CPUmay need to wait until the write bu�er is empty. Third, if the CPU issues a read to main memorywhile a write is in progress, the CPU must wait for the write to �nish.Main memory is divided into DRAM pages. Page-mode writes reduce the latency of writes tothe same DRAM page when there are no intervening memory accesses to another DRAM page.Page-mode writes work as follows. DRAMs are organized internally as arrays, and all the locationson a DRAM page reside on the same row in the DRAMs which implement main memory. This factcan be used to speed up a sequence of writes to one DRAM page. A DRAM is updated in a read-modify-write cycle: an array row is latched into a row bu�er, the row bu�er is modi�ed, and thenwritten back to the array. A sequence of writes to the same DRAM page can update the row whileit is held in the row bu�er, and avoid the read and write cycles for all but the �rst and last writes,respectively. This improves write speed signi�cantly. For example, on a DECStation 5000/200, anon-page-mode write takes 5 cycles, while a page-mode write takes 1 cycle. Main memory is said1Recall subblock size is assumed to be 1 word. 3



% check for heap overflowcmp alloc+12,topbranch-if-gt call-gc% write the objectstore tag,(alloc)store ra,4(alloc)store rd,8(alloc)% save pointer to objectmove alloc+4,result% add 12 to alloc pointeradd alloc,12 Figure 1: Pseudo-assembly code for allocating an objectto be operating in page mode when DRAM rows are held in row bu�ers across memory accesses.It is thrown out of page mode when a memory access to a di�erent DRAM page is made. It mayalso be thrown out of page mode for other machine-speci�c reasons (such as refreshes). Page-modewrites are especially e�ective at handling writes with high spatial locality, such as those seen whensaving registers at a procedure call or when doing sequential allocation.2.1.2 Memory subsystem performanceThis section describes two metrics for measuring the performance of memory subsystems. Onepopular metric is the cache miss ratio. The cache miss ratio is the number of memory accesseswhich miss divided by the total number of memory accesses. Since di�erent kinds of memoryaccesses usually have di�erent miss costs, it is useful to have miss ratios for each kind of access.Cache miss ratios alone do not measure the impact of the memory subsystem on overall systemperformance. A metric which better measures this is the contribution of the memory subsystem toCPI (cycles per useful instruction2). CPI is calculated for a program as number of CPU cycles tocomplete the program / total number of useful instructions executed. It measures how e�ciently theCPU is being utilized. The contribution of the memory subsystem to CPI is calculated as number ofCPU cycles spent waiting for the memory subsystem / total number of useful instructions executed.As an example, on a DECStation 5000/200, the lowest CPI possible is 1, completing one instructionper cycle. If the CPI for a program is 1.50, and the memory contribution to CPI is 0.3, 20% (0.3/1.5)of the CPU cycles are spent waiting for the memory subsystem (the rest may be due to other causessuch as nops, multi-cycle instructions like integer division, etc.). CPI is machine dependent sinceit is calculated using actual penalties.2.2 Copying garbage collectionA copying garbage collector [22, 14] reclaims an area of memory by copying all the live (non-garbage) data to another area of memory. This means that all data in the garbage-collected areais now garbage, and the area can be re-used. Since memory is always reclaimed in large contiguousareas, objects can be sequentially allocated from such areas at the cost of only a few instructions.Figure 1 gives an example of pseudo-assembly code for allocating a cons cell. ra contains the carcell contents, rd contains the cdr cell contents, alloc is the address of the next free word in theallocation area, and top contains the end of the allocation area.2All instructions besides nops are considered as useful. A nop (null operation) instruction is a software-controlledpipeline stall. 4



The SML/NJ compiler uses a simple generational copying garbage collector [2]. Memory isdivided into an old generation and an allocation area. New objects are created in the allocationarea; garbage collection copies the live objects in the allocation area to the old generation freeing upthe allocation area. Generational garbage collection relies on the fact that most allocated objectsdie young; thus most objects (about 99% [4, p. 206]) are not copied from the allocation area. Thismakes the garbage collector e�cient, since it works mostly on an area of memory where it is verye�ective at reclaiming space.The most important property of a copying collector with respect to memory subsystem behavioris that allocation initializes memory which has not been touched in a long time and is thus unlikelyto be in the cache. This is especially true if the allocation area is large relative to the size of thecache since allocation will knock everything out of the cache. This means that caches which cannothold the allocation area will incur a large number of write misses.For example consider the code in Figure 1. Assume that a cache write miss costs 16 CPU cyclesand that the block size is 4 words. On average, every fourth word allocated causes a write miss.Thus, the average memory subsystem cost of allocating a word on the heap is 4 cycles. The averagecost for allocating a cons cell is seven cycles (at one cycle per instruction) plus 12 cycles for thememory subsystem overhead. Thus, while allocation is cheap in terms of instruction counts, it maybe expensive in terms of machine cycle counts.2.3 Standard MLStandard ML (SML) [35] is a call-by-value, lexically scoped language with higher-order functions,with many of the features deemed good by the programming language community. It has garbagecollection to automate the management of heap storage. This eliminates two common kinds ofprogramming errors that occur with explicit storage management, memory leaks and danglingpointers. Memory leaks occur when memory is never deallocated, and dangling pointers occurwhen memory is deallocated too soon. SML is statically typed, so many programming errors arecaught at compile-time. The type system is polymorphic, and types are inferred automaticallyby the compiler, so the type system is 
exible yet not an impediment to the programmer. Thelanguage is provably safe, that is, there are no holes in the type system and a program always has awell-de�ned behavior. SML has a sophisticated module system to support the development of largeprograms. The module system provides for static type-checking of the interfaces between modules,as in Ada and Modula-3. It has a dynamically-scoped exception mechanism to allow programs tohandle unusual conditions.SML encourages a non-imperative programming style. Variables cannot be altered once theyare bound, and by default data structures cannot be altered once they are created. Lisp's rplacaand rplacd do not exist for the default de�nition of lists in SML. The only kinds of assignable datastructures are ref cells and arrays3, which must be explicitly declared. To emphasize the point,assignments are permitted but discouraged as a general programming style. The implications ofthis non-imperative programming style for compilation are clear: SML programs tend to do moreallocation and copying than programs written in imperative languages.SML is most closely related to Lisp and Scheme [41]. Implementation techniques for one of theselanguages are mostly applicable to the other languages, with the following caveats: SML programstend to be less imperative than Lisp or Scheme programs and Scheme and SML programs usefunctions calls more frequently than Lisp, since recursion is the usual way to achieve iteration inthose languages.2.4 SML/NJ compilerThe SML/NJ compiler [4] is a publicly available compiler for SML. We used version 0.91. Thecompiler concentrates on making allocation cheap and function calls fast. Allocation is done in-3Although the language de�nition omitted arrays, all implementations have arrays.5



line, except for the allocation of arrays. Aggressive function inlining is used to eliminate functionscalls and their associated overhead. Function arguments are passed in registers when possible,and register targeting is used to minimize register shu�ing at function calls. A split caller/callee-save register convention is used to avoid excessive spilling of registers [8]. The compiler also doesconstant-folding, limited code hoisting, uncurrying, and instruction scheduling.The most controversial design decision in the compiler was to allocate procedure activationrecords on the heap instead of the stack [1, 6]. In principle, the presence of higher-order functionsmeans that procedure activation records must be allocated on the heap. With a suitable analysis,a stack can be used to store most activation records [31]. However, using only a heap simpli�esthe compiler, the run-time system [3], and the implementation of �rst-class continuations [23].The decision to use only a heap was controversial because it greatly increases the amount of heapallocation, which is believed to cause poor memory subsystem performance.3 Related WorkThere have been many studies of the cache behavior of systems using heap allocation and someform of copying garbage collection. Peng and Sohi [38] examined the data cache behavior of smallLisp programs. They used trace-driven simulation, and proposed an ALLOCATE instruction forimproving cache behavior, which allocates a block in the cache without fetching it from memory.Wilson et al. [48, 49] argued that cache performance of programs with generational garbage col-lection will improve substantially when the youngest generation �ts in the cache. Koopman etal. [30] studied the e�ect of cache organization on combinator graph reduction, an implementa-tion technique for lazy functional programming languages. They observed the importance of awrite-allocate policy with subblock placement for improving heap allocation. Zorn [50] studiedthe impact of cache behavior on the performance of a Common Lisp system, when stop-and-copyand mark-and-sweep garbage collection algorithms were used. He concluded that when programsare run with mark-and-sweep they have substantially better cache locality than when run withstop-and-copy.Our work di�ers from previous work in two important ways. First, previous work used theoverall miss ratio as the performance metric, which is a misleading indicator of performance. Theoverall miss ratio neglects the fact that read and write misses may have di�erent costs. Also, theoverall miss ratio does not re
ect the rates of reads and writes, which may substantially a�ectperformance. We use memory subsystem contribution to CPI as our performance metric, whichaccurately re
ects the e�ect of the memory subsystem on program running time. Second, previouswork did not model the entire memory subsystem: it concentrated solely on caches. Memorysubsystem features such as write bu�ers and page-mode writes interact with the costs of hits andmisses in the cache and should be simulated to give a correct picture of memory subsystem behavior.We simulate the entire memory subsystem.Appel [4] estimated CPI for the SML/NJ system on a single machine using elapsed time andinstruction counts. His CPI di�ers substantially from ours. Apparently instructions were under-counted in his measurements [5].Jouppi [27] studied the e�ect of cache write policies on the performance of C and Fortranprograms. Our class of programs is di�erent from his, but his conclusions support ours: that awrite-allocate policy with subblock placement is a desirable architecture feature. He found that thewrite miss ratio for the programs he studied was comparable to the read miss ratio, and that write-allocate with subblock placement eliminated many of the write misses. For programs compiledwith the SML/NJ compiler, this is even more important due to the high number of write missescaused by allocation. 6



4 MethodologyWe used trace driven simulations to evaluate the memory subsystem performance of programscompiled with the SML/NJ compiler. For trace driven simulations to be useful, there must be anaccurate simulation model and a good selection of benchmarks. Simulations that make simplifyingassumptions about important aspects of the system being modeled can yield misleading results. Toybenchmarks, or benchmarks that are not representative of the kinds of tasks the system is normallyused for, can be equally misleading. In this work, much e�ort has been devoted to addressing theseissues.Section 4.1 describes our trace generation and simulation tools. Section 4.2 states our assump-tions and argues that they are reasonable. Section 4.3 describes and characterizes the benchmarkprograms used in this study. Section 4.4 describes the metrics used to present memory subsystemperformance.4.1 ToolsWe extended QPT (Quick Program Pro�ler and Tracer) [33, 9, 32] to produce memory traces forSML/NJ programs. QPT rewrites an executable program to produce compressed trace information;QPT also produces a program speci�c regeneration program that expands the compressed traceinto a full trace. Because QPT operates on the executable program, it can trace both the SML codeand the garbage collector (which is written in C). The signi�cant trace compression achieved byQPT allowed us to send traces to faster machines where they could be regenerated and simulatedquickly: about 50 �s to regenerate and simulate each memory reference on an HP 9000 model 720machine4.Code produced by the SML/NJ compiler presents three problems for QPT. First, SML/NJ putsits code in the heap. Since SML/NJ uses a copying collector, code can be moved just like data.This creates numerous problems; we solve them by putting SML/NJ code in the text segment, so itis never garbage collected. Second, programs compiled with the SML/NJ compiler have no symboltable information. SML/NJ makes the problem worse by interleaving data with the code. QPTneeds a symbol table to �nd all the code. Third, SML/NJ often implements function calls usingindirect jumps. QPT needs to know all the program points that could be targets of an indirectjump. We solved both problems by modifying SML/NJ to produce tables that enable QPT to�nd all targets of indirect jumps and to separate code from data; we enhanced QPT to use thisinformation.We used Tycho [24] for the memory subsystem simulations. Tycho uses a special case of all-associativity simulation [34] to simulate multiple caches concurrently. We extended Tycho in fourimportant ways. First, we extended Tycho to separate read misses from write misses. Second, wechanged Tycho to simulate separate data and instruction caches simultaneously. Third, we addeda write bu�er simulator to Tycho. The write bu�er simulator can concurrently simulate a writebu�er for each cache organization being simulated by Tycho. The write bu�er simulator also takespage-mode writes and memory refreshes into consideration. Fourth, we added the write no allocatewrite miss policy to Tycho.We obtained allocation statistics by using an allocation pro�ler built into SML/NJ. The pro�lerinstruments intermediate code to increment appropriate elements of a count array on every alloca-tion. We extended this pro�ler to count the number of assignments done by SML/NJ programs.4.2 Simpli�cations and AssumptionsWe wanted to simulate the memory systems as completely as we could. Thus, we tried to minimizeassumptions which might reduce the validity of our data. This section describes all the important4While doing cache simulations we were also collecting additional data, such as garbage collection overheads,which slowed down the simulations substantially. 7



assumptions made in this study and argues that they are reasonable.1. Simulating write allocate/subblock placement with write allocate/no subblock placement. Ty-cho does not simulate subblock placement so we approximate it by simulating write allo-cate/no subblock and ignoring the reads from memory that occur on a write miss. This cancause a small inaccuracy in the CPI numbers. The following example illustrates the situationwhen the simpli�cation fails.Let us suppose we have a cache block size of 2 words and a subblock size of 1 word, and aprogram issues a write to the �rst word. Further assume that the write is a miss. In subblockplacement, the word will be written to the cache and the second word in the cache blockwill be invalidated. However, the simpli�ed model will mark both words as valid after thewrite. If the program subsequently issues a read of the second word, it will be incorrectlyregarded as a hit. Thus the CPI reported for caches with subblock placement can be lessthan the actual CPI. This is however a rare occurrence since SML programs tend to do fewassignments (see Section 4.3) and most writes are to sequential locations.2. Ignoring the e�ects of context switches and system calls. Context switches (especially thosecaused by system calls) can a�ect cache performance signi�cantly [36]. We ignore this becauseit is an operating system issue that a�ects all programs, not just programs that are allocationintensive.3. Pessimistic simulation of partial word writes. Most memory subsystems use a word as thesmallest addressable unit and also maintain error checking information on a word granularity.Thus, writes to partial words (bytes, half-words, etc.) are more expensive than full word writessince the enclosing word needs to be read, modi�ed, its error checking information, and �nallywritten back. We charge 11 cycles for each partial-word write regardless of whether or not itis in the cache. If the word is not in the cache, the cache block is not fetched from memory.Also, the write is not queued up in the write bu�er. This is mostly consistent with theDECStation 5000/200 model of partial word writes; the key di�erence is that we are alwaysassuming the worst case scenario (which is probably rare in practice).This inaccuracy, however, does not have any signi�cant impact on the accuracy of the sim-ulations; the CPI contribution of partial word writes is negligible even with this pessimisticmodel (see Section 5).4. The simulations are driven by virtual addresses. The caches in many current machines arephysically indexed (notable exceptions are the SPARCs and HP series 700). This can be aproblem since the virtual address to physical address mapping can a�ect the con
icts in thecache. However some virtual to physical mapping schemes (e.g., a variation of Page Coloringused in the MIPS operating system) yield similar intra-process cache con
icts as if the cachewas virtually indexed [29]. Thus, the simpli�cation is reasonable.5. Placing code in the text segment instead of the heap. This improves performance over theunmodi�ed SML/NJ system by reducing garbage collection overhead, since code is nevercopied, and by avoiding instruction cache 
ushes after garbage collections.6. Used default compilation settings for SML/NJ. Default compilation settings enable extensiveoptimization. Evaluating the impact of these optimizations on cache behavior is beyond thescope of this paper.7. Used default garbage collection settingsWe used the default strategy for sizing the allocation area and the old generation [2]. Theheap is sized as r times the size of the old generation after the old generation is collected,where r is the desired ratio of heap size to live data. r=5 was used for all the program runs.The allocation area is sized as one-half of the free space (the heap space not occupied by the8



old generation). As the old generation grows after each collection of the allocation area, thefree space decreases and the allocation area decreases. This continues until the old generationis collected.We did not investigate the interaction of the sizing strategy and cache size [49]. When theallocation area is larger than the cache, it may be possible to improve program locality bydecreasing the size of the allocation area so that it �ts in the cache. However, this wouldprobably increase garbage collection costs. Understanding these tradeo�s is beyond the scopeof this paper.In addition to the ratio, the garbage collector is controlled by the softmax and the initial heapsize. The softmax is a desired upper limit on the heap size which is exceeded only to preventprograms from running out of space. The softmax was 20M; the benchmark programs neverreached this limit and were able to always resize their heaps to maintain the desired ratio of5. The initial heap size was 1M.8. MIPS as a prototypical RISC machine. All the traces are for the DECStation 5000/200,which uses a MIPS R3000 CPU. The results should carry over to other RISC machines butwe do not know how applicable the results are to CISC machines.9. All instructions take one cycle with a perfect memory subsystem. On the DECStation5000/200,this is not true for some instructions (such as multiply, etc.). As far as the memory subsys-tem performance is concerned, multi-cycle instructions change only the write bu�er penalties;multi-cycle instructions can give the write bu�er more opportunities to retire writes. Section5.4 shows that the write-bu�er overhead is small; thus the inaccuracy introduced by thisassumption will be negligible.10. Assuming CPU cycle time does not vary with memory organization. The CPI calculationsassume that the CPU cycle time remains the same for di�erent memory organizations. Thismay not be the case, since the CPU cycle time depends on the cache access time, which maybe di�erent for di�erent cache organizations. For example, a 128K cache may take longer toaccess than an 8K cache.4.3 BenchmarksTable 1 describes the benchmark programs5. Knuth-Bendix, Lexgen, Life, Simple, VLIW, andYACC are identical to the benchmarks measured by Appel [4]6. Table 2 gives the sizes of thebenchmarks in terms of lines of SML code (excluding comments and blank lines), maximum heapsize in kilobytes, size of the compiled code in kilobytes (does not include the garbage collector andother run-time support code which is about 60K)7, and run time, in seconds, on a DECStation5000/200. The run times are the minimum of �ve runs (see Section 5.6).Table 3 characterizes the benchmark programs according to the number and kinds of memoryreferences they do. All numbers are reported as a percentage of instructions. The Reads, Writes,and Partial writes columns list the reads, full-word writes, and partial-word writes done by theprogram and the garbage collector; the assignments column lists the non-initializing writes doneby the program only. The Nops column lists the nops executed by the program and the garbagecollector. Note that all the benchmarks have long traces; most related works use traces that arean order of magnitude smaller. Also, note that the benchmark programs do few assignments; themajority of the writes are initializing writes.5Available from the authors.6The description of these benchmarks have been copied from [4].7The code size includes 207K for the standard libraries.9



Program DescriptionCW The Concurrency Workbench [15] is a tool for analyzing networksof �nite state processes expressed in Milner's Calculus of Communi-cating Systems. The input is the sample session from Section 7.5 of[15].Knuth-Bendix An implementation of the Knuth-Bendix completion algorithm, im-plemented by Gerard Huet, processing some axioms of geometry.Lexgen A lexical-analyzer generator, implemented by James S. Mattson andDavid R. Tarditi [7], processing the lexical description of StandardML.Life The game of Life, written by Chris Reade [40], running 50 generationsof a glider gun. It is implemented using lists.PIA The Perspective Inversion Algorithm [47] decides the location of anobject in a perspective video image.Simple A spherical 
uid-dynamics program, developed as a \realistic" FOR-TRAN benchmark [16], translated into ID [21], and then translatedinto Standard ML by Lal George.VLIW A Very-Long-Instruction-Word instruction scheduler written by JohnDanskin.YACC A LALR(1) parser generator, implemented by David R. Tarditi [44],processing the grammar of Standard ML.Table 1: Benchmark ProgramsSize Run timeProgram Lines Heap size (K) Code size (K) Non-gc (sec) Gc (sec)CW 5728 1107 894 22.74 3.09Knuth-Bendix 491 2768 251 13.47 1.48Lexgen 1224 2162 305 15.07 1.06Life 111 1026 221 16.97 0.19PIA 1454 1025 291 6.07 0.34Simple 999 11571 314 25.58 4.23VLIW 3207 1088 486 23.70 1.91YACC 5751 1632 580 4.60 1.98Table 2: Sizes of Benchmark Programs10



Program Inst Fetches Reads (%) Writes (%) Partial Writes (%) Assignments (%) Nops (%)CW 523,245,987 17.61 11.61 0.01 0.41 13.24Knuth-Bendix 312,086,438 19.66 22.31 0.00 0.00 5.92Lexgen 328,422,283 16.08 10.44 0.20 0.21 12.33Life 413,536,662 12.18 9.26 0.00 0.00 15.45PIA 122,215,151 25.27 16.50 0.00 0.00 8.39Simple 604,611,016 23.86 14.06 0.00 0.05 7.58VLIW 399,812,033 17.89 15.99 0.10 0.77 9.04YACC 133,043,324 18.49 14.66 0.32 0.38 11.14Table 3: Characteristics of benchmark programsAllocation Escaping Known Callee Saved Records OtherProgram (words) % Size % Size % Size % Size % SizeCW 56,467,440 4.0 4.12 3.3 15.39 67.2 6.20 19.5 3.01 6.0 4.00Knuth-Bendix 67,733,930 37.6 6.60 0.1 15.22 49.5 4.90 12.7 3.00 0.1 15.05Lexgen 33,046,349 3.4 6.20 5.4 12.96 72.7 6.40 15.1 3.00 3.7 6.97Life 37,840,681 0.2 3.45 0.0 15.00 77.8 5.52 22.2 3.00 0.0 10.29PIA 18,841,256 0.4 5.56 28.0 11.99 25.0 4.69 12.7 3.41 33.9 3.22Simple 80,761,644 4.0 5.70 1.1 15.33 68.1 6.43 8.3 3.00 18.5 3.41VLIW 59,497,132 9.9 5.22 6.0 26.62 61.8 7.67 20.3 3.01 2.1 2.60YACC 17,015,250 2.3 4.83 15.3 15.35 54.8 7.44 23.7 3.04 4.0 10.22Table 4: Allocation characteristics of benchmark programsTable 4 gives the allocation statistics for each benchmark program. All allocation and sizes arereported in words. The Allocation column lists the total allocation done by the benchmark. Theremaining columns break down the allocation by kind: closures for escaping functions, closures forknown functions, closures for callee-save continuations8, records, and others (includes spill records,arrays, strings, vectors, ref cells, store list records, and 
oating point numbers). For each allocationkind, the % column gives the total words allocated for objects of that kind as a percentage of totalallocation and the Size column gives the average size in words, including the 1 word tag, of anobject of that kind.4.4 MetricsFollowing the lead of recent work on memory subsystem performance, we state cache performancenumbers in cycles per useful instruction (CPI). All instructions besides nops are considered useful.Unlike miss ratios, CPI numbers give an indication of how fast a program will run. On the downside, CPI numbers are machine dependent because actual penalties are used in their calculations.Table 5 lists the penalties used in our simulations. These numbers are derived from the penaltiesfor the DECStation 5000/200, but are similar to those in other machines of the same class. Writeshave di�erent penalties depending on whether or not subblock placement is being used, the blocksize (and thus the fetch size), and whether the writes hit or miss in the cache. For caches withsubblock placement, write hits or misses have no penalty (besides write bu�er related costs)9. For8Closures for callee-save continuations can be trivially allocated on a stack in the absence of �rst classcontinuations.9In an actual implementation, the penalty of a miss may be one cycle since unlike hits, the tag needs to be written11



Task Penalty (in cycles)Non-page-mode write 5Page-mode write 1Page-mode 
ush 4Read 16 bytes from memory 15Read 32 bytes from memory 19Refresh period 195Refresh time 5Write hit or miss (subblocks) 0Write hit (16 bytes, no subblocks) 0Write hit (32 bytes, no subblocks) 0Write miss (16 bytes, no subblocks) 15Write miss (32 bytes, no subblocks) 19Table 5: Penalties of memory operationscaches without subblock placement, write hits have no penalty (besides write bu�er related costs)but write misses cost 15 or 19 cycles (plus write bu�er penalties) for block sizes of 16 and 32 bytesrespectively. The read miss and instruction fetch miss penalty depends on the block size: it is 15cycles for a block size of 16 bytes and 19 cycles for a block size of 32 bytes.We used a DRAM page size of 4K in the simulation of page-mode writes. Page-mode 
ush isthe number of cycles needed to 
ush the write pipeline after a series of page-mode writes.TLB data is reported as (CPI � CPI of perfect memory subsystem10). This is the TLB contri-bution to the CPI. This metric is used instead of just CPI to allow us to present the measurementsfor all the benchmarks in one chart. A virtual memory page size of 4K was used in the simulations.The penalty of a TLB miss is 28 cycles11.5 Results and AnalysisIn Section 5.1 we present a qualitative analysis of the memory behavior of programs compiled withSML/NJ. In Section 5.2 we list the cache and TLB con�gurations simulated and explain why theywere selected. In Sections 5.3, 5.4, and 5.5 we present data for memory subsystem performance,write bu�er performance, and TLB performance. In Section 5.6 we validate the simulations. InSection 5.7 we present an analytical model which allows us to extend the memory subsystemperformance results to programs with di�erent allocation behavior. In Section 5.8 we summarizethe results.to the cache after the miss is detected. This will not change our results since it adds at most 0.02{0.05 to the CPIof caches with subblock placement.10The CPI of a perfect memory subsystem is the total number of instructions divided by the number of usefulinstructions.11This is a weighted average of the various kinds of TLB misses under Mach 3.0 and is derived from the data in[46]. 12



Write Policy Write Miss Policy Subblocks Assoc Block Size Cache Sizes Write Bu�erthrough allocate yes 1, 2 16, 32 bytes 8K{512K 1{6 deepthrough allocate no 1, 2 16, 32 bytes 8K{512K 6 deepthrough no allocate no 1, 2 16, 32 bytes 8K{512K 6 deepTable 6: Cache organizations studied5.1 Qualitative AnalysisRecall from Section 2 that SML/NJ uses a copying collector. The most important property of acopying collector with respect to memory subsystem behavior is that allocation initializes memoryin an area that has not been touched since the last garbage collection. This means that for cachesthat are not large enough to contain the allocation area there will be a large number of write misses.The slowdown that the write misses translates into depend on the memory subsystem organization.Recall from Section 4.3 that SML/NJ programs have the following important properties. First,they do few assignments; the majority of the writes are initializing writes. Second, programs doheap allocation at a furious rate: 0.1 to 0.22 words per instruction. Third, writes come in bunchesbecause they correspond to initialization of a newly allocated area.The burstiness of writes combined with the property of copying collectors mentioned abovesuggests that an aggressive write policy is necessary. In particular, writes should not stall theCPU. Memory subsystem organizations where the CPU has to wait for a write to be writtenthrough (or back) to memory will perform poorly. Even memory subsystems where the CPU doesnot need to wait for writes if they are issued far apart (e.g., 2 cycles apart in the HP 9000 series700) may perform poorly due to the bunching of writes. This leads to two requirements on thememory subsystem. First, a write bu�er or fast page mode writes are essential to avoid waitingfor writes to memory. Second, on a write miss, the memory subsystem must avoid reading a cacheblock from memory if it is going to be written before being read. Of course, this requirementonly holds for caches with a write-allocate policy. Subblock placement [30], a block size of 1 word,and the ALLOCATE instruction [38] can all achieve this. Since the e�ects on cache performanceof these features are so similar, we talk just about subblock placement. For large caches, whenthe allocation area �ts in the cache and thus there are few write misses, the bene�t of subblockplacement will be reduced.5.2 Cache and TLB con�gurations simulatedThe design space for memory subsystems is enormous. There are many variables involved and thedependencies between them are complex. Therefore we could study only a subset of the memorysubsystem design space. In this study, we restrict ourselves to features found in currently popularRISC workstations. Exploration of more exotic memory subsystem features is left to future work(see Section 6). Table 6 summarizes the cache organizations simulated. Table 7 lists the memorysubsystem organization of some popular machines.We simulated only separate instruction and data caches (i.e., no uni�ed caches). While manycurrent machines have separate caches (e.g., DECStations, HP 700 series), there are some exceptions(notably SPARCStations).We simulated cache sizes of 8K to 512K. This range includes the primary caches of most currentmachines (see Table 7). We consider only one-way (direct mapped) and two-way set associativecaches (with LRU replacement).We simulated block sizes of 16 bytes and 32 bytes. Moreover, fetch size is kept the same as theblock size; in particular, in caches with subblock placement, a read miss brings in the whole block,not just the subblock causing the miss. In e�ect, this is prefetching. Przybylski [39] notes thatmaking the fetch size equal to the block size is a good choice with respect to memory subsystem13



Architecture Write Policy Write Miss Policy Write Bu�er Subblocks Assoc Block Size Cache SizeDS3100 [19] through allocate 4 deep | 1 4 bytes 64KDS5000/200 [18] through allocate 6 deep yes 1 16 bytes 64KHP 9000 [43] back allocate none no 1 32 bytes 64K{2MSPARCStation II [17] through no allocate 4 deep no 1 32 bytes 64KNote:� SPARCStations have uni�ed caches.� Most HP 9000 series 700 caches are much smaller than 2M: 128K instruction cache and 256K data cache for models 720and 730, and 256K instruction cache and 256K data cache for model 750.� The DS5000/200 actually has a block size of four bytes with a fetch size of sixteen bytes. This is stronger than subblockplacement since it has a full tag on every \subblock".� The higher end HP 9000 machines (model 735 and above) provide a cache-control hint in their store instructions[11].The hint can specify that a block will be overwritten before being read; this avoids the read if the write misses. TheSML/NJ compiler may be able to extract much of the bene�ts of subblock placement from this feature.Table 7: Memory subsystem organization of some popular machinesperformance. Przybylski also notes that block sizes of 16 or 32 bytes optimize the read accesstime for the memory parameters used in the CPI calculations (see Table 5). Hereafter, wheneversubblock placement is mentioned, it is assumed that the fetch size equals block size.We report data only for write-through caches but the CPI for write-back caches can be inferredfrom the graphs for write-through caches. While write-through and write-back caches have identicalmisses, their contribution to the CPI may di�er due to two reasons. First, a write hit or miss ina write-back cache may take one cycle more than in a write-through cache; unlike a write-throughcache, a write-back cache must probe the tag before writing to the cache [27]. The graphs forwrite-through caches can be easily adjusted to account for this to obtain the graphs for write-backcaches. For instance, if the program has w writes and n useful instructions, then the CPI for awrite-back cache can be obtained by adding w/n to the CPI of the write-through cache with thesame size and con�guration. For VLIW w/n is 0.18. Second, write-through and write-back cachesmay have di�erent write bu�er penalties because they do writes to main memory with di�erentfrequencies and at di�erent points. We expect the write bu�er penalties for write-back caches tobe smaller than those for write-through caches since writes to main memory are less frequent forwrite-back caches than for write-through caches. This di�erence between write-through and write-back caches is likely to be negligible since the write-bu�er penalty is small even for write-throughcaches.We varied write bu�er depths from 1 to 6 entries for write-through caches with the writeallocate/subblock placement organization. We also simulated memory subsystems with and withoutpage-mode writes.We simulated fully associative, uni�ed TLBs from 1 to 64 entries with LRU replacement policy.Some machines (such as the HP 9000 series) have separate instruction and data TLBs. FromSection 5.5 it is clear that for the benchmarks even small uni�ed TLBs perform well.Two of the most important cache parameters are write allocate versus write no allocate and sub-block placement versus no subblock placement. Of these, the combination write no allocate/subblockplacement placement o�er no improvement over write no allocate/no subblock placement for cacheperformance. Thus, we did not collect data for the write no allocate/subblock placement con�gura-tion.We restrict ourselves only to the �rst two levels of the memory hierarchy, which on most currentmachines corresponds to the primary cache and main memory. The results, however, are mostlyapplicable when the second level is a secondary cache and the cost of accessing the secondary cache14



is similar to the cost of accessing main memory in the DECStation 5000/20012. In such machines,there is a memory subsystem contribution to the CPI that we did not measure: a miss on the secondlevel cache. Therefore the CPI obtained on these machines can be higher than that reported here.We did not simulate the exotic features appearing on some newer machines, such as streambu�ers, prefetching, scoreboarding, and victim caches. These features can reduce the number ofcache misses and miss costs. Further work is needed to understand the impact of these features onthe performance of heap allocation.5.3 Memory Subsystem PerformanceWe present memory subsystem performance in summary graphs and breakdown graphs. Eachsummary graph summarizes the memory subsystem performance of one benchmark program for arange of cache sizes (8K to 512K), write-miss policies (write allocate or write no allocate), subblockplacement (with or without), and associativity (1 or 2). Each curve in a summary graph correspondsto a di�erent memory subsystem organization. There are two summary graphs for each program,one for a block size of 16 bytes and another for a block size of 32 bytes. Each breakdown graphbreaks down the memory subsystem overhead into read misses, write misses (if there is a penaltyfor write misses), instruction fetch misses, write-bu�er overhead, and partial-word write overheadfor one con�guration in a summary graph. The write-bu�er depth in these graphs is �xed at 6entries.In this section we present only the summary graphs for VLIW (Figure 2). The summary graphsfor other programs are similar and are given in Appendix A. Figures 3, 4, and 5 are the breakdowngraphs for VLIW for the 16 byte block size con�gurations; the remaining breakdown graphs forVLIW are similar and omitted for conciseness. The breakdown graphs for the other benchmarks aresimilar (and predictable from the summary graphs) and are thus omitted for the same reason13.In the summary graphs, the nops curve is the base CPI: the total number of instructionsexecuted divided by the number of useful (not nop) instructions executed; this corresponds tothe CPI for a perfect memory subsystem14. For the breakdown graphs, the nop area is the CPIcontribution of nops; read miss is the CPI contribution of read misses; write miss is the CPIcontribution of write misses (if any), inst fetch miss is the CPI contribution of instruction fetchmisses; write bu�er is the CPI contribution of the write bu�er; partial word is the CPI contributionof partial-word writes.The 64K point on the write alloc, subblock, assoc=1 curves corresponds closely to the DECSta-tion 5000/200 memory subsystem.In the following subsections we describe the impact of write-miss policy and subblock placement,associativity, block size, cache size, write bu�er, and partial-word writes on the memory subsystemperformance of the benchmark programs.5.3.1 Write Miss Policy and Subblock PlacementFrom the summary graphs, it is clear that the best cache organization we studied is write allo-cate/subblock placement; it substantially outperforms all other con�gurations. Surprisingly, forsu�ciently large caches with the write allocate/subblock placement organization, the memory sub-system performance of SML/NJ programs is acceptable; the overhead due to data cache missesranges from 3% to 13% (arithmetic mean 9%) for 64K direct mapped caches15 and 1% to 13%(arithmetic mean 9%) for 32K two-way associative caches. The memory subsystem performance of12For instance, Borg et al. [10] use 12 cycles as the latency for going to the second level cache and 200{250 cyclesfor going to memory.13The full set of graphs is available via anonymous ftp from ibis.cs.umass.edu in pub/memory-subsystem.14nops constitute between 5.9% and 15.4% of all instructions executed for the benchmarks (see Section 4.3).15Recall that this corresponds to the DECStation 5000/200 memory subsystem.15



SML/NJ programs on the DECStation 5000/200 is comparable to that of C and Fortran programs[12]; Chen and Bershad �nd that the data cache overhead of C and Fortran programs ranges fromless than 1% to 66%, with an arithmetic mean of 8%16. It is worth emphasizing that the memorysubsystem performance of SML/NJ programs is good on some current machines despite the veryhigh miss rates; for a 64K write allocate/no subblock placement organization with a block size of 16bytes, the write miss and read miss ratios for VLIW are 0.23 and 0.02 respectively.Recall that in Section 5.1 we argued that the bene�t of subblock placement would be substantial,but that the bene�t would decrease for larger caches. The summary graphs indicate that thereduction in bene�t is not substantial even for 128K cache sizes; however, the bene�t of subblockplacement decreases sharply for larger caches for six of the benchmark programs. This suggeststhat the allocation area size of six of the benchmark programs is 256K to 512K.The performance of write allocate/no subblock is almost identical to that of write no allocate/nosubblock (Leroy is an exception)17. This suggests that an address is being read soon after beingwritten; even in an 8K cache, an address is read after being written before it is evicted from thecache (if it was evicted from the cache before being read, then write allocate/no subblock wouldhave inferior performance). The only di�erence between these two schemes is when a cache blockis read from memory. In one case, it is brought in on a write miss; in the other, it is brought inon a read miss. Because SML/NJ programs allocate sequentially and do few assignments, a newlyallocated object remains in the cache until the program has allocated another C bytes, where C isthe size of the cache. Since the programs allocate 0.4{0.9 bytes per instruction, our results suggestthat a read of a block occurs within 9K{20K instructions of its being written.5.3.2 Changing AssociativityFrom Figure 2 we see that increasing associativity improves all organizations. However the improve-ment in going from one-way to two-way set associativity is much smaller than the improvementobtained from subblock placement: in most cases, it improves the CPI by less than 0.1. Themaximum bene�t from higher associativity is obtained for small cache sizes (less than 16K). How-ever, increasing associativity may increase CPU cycle time and thus the improvements may not berealized in practice [25].From Figures 3, 4, and 5 we see that higher associativity improves the instruction cache per-formance but has little or no impact on data cache performance. Surprisingly, for direct mappedcaches (Figures 3 (a), 4 (a), and 5 (a)) the instruction cache penalty is substantial for 128K orsmaller caches. For caches with subblock placement, the instruction cache penalty can dominatethe penalty for the memory subsystem. The improvement observed in going to a two-way associa-tive cache suggests that a lot of the penalty from the instruction cache is due to con
ict missesand that from the data cache is due to capacity misses: the data cache is simply not big enoughto hold the working set. When the benchmark programs are examined, the performance of theinstruction cache is not surprising: the code consists of small functions with frequent calls, whichlowers the spatial locality. Thus, the chances of con
icts are greater than if the instructions hadstrong spatial locality.5.3.3 Changing Block SizeFrom Figure 2 we see that increasing block size from 16 to 32 bytes also improves performance.For the write allocate organizations, an increased block size decreases the number of write missescaused by allocation. When the allocation area does not �t in the cache, doubling the block size canhalve the write-miss rate. Thus, larger block sizes improve performance when there is a penalty16Chen and Bershad use Cycles/Instruction rather than Cycles/Useful Instruction which lowers their memorysubsystem overhead.17The di�erence between write allocate/no subblock and write no allocate/no subblock is so small in most graphsthat the two curves overlap. 16



for a write miss [30]. In particular, larger block sizes have little to o�er to caches with writeallocate/subblock placement. From Figure 2 we see that the write no allocate organizations bene�tjust as much from larger block size as write allocate/no subblock placement; this suggests that thespatial locality of the reads is comparable to that of the writes.Note that subblock placement improves performance more than even two-way associativity and32 byte blocks combined.5.3.4 Changing Cache SizeThree distinct regions of performance can be identi�ed for cache sizes. The �rst region correspondsto the range of cache sizes when the allocation area does not �t in the cache (i.e., allocationhappens in an area of memory which is not cache resident). For most of the benchmarks, thisregion corresponds to cache sizes of less than 256K (for Simple and Knuth-Bendix this regionextends beyond 512K). In this region, increasing the cache size uniformly improves performancefor all con�gurations. However, the performance improvement from doubling the cache size is small.From the breakdown graphs we see that in the �rst region the cache size has little e�ect on thedata cache miss contribution to CPI. Most of the improvement in CPI that comes from increasingthe cache size is due to improved performance of the instruction cache. As with associativity, cachesizes have interactions with the cycle time of the CPU: larger caches can take longer to access.Thus, improvement due to increasing the cache size may not be achieved in practice.The second region ranges from when the allocation area begins to �t in the cache until theallocation area �ts in the cache. For most of the benchmarks (once again excepting Simple andKnuth-Bendix), this region corresponds to cache sizes in the range 256K to 512K18. In this region,increasing the cache size sharply improves the data cache performance for memory organizationswithout subblock placement. However, increasing the cache size in this region has little to o�erfor instruction cache performance because the instruction cache miss penalty is already low at thispoint.The third region corresponds to cache sizes when the allocation area �ts in the cache. For �veof the benchmarks, this region corresponds to caches larger than 512K (for Lexgen, Knuth-Bendix,and Simple this region starts at larger cache sizes). In this range, increasing the cache size haslittle or no impact on memory subsystem performance because everything remains cache residentand thus there are no capacity misses to eliminate.5.3.5 Write Bu�er and Partial-Word Write OverheadsFrom the breakdown graphs we see that the write bu�er and partial word write contribution to theCPI is negligible. A six deep write bu�er coupled with page-mode writes is su�cient to absorb thebursty writes. As expected, memory subsystem features which reduce the number of misses (suchas higher associativity and larger cache sizes) also reduce the write bu�er overhead.
18For Lexgen this region extends a little beyond 512K.17
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5.4 Write-bu�er depthIn Section 5.3.5 we showed that a six-deep write bu�er coupled with page-mode writes was able toabsorb the bursty writes in SML/NJ programs. In this section we explore the impact of write-bu�erdepth on the write-bu�er contribution to CPI. Since the speed at which the write bu�er can retirewrites depends on whether or not the memory subsystem has page-mode writes, we conducted twosets of experiments. In the �rst set, we simulated a memory subsystem with page-mode writes andvaried the write-bu�er depth from 1 to 6. In the second set, we simulated a memory subsystemwithout page-mode writes and varied the write-bu�er depth from 1 to 6. We conducted this studyfor two of the larger benchmarks: CW and VLIW. We �xed the block size at 16 bytes and the writemiss policy at write allocate/subblock placement.Figure 6 gives the write bu�er overheads for VLIW with caches of associativity one and two andin a memory subsystem with page-mode writes; Figure 7 does the same in a memory subsystemwithout page-mode writes. The graphs plot the CPI contribution of the write bu�er againstcache size; there is one curve for each write-bu�er depth. Graphs for CW are omitted for spaceconsiderations. Increasing the cache size or associativity reduces the number of read and instructionfetch misses, and thus reduces the number of main memory transactions. This reduces the write-bu�er contribution to the CPI in four ways:1. The write bu�er has more cycles to retire its entries and hence the write bu�er full stallsoccur less frequently19.2. In the memory subsystem with page-mode writes, the main memory is thrown out of pagemode less frequently, allowing the write bu�er to retire writes quickly20. This reduces thewrite bu�er full stalls.3. Since there are fewer reads to main memory, the number of times a read to main memoryneeds to wait for a write to �nish is less, thus reducing the main memory busy delays.4. Since there are fewer reads to main memory, a read to main memory con
icts with a writebu�er entry less frequently, thus reducing the write bu�er con
ict delays.In memory subsystems with page-mode writes (Figure 6), the di�erence between the CPI con-tribution of a one-deep write bu�er and a six-deep write bu�er is less than 0.05. This is surprisinglysmall considering the burstiness of the writes. This is due to the e�ectiveness of page-mode writes;an example illustrates this:Suppose that a SML/NJ program is allocating (and initializing) an object which is 4 wordsin size and that the write bu�er is one deep. Further suppose that the write bu�er is empty andthat the instructions doing the allocation all hit in the instruction cache. The �rst write does notstall the CPU since the write bu�er is empty. The next write comes one cycle later, �nds a fullwrite bu�er, and thus stalls the CPU. After 4 cycles (see penalties in Table 5), the write is queuedup in the write bu�er. This write, however is highly likely to be on the same DRAM page as theprevious write (since it is to the next address) and will therefore take only one cycle to complete.All subsequent writes to initialize this object �nd an empty write bu�er since they all complete inone cycle due to page-mode writes.As noted above, all the writes to initialize an object are likely to be on the same page and canthus take advantage of page-mode writes. Due to sequential allocation, it is likely that writes toinitialize objects allocated one after another will also be on the same DRAM page. Thus, in thebest case (with no read misses and refreshes), a write bu�er full delay will happen only once perN words of allocation, where N is the size of the DRAM page. Thus, the write bu�er depth haslittle performance impact on SML/NJ programs if the memory subsystem has page-mode writes.19Recall that a write bu�er uses free memory cycles to retire its writes.20Recall that reads throw main memory out of page mode.22



To con�rm this explanation, we measured the probability of two consecutive writes being on thesame DRAM page. This probability (averaged over the benchmarks) was 96%.The small impact of write bu�er depth on performance does not imply that a write bu�er isuseless if the memory system has page-mode writes. Instead, it says that a write bu�er o�ers littleperformance improvement in a memory subsystem with page-mode writes if the programs havestrong spatial locality in the writes, and the majority of the reads and instruction fetches hit inthe cache. Strong spatial locality means that the probability that two consecutive writes are to thesame DRAM page is very high.Write-bu�er depth is however important if the memory subsystem does not have page-modewrites (Figure 7). A six-deep write bu�er performs substantially better than a one-deep writebu�er in a memory system without page-mode writes.5.5 TLB PerformanceFigure 8 gives the TLB miss contribution to the CPI for each benchmark program. We see thatCPI contribution of TLB misses falls below 0.01 for all our programs for a 64 entry uni�ed TLB;for half the benchmarks, it is below 0.01 even for a 32 entry TLB.5.6 ValidationTo validate our simulations, we ran each of the benchmarks �ve times on a DECStation 5000/200(running Mach 2.6) and measured the user time for each run. The programs were run on alightly loaded machine but not in single-user mode. The simulations with write allocate/subblockplacement, 64K direct-mapped caches, 16 byte blocks, and 64 entry TLB corresponds closely to theDECStation 5000/200 with the following important di�erences:� The simulations ignored the e�ects of context switches and system calls. Thus, actual programruns su�ered more data and instruction cache misses than those reported by the simulations[36].� The simulations assumed a virtual address=physical address mapping. Kessler and Hill [29]show that random mapping (as used in the actual runs) can have many more con
ict missesthan a careful mapping (such as that assumed by the simulations). Thus, the actual runsprobably su�ered more con
ict misses than those reported by the simulations.� The simulations assumed that all instructions take exactly one cycle (plus memory subsystemoverhead). Some of the benchmarks do multiplications and divisions (both of which take morethan one cycle). Thus, the actual program runs may take more cycles to complete than thecycles predicted by the simulations.In order to minimize the memory subsystem e�ects of the virtual to physical mapping andcontext switches, we took the minimum CPI of the �ve runs for each program and compared itto the CPI obtained via simulations. We present our �ndings in Table 8; Measured (sec) is theuser time of the program in seconds; Measured CPI is the CPI obtained from the measured time;Simulated CPI is the CPI obtained from the simulations; Di�erence is the di�erence between themeasured CPI and the simulated CPI; Discrepancy is the di�erence as a percentage of measuredCPI.Table 8 shows that with the exception of PIA and VLIW, the discrepancy is small (i.e., lessthan 10%); the actual runs validate the simulations. The discrepancy in PIA and VLIW is dueto the signi�cant number of multi-cycle instructions they execute21. Table 9 lists the multi-cycleinstructions executed by each program22. Total is the percentage of instructions which are divisions,21In this section, multi-cycle instructions refer to integer multiplication and division, and 
oating point operations.22SML/NJ uses only the \double" versions of each 
oating point instruction.23
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yaccFigure 8: TLB contribution to CPIProgram Measured (sec) Measured CPI Simulated CPI Di�erence Discrepancy (%)CW 25.83 1.42 1.39 0.03 2.48Knuth-Bendix 14.95 1.27 1.21 0.06 5.22Lexgen 16.13 1.40 1.31 0.09 6.29Life 17.16 1.23 1.21 0.02 1.19PIA 6.41 1.43 1.18 0.25 17.62Simple 29.81 1.33 1.21 0.12 9.03VLIW 25.61 1.76 1.39 0.37 20.77YACC 6.58 1.39 1.36 0.03 2.20Table 8: Measured versus Simulatedmultiplications, 
oating point additions, or 
oating point subtractions; I Div and I Mul are thepercentages of integer division and multiplication respectively; F Add, F Sub, F Div, F Mul are thepercentages of 
oating point additions, subtractions, divisions, and multiplications respectively.The actual impact of multi-cycle instructions on CPI can be determined only by simulations.This is because on a DECStation 5000/200, the CPU does not need to wait after issuing a multi-cycle instruction. However, if the CPU tries to read the result of a multi-cycle instruction, itstalls until that instruction is complete. Moreover, the number of cycles needed for a 
oatingpoint instructions depends on what other operations are currently in progress in the 
oating pointcoprocessor. Table 10 gives the latencies (in cycles) for the di�erent multi-cycle instructions. Thecycles for the 
oating point multiplication and division are lower bounds.To test whether multi-cycle instructions could explain the high discrepancies in PIA and VLIW,we added the overhead of multi-cycle instructions to the simulated CPI assuming that all multi-cycle instructions stalled the CPU for the cycles listed in Table 10. This yielded a simulated CPIof 1.41 for PIA and 1.59 for VLIW. This reduced the discrepancy to 1.4% for PIA and 9.7% for VLIW.On examining the assembly code generated for PIA, we found that the distance between multi-cycle instructions and use of their results varied signi�cantly. Moreover, in many instances theassembly code had bunches of multiplications and divisions; these cause resource con
icts in the
oating-point coprocessor thus causing them to have longer latencies than those in Table 10. There-fore, without simulating multi-cycle instructions, we cannot determine their exact penalty in PIA.26



Program Total I Div I Mul F Add F Sub F Div F MulCW 0.00 0.00 0.00 0.00 0.00 0.00 0.00Knuth-Bendix 0.00 0.00 0.00 0.00 0.00 0.00 0.00Lexgen 0.04 0.02 0.02 0.00 0.00 0.00 0.00Life 0.00 0.00 0.00 0.00 0.00 0.00 0.00PIA 4.08 0.00 0.00 1.30 0.38 0.84 1.56Simple 1.67 0.00 0.50 0.30 0.14 0.06 0.67VLIW 0.95 0.32 0.63 0.00 0.00 0.00 0.00YACC 0.01 0.01 0.00 0.00 0.00 0.00 0.00Table 9: Multi-cycle instructions as a percentage of instruction countInteger Floating PointMultiplication 13 4Division 36 18Addition { 1Subtraction { 1Table 10: Multi-cycle instruction cost on a DECStation 5000/200However, a simple calculation shows that even if each multi-cycle instruction stalls the CPU for halfthe time reported in Table 10, the discrepancy falls well below 10%. Thus, multi-cycle instructionscan explain the discrepancy for PIA.From pro�ling VLIW we found that the vast majority of the multi-cycle instructions came fromone routine, mod, in the SML/NJ standard library. On examining the assembly code for mod, wefound that the results of the multiplications were used immediately, and the results of the divisionswere used either immediately or one instruction later. Thus each multiplication stalled the CPUfor 13 cycles and each division stalled the CPU for 3523 or 36 cycles. Thus, it is reasonable to usethe numbers in Table 10 to compute CPI overhead of multi-cycle instructions. Thus, multi-cycleinstructions can explain the discrepancy for VLIW.5.7 Extending the resultsSection 5.3 demonstrated that heap allocation can have a signi�cant memory subsystem cost if itis not possible to allocate a new object directly into the cache. In this section, we present andevaluate an analytic model which predicts the memory subsystem cost due to heap allocation whenthis is the case. This model formalizes the intuition presented in Section 5.1. It allows us to predictthe memory subsystem cost due to heap allocation when block sizes, miss penalties, or programheap allocation rates change. We use the model to speculate about the memory subsystem cost ofheap allocation for caches without subblock placement if SML/NJ were to use a simple stack.23Assuming the instruction (always arithmetic) between the division and use of its result hits in the cache.27



5.7.1 An analytic modelRecall that heap allocation with copying garbage collection typically allocates memory which hasnot been touched in a long time, and thus is unlikely to be in the cache. This is especially true whenthe allocation area does not �t in the cache. Thus, when newly allocated memory is initialized, writemisses occur. The rate of write misses depends upon the allocation rate and the block size. Giventhe rate of write misses, we can calculate the memory subsystem cost, C, due to heap allocation.a = allocation rate (words/useful instruction)b = block size (words)rp = read miss penalty (cycles)wp = write miss penalty (cycles)Then under the assumption that the allocation area does not �t in the cache, i.e. initializingwrites miss,Cwrite alloc = wp * a/bThe cost of allocating one word on the heap, A, will beAwrite alloc = wp / bNote that depending on the cache organization, the write miss penalty may be 0.Under the additional assumption that programs touch allocated data soon after it is allocated,Cwrite no alloc = rp * a/bAwrite no alloc = rp/bThe cost of heap allocation should account for the di�erence in simulated CPIs when the writemiss policy is varied for the SML/NJ benchmarks, since the benchmarks do so few assignments.That is,Cwrite alloc/no subblock � CPIwrite alloc/no subblock - CPIwrite alloc/subblockCwrite no alloc/no subblock � CPIwrite no alloc/no subblock - CPIwrite alloc/subblockTable 11 shows the average percentage di�erence between the cost of heap allocation, C, and thedi�erences in the CPIs. The percentage di�erence for write allocate/no subblock, D, was calculatedas CPIdi� = CPIwrite alloc/no subblock - CPIwrite alloc/subblockDwrite alloc/no subblock = �����Cwrite alloc/no subblock�CPIdi�CPIdi� �����The percentage di�erence for write no alloc/no subblock was calculated similarly. We �xedthe block size to be 16 bytes. Recall that the miss penalties are wp = rp = 15. We calculatedthe allocation rates (Table 12) for programs by using the allocation information from Table 4 andinstruction counts from Table 3. The average was the arithmetic mean. The average di�erencewhen the allocation area does not �t in the cache (128K or less) is small (2-32%). When theassumption that the allocation area does not �t in the cache is violated, the model is inaccurate, asexpected. The percentage di�erence heads towards in�nity as CPIdi� becomes very small. Thus,this model can be used to predict the memory subsystem cost of heap allocation only for smallcache sizes. 28



Cache size Dwrite no alloc/no subblock Dwrite alloc/no subblock(Kilobytes) (%) (%)8K 7.12 2.416K 6.84 2.232K 7.02 2.264K 10.8 5.7128K 31.8 23.5256K 128.8 111.4512K 1847.7 1746.2Table 11: Percent di�erence between analytical model and simulations
Program Allocation rate Allocation rateincluding callee-save conts. excluding callee-save conts.(words/useful instruction) (words/useful instruction)CW 0.12 0.04Knuth-Bendix 0.23 0.12Lexgen 0.11 0.03Life 0.11 0.02PIA 0.17 0.13Simple 0.14 0.05VLIW 0.16 0.06YACC 0.14 0.07Median 0.14 0.05Table 12: Allocation rate for benchmarks, including and excluding callee-save continuations, whichcan be stack-allocated. 29



Program C(cycles/instruction)CW 0.15Knuth-Bendix 0.44Lexgen 0.12Life 0.09PIA 0.47Simple 0.17VLIW 0.23YACC 0.24Table 13: Assuming procedure activation records are stack allocated in SML/NJ, this table presentsthe expected memory subsystem cost of heap allocation for caches without subblock placement5.7.2 SML/NJ with a stackWe can use this model to speculate about the memory subsystem cost of heap allocation in SML/NJwhen a stack is used. In the absence of �rst-class continuations, which the benchmarks do not use,callee-save continuations can be easily stack-allocated. The callee-save continuations correspond toprocedure activation records. Table 12 shows that stack-allocating callee-save continuations wouldgreatly reduce the allocation rate of the benchmarks.Assuming only continuations are stack-allocated, Table 13 presents an estimate of the memorysubsystem cost of heap allocation for caches that do not have subblock placement and are too smallto hold the allocation area. The block size is 16 bytes, the read miss penalty 15 cycles, and thewrite miss penalty for the no-subblock caches 15 cycles.This is an upper bound estimate of expected memory subsystem cost of heap allocation witha stack because it may be possible to stack-allocate additional objects [31]. We see that even witha simple stack, the memory subsystem costs due to heap allocation for caches without subblockplacement will probably be signi�cant for SML/NJ programs.5.8 Summary of ResultsContrary to what other researchers have speculated, we have found that the memory subsystemperformance of SML/NJ is quite good on some real machines. Of the cache organization parameterswe studied, write allocate/subblock placement with a subblock size of 1 word is most importantfor good performance of SML/NJ programs. However, small caches perform badly for all cacheorganizations. Also, DECStations are the only machines whose caches have subblock placementwith a subblock size of 1 word; thus, the memory subsystem performance of SML/NJ programs isbad on most current machines.Higher associativity and larger block sizes also improve performance but the improvement is notas signi�cant as that o�ered by subblock placement. Larger cache sizes also improve performance,but for cache sizes up to 128K the improvement is small. For six of the benchmarks, increasing thecache sizes beyond 128K allows the allocation area to �t in the cache; thus increasing the cachesize beyond 128K can be pro�table.Most surprisingly, higher associativity and larger cache sizes (up to 128K) have little e�ect onthe performance of the data cache; most of the overall improvement observed is in the instructioncache. The bad locality of the instructions due to small functions and frequent calls leads to manycon
ict misses in the instruction cache, which can be alleviated by going to a larger cache size orhigher associativity. 30



We found fast page mode writes to be very e�ective in absorbing the bursty writes of SML/NJprograms. In memory subsystems with page-mode writes, the write-bu�er depth was not important:a one-deep write bu�er performed almost as well as a six-deep write bu�er. In memory subsystemswithout page-mode writes, the write bu�er-depth was important: a one-deep write bu�er performedmuch worse than a six-deep write bu�er.Finally, we found the penalty due to TLB misses to be small for TLBs with 32 or more entries.6 Future WorkWe suggest three directions in which this study can be extended:� measuring the impact of other architectural features not explored in this work,� measuring the impact of di�erent compilation techniques, and� measuring other aspects of programs.Regarding architectural features, there is a need to explore memory subsystem performanceof heap allocation on newer machines. As CPUs get faster relative to main memory, memorysubsystem performance becomes even more crucial to good performance. To address the increas-ing discrepancy between CPU speeds and main memory speeds, newer machines, such as Alphaworkstations [20], often have features such as secondary caches, stream bu�ers, and register score-boarding.Secondary caches improve performance by reducing accesses to main memory. Stream bu�ersand scoreboarding improve performance by reducing the latency of cache misses. The impact ofthese features on memory subsystem performance can be determined only by simulations. Previouswork has addressed at least two of the features in isolation: Short and Levy [42], Borg et al. [10],and Przybylski [39] study two-level caches, Jouppi [26] studies stream bu�ers, and Chen and Baer[13] study scoreboarding. However, we are not aware of any published work which has studied amemory subsystem with all (or a combination) of these features. Also, we are not aware of anywork evaluating the impact of these features on heap allocation.Regarding di�erent compilation techniques, the impact of stack allocation is worth measuring.A stack reduces heap allocation (which performs badly on most memory subsystem organizations)in favor of stack allocation (which can have good cache locality since it focuses most of the referencesto a small part of memory, namely the top of the stack). For SML/NJ programs, the majorityof heap allocated objects can be allocated on the stack (Table 4). Therefore stack allocationcan substantially improve performance of SML/NJ programs on memory organizations withoutsubblock placement or with small cache sizes. However, stack allocation can slow down exceptions,�rst-class continuations, and threads. A careful study is needed to evaluate the pros and cons ofdoing stack allocation. We are currently working on this.Regarding measuring other aspects of programs, several areas seem promising for future work:1. Measuring the impact of di�erent garbage collection algorithms on cache performance. Somework has already been done on this but more needs to be done (see Section 3).2. Measuring the impact of changing various garbage collector parameters (such as allocationarea size) on cache performance. We are currently working on this.3. Measuring the cost of various operations related to garbage collection: tagging, store checks,and garbage collection checks. A preliminary study of this is reported in [45].4. Measuring the impact of optimizations on cache performance. Of special interest here is thee�ect of function inlining. We are currently working on this.31



7 ConclusionsWe have studied the memory subsystem performance of heap allocation with copying garbagecollection, a general automatic storage management technique for modern programming languages.Heap allocation is useful for implementing language features such as list-processing, higher-orderfunctions, and �rst-class continuations where objects may have inde�nite extent. However, heapallocation is widely believed to have poor memory subsystem performance [38, 48, 49, 50]. Thisbelief is based on the high (write) miss ratios that occur when new objects are allocated andinitialized.We studied the memory subsystem performance of mostly-functional SML programs compiledwith the SML/NJ compiler. These programs heap allocate at intensive rates. They use heap-onlyallocation: all allocation, including activation records, is done on the heap. We simulated a widevariety of memory subsystems typical of current workstations.To our surprise, we found that heap allocation performed well on some memory subsystems. Inparticular, on an actual machine (the DECStation 5000/200), the memory subsystem performanceof heap allocation was good. However, heap allocation performed poorly on most memory subsys-tem organizations. The memory subsystem property crucial for achieving good performance wasthe ability to allocate and initialize a new object into the cache without a penalty. This can beachieved by having subblock placement or a cache large enough to hold the allocation area, alongwith fast page-mode writes or a su�ciently deep write bu�er.We found for caches with subblock placement, the arithmetic mean of the data cache penaltywas under 9% for 64K or larger caches; for caches without subblock placement, the mean of thedata cache penalty was often higher than 50%. We also found that a cache size of 512K allowed theallocation area for six of the benchmark programs to �t in the cache, which substantially improvedthe performance of cache organizations without subblock placement.The implications of these results are clear. First, a stack is not needed to achieve good memorysubsystem performance. Given the right memory subsystem, heap allocation of procedure acti-vation records can also have good memory subsystem performance. Heap allocation can be usedwithout a performance penalty in place of stack allocation, even though it is a more general storagemanagement technique. Second, computer architects can better support modern languages whichmake heavy use of dynamic storage allocation on machines with small primary caches by usingsubblock placement with a subblock size of 1 word.8 AcknowledgementsWe would like to thank Edoardo Biagioni, Brad Chen, Olivier Danvy, Alessandro Forin, Urs Hoelzle,Kathryn McKinley, Erich Nahum, Darko Stefanovi�c, and Daniel Stodolsky for comments on draftsof this paper. We thank Peter Lee for his encouragement and advice during this work. We thankBrian Milnes and the facilities at CMU for setting up the hardware according our every whim. Wethank Tom Dewey for explaining the partial-word write mechanism in the DS5000/200 to us. Wethank Andrew Appel, Dave MacQueen and many others for creating SML/NJ. We thank JamesLarus for creating qpt and for answering the questions which arose while we were extending histool. We thank Mark Hill for creating his cache simulator Tycho. Last but not least, we thank allthe members of the Fox project for their interest in this work and for accommodating our demandfor compute cycles.
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