
Objet Reognition as Mahine Translation:Learning a Lexion for a Fixed ImageVoabularyP. Duygulu1 , K. Barnard1 , J.F.G. de Freitas2 and D.A. Forsyth1Computer Siene Division, U.C. Berkeley, Berkeley, CA 94720Department of Computer Siene, University of British Columbia,Vanouverfduygulu, kobus, dafg�s.berkeley.edu, nando�s.ub.aAbstrat. We desribe a model of objet reognition as mahine trans-lation. In this model, reognition is a proess of annotating image regionswith words. Firstly, images are segmented into regions, whih are las-si�ed into region types using a variety of features. A mapping betweenregion types and keywords supplied with the images, is then learned, us-ing a method based around EM. This proess is analogous with learninga lexion from an aligned bitext. For the implementation we desribe,these words are nouns taken from a large voabulary. On a large testset, the method an predit numerous words with high auray. Simplemethods identify words that annot be predited well. We show how toluster words that individually are diÆult to predit into lusters thatan be predited well | for example, we annot predit the distintionbetween train and loomotive using the urrent set of features, butwe an predit the underlying onept. The method is trained on a sub-stantial olletion of images. Extensive experimental results illustrate thestrengths and weaknesses of the approah.Keywords: Objet reognition, orrespondene, EM algorithm.1 IntrodutionThere are three major urrent types of theory of objet reognition. One reasonseither in terms of geometri orrespondene and pose onsisteny; in terms oftemplate mathing via lassi�ers; or by orrespondene searh to establish thepresene of suggestive relations between templates. A detailed review of thesestrategies appears in [4℄. These types of theory are at the wrong sale to addressore issues: in partiular, what ounts as an objet? (usually addressed byhoosing by hand objets that an be reognised using the strategy propounded);whih objets are easy to reognise and whih are hard? (not usuallyaddressed expliitly); and whih objets are indistinguishable using ourfeatures? (urrent theories typially annot predit the equivalene relation im-posed on objets by the use of a partiular set of features). This paper desribesa model of reognition that o�ers some purhase on eah of the questions above,and demonstrates systems built with this model.



sea sky sun waves at forest grass tiger jet plane skyFig. 1. Examples from the Corel data set. We have assoiated keywords and segmentsfor eah image, but we don't know whih word orresponds to whih segment. Thenumber of words and segments an be di�erent; even when they are same, we may havemore than one segment for a single word, or more than one word for a single blob.We try to align the words and segments, so that for example an orange stripy blob willorrespond to the word tiger.1.1 Annotated images and auto-annotationThere are a wide variety of datasets that onsist of very large numbers of anno-tated images. Examples inlude the Corel dataset (see �gure 1), most museumimage olletions (e.g. http://www.thinker.org/fam/thinker.html), the webarhive (http://www.arhive.org), and most olletions of news photographson the web (whih ome with aptions). Typially, these annotations refer to theontent of the annotated image, more or less spei�ally and more or less om-prehensively. For example, the Corel annotations desribe spei� image ontent,but not all of it; museum olletions are often annotated with some spei� ma-terial | the artist, date of aquisition, et. | but often ontain some ratherabstrat material as well.There exist some methods that luster image representations and text toprodue a representation of a joint distribution linking images and words [1,2℄. This work ould predit words for a given image by omputing words thathad a high posterior probability given the image. This proess, referred to asauto-annotation in those papers, is useful in itself (it is ommon to indeximages using manual annotations [7, 12℄; if one ould predit these annotations,one ould save onsiderable work). However, in this form auto-annotation doesnot tell us whih image struture gave rise to whih word, and so it is notreally reognition. In [8℄, Mori et.al. proposed a method for annotating imagegrids using oourenes. In [9, 10℄, Maron et al. study automati annotationof images, but work one word at a time, and o�er no method of �nding theorrespondene between words and regions. This paper shows that it is possibleto learn whih region gave rise to whih word.Reognition as translation One should see this proess as analogous to ma-hine translation. We have a representation of one form (image regions; Frenh)and wish to turn it into another form (words; English). In partiular, our mod-els will at as lexions, devies that predit one representation (words; English),given another representation (image regions; Frenh). Learning a lexion fromdata is a standard problem in mahine translation literature (a good guide isMelamed's thesis [11℄; see also [5, 6℄). Typially, lexions are learned from a form



of dataset known as an aligned bitext | a text in two languages, where roughorrespondene, perhaps at the paragraph or sentene level, is known. The prob-lem of lexion aquisition involves determining preise orrespondenes betweenwords of di�erent languages. Datasets onsisting of annotated images are alignedbitexts | we have an image, onsisting of regions, and a set of text. While weknow the text goes with the image, we don't know whih word goes with whihregion. As the rest of this paper shows, we an learn this orrespondene usinga variant of EM.This view | of reognition as translation | renders several important objetreognition problems amenable to attak. In this model, we an attak: whatounts as an objet? by saying that all words (or all nouns, et.) ount asobjets; whih objets are easy to reognise? by saying that words that anbe reliably attahed to image regions are easy to reognise and those that annot,are not; and whih objets are indistinguishable using our features? by�nding words that are predited with about the same posterior probability givenany image group | suh objets are indistinguishable given the urrent featureset.2 Using EM to learn a LexionWe will segment images into regions and then learn to predit words using re-gions. Eah region will be desribed by some set of features. In mahine transla-tion, a lexion links disrete objets (words in one language) to disrete objets(words in the other language). However, the features naturally assoiated withimage regions do not oupy a disrete spae. The simplest solution to this prob-lem is to use k-means to vetor quantize the image region representation. Werefer to the label assoiated with a region by this proess as a \blob."In the urrent work, we use all keywords assoiated with eah image. If weneed to refer to the abstrat model of a word (resp. blob) | rather than aninstane | and the ontext doesn't make the referene obvious, we will use theterm \word token" (resp. blob token). The problem is to use the training dataset to onstrut a probability table linking blob tokens with word tokens. Thistable is the onditional probability of a word token given a blob token.The diÆulty in learning this table is that the data set does not provide ex-pliit orrespondene | we don't know whih region is the train. This suggeststhe following iterative strategy: �rstly, use an estimate of the probability tableto predit orrespondenes; now use the orrespondenes to re�ne the estimateof the probability table. This, in essene, is what EM does.We an then annotate the images by �rst lassifying the segments to �nd theorresponding blobs, and then �nding the orresponding word for eah blob byhoosing the word with the highest probability.2.1 EM algorithm for �nding the orrespondene between blobsand wordsWe use the notation of �gure 2. When translating blobs to words, we needto estimate the probability p(anj = i) that in image n, a partiular blob biis assoiated with a spei� word wj . We do this for eah image as shown inFigure 3.



N : Number of images.MT : Number of words. LT : Number of blobs.Mn : Number of words in the n-th image. Ln : Number of blobs in the n-th image.wn : words in the n-th image, bn : blobs in the n-th image,wn = (wn1; : : : ; wnj ; : : : ; wnMn) bn = (bn1; : : : ; bni; : : : ; bnLn)w? : A partiular word. b? : A partiular blob.an : Assignment an = fan1; : : : ; anMng, suh that anj = i if bni translates to wnj .t(wjb) : Probability of obtaining instane of word w given instane of blob b;p(anj = i) : Assignment probabilities;� : Set of model parameters � = (p(anj = i); t(wnj jbni)).p(anj = ijwnj ; bni; �(old)) : Indiators;Fig. 2. Notation
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Fig. 3. Example : Eah word is predited with some probability by eah blob, meaningthat we have a mixture model for eah word. The assoiation probabilities provide theorrespondenes (assignments) between eah word and the various image segments.Assume that these assignments are known; then omputing the mixture model is amatter of ounting. Similarly, assume that the assoiation probabilities are known; thenthe orrespondenes an be predited. This means that EM is an appropriate estimationalgorithm.We use model 2 of Brown et.al. [3℄, whih requires that we sum over all thepossible assignments of words to blobs.p(wjb) = NYn=1 MnYj=1 LnXi=1 p(anj = i)t(w = wnj jb = bni) (1)Maximising this likelihood is diÆult beause of the sum inside the prod-uts; the sum represents marginalisation over all possible orrespondenes. Theproblem an be treated as a missing data problem, where the missing data isthe orrespondene. This leads to the EM formulation. (From now on, we writet(w = wnj jb = bni) as t(wnj jbni). )2.2 Maximum Likelihood Estimation with EMWe want to �nd the maximum likelihood parameters�ML = argmax� p(wjb; �) = argmax� Xa p(a; wjb; �): (2)



We an arry out this optimisation using an EM algorithm, whih iterates be-tween the following two steps.1. E step: Compute the expeted value of the omplete log-likelihood fun-tion with respet to the distribution of the assignment variables QML =Ep(ajw;b;�(old)) [log p(a; wjb; �)℄, where �(old) refers to the value of the param-eters at the previous time step.2. M step: Find the new maximum �(new) = argmax� QML.In our ase, the QML funtion is given byQML = NXn=1 MnXj=1 LnXi=1 p(anj = ijwnj ; bni; �(old)) log [p(anj = i)t(wnj jbni)℄ : (3)We need to maximise QML subjet to the onstraints Pi p(anj = i) = 1 for allwords j in all images nwith equal number of words and blobs, andPw? t(w?jb?) =1 for any word w? and eah blob b?. This an be aomplished by introduingthe LagrangianL = QML + X�n;l;m �n;l;m 1� LnXi=1 p(anj = i)!+Xb? �b?  1�Xw? t(w?jb?)! (4)and, omputing derivatives with respet to the multipliers (�; �) and the pa-rameters (p(anj = i); t(w?jb?)). Note that there is one �n;l;m multiplier for eahimage n with L(n) = l blobs and M(n) = m words. That is, we need to takeinto aount all possible di�erent lengths for normalisation purposes. The endresult is the three equations that form the ore of the EM algorithm shown inFigure 4.3 Applying and Re�ning the LexionAfter obtaining the probability table, we an annotate image regions in any testimage. We do this by assigning words to some or all regions. We �rst determinethe blob orresponding to eah region by vetor quantisation. We now hoosethe word with the highest probability given the blob and annotate the regionwith this word. There are several important variants available.3.1 Controlling the Voabulary by Refusing to PreditThe proess of learning the table prunes the voabulary to some extent, beausesome words may not be the word predited with highest probability for anyblob. However, even for words that remain in the voabulary, we don't expetall preditions to be good. In partiular, some blobs may not predit any wordwith high probability, perhaps beause they are too small to have a distintidentity. It is natural to establish a threshold and require thatp(wordjblob) > thresholdbefore prediting the word. This is equivalent to assigning a null word to anyblob whose best predited word lies below this threshold. The threshold itself



InitialiseE step1. For eah n = 1; : : : ; N , j = 1; : : : ;Mn and i = 1; : : : ; Ln, omputeep(anj = ijwnj ; bni; �(old)) = p(anj = i)t(wnj jbni) (5)2. Normalise ep(anj = ijwnj ; bni; �(old)) for eah image n and word jp(anj = ijwnj ; bni; �(old)) = ep(anj = ijwnj ; bni; �(old))PLni=1 p(anj = i)t(wnj jbni) (6)M step1. Compute the mixing probabilities for eah j and image of the same size (e.g.L(n) = l and M(n) = m)p(anj = i) = 1Nl;m NXn:L(n)=l;M(n)=m p(anj = ijwnj ; bni; �(old)) (7)where Nl;m is the number of images of the same length.2. For eah di�erent pair (b?; w?) appearing together in at least one of the images,omputeet(wnj = w?jbni = b?) = NXn=1 MnXj=1 LnXi=1 p(anj = ijwnj ; bni; �(old))Æ(w?;b?)(wnj ; bni)(8)where Æ(w?;b?)(wnj ; bni) is 1 if b? and w? appear in image and 0 otherwise.3. Normalise et(wnj = w?jbni = b?) to obtain t(wnj = w?jbni = b?).Fig. 4. EM (Expetation Maximization) algorithman be hosen using performane measures on the training data, as in setion 4.This proess of refusing to predit prunes the voabulary further, beause somewords may never be predited with suÆient probability. In turn, this suggeststhat one a threshold has been determined, a new lexion should be �tted usingonly the redued voabulary. In pratie, this is advantageous (setion 4), prob-ably beause reassigning probability \stolen" by words that annot be preditedimproves orrespondene estimates and so the quality of the lexion.3.2 Clustering Indistinguishable WordsGenerally, we do not expet to obtain datasets with a voabulary that is totallysuitable for our purposes. Some words may be visually indistinguishable, like atand tiger, or train and loomotive. (some examples are shown in �gure 11).Other words may be visually distinguishable in priniple, but not using our fea-tures, for example eagle and jet, both of whih our as large dark regions ofroughly the same shape in aerial views. Finally, some words may never appearapart suÆiently often to allow the orrespondene to be disentangled in detail.This an our beause one word is a modi�er | for example, in our data set,polar reliably predits bear | or beause of some relation between the on-epts | for example, in our data set, either mare or foals almost quite reliablypredits horses | but in either ase, there is no prospet of learning the or-



respondene properly. There are some methods for learning to form ompoundslike polar bear [11℄, but we have not yet experimented with them.All this means that there are distintions between words we should not at-tempt to draw based on the partiular blob data used. This suggests lusteringthe words whih are very similar. Eah word is replaed with its luster label;predition performane should (and does, setion 4) improve.In order to luster the words, we obtain a similarity matrix giving similaritysores for words. To ompare two words, we use the symmetrised Kullbak-Leibler (KL) divergene between the onditional probability of blobs, given thewords. This implies that two words will be similar if they generate similar imageblobs at similar frequenies. We then apply normalised uts on the similaritymatrix to obtain the lusters [13℄. At eah stage, we set the number of lustersto 75% of the urrent voabulary.4 Experimental ResultsWe train using 4500 Corel images. There are 371 words in total in the voabularyand eah image has 4-5 keywords. Images are segmented using Normalized Cuts[13℄. Only regions larger than a threshold are used, and there are typially 5-10 regions for eah image. Regions are then lustered into 500 blobs using k-means. We use 33 features for eah region (inluding region olor and standarddeviation, region average orientation energy (12 �lters), region size, loation,onvexity, �rst moment, and ratio of region area to boundary length squared).We emphasize that we hose a set of features and stuk with it through theexperimental proedure, as we wish to study mehanisms of reognition ratherthan spei� feature sets.4.1 Evaluating AnnotationAnnotation is relatively easy to evaluate, beause the images ome from anannotated set. We use 500 images from a held-out test set to evaluate annotationperformane. A variety of metris are possible; the reeiver operating urve isnot partiularly helpful, beause there are so many words. Instead, we evaluatethe performane of a putative retrieval system using automati annotation. Thelass onfusion matrix is also not helpful in our ase, beause the number oflasses is 371, and we have a very sparse matrix.Evaluation method: Eah image in the test set is automatially annotated, bytaking every region larger than the threshold, quantizing the region to a blob,and using the lexion to determine the most likely word given that blob; if theprobability of the word given the blob is greater than the relevant threshold, thenthe image is annotated with that word. We now onsider retrieving an imagefrom the test set using keywords from the voabulary and the automatiallyestablished annotations. We sore relevane by looking at the atual annotations,and plot reall and preision.



Base results: Only 80 words from the 371 word voabulary an be predited(others do not have the maximum value of the probability for any blob). Weset the minimum probability threshold to zero, so that every blob predits aword. As �gure 5 shows, we have some words with very high reall values, andwe have some words with low reall. The preision values shown in the �guredon't vary muh on the whole, though some words have very high preision. Forthese words, the reall is not high, suggesting that we an also predit some lowfrequeny words very well. Table 1 shows reall and preision values for somegood words for whih reall is higher than 0.4 and preision is higher than 0.15.word th = 0 th = 0.1 th = 0.2 th = 0.3 th = 0.4re - pre re - pre re - pre re - pre re - prepetals 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00sky 0.83 - 0.34 0.80 - 0.35 0.58 - 0.44owers 0.67 - 0.21 0.67 - 0.21 0.44 - 0.24horses 0.58 - 0.27 0.58 - 0.27 0.50 - 0.26foals 0.56 - 0.29 0.56 - 0.29 0.56 - 0.29mare 0.78 - 0.23 0.78 - 0.23tree 0.77 - 0.20 0.74 - 0.20people 0.74 - 0.22 0.74 - 0.22water 0.74 - 0.24 0.74 - 0.24sun 0.70 - 0.28 0.70 - 0.28bear 0.59 - 0.20 0.55 - 0.20stone 0.48 - 0.18 0.48 - 0.18buildings 0.48 - 0.17 0.48 - 0.17snow 0.48 - 0.17 0.48 - 0.19Table 1. Some good words with their reall and preision values for inreasing nullthreshold. Words are seleted as good if their reall values are greater than 0.4 , andpreision values are greater than 0.15. The null threshold hanges between 0 and 0.4.With the inreasing threshold the number of good words dereases, sine we an preditfewer words. While the reall is dereasing preision is inreasing, sine we predit theremaining words more aurately.The e�et of retraining: Sine we an predit only 80 words, we an redueour voabulary only to those words, and run EM algorithm again. As �gure 5shows, the results for the re�tted words are very similar to the original ones.However, we an predit some words with higher reall and higher preision.Table 2 shows the reall and preision values for the seleted good words afterretraining. The number of good words are more than the original ones (omparewith table 1), sine the words have higher probabilities.The e�et of the null probability: We ompare the reall and preisionvalues for test and training data on some hosen words. As an be seen in�gure 6, the results are very similar for both test and training data. We alsoexperiment with the e�et of null threshold by hanging it between 0 and 0.4. Byinreasing the null threshold the reall dereases. The inrease in the preision
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Fig.5.For500testimages,left:reallvaluesinsortedorder,right:orresponding
preisionvalues.top:originalwords,middle:re�tteddata,bottom:wordlusters.
Theaxesaresameinallofthe�gures.Wehavesomeverygoodwordswithhighreall,
andsomewordswithlowreall.However,thepreisionvaluesarenotsomuhdi�erent
fromeahother.Althoughtheydon'thavehighreallvalues,somewordshaveveryhigh
preisionvalues,whihmeansthattheyarenotpreditedfrequently,butwhenwedo
preditthemweanpreditthemorretly.Whenwerestritourselvesonlytothe
reduedvoabularyandruntheEMalgorithmagain,thenumberofwordsthatwean
preditwelldoesn'thangemuh,butthevaluesinreaseslightly.Mostofthelusters
groupindistinguishablewordsintooneword,solusteringslightlyinreasesthereall
forsomelusters(likehorse-mare,oral-oean)



values shows that our orret predition rate is inreasing. When we inreasethe null threshold enough, some words annot be predited at all, sine theirhighest predition rate is lower than the null threshold. Therefore, both realland preision values beome 0 after some threshold. Table 1 and table 2 showsthat, with the inreasing null threshold values, the number of words dereasesbut we have more reliable words. Sine null word predition dereases the wordpreditions, reall dereases. The inrease in the preision shows that null wordpredition inreases the quality of the predition.
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Fig. 6. Reall versus preision for seleted words with inreasing null threshold values(0-0.4) : On the left some good words with high reall and preision, and on the rightsome bad words with low reall and preision are shown. The top line shows the resultsfor training and bottom line shows the results for test. Solid lines show the initial resultsusing all of the original words in training, dashed lines show the results after trainingon redued voabulary. The axes for good words are di�erent than the axes for badwords. The results are very similar both for training and test. Reall values derease byinreasing null threshold, but usually preision inrease sine the orret predition rateinrease. After a threshold value, all preision and reall may go to 0 sine we annotpredit the words anymore.The e�et of word lustering:We also ompute reall and preision after lus-tering the words. As �gure 5 shows, reall values of the lusters are higher thanreall values of the single words. Table 3 shows that we have some very nie lus-ters whih have strong semanti or visual relations like kit-horses-mare-foals,leaf-flowers-plants-vegetablesor pool-athlete-vines-swimmersand theresults are better when we luster the words (ompare with table 1).



word th = 0 th = 0.1 th = 0.2 th = 0.3 th = 0.4re - pre re - pre re - pre re - prepetals 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00sky 0.83 - 0.31 0.83 - 0.31 0.75 - 0.37 0.58 - 0.47people 0.78 - 0.26 0.78 - 0.26 0.68 - 0.27 0.51 - 0.31water 0.75 - 0.25 0.75 - 0.25 0.72 - 0.26 0.44 - 0.27mare 0.78 - 0.23 0.78 - 0.23 0.67 - 0.21tree 0.71 - 0.19 0.71 - 0.19 0.66 - 0.20sun 0.60 - 0.38 0.60 - 0.38 0.60 - 0.43grass 0.57 - 0.19 0.57 - 0.19 0.49 - 0.22stone 0.57 - 0.16 0.57 - 0.16 0.52 - 0.23foals 0.56 - 0.26 0.56 - 0.26 0.56 - 0.26oral 0.56 - 0.19 0.56 - 0.19 0.56 - 0.19sotland 0.55 - 0.20 0.55 - 0.20 0.45 - 0.19owers 0.48 - 0.17 0.48 - 0.17 0.48 - 0.18buildings 0.44 - 0.16 0.44 - 0.16Table 2. Some good words with their reall and preision values for inreasing nullthreshold after reduing the voabulary only to the predited words and running the EMalgorithm again. Words are seleted as good if their reall values are greater than 0.4,and preision values are greater than 0.15. The null threshold hanges between 0 and0.4. When we ompare with the original results (table 1), it an be observed that wordsremain longer, whih means that they have higher predition probabilities. We havemore good words and they have higher reall and preision values.1st lusters r p 2nd lusters r p 3rd lusters r phorses mare 0.83 0.18 kit horses mare foals 0.77 0.16 kit horses mare foals 0.77 0.27leaf owers 0.69 0.22 leaf owers plants 0.63 0.25 leaf owers plants 0.60 0.19vegetables vegetablesplane 0.12 0.14 jet plane arti 0.46 0.18 jet plane arti prop 0.43 0.17ight penguin dunespool athlete 0.33 0.31 pool athlete vines 0.17 0.50 pool athlete vines 0.75 0.27swimmerssun eiling 0.60 0.30 sun eiling 0.70 0.30 sun eiling ave store 0.62 0.35sky beah 0.83 0.30 sky beah athedral 0.82 0.31 sky,beah athedral 0.87 0.36louds muralarh waterfallswater 0.77 0.26 water 0.72 0.25 water waves 0.70 0.26tree 0.73 0.20 tree 0.76 0.20 tree 0.58 0.20people 0.68 0.24 people 0.62 0.26 people 0.54 0.25Table 3. Some good lusters, where the reall values are greater than 0.4, and pre-ision values are greater than 0.15 when null threshold is 0. Cluster numbers showshow many times we luster the words and run EM algorithm again. Most of the lus-ters appear to represent real semanti and visual lusters (e.g.kit-horses-mare-foals,leaf-flowers-plants-vegetables, pool-athlete-vines-swimmers). The reall andpreision values are higher than those for single words (ompare with table 1).



4.2 CorrespondeneEvaluation method: Beause the data set ontains no orrespondene informa-tion, it is hard to hek orrespondene anonially or for large volumes of data;instead, eah test image must be viewed by hand to tell whether an annotationof a region is orret. Inevitably, this test is somewhat subjetive. Furthermore,it isn't pratially possible to ount false negatives.Base results: We worked with a set of 100 test images for heking the or-respondene results. The predition rate is omputed by ounting the averagenumber of times that the blob predits the word orretly. For some good words(e.g: oean) we have up to 70% orret predition as shown in �gure 7; thismeans that, on this test set, when the word oean is predited, 70% of the timeit will be predited on an oean region. This is unquestionably objet reognition.

Fig. 7. Correspondene results for 100 test images. Left: results for original data,middle: after �rst lustering words, right: after assigning null threshold to 0.2. Thelight bar shows the average number of times that a blob predits the word orretly inthe right plae. The dark bar shows the total number of times that a blob predits theword whih is in the image. Good performane orresponds to a large dark bar with alarge light bar, meaning the word is almost always predited and almost always in theright plae. For word lusters, for example if we predit train-loomotive and eithertrain or loomotive is keyword, we ount that as a orret predition. We an preditmost of the words in the orret plae, and the predition rate is high.It is more diÆult to assess the rate at whih regions are missed. If one iswilling to assume that missing annotations (for example, the oean appears inthe piture, but the word oean does not appear in the annotation) are unbiased,then one an estimate the rate of false negatives from the annotation performanedata. In partiular, words with a high reall rate in that data are likely to havea low false negative rate.Some examples are shown in �gures 8 and 9. We an predit some words likesky, tree, grass always orretly in most of the images. We an predit thewords with high reall orretly, but we annot predit some words whih havevery low reall.



Fig. 8. Some examples of the labelling results. The words overlaid on the images are thewords predited with top probability for orresponding blob. We are very suessful inprediting words like sky, tree and grass whih have high reall. Sometimes, the wordsare orret but not in the right plae like tree and buildings in the enter image.
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Fig. 9. Some test results whih are not satisfatory. Words that are wrongly preditedare the ones with very low reall values. The problem mostly seen in the third imageis sine green blobs oour mostly with grass, plants or leaf rather than the underwater plants.The e�et of the null predition: Figure 10 shows the e�et of assigning nullwords. We an still predit the well behaved words with higher probabilities. In�gure 7 we show that null predition generally inreases the predition rate forthe words that we an predit.The e�et of word lustering: In �gure 11 we show the e�et of luster-ing words. As an be seen generally similar words are grouped into one (e.g.train-loomotive, horse-mare ). Figure 7 shows that the predition rategenarally inreases when we luster the words.5 DisussionThis method is attrative, beause it allows us to attak a variety of otherwiseinaessible problems in objet reognition. It is wholly agnosti with respetto features; one ould use this method for any set of features, and even forfeature sets that vary with objet de�nition. It may be possible to selet featuresby some method that attempts to inlude features that improve reognitionperformane. There is the usual diÆulty with lexion learning algorithms that abias in orrespondene an lead to problems; for example, in a data set onsisting



Fig. 10. Result of assigning null. Some low probability words are assigned to null, butthe high probability words remain same. This inreases the orret predition rate forthe good words, however we may still have wrong preditions as in the last �gure. Theonfusion between grass and foals in the seond �gure is an example of orrespondeneproblem. Sine foals almost always our with grass in the data, if there is nothingto tell the di�erene we annot know whih is whih.of parliamentry proeedings we expet the English word house to translate tothe Frenh word hambre. We expet | but have not so far found | similaroasional strange behaviour for our problem. We have not yet explored themany interesting further rami�ations of our analogy with translation.{ Automated disovery of non-ompositional ompounds A greedy al-gorithm for determining that some elements of a lexion should be groupedmight deal with ompound words (as in [11℄), and might be used to disoverthat some image regions should be grouped together before translating them.{ Exploiting shape Typially, a set of regions should map to a single word,beause their ompound has distintive struture as a shape. We should liketo learn a grouping proess at the same time as the lexion is onstruted.{ Joint learning of blob desriptions and the lexion We are urrentlystudying methods that luster regions (rather than quantizing their repre-sentation) to ensure that region lusters are improved by word information.AknowledgementsThis projet is part of the Digital Libraries Initiative sponsored by NSF andmany others. Kobus Barnard also reeives funding from NSERC (Canada), andPinar Duygulu is funded by TUBITAK (Turkey). We are grateful to JitendraMalik and Doron Tal for normalized uts software, and Robert Wilensky forhelpful onversations.Referenes1. K. Barnard, P. Duygulu and D. A. Forsyth. Clustering art. In IEEE Conf. onComputer Vision and Pattern Reognition, II: 434-441, 2001.2. K. Barnard and D. A. Forsyth. Learning the semantis of words and pitures. InInt. Conf. on Computer Vision pages 408-15, 2001.3. P. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Merer. The mathematisof statistial mahine translation: Parameter estimation. Computational Linguistis,32(2):263-311, 1993.4. D.A. Forsyth and J. Pone. Computer Vision: a modern approah. Prentie-Hall2001. in preparation.
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