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Abstract— Images account for a significant and growing
fraction of Web downloads. The traditional approach to
transporting images uses TCP, which provides a generic re-
liable, in-order byte-stream abstraction, but which is overly
restrictive for image data. We analyze the progression of
image quality at the receiver with time and show that the
in-order delivery abstraction provided by a TCP-based ap-
proach prevents the receiver application from processing
and rendering portions of an image when they actually ar-
rive. The end result is that an image is rendered in bursts
interspersed with long idle times rather than smoothly.

This paper describes the design, implementation, and
evaluation of the Image Transport Protocol (ITP) for image
transmission over loss-prone congested or wireless networks.
ITP improves user-perceived latency using application-level
framing (ALF) and out-of-order Application Data Unit
(ADU) delivery, achieving significantly better interactive
performance as measured by the evolution of peak signal-to-
noise ratio (PSNR) with time at the receiver. ITP runs over
UDP, incorporates receiver-driven selective reliability, uses
the Congestion Manager (CM) to adapt to network conges-
tion, and is customizable for specific image formats (e.g.,
JPEG and JPEG2000). ITP enables a variety of new re-
ceiver post-processing algorithms such as error concealment
that further improve the interactivity and responsiveness of
reconstructed images. Performance experiments using our
implementation across a variety of loss conditions demon-
strate the benefits of ITP in improving the interactivity of
image downloads at the receiver.

I. INTRODUCTION

MAGES constitute a significant fraction of traffic on the

World Wide Web. For example, one recent study showed
that JPEG images account for about 31% of all bytes trans-
ferred and 16% of documents downloaded in a client Web
trace [1]. The ability to transfer and render images on
screen in a timely fashion is an important consideration for
content providers and server operators because users surf-
ing the Web care about interactive latency. At the same
time, download latency must be minimized without com-
promising end-to-end congestion control, since congestion
control is vital to maintaining the long-term stability of the
Internet infrastructure. In addition, appropriate reaction
to network congestion also allows image transfer applica-
tions to adapt well to available network conditions, perhaps
by changing the format of transferred images to suit pre-
vailing network conditions.

The HyperText Transport Protocol (HTTP) [2] uses the
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Transmission Control Protocol (TCP) [3] to transmit im-
ages on the Web. While the use of TCP achieves both reli-
able data delivery and good congestion control, these come
at acost interactive latency is often significantly large and
leads to images being rendered in “fits and starts” rather
than in a smooth way. The reason for this is that TCP is
ill-suited to transporting latency-sensitive images over loss-
prone networks where losses occur because of congestion or
packet corruption. When one or more segments in a win-
dow of transmitted data are lost in TCP, later segments
often arrive out-of-order at the receiver. In general, these
segments correspond to portions of an image that may be
handled upon arrival by the application, but the in-order
delivery abstraction imposed by TCP holds up the delivery
of these out-of-order segments to the application until the
earlier lost segments are recovered. As a result, the image
decoder at the receiver cannot process information even
though it is available at the lower transport layer. The im-
age is therefore rendered in bursts interspersed with long
delays, rather than smoothly. This motivates our work.

The TCP-like in-order delivery abstraction is indeed ap-
propriate for certain image encodings, like the Graphical
Interchange Format, GIF [4], in which incoming data at the
receiver can only be handled in the order it was transmit-
ted by the sender. However, while some compression for-
mats are constrained in this manner, several others are not.
Notable examples of formats that encourage out-of-order
receiver processing include JPEG [5], [6] and the emerg-
ing JPEG2000 standard [7]. In these cases, a transport
protocol that facilitates out-of-order data delivery allows
the application to process and render portions of an image
as they arrive, improving the interactivity and perceived
responsiveness of image downloads. Such a protocol also
enables the image decoder at the receiver to implement ef-
fective error concealment algorithms on partially received
portions of an image, further improving perceived quality.

One commonly suggested approach to tackling this prob-
lem of in-order delivery is to extend existing TCP imple-
mentations and its application programming interface so
that received data can be consumed out-of-order by the
application. However, merely tweaking an in-order byte-
stream protocol like TCP without any additional machin-
ery is not adequate because out of order TCP segments
received by the application in this manner do not corre-
spond in any meaningful way to processible data units at
the application level. Adapting TCP and providing an API
for out-of-order delivery with receiver-driven reliability is
a non-trivial task and the design of such a protocol would
likely require significant changes to TCP.

We propose the Image Transport Protocol (ITP), a
transport protocol in which application data unit (ADU)
boundaries are exposed to the transport module, making it



possible to perform meaningful out-of-order delivery. Be-
cause the transport protocol is aware of application fram-
ing boundaries, our approach expands on the application-
level framing (ALF) philosophy, which proposes a one-to-
one mapping from an ADU to a network packet or proto-
col data unit (PDU) [8]. However, ITP deviates from the
TCP-like notion of reliable delivery and instead incorpo-
rates selective reliability, where the receiver is in control of
deciding what is retransmitted from the sender.

Selective reliability is especially appropriate for hetero-
geneous network environments that will include a wide va-
riety of clients with a large diversity in processing power,
and allows the client to request application data that would
benefit it the most, depending on its computational power
and available suite of image decoding algorithms. Further-
more, image standards such as JPEG2000 support region-
of-interest (ROI) coding that allows receivers to select por-
tions of an image to be coded and rendered with higher
fidelity.

Any deployable transport protocol must perform con-
gestion control for the Internet to remain stable, which
suggests that a significant amount of additional complex-
ity would have to be designed and implemented in ITP.
Fortunately, we are able to leverage the recently proposed
Congestion Manager (CM) [9], [10] to perform stable, end-
to-end congestion control.

In this paper, we describe the motivation, design, im-
plementation, and evaluation of ITP, an ALF-based image
transport protocol. Our key contributions are as follows.

« We present the design of ITP, a transport protocol that
runs over UDP, incorporating out-of-order data delivery
and receiver-controlled selective reliability. We have de-
signed ITP so that it can be used with no modifications to
higher layer protocols such as HTTP [11], [2] or FTP [12].
« We show how to tailor ITP for JPEG image transport, by
introducing a framing strategy and tailoring the reliability
protocol by scheduling request retransmissions.

e ITP’s out-of-order delivery enables many receiver opti-
mizations. We describe one such optimization in which
missing portions of an image are interpolated using a sim-
ple error concealment algorithm.

« We present the measured performance of a user-level im-
plementation of ITP across a range of network conditions
that demonstrate that the rate of increase in PSNR with
time is substantially higher for ITP compared to the in-
order delivery of JPEG data.

The remainder of this paper is organized as follows. In
Section II, we present empirical evidence in favor of our
approach and discuss our design goals for ITP. Section III
describes various aspects of the ITP protocol—out-of-order
delivery, receiver-reliability, and congestion management.
This is followed by a discussion on applying ITP to JPEG
transport in Section IV. In Section V, we present the mea-
sured performance of ITP that demonstrates the advan-
tages over the traditional TCP approach under a variety of
conditions. Finally, we discuss related work in Section VI
and conclude in Section VII.

Data and ACK trace of TCP for an image download
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Fig. 1. Portion of packet sequence trace of a TCP transfer of an
image.

II. DESIGN CONSIDERATIONS

We start by motivating our approach by highlighting the
disadvantages of using TCP for image transfers. The main
drawback of using TCP for image downloads is that its
in-order delivery model interferes with user interactivity.
To demonstrate this, we conducted an experiment across
a twenty-hop Internet path to download a 140 KByte im-
age using HTTP/1.1 [2] running over TCP. The loss rate
experienced by this connection was 2.3%, only three seg-
ments were lost during the entire transfer, and there were
no sender retransmission timeouts.

Figure 1 shows a portion of the packet sequence trace ob-
tained using tcpdump [13] running at the receiver. We see
a transmission window in which exactly one segment was
lost, and all subsequent segments were received, causing
the receiver to generate a sequence of duplicate acknowl-
edgments (ACKs). There were ten out-of-sequence seg-
ments received and waiting in the TCP socket buffer, none
of which was delivered to the image decoder application
until the lost segment was received via a (fast) retransmis-
sion almost 2.2 seconds after the loss. During this time, the
user saw no progress, but a discontinuous spurt occurred
once this lost segment was retransmitted to the receiver,
and several kilobytes worth of image data were passed up
to the application. This is the behavior we would like to
avoid in the interest of better user interactivity.

To understand how ordering semantics influence the per-
ceptual quality of the image, we conducted a second exper-
iment where the image is downloaded over TCP and stud-
ied the evolution of image “quality,” as measured by peak
signal-to-noise ratio (PSNR) [14] with respect to the orig-
inal transmitted image. Figure 2 shows this for a transfer
that experiences a 15% loss rate. We find that the quality
remains unchanged for most of the transfer, due to an early
segment loss, but rapidly rises upon recovery of that lost
segment. A smoother evolution in PSNR, as in the “ideal”
transfer which does out-of-order delivery is desirable for
better interactivity.

We observe that a design in which the underlying trans-
port protocol delivers out-of-sequence data to the applica-
tion might avoid the perceived latency buildup. In order to
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Fig. 2. PSNR evolution of the rendered image at the receiver for a
TCP transfer with 15% loss rate.

do this, the transport “layer” (or module) must be made

aware of the application framing boundaries, such that each

data unit is independently processible by the receiver.
The following considerations directed the design of ITP.

1. Support out-of-order delivery of ADUs to the applica-
tion, while efficiently accommodating ADUs larger than a
single unfragmented packet.

Our first requirement is that the protocol accommodate
out-of-order delivery, but does so in a way that allows the
receiver application to make sense of the mis-ordered data
units it receives. In the pure ALF model [8], each ADU
is matched to the size of a protocol data unit (PDU) used
by the transport protocol. This implies that there is no
“coupling” between two packets and that they can be pro-
cessed in any order. Unfortunately, it is difficult to ensure
that an ADU is always well matched to a PDU because
the former depends on the convenience of the application
designer and what is meaningful to the application, while
the latter should not be too much larger (if at all) than the
largest datagram that can be sent unfragmented.

2. Support receiver-controlled selective reliability.

When packets are lost, there are two possible ways of han-
dling retransmissions. The conventional approach is for
the sender to detect losses and retransmit them in the or-
der in which they were detected. While this works well for
protocols like TCP that simply deliver all the data sequen-
tially to a receiver, interactive image transfers are better
served by a protocol that allows the receiving application
(and user) to control the retransmissions from the sender.
For example, a user should be able to express interest in a
particular region of an image, causing the transport proto-
col to prioritize the transmission of the corresponding data
over others.

3. Support customization to different image formats.
There are many different image formats that can benefit
from out-of-order processing, each of which may embed
format-specific information in the protocol. For example,
the JPEG format uses an optional special delimiter called
a restart marker, which signifies the start of each indepen-
dently processible unit to the decoder. Such format- or
application-specific information should be made available
to the receiver in a suitable way, without sacrificing gener-

ality in the basic protocol.

In ITP, this is done as in the Real-time Transport Protocol
(RTP) [15]; a base header is customized by individual ap-
plication protocols, with profile-specific extension headers
incorporating additional information.

4. Application and higher-layer protocol independence.
While this work is motivated by interactive image down-
loads on the Web, our goal is for ITP to be useful as a
transport protocol for not just HTTP but other higher-
layer protocols as well. Furthermore, we do not require
any changes to the HTTP specification, and would like to
be able to replace HTTP’s use of TCP with ITP at the
transport layer for image data. We use a duplex ITP con-
nection to carry HT'TP request messages such as GET and
POST, as well as HTTP responses, in much the same way
that HTTP uses bi-directional TCP connections for this.
5. Sound congestion control.

Finally, congestion-controlled transmissions are important
for deploying any transport protocol on the Internet. But
rather than reinvent complex machinery for congestion
management (a look at many of the subtle bugs in TCP
congestion control implementations that researchers have
discovered over the years shows that this is not straightfor-
ward [16]), we leverage the recently developed Congestion
Manager (CM) architecture [9]. The CM abstracts away
all congestion control into a trusted kernel module inde-
pendent of transport protocol, and provides a general API
for applications to learn about and adapt to changing net-
work conditions [10].

III. ITP DESIGN

In this section, we describe the design and internal ar-
chitecture of ITP, and the techniques used to meet the
aforementioned design goals. ITP is designed as a modular
user-level library that is linked by the sender and receiver
application. The overall system architecture is shown in
Figure 3, which includes an example of an application pro-
tocol such as HT'TP or FTP using ITP for data with MIME
type “image/jpeg” and TCP for other data. It is impor-
tant to note that ITP “slides in” to replace TCP in a way
that requires no change to the specification of a higher-
layer protocol like HTTP or FTP. A browser initiates an
ITP connection in place of a TCP connection if a JPEG
image is to be transferred. The HTTP server initiates an
active open on UDP port 80 and waits for client requests
that are made using the HTTP/ITP/UDP protocol.

A. Out-of-order Delivery

Providing an out-of-order delivery abstraction at the
granularity of a byte, makes it hard for the application
to infer what application data units an arbitrary incoming
sequence of bytes corresponds to. The application handles
data in granularities of an ADU, so ITP provides an API by
which an application can send or receive a complete ADU.

The sending application invokes itp_send () to send an
ADU to the receiver. Before shipping the ADU, ITP in-
corporates a header, shown in Figure 4 that includes an in-
crementing ADU sequence number and ADU length. The
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Fig. 3. The system architecture showing I'TP, its customization for
JPEG, and how HTTP uses it instead of TCP for MIME type “im-
age/jpeg” while using a conventional TCP transport for other data
types. All HI'TP protocol messages are sent over I'TP, not just the
actual image data, which means that I'TP replaces TCP as the trans-
port protocol for this data type.
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Fig. 4. The 28-byte generic I'TP transport header contains meta-data
pertaining to each fragment, as well as the ADU that the fragment
belongs to, such as the ADU sequence number and length, the frag-
ment offset within the ADU, a sender timestamp, and the sender’s
estimate of the retransmission timeout.

sequence number and length of an ADU are used by the re-
ceiver to detect the loss of an ADU or the loss of a sequence
of bytes within the ADU, perform reassembly within an
ADU, and verify that the complete ADU has arrived.

When a complete ADU arrives at the receiver, the
ITP receiver invokes a well-known callback function im-
plemented by the application, called itp_app-notify().
In response, the application calls an ITP library function
itp_read() to read the incoming ADU into its own buffers,
and returns control to ITP. This interaction is shown in Fig-
ure 5. The important point to note is that this sequence of
steps occurs when a complete ADU arrives at the receiver,
independent of the order in which it was transmitted from
the sender.

Unfortunately, not all ADUs are small enough to fit in
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Fig. 5. The sequence of operations when a complete ADU arrives at
the I'TP receiver.

4.

one PDU. This requires that any ADU larger than a PDU
be fragmented into PDU-sized units before transmission.
Using arbitrarily-sized ADUs as the granularity of loss re-
covery is inefficient. Consider for example an ADU trans-
mitted by the transport protocol that was fragmented by
a lower layer for transmission, and exactly one of the frag-
ments was lost in transit. The receiver must ask for the
entire ADU to be retransmitted if the unit of naming and
transmission by the transport layer is an ADU, thereby de-
grading protocol goodput. Rather than suffer poor perfor-
mance caused by redundant retransmissions, I'TP bridges
the mismatch between network-supported packet sizes and
application-defined data units by breaking up an ADU into
fragments no bigger than the maximum transmission unit
of the path and identifying each fragment by its byte-offset
and length within an ADU as well as the ADU sequence
number. Path MTU discovery [17] can be used to deter-
mine this value between a pair of hosts on the Internet.
We emphasize that this is done to avoid inefficiencies in
retransmission, but is not exposed to the receiving appli-
cation. As a result, applications are not forced to limit
their framing to network packet sizes, and partial ADU
data are not visible to them.

B. Reliability

One of the design goals in ITP is to put the receiver
in control of loss recovery which suggests a protocol based
on retransmission request messages sent from the receiver.
In addition to loss recovery, ITP must also reliably han-
dle connection establishment and termination, as well as
host failures and subsequent recovery without compromis-
ing the integrity of delivered data. We incorporate TCP-
like connection establishment and termination mechanisms
for this; details of this are in [18].

All retransmissions in ITP occur only upon receipt of a
retransmission request from the receiver, which names a
requested fragment using its ADU sequence number, frag-
ment offset, and fragment length. While many losses can
be detected at the receiver using a data-driven mechanism
that observes gaps in the received sequence of ADUs and
fragments, not all losses can be detected in this manner.



In particular, when the last fragment or “tail” of a burst
of fragments transmitted by a sender is lost, a retransmis-
sion timer is required. Losses of previous retransmissions
similarly require timer-based recovery.

One possible design is for the receiver to perform all
data-driven loss recovery, and for the sender to perform all
timer-based retransmissions. However, this contradicts our
goal of receiver-controlled reliability because the sender has
no knowledge of the fragments most useful to the receiver.
Unless we incorporate additional complex machinery by
which a receiver can explicitly convey this information to
the sender, the sender may retransmit old and uninterest-
ing data upon a timeout.

Our solution to this problem is to move all timer han-
dling to the receiver. If the receiver detects no activity for
a timeout duration, a retransmission request is sent. If no
gaps are detected in the received ADU stream, a retrans-
mission request is sent for the next expected ADU, i.e., 1
+ last ADU sequence number received, thereby initiating
recovery from a tail loss. Since the retransmission timer
is always active, this message is repeated periodically until
the receiver is ready to terminate.

It is rather difficult for accurate round-trip time esti-
mation to be performed at the receiver when data flows
only from sender to receiver. Hence, the ITP sender calcu-
lates the retransmission timeout (RTO) as in TCP with the
timestamp option [19], and passes this RTO to the receiver
in the ITP header (Figure 4).

ITP also incorporates “data-driven” retransmission re-
quests. To do this, the receiver maintains a list of incom-
plete and missing ADUs. When a fragment is received,
missing fragments or ADUs are detected by looking up the
data structure. The receiver now has three tasks: (i) decide
whether it is time to ask for the fragment, (ii) decide how
many fragments to ask for, and (iii) if at least one fragment
can be requested at this time, decide which fragments to
request.

Two considerations dictate whether it is time to ask for
a fragment. First, if a request has already been made for
the fragment, it should not be made again unless an RTO
has elapsed since the first request. Second, packets may get
reordered on the Internet [20], and the receiver must guard
against asking for a reordered (but not lost) fragment. The
approach in TCP is to wait for a threshold number (three)
of duplicate ACKs and retransmit the first unacknowledged
segment. Unfortunately, this does not work well when win-
dows are small or when ADUs are small in size (as is of-
ten the case for ITP applications). Our solution to this
problem is motivated by the observation by Paxson that a
small delay before sending an ACK in TCP often accounts
for reordered segments [21]. ITP modifies this approach by
adapting it to the transmission rate r (in fragments/sec)
from the sender, which it monitors using an exponentially-
weighted moving average filter. The receiver waits for a
duration equal to 3/r seconds before sending a request, al-
lowing for a typical number of reordered fragments to arrive
and cancel a pending retransmission request.

A difficult part of ITP loss recovery is to decide which

fragment to request at any time among the missing ones.
This is difficult because of the tension between application-
specificity and generality. We would like to put the appli-
cation in control of what to request, but save each appli-
cation the trouble of writing the complex loss detection
code. Furthermore, we would like to provide a reasonable
default behavior to handle applications that do not care to
customize their reliability schedules.

ITP provides a simple default scheduling algorithm for
retransmission requests in which requests are made for frag-
ments from all the missing ADUs starting from the most
recent one and progressing in sequence to the least recent,
subject to the above conditions of not requesting them
too soon. More importantly, ITP also allows application-
specific customization of reliability, as described in Sec-
tion IV-B for JPEG.

C. Congestion Control

ITP uses the Congestion Manager (CM) for congestion
control, using the CM API to adapt to network conditions
and to inform the CM about the status of transmissions
and losses [22], [10]. Since ITP reliability is receiver-based,
there is no need for positive ACKs from the receiver to the
sender for reliability. ACKs from the receiver are solely for
congestion control and estimating round-trip times; these
are needed because the CM congestion controller we use
implements a window-based congestion control algorithm.
The CM requires the cooperation of the application in de-
termining the state of the network, as described in [10]. By
informing the ITP sender about the status of transmissions,
an ITP ACK allows the ITP sender to update CM state.
When the ITP sender receives an ACK, it calculates how
many bytes have cleared the “pipe” and calls cm_update ()
to inform the CM of this.

When a retransmission request arrives at the sender, the
sender infers that packet losses have occurred, attributes
them to congestion (as in TCP), and invokes cm_update ()
with the lossmode parameter set to CM_TRANSIENT,
signifying transient congestion. In a CM-based transport
protocol where timeouts occur at the sender, the expected
behavior is to use cm_update() with the lossmode parame-
ter set to CM_PERSISTENT, signifying persistent conges-
tion. In ITP, the sender never times out, only the receiver
does. The sender only sees a request for retransmission
arriving after a timeout at the receiver, so when a retrans-
mission request arrives, it needs to determine if that oc-
curred after a timeout or because of out-of-sequence data.
We solve this problem by calculating the elapsed time since
the last time there was any activity on the connection from
the peer, and if this time is greater than the retransmission
timeout value, then the CM is informed about persistent
congestion. Figure 6 shows what the ITP sender does when
it receives a request for retransmission.

IV. JPEG TRANSPORT USING ITP

In this section, we discuss how to tailor ITP for transmit-
ting JPEG images. JPEG was developed in the early 1990s
by a committee within the International Telecommunica-



PROCESSRXMITREQ(fragment)

Send requested fragment via cm_send();
InformCM();

INFORMCM ()
now < current_time;
if (now — last_activity > timeout_duration)
cm_update(..., CM_PERSISTENT, ...);
else
cm_update(..., CM_TRANSIENT, ...);

Fig. 6. How the I'TP sender handles a retransmission request.

tions Union, and has found widespread acceptance for use
on the Web. The compression algorithm uses block-wise
discrete cosine transform (DCT) operations, quantization,
and entropy coding [23]. JPEG-ITP is the customization
of ITP by introducing a JPEG-specific framing strategy
based on restart markers and tailoring the retransmission
protocol by scheduling retransmission requests.

A. Framing

JPEG uses entropy coding and the resulting compressed
bitstream consists of a sequence of variable-length code
words. Packet losses often result in catastrophic loss if
pieces of the bitstream are missing at the decoder. Arbi-
trarily breaking an image bitstream into fixed-size ADUs
does not work because of dependencies between them.
However, JPEG uses restart markers to allow decoders to
resynchronize when confronted with an ambiguous or cor-
rupted JPEG bitstream, which can result from partial loss
of an entropy-coded segment of the bitstream. The intro-
duction of restart markers helps localize the effects of the
packet loss or error to a specific sub-portion of the rendered
image. This segmentation of the bitstream into indepen-
dent restart intervals also facilitates out-of-order processing
by the application layer. The approach used by JPEG to
achieve loss resilience provides a natural solution to our
framing problem.

When an image is segmented into restart intervals, each
restart interval is independently processible by the appli-
cation and naturally maps to an ADU. The image decoder
is able to decode and render those parts of the image for
which it receives information without waiting for packets
to be delivered in order. The base ITP header is extended
with a JPEG-specific header that carries framing informa-
tion, which includes the spatial position of a 2-byte restart
interval identifier.

Our implementation of JPEG-ITP uses 8-bit gray-scale
images in the baseline sequential mode of JPEG. We re-
quire that the image server store JPEG images with pe-
riodic restart markers. This requirement is easy to meet,
since a server can easily transcode offline any JPEG image
(using the jpegtran utility) to obtain a version with mark-
ers. When these markers occur at the end of every row of
blocks, each restart interval corresponds to a “stripe” of the
image. These marker-equipped bistreams produce exactly
the same rendered images as the original ones when there

JPEG decoder
N J
get_restart(r)
e N
JPEG-ITP
JPEG restart :: ADU segno.
N map J
vitp )_get_adu(a)

e

Fig. 7. JPEG-ITP maintains a mapping of restart intervals to ADU
sequence numbers. The JPEG decoder specifies recovery priorities
based on application-level considerations, which is used to guide I'TP’s
request scheduling.

are no losses. Since JPEG uses a blocksize of 8x8 pixels,
each restart interval represents 8 pixel rows of an image.
We use the sequence of bits between two restart markers
to define an ADU, since any two of these intervals can be
independently decoded. Our placement of restart markers
achieves the effect of rendering an image in horizontal rows.

B. Scheduling

As discussed in Section III, ITP allows the application
to specify the priorities of different ADUs during recov-
ery. We describe how this is achieved in JPEG-ITP. Fig-
ure 7 shows the key interfaces between ITP and JPEG-
ITP, and between JPEG-ITP and the decoder. ITP han-
dles all fragments and makes only complete ADUs visible
to JPEG-ITP. To preserve its generality, we do not expose
application-specific ADU names to ITP. Thus, when a miss-
ing ADU needs to be recovered by the decoder, JPEG-ITP
needs to map the restart interval number to an ITP ADU
sequence number. To do this, the JPEG-ITP sender reli-
ably transmits this mapping as the first ADU of the con-
nection, before transmitting the image ADUs. This name
map is used to schedule ITP retransmission requests.

ITP maintains a priority list of the retransmission
schedule by exporting an asynchronous API function
itp_get_adu() that customized protocols like JPEG-ITP
and applications can use to inform ITP of the desired ADU.
ITP uses this priority information to schedule requests for
missing fragments from these ADUs ahead of others. In ad-
dition, JPEG-ITP exports an API function to the decoder
that allows the latter to specify restart intervals that must
be prioritized during recovery, e.g., if the decoder uses error
concealment as in Section IV-C, this is used to preferen-
tially request ADUs that have not been interpolated from
the existing partial image.

C. Error Concealment

Out-of-order delivery allows the JPEG decoder to refine
a partial image using error concealment based on interpo-
lation techniques. Portions of the image corresponding to
the received ADUs are decoded and rendered. Before ren-



dering, a post-processing step is applied to the image to
conceal lost stripes. Error concealment exploits spatial re-
dundancy in images and aims to increase the perceptual
quality of the rendered image.

Each missing pixel value is the result of a linear interpo-
lation of its neighbors. This step is applied to all missing
restart intervals at the receiver. Therefore, in 2-D, the
missing pixel x; ; is given by:

Ti—15 t Tiy1,j + Tij—1 + Tij+1 (1)
4

Tij =

The boundary conditions are determined by the
pixel values of neighboring blocks. Using the lex-
icographic ordering of pixels in a block,
{.’15070,.’15071, ---~750,B71;371,0---;5’5371,372;'TBfl,Bfl}; the esti-
mate of the missing block may be computed as

X =

x=A""c (2)

where A is a block tri-diagonal matrix given by

I L I O -

A=| O 1 L I O (3)
o I L I
O I L

and L is a 8x8 tri-diagonal matrix formed from
{1,-4,1}.

c is a vector that represents the boundary conditions
imposed by the pixels above(u), below(d), to the left(l)

and to the right(r) of the current block.

¢(0,0) = 1(0) +u(0)
c(0,B-1) = r(0)+u(B-1)
¢(B-1,0) = I(B - 1)+d(0)
¢(B-1,B-1) = r(B-1)+dB 1)

D. Other Formats

We have described a simple framing strategy and fur-
ther refinement using error concealment scheme for JPEG
over I'TP. The same techniques also extend to progressive
JPEG images. In progressive JPEG, the quantized DCT
coefficients corresponding to each block are divided into a
series of scans. These scans may either represent differ-
ent frequencies (low to high), or different bit-planes of the
quantized coefficients (most significant to least significant
bits). A coarse representation of the image is rendered with
the receipt of the first scan, which is successively refined
as subsequent scans arrive. Each scan can be segmented
into restart intervals, which results in the ability to process
and render out-of-order within a scan, leading to quicker
response times and interactivity. Error-concealment can
be carried out in a multi-resolution manner by performing
concealment within one scan at a time.

Similar techniques are also possible for transmission of
JPEG2000, which is a recent proposal for wavelet-based
image coding scheme that results in higher compression
ratios and better fidelity. The standard supports several
features such as layered coding and “region of interest”
(ROI) coding. Designing transport support for ROI coding
requires customized scheduling of retransmission requests
at the receiver, which is provided by ITP.

V. PERFORMANCE

In this section, we evaluate our implementation of ITP
under a variety of network loss rates. Our implementation
of ITP performs out-of-order data delivery at the receiver
and uses the averaging method to interpolate missing pack-
ets at the receiver. We have customized ITP for JPEG
transport where the images contain restart intervals.

A. Peak Signal-to-Noise Ratio (PSNR)

Image quality is often measured using a metric known
as the PSNR. Consider an image whose pixel values are
denoted by z(i,j) and a compressed version of the same
image whose pixel values are Z(i,j). The PSNR quality of
the compressed image (in dB) is:
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In our experiments, we use PSNR with respect to the trans-
mitted image as the metric to measure the quality of the
image at the receiver. Note that PSNR is inversely pro-
portional to the mean-square distortion between the im-
ages, which is given by the expression in the denominator
of Equation 4. When the two images being compared are
identical, e.g., at the end of the transfer when all blocks
from the transmitted image have been received, the mean-
square distortion is 0 and the PSNR becomes oco. We rec-
ognize that PSNR does not always accurately model per-
ceptual quality, but use it because it is a commonly used
metric in the signal processing literature.

PSNR = 10 x log,, Bl (4)

B. FExperimental Results

We measure the evolution of instantaneous PSNR as the
JPEG image download progresses. When JPEG-ITP re-
ceives a complete restart interval from ITP, it is passed
to the decoder. The decoder output is processed to fill
in missing intervals using the error concealment step ex-
plained earlier and the image is updated. We measure
PSNR with respect to the original JPEG image transmit-
ted under three scenarios: (i) when in-order delivery is en-
forced, (ii) when out-of-order delivery is allowed, and (iii)
when error concealment is performed on the mis-ordered
data units.

Figure 8 shows the results of this experiment under a
variety of loss rates. We use a simple Bernoulli loss model
where each packet is dropped at the receiver with an inde-
pendent probability given by the average loss rate.

We find that across a range of loss rates between 5% and
30%, TCP-like delivery causes the quality of the rendered
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Fig. 8. PSNR vs. Time for ITP and a TCP-like transport that enforces in-order delivery. The quality of the image (as measured by PSNR)

is identical in all three scenarios at the start and at the end of the transfer. However, the sample paths differ

the best performance is seen

with I'TP optimized with error concealment, while TCP shows the poorest performance. ITP shows a steady improvement in quality, and is
therefore perceptually superior for interactive applications such as the Web.
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Fig. 10. PSNR corresponding to the snapshots shown in Figure 9.
Starting at almost identical image snapshots at 2s, the I'TP image
(with and without error concealment) progress steadily in quality,
while the TCP-delivered image only catches up close to completion
time.

image to remain low for extended intervals of time. In com-
parison, ITP with out-of-order delivery shows a smoother
evolution of PSNR during the transfer. In addition, the
PSNR of the ITP-delivered image is superior to that de-
livered by TCP while the transfer is in progress, becoming
identical only at the end of the transfer, as expected. This
smooth evolution of quality makes ITP better suited for
interactive image downloads. When error concealment is
applied as an added optimization on the partial image, we
find that the benefits are between 2 8 dB. In combination,
the two techniques outperform TCP by 10-15 dB.

Figure 9 shows the progression of displayed images for
the three different scenarios and Figure 10 shows the cor-
responding PSNR values. Starting with almost identical
image snapshots at 2s, the ITP-delivered images (with and
without error concealment) show steady improvement in
quality relative to the TCP-delivered snapshot. At 10s,

PSNR at 20% lossrate
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Fig. 11. When receiver request scheduling takes into consideration
those “stripes” that cannot be interpolated, the quality of the ren-
dered image can be improved by 5 15 dB.

the ITP image is 3.3 dB and a further improvement of 1.3
dB is achieved through interpolation on the partial image.
As we can see from the image, the benefits of interpolation
are greater when more of the image is available, which fur-
ther strengthens the case for out-of-order delivery in ITP.
The ITP images continue to improve and at 12s, they are
12 dB (without error concealment) and 20 dB (with error
concealment) better than the corresponding TCP-delivered
images.

We also conducted a transfer across a 1.5 Mbps link to
study the effect of receiver scheduling. Here, the receiver
prioritizes requests for data items that cannot be concealed
using interpolation. The results are shown in Figure 11.

VI. RELATED WORK

The so-called CATOCS debate on ordering semantics in
the context of multicast protocols drew much attention a
few years ago [24], [25], [26]. Cheriton and Skeen argued

3
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Fig. 9. Snapshots of the displayed image with a TCP-like transport (first row), with ITP (second row), and with ITP enhanced with error
concealment (last row) at 10% loss rate. The entire transfer of the 184 KB image takes 16.57s to complete.



that ordering semantics are better handled by the applica-
tion and that enforcing an arbitrarily chosen ordering rule
results in performance problems [24]. In our work, we re-
inforce this approach to protocol design and refrain from
imposing a particular ordering semantics across all appli-
cations.

RDP [27], [28] is a reliable datagram protocol intended
for efficient bulk transfer of data for remote debugging-
style applications. RDP implements sender-driven reliabil-
ity and does not, support receiver-tailored nor application-
controlled reliability. NETBLT [29] is a receiver-based re-
liable transport protocol that uses in-order data delivery
and performs rate-based congestion control.

There has been much recent work on Web data trans-
port for in-order delivery, most of which address the prob-
lems posed to congestion control by short transaction sizes
and concurrent streams. Persistent-connection HTTP [30],
part of HTTP/1.1 [2], attempts to solve this using a single
TCP connection, but this causes an undesirable coupling
between logically different streams because it serializes con-
current data delivery. The MEMUX protocol (derived from
Web MUX [31] proposes to deliver multiplexed bidirec-
tional reliable ordered message streams over a bidirectional
reliable ordered byte stream protocol such as TCP [32]. A
recent proposal to extend RTP [15], an Internet standard
for streaming media with a negative acknowledgment-based
selective reliability is described in [33].

The WebTP protocol aims to replace HTTP and TCP
with a single customizable receiver-driven transport pro-
tocol [34]. WebTP handles only client-server transactions
and not other forms of interactive Web transactions such
as “push” applications. It is not a true transport layer
(like TCP) that can be used by different session (or appli-
cation) protocols like HT' TP or FTP, since it integrates the
session and transport functionality together. In addition,
WebTP advocates maintaining the congestion window at
the receiver transport layer, which makes it hard to share
with other transport protocols and applications.

In contrast, our work is motivated by the philosophy that
one transport /session protocol does not fit all applications,
and that the only function that all transport protocols must
perform is congestion management. The CM extracts this
commonality into a trusted kernel module [9], permitting
great heterogeneity in transport and application protocols
customized to different data types (e.g., it is appropriate
to continue using TCP for applications that need reliable,
in-order delivery). The CM API allows these protocols
to share bandwidth, learn from each other about network
conditions, and dynamically partition available bandwidth
amongst concurrent flows.

While much work has been done on video transmission,
image transport has received little attention in the past.
Turner and Peterson describe an end-to-end scheme for
image encoding, compression, and transmission, tuned es-
pecially for links with large delay [35]. They develop a
retransmission-free strategy based on forward error correc-
tion. Han and Messerschmitt propose a progressively re-
liable transport protocol (PRTP) for joint source-channel
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coding over a noisy, bandwidth constrained channel. This
protocol delivers multiple versions of a packet with sta-
tistically increasing reliability and provides reliable, or-
dered delivery of images over bursty wireless channels [36].
The Fast and Lossy Internet Image Transmission proto-
col (FLIIT) [37] improves the perceived delay of a down-
load by eliminating retransmissions. Instead, the FLIIT
sender strategically shields “important” portions of the im-
age data, for example, by applying FEC to the high order
bits of the DC channels of the image.

Finally, we observe that several highly sophisticated er-
ror concealment techniques have been proposed in the liter-
ature, especially for video. For example, in [38], the authors
propose the use of a Markov Random Field image model
and optimally interpolate the missing pixels. The essence
of our scheme, however, is on simplicity and improving in-
teractivity (rather than precision), for which we find empir-
ically that our simple interpolation strategy seems to work
well.

VII. CONCLUSION

We argued that the reliable, in-order byte stream ab-
straction provided by TCP is overly restrictive for richer
data types such as image data. Several image encodings
such as sequential and progressive JPEG and JPEG2000
are designed to decode partially received, out-of-order im-
age data. To improve the perceptual quality of the image
during a download, we proposed a novel Image Transport
Protocol (ITP). ITP uses an application data unit (ADU)
as the unit of processing and delivery to the application by
exposing application framing boundaries to the transport
protocol. This enables the receiver to process ADUs out of
order. ITP can be used as a transport protocol for HTTP
and is designed to be independent of the higher-layer ap-
plication or session protocol. ITP relies on the Congestion
Manager (CM) to perform safe and stable congestion con-
trol, making it a viable transport protocol for use on the
Internet today.

We showed how ITP can be customized for specific image
formats such as JPEG. Out-of-order processing facilitates
effective error concealment at the receiver that further im-
prove the download quality of an image. We have imple-
mented ITP as a user-level library that invokes the CM
API for congestion control. Our performance evaluation of
ITP demonstrates its benefits over the traditional in-order
delivery approach, as measured by the peak signal-to-noise
ratio (PSNR) of the received image.

In summary, ITP is a general-purpose, selectively-
reliable transport protocol that can be applied to diverse
data types. Our design and implementation provide a
generic congestion-controlled transport substrate that can
be tailored for specific data types. We believe that the
ideas embedded in ITP will be applicable to other appli-
cation domains for applications requiring good interactive
performance in the face of varying network bandwidths
and packet loss rates. One example of this is in Internet
video using inter-frame compression formats like MPEG-
2 or MPEG-4, where the loss of certain important frames



may be recovered via ITP-like retransmissions for better
interactive response [39].
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