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aAbstra
t. We des
ribe a model of obje
t re
ognition as ma
hine trans-lation. In this model, re
ognition is a pro
ess of annotating image regionswith words. Firstly, images are segmented into regions, whi
h are 
las-si�ed into region types using a variety of features. A mapping betweenregion types and keywords supplied with the images, is then learned, us-ing a method based around EM. This pro
ess is analogous with learninga lexi
on from an aligned bitext. For the implementation we des
ribe,these words are nouns taken from a large vo
abulary. On a large testset, the method 
an predi
t numerous words with high a

ura
y. Simplemethods identify words that 
annot be predi
ted well. We show how to
luster words that individually are diÆ
ult to predi
t into 
lusters that
an be predi
ted well | for example, we 
annot predi
t the distin
tionbetween train and lo
omotive using the 
urrent set of features, butwe 
an predi
t the underlying 
on
ept. The method is trained on a sub-stantial 
olle
tion of images. Extensive experimental results illustrate thestrengths and weaknesses of the approa
h.Keywords: Obje
t re
ognition, 
orresponden
e, EM algorithm.1 Introdu
tionThere are three major 
urrent types of theory of obje
t re
ognition. One reasonseither in terms of geometri
 
orresponden
e and pose 
onsisten
y; in terms oftemplate mat
hing via 
lassi�ers; or by 
orresponden
e sear
h to establish thepresen
e of suggestive relations between templates. A detailed review of thesestrategies appears in [4℄. These types of theory are at the wrong s
ale to address
ore issues: in parti
ular, what 
ounts as an obje
t? (usually addressed by
hoosing by hand obje
ts that 
an be re
ognised using the strategy propounded);whi
h obje
ts are easy to re
ognise and whi
h are hard? (not usuallyaddressed expli
itly); and whi
h obje
ts are indistinguishable using ourfeatures? (
urrent theories typi
ally 
annot predi
t the equivalen
e relation im-posed on obje
ts by the use of a parti
ular set of features). This paper des
ribesa model of re
ognition that o�ers some pur
hase on ea
h of the questions above,and demonstrates systems built with this model.



sea sky sun waves 
at forest grass tiger jet plane skyFig. 1. Examples from the Corel data set. We have asso
iated keywords and segmentsfor ea
h image, but we don't know whi
h word 
orresponds to whi
h segment. Thenumber of words and segments 
an be di�erent; even when they are same, we may havemore than one segment for a single word, or more than one word for a single blob.We try to align the words and segments, so that for example an orange stripy blob will
orrespond to the word tiger.1.1 Annotated images and auto-annotationThere are a wide variety of datasets that 
onsist of very large numbers of anno-tated images. Examples in
lude the Corel dataset (see �gure 1), most museumimage 
olle
tions (e.g. http://www.thinker.org/fam/thinker.html), the webar
hive (http://www.ar
hive.org), and most 
olle
tions of news photographson the web (whi
h 
ome with 
aptions). Typi
ally, these annotations refer to the
ontent of the annotated image, more or less spe
i�
ally and more or less 
om-prehensively. For example, the Corel annotations des
ribe spe
i�
 image 
ontent,but not all of it; museum 
olle
tions are often annotated with some spe
i�
 ma-terial | the artist, date of a
quisition, et
. | but often 
ontain some ratherabstra
t material as well.There exist some methods that 
luster image representations and text toprodu
e a representation of a joint distribution linking images and words [1,2℄. This work 
ould predi
t words for a given image by 
omputing words thathad a high posterior probability given the image. This pro
ess, referred to asauto-annotation in those papers, is useful in itself (it is 
ommon to indeximages using manual annotations [7, 12℄; if one 
ould predi
t these annotations,one 
ould save 
onsiderable work). However, in this form auto-annotation doesnot tell us whi
h image stru
ture gave rise to whi
h word, and so it is notreally re
ognition. In [8℄, Mori et.al. proposed a method for annotating imagegrids using 
oo

uren
es. In [9, 10℄, Maron et al. study automati
 annotationof images, but work one word at a time, and o�er no method of �nding the
orresponden
e between words and regions. This paper shows that it is possibleto learn whi
h region gave rise to whi
h word.Re
ognition as translation One should see this pro
ess as analogous to ma-
hine translation. We have a representation of one form (image regions; Fren
h)and wish to turn it into another form (words; English). In parti
ular, our mod-els will a
t as lexi
ons, devi
es that predi
t one representation (words; English),given another representation (image regions; Fren
h). Learning a lexi
on fromdata is a standard problem in ma
hine translation literature (a good guide isMelamed's thesis [11℄; see also [5, 6℄). Typi
ally, lexi
ons are learned from a form



of dataset known as an aligned bitext | a text in two languages, where rough
orresponden
e, perhaps at the paragraph or senten
e level, is known. The prob-lem of lexi
on a
quisition involves determining pre
ise 
orresponden
es betweenwords of di�erent languages. Datasets 
onsisting of annotated images are alignedbitexts | we have an image, 
onsisting of regions, and a set of text. While weknow the text goes with the image, we don't know whi
h word goes with whi
hregion. As the rest of this paper shows, we 
an learn this 
orresponden
e usinga variant of EM.This view | of re
ognition as translation | renders several important obje
tre
ognition problems amenable to atta
k. In this model, we 
an atta
k: what
ounts as an obje
t? by saying that all words (or all nouns, et
.) 
ount asobje
ts; whi
h obje
ts are easy to re
ognise? by saying that words that 
anbe reliably atta
hed to image regions are easy to re
ognise and those that 
annot,are not; and whi
h obje
ts are indistinguishable using our features? by�nding words that are predi
ted with about the same posterior probability givenany image group | su
h obje
ts are indistinguishable given the 
urrent featureset.2 Using EM to learn a Lexi
onWe will segment images into regions and then learn to predi
t words using re-gions. Ea
h region will be des
ribed by some set of features. In ma
hine transla-tion, a lexi
on links dis
rete obje
ts (words in one language) to dis
rete obje
ts(words in the other language). However, the features naturally asso
iated withimage regions do not o

upy a dis
rete spa
e. The simplest solution to this prob-lem is to use k-means to ve
tor quantize the image region representation. Werefer to the label asso
iated with a region by this pro
ess as a \blob."In the 
urrent work, we use all keywords asso
iated with ea
h image. If weneed to refer to the abstra
t model of a word (resp. blob) | rather than aninstan
e | and the 
ontext doesn't make the referen
e obvious, we will use theterm \word token" (resp. blob token). The problem is to use the training dataset to 
onstru
t a probability table linking blob tokens with word tokens. Thistable is the 
onditional probability of a word token given a blob token.The diÆ
ulty in learning this table is that the data set does not provide ex-pli
it 
orresponden
e | we don't know whi
h region is the train. This suggeststhe following iterative strategy: �rstly, use an estimate of the probability tableto predi
t 
orresponden
es; now use the 
orresponden
es to re�ne the estimateof the probability table. This, in essen
e, is what EM does.We 
an then annotate the images by �rst 
lassifying the segments to �nd the
orresponding blobs, and then �nding the 
orresponding word for ea
h blob by
hoosing the word with the highest probability.2.1 EM algorithm for �nding the 
orresponden
e between blobsand wordsWe use the notation of �gure 2. When translating blobs to words, we needto estimate the probability p(anj = i) that in image n, a parti
ular blob biis asso
iated with a spe
i�
 word wj . We do this for ea
h image as shown inFigure 3.



N : Number of images.MT : Number of words. LT : Number of blobs.Mn : Number of words in the n-th image. Ln : Number of blobs in the n-th image.wn : words in the n-th image, bn : blobs in the n-th image,wn = (wn1; : : : ; wnj ; : : : ; wnMn) bn = (bn1; : : : ; bni; : : : ; bnLn)w? : A parti
ular word. b? : A parti
ular blob.an : Assignment an = fan1; : : : ; anMng, su
h that anj = i if bni translates to wnj .t(wjb) : Probability of obtaining instan
e of word w given instan
e of blob b;p(anj = i) : Assignment probabilities;� : Set of model parameters � = (p(anj = i); t(wnj jbni)).p(anj = ijwnj ; bni; �(old)) : Indi
ators;Fig. 2. Notation
sunsky sea
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Fig. 3. Example : Ea
h word is predi
ted with some probability by ea
h blob, meaningthat we have a mixture model for ea
h word. The asso
iation probabilities provide the
orresponden
es (assignments) between ea
h word and the various image segments.Assume that these assignments are known; then 
omputing the mixture model is amatter of 
ounting. Similarly, assume that the asso
iation probabilities are known; thenthe 
orresponden
es 
an be predi
ted. This means that EM is an appropriate estimationalgorithm.We use model 2 of Brown et.al. [3℄, whi
h requires that we sum over all thepossible assignments of words to blobs.p(wjb) = NYn=1 MnYj=1 LnXi=1 p(anj = i)t(w = wnj jb = bni) (1)Maximising this likelihood is diÆ
ult be
ause of the sum inside the prod-u
ts; the sum represents marginalisation over all possible 
orresponden
es. Theproblem 
an be treated as a missing data problem, where the missing data isthe 
orresponden
e. This leads to the EM formulation. (From now on, we writet(w = wnj jb = bni) as t(wnj jbni). )2.2 Maximum Likelihood Estimation with EMWe want to �nd the maximum likelihood parameters�ML = argmax� p(wjb; �) = argmax� Xa p(a; wjb; �): (2)



We 
an 
arry out this optimisation using an EM algorithm, whi
h iterates be-tween the following two steps.1. E step: Compute the expe
ted value of the 
omplete log-likelihood fun
-tion with respe
t to the distribution of the assignment variables QML =Ep(ajw;b;�(old)) [log p(a; wjb; �)℄, where �(old) refers to the value of the param-eters at the previous time step.2. M step: Find the new maximum �(new) = argmax� QML.In our 
ase, the QML fun
tion is given byQML = NXn=1 MnXj=1 LnXi=1 p(anj = ijwnj ; bni; �(old)) log [p(anj = i)t(wnj jbni)℄ : (3)We need to maximise QML subje
t to the 
onstraints Pi p(anj = i) = 1 for allwords j in all images nwith equal number of words and blobs, andPw? t(w?jb?) =1 for any word w? and ea
h blob b?. This 
an be a

omplished by introdu
ingthe LagrangianL = QML + X�n;l;m �n;l;m 1� LnXi=1 p(anj = i)!+Xb? �b?  1�Xw? t(w?jb?)! (4)and, 
omputing derivatives with respe
t to the multipliers (�; �) and the pa-rameters (p(anj = i); t(w?jb?)). Note that there is one �n;l;m multiplier for ea
himage n with L(n) = l blobs and M(n) = m words. That is, we need to takeinto a

ount all possible di�erent lengths for normalisation purposes. The endresult is the three equations that form the 
ore of the EM algorithm shown inFigure 4.3 Applying and Re�ning the Lexi
onAfter obtaining the probability table, we 
an annotate image regions in any testimage. We do this by assigning words to some or all regions. We �rst determinethe blob 
orresponding to ea
h region by ve
tor quantisation. We now 
hoosethe word with the highest probability given the blob and annotate the regionwith this word. There are several important variants available.3.1 Controlling the Vo
abulary by Refusing to Predi
tThe pro
ess of learning the table prunes the vo
abulary to some extent, be
ausesome words may not be the word predi
ted with highest probability for anyblob. However, even for words that remain in the vo
abulary, we don't expe
tall predi
tions to be good. In parti
ular, some blobs may not predi
t any wordwith high probability, perhaps be
ause they are too small to have a distin
tidentity. It is natural to establish a threshold and require thatp(wordjblob) > thresholdbefore predi
ting the word. This is equivalent to assigning a null word to anyblob whose best predi
ted word lies below this threshold. The threshold itself



InitialiseE step1. For ea
h n = 1; : : : ; N , j = 1; : : : ;Mn and i = 1; : : : ; Ln, 
omputeep(anj = ijwnj ; bni; �(old)) = p(anj = i)t(wnj jbni) (5)2. Normalise ep(anj = ijwnj ; bni; �(old)) for ea
h image n and word jp(anj = ijwnj ; bni; �(old)) = ep(anj = ijwnj ; bni; �(old))PLni=1 p(anj = i)t(wnj jbni) (6)M step1. Compute the mixing probabilities for ea
h j and image of the same size (e.g.L(n) = l and M(n) = m)p(anj = i) = 1Nl;m NXn:L(n)=l;M(n)=m p(anj = ijwnj ; bni; �(old)) (7)where Nl;m is the number of images of the same length.2. For ea
h di�erent pair (b?; w?) appearing together in at least one of the images,
omputeet(wnj = w?jbni = b?) = NXn=1 MnXj=1 LnXi=1 p(anj = ijwnj ; bni; �(old))Æ(w?;b?)(wnj ; bni)(8)where Æ(w?;b?)(wnj ; bni) is 1 if b? and w? appear in image and 0 otherwise.3. Normalise et(wnj = w?jbni = b?) to obtain t(wnj = w?jbni = b?).Fig. 4. EM (Expe
tation Maximization) algorithm
an be 
hosen using performan
e measures on the training data, as in se
tion 4.This pro
ess of refusing to predi
t prunes the vo
abulary further, be
ause somewords may never be predi
ted with suÆ
ient probability. In turn, this suggeststhat on
e a threshold has been determined, a new lexi
on should be �tted usingonly the redu
ed vo
abulary. In pra
ti
e, this is advantageous (se
tion 4), prob-ably be
ause reassigning probability \stolen" by words that 
annot be predi
tedimproves 
orresponden
e estimates and so the quality of the lexi
on.3.2 Clustering Indistinguishable WordsGenerally, we do not expe
t to obtain datasets with a vo
abulary that is totallysuitable for our purposes. Some words may be visually indistinguishable, like 
atand tiger, or train and lo
omotive. (some examples are shown in �gure 11).Other words may be visually distinguishable in prin
iple, but not using our fea-tures, for example eagle and jet, both of whi
h o

ur as large dark regions ofroughly the same shape in aerial views. Finally, some words may never appearapart suÆ
iently often to allow the 
orresponden
e to be disentangled in detail.This 
an o

ur be
ause one word is a modi�er | for example, in our data set,polar reliably predi
ts bear | or be
ause of some relation between the 
on-
epts | for example, in our data set, either mare or foals almost quite reliablypredi
ts horses | but in either 
ase, there is no prospe
t of learning the 
or-



responden
e properly. There are some methods for learning to form 
ompoundslike polar bear [11℄, but we have not yet experimented with them.All this means that there are distin
tions between words we should not at-tempt to draw based on the parti
ular blob data used. This suggests 
lusteringthe words whi
h are very similar. Ea
h word is repla
ed with its 
luster label;predi
tion performan
e should (and does, se
tion 4) improve.In order to 
luster the words, we obtain a similarity matrix giving similaritys
ores for words. To 
ompare two words, we use the symmetrised Kullba
k-Leibler (KL) divergen
e between the 
onditional probability of blobs, given thewords. This implies that two words will be similar if they generate similar imageblobs at similar frequen
ies. We then apply normalised 
uts on the similaritymatrix to obtain the 
lusters [13℄. At ea
h stage, we set the number of 
lustersto 75% of the 
urrent vo
abulary.4 Experimental ResultsWe train using 4500 Corel images. There are 371 words in total in the vo
abularyand ea
h image has 4-5 keywords. Images are segmented using Normalized Cuts[13℄. Only regions larger than a threshold are used, and there are typi
ally 5-10 regions for ea
h image. Regions are then 
lustered into 500 blobs using k-means. We use 33 features for ea
h region (in
luding region 
olor and standarddeviation, region average orientation energy (12 �lters), region size, lo
ation,
onvexity, �rst moment, and ratio of region area to boundary length squared).We emphasize that we 
hose a set of features and stu
k with it through theexperimental pro
edure, as we wish to study me
hanisms of re
ognition ratherthan spe
i�
 feature sets.4.1 Evaluating AnnotationAnnotation is relatively easy to evaluate, be
ause the images 
ome from anannotated set. We use 500 images from a held-out test set to evaluate annotationperforman
e. A variety of metri
s are possible; the re
eiver operating 
urve isnot parti
ularly helpful, be
ause there are so many words. Instead, we evaluatethe performan
e of a putative retrieval system using automati
 annotation. The
lass 
onfusion matrix is also not helpful in our 
ase, be
ause the number of
lasses is 371, and we have a very sparse matrix.Evaluation method: Ea
h image in the test set is automati
ally annotated, bytaking every region larger than the threshold, quantizing the region to a blob,and using the lexi
on to determine the most likely word given that blob; if theprobability of the word given the blob is greater than the relevant threshold, thenthe image is annotated with that word. We now 
onsider retrieving an imagefrom the test set using keywords from the vo
abulary and the automati
allyestablished annotations. We s
ore relevan
e by looking at the a
tual annotations,and plot re
all and pre
ision.



Base results: Only 80 words from the 371 word vo
abulary 
an be predi
ted(others do not have the maximum value of the probability for any blob). Weset the minimum probability threshold to zero, so that every blob predi
ts aword. As �gure 5 shows, we have some words with very high re
all values, andwe have some words with low re
all. The pre
ision values shown in the �guredon't vary mu
h on the whole, though some words have very high pre
ision. Forthese words, the re
all is not high, suggesting that we 
an also predi
t some lowfrequen
y words very well. Table 1 shows re
all and pre
ision values for somegood words for whi
h re
all is higher than 0.4 and pre
ision is higher than 0.15.word th = 0 th = 0.1 th = 0.2 th = 0.3 th = 0.4re
 - pre
 re
 - pre
 re
 - pre
 re
 - pre
 re
 - pre
petals 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00sky 0.83 - 0.34 0.80 - 0.35 0.58 - 0.44
owers 0.67 - 0.21 0.67 - 0.21 0.44 - 0.24horses 0.58 - 0.27 0.58 - 0.27 0.50 - 0.26foals 0.56 - 0.29 0.56 - 0.29 0.56 - 0.29mare 0.78 - 0.23 0.78 - 0.23tree 0.77 - 0.20 0.74 - 0.20people 0.74 - 0.22 0.74 - 0.22water 0.74 - 0.24 0.74 - 0.24sun 0.70 - 0.28 0.70 - 0.28bear 0.59 - 0.20 0.55 - 0.20stone 0.48 - 0.18 0.48 - 0.18buildings 0.48 - 0.17 0.48 - 0.17snow 0.48 - 0.17 0.48 - 0.19Table 1. Some good words with their re
all and pre
ision values for in
reasing nullthreshold. Words are sele
ted as good if their re
all values are greater than 0.4 , andpre
ision values are greater than 0.15. The null threshold 
hanges between 0 and 0.4.With the in
reasing threshold the number of good words de
reases, sin
e we 
an predi
tfewer words. While the re
all is de
reasing pre
ision is in
reasing, sin
e we predi
t theremaining words more a

urately.The e�e
t of retraining: Sin
e we 
an predi
t only 80 words, we 
an redu
eour vo
abulary only to those words, and run EM algorithm again. As �gure 5shows, the results for the re�tted words are very similar to the original ones.However, we 
an predi
t some words with higher re
all and higher pre
ision.Table 2 shows the re
all and pre
ision values for the sele
ted good words afterretraining. The number of good words are more than the original ones (
omparewith table 1), sin
e the words have higher probabilities.The e�e
t of the null probability: We 
ompare the re
all and pre
isionvalues for test and training data on some 
hosen words. As 
an be seen in�gure 6, the results are very similar for both test and training data. We alsoexperiment with the e�e
t of null threshold by 
hanging it between 0 and 0.4. Byin
reasing the null threshold the re
all de
reases. The in
rease in the pre
ision
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Fig.5.For500testimages,left:re
allvaluesinsortedorder,right:
orresponding
pre
isionvalues.top:originalwords,middle:re�tteddata,bottom:word
lusters.
Theaxesaresameinallofthe�gures.Wehavesomeverygoodwordswithhighre
all,
andsomewordswithlowre
all.However,thepre
isionvaluesarenotsomu
hdi�erent
fromea
hother.Althoughtheydon'thavehighre
allvalues,somewordshaveveryhigh
pre
isionvalues,whi
hmeansthattheyarenotpredi
tedfrequently,butwhenwedo
predi
tthemwe
anpredi
tthem
orre
tly.Whenwerestri
tourselvesonlytothe
redu
edvo
abularyandruntheEMalgorithmagain,thenumberofwordsthatwe
an
predi
twelldoesn't
hangemu
h,butthevaluesin
reaseslightly.Mostofthe
lusters
groupindistinguishablewordsintooneword,so
lusteringslightlyin
reasesthere
all
forsome
lusters(likehorse-mare,
oral-o
ean)



values shows that our 
orre
t predi
tion rate is in
reasing. When we in
reasethe null threshold enough, some words 
annot be predi
ted at all, sin
e theirhighest predi
tion rate is lower than the null threshold. Therefore, both re
alland pre
ision values be
ome 0 after some threshold. Table 1 and table 2 showsthat, with the in
reasing null threshold values, the number of words de
reasesbut we have more reliable words. Sin
e null word predi
tion de
reases the wordpredi
tions, re
all de
reases. The in
rease in the pre
ision shows that null wordpredi
tion in
reases the quality of the predi
tion.
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Fig. 6. Re
all versus pre
ision for sele
ted words with in
reasing null threshold values(0-0.4) : On the left some good words with high re
all and pre
ision, and on the rightsome bad words with low re
all and pre
ision are shown. The top line shows the resultsfor training and bottom line shows the results for test. Solid lines show the initial resultsusing all of the original words in training, dashed lines show the results after trainingon redu
ed vo
abulary. The axes for good words are di�erent than the axes for badwords. The results are very similar both for training and test. Re
all values de
rease byin
reasing null threshold, but usually pre
ision in
rease sin
e the 
orre
t predi
tion ratein
rease. After a threshold value, all pre
ision and re
all may go to 0 sin
e we 
annotpredi
t the words anymore.The e�e
t of word 
lustering:We also 
ompute re
all and pre
ision after 
lus-tering the words. As �gure 5 shows, re
all values of the 
lusters are higher thanre
all values of the single words. Table 3 shows that we have some very ni
e 
lus-ters whi
h have strong semanti
 or visual relations like kit-horses-mare-foals,leaf-flowers-plants-vegetablesor pool-athlete-vines-swimmersand theresults are better when we 
luster the words (
ompare with table 1).



word th = 0 th = 0.1 th = 0.2 th = 0.3 th = 0.4re
 - pre
 re
 - pre
 re
 - pre
 re
 - pre
petals 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00sky 0.83 - 0.31 0.83 - 0.31 0.75 - 0.37 0.58 - 0.47people 0.78 - 0.26 0.78 - 0.26 0.68 - 0.27 0.51 - 0.31water 0.75 - 0.25 0.75 - 0.25 0.72 - 0.26 0.44 - 0.27mare 0.78 - 0.23 0.78 - 0.23 0.67 - 0.21tree 0.71 - 0.19 0.71 - 0.19 0.66 - 0.20sun 0.60 - 0.38 0.60 - 0.38 0.60 - 0.43grass 0.57 - 0.19 0.57 - 0.19 0.49 - 0.22stone 0.57 - 0.16 0.57 - 0.16 0.52 - 0.23foals 0.56 - 0.26 0.56 - 0.26 0.56 - 0.26
oral 0.56 - 0.19 0.56 - 0.19 0.56 - 0.19s
otland 0.55 - 0.20 0.55 - 0.20 0.45 - 0.19
owers 0.48 - 0.17 0.48 - 0.17 0.48 - 0.18buildings 0.44 - 0.16 0.44 - 0.16Table 2. Some good words with their re
all and pre
ision values for in
reasing nullthreshold after redu
ing the vo
abulary only to the predi
ted words and running the EMalgorithm again. Words are sele
ted as good if their re
all values are greater than 0.4,and pre
ision values are greater than 0.15. The null threshold 
hanges between 0 and0.4. When we 
ompare with the original results (table 1), it 
an be observed that wordsremain longer, whi
h means that they have higher predi
tion probabilities. We havemore good words and they have higher re
all and pre
ision values.1st 
lusters r p 2nd 
lusters r p 3rd 
lusters r phorses mare 0.83 0.18 kit horses mare foals 0.77 0.16 kit horses mare foals 0.77 0.27leaf 
owers 0.69 0.22 leaf 
owers plants 0.63 0.25 leaf 
owers plants 0.60 0.19vegetables vegetablesplane 0.12 0.14 jet plane ar
ti
 0.46 0.18 jet plane ar
ti
 prop 0.43 0.17
ight penguin dunespool athlete 0.33 0.31 pool athlete vines 0.17 0.50 pool athlete vines 0.75 0.27swimmerssun 
eiling 0.60 0.30 sun 
eiling 0.70 0.30 sun 
eiling 
ave store 0.62 0.35sky bea
h 0.83 0.30 sky bea
h 
athedral 0.82 0.31 sky,bea
h 
athedral 0.87 0.36
louds muralar
h waterfallswater 0.77 0.26 water 0.72 0.25 water waves 0.70 0.26tree 0.73 0.20 tree 0.76 0.20 tree 0.58 0.20people 0.68 0.24 people 0.62 0.26 people 0.54 0.25Table 3. Some good 
lusters, where the re
all values are greater than 0.4, and pre-
ision values are greater than 0.15 when null threshold is 0. Cluster numbers showshow many times we 
luster the words and run EM algorithm again. Most of the 
lus-ters appear to represent real semanti
 and visual 
lusters (e.g.kit-horses-mare-foals,leaf-flowers-plants-vegetables, pool-athlete-vines-swimmers). The re
all andpre
ision values are higher than those for single words (
ompare with table 1).



4.2 Corresponden
eEvaluation method: Be
ause the data set 
ontains no 
orresponden
e informa-tion, it is hard to 
he
k 
orresponden
e 
anoni
ally or for large volumes of data;instead, ea
h test image must be viewed by hand to tell whether an annotationof a region is 
orre
t. Inevitably, this test is somewhat subje
tive. Furthermore,it isn't pra
ti
ally possible to 
ount false negatives.Base results: We worked with a set of 100 test images for 
he
king the 
or-responden
e results. The predi
tion rate is 
omputed by 
ounting the averagenumber of times that the blob predi
ts the word 
orre
tly. For some good words(e.g: o
ean) we have up to 70% 
orre
t predi
tion as shown in �gure 7; thismeans that, on this test set, when the word o
ean is predi
ted, 70% of the timeit will be predi
ted on an o
ean region. This is unquestionably obje
t re
ognition.

Fig. 7. Corresponden
e results for 100 test images. Left: results for original data,middle: after �rst 
lustering words, right: after assigning null threshold to 0.2. Thelight bar shows the average number of times that a blob predi
ts the word 
orre
tly inthe right pla
e. The dark bar shows the total number of times that a blob predi
ts theword whi
h is in the image. Good performan
e 
orresponds to a large dark bar with alarge light bar, meaning the word is almost always predi
ted and almost always in theright pla
e. For word 
lusters, for example if we predi
t train-lo
omotive and eithertrain or lo
omotive is keyword, we 
ount that as a 
orre
t predi
tion. We 
an predi
tmost of the words in the 
orre
t pla
e, and the predi
tion rate is high.It is more diÆ
ult to assess the rate at whi
h regions are missed. If one iswilling to assume that missing annotations (for example, the o
ean appears inthe pi
ture, but the word o
ean does not appear in the annotation) are unbiased,then one 
an estimate the rate of false negatives from the annotation performan
edata. In parti
ular, words with a high re
all rate in that data are likely to havea low false negative rate.Some examples are shown in �gures 8 and 9. We 
an predi
t some words likesky, tree, grass always 
orre
tly in most of the images. We 
an predi
t thewords with high re
all 
orre
tly, but we 
annot predi
t some words whi
h havevery low re
all.



Fig. 8. Some examples of the labelling results. The words overlaid on the images are thewords predi
ted with top probability for 
orresponding blob. We are very su

essful inpredi
ting words like sky, tree and grass whi
h have high re
all. Sometimes, the wordsare 
orre
t but not in the right pla
e like tree and buildings in the 
enter image.
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Fig. 9. Some test results whi
h are not satisfa
tory. Words that are wrongly predi
tedare the ones with very low re
all values. The problem mostly seen in the third imageis sin
e green blobs 
oo
ur mostly with grass, plants or leaf rather than the underwater plants.The e�e
t of the null predi
tion: Figure 10 shows the e�e
t of assigning nullwords. We 
an still predi
t the well behaved words with higher probabilities. In�gure 7 we show that null predi
tion generally in
reases the predi
tion rate forthe words that we 
an predi
t.The e�e
t of word 
lustering: In �gure 11 we show the e�e
t of 
luster-ing words. As 
an be seen generally similar words are grouped into one (e.g.train-lo
omotive, horse-mare ). Figure 7 shows that the predi
tion rategenarally in
reases when we 
luster the words.5 Dis
ussionThis method is attra
tive, be
ause it allows us to atta
k a variety of otherwiseina

essible problems in obje
t re
ognition. It is wholly agnosti
 with respe
tto features; one 
ould use this method for any set of features, and even forfeature sets that vary with obje
t de�nition. It may be possible to sele
t featuresby some method that attempts to in
lude features that improve re
ognitionperforman
e. There is the usual diÆ
ulty with lexi
on learning algorithms that abias in 
orresponden
e 
an lead to problems; for example, in a data set 
onsisting



Fig. 10. Result of assigning null. Some low probability words are assigned to null, butthe high probability words remain same. This in
reases the 
orre
t predi
tion rate forthe good words, however we may still have wrong predi
tions as in the last �gure. The
onfusion between grass and foals in the se
ond �gure is an example of 
orresponden
eproblem. Sin
e foals almost always o

ur with grass in the data, if there is nothingto tell the di�eren
e we 
annot know whi
h is whi
h.of parliamentry pro
eedings we expe
t the English word house to translate tothe Fren
h word 
hambre. We expe
t | but have not so far found | similaro

asional strange behaviour for our problem. We have not yet explored themany interesting further rami�
ations of our analogy with translation.{ Automated dis
overy of non-
ompositional 
ompounds A greedy al-gorithm for determining that some elements of a lexi
on should be groupedmight deal with 
ompound words (as in [11℄), and might be used to dis
overthat some image regions should be grouped together before translating them.{ Exploiting shape Typi
ally, a set of regions should map to a single word,be
ause their 
ompound has distin
tive stru
ture as a shape. We should liketo learn a grouping pro
ess at the same time as the lexi
on is 
onstru
ted.{ Joint learning of blob des
riptions and the lexi
on We are 
urrentlystudying methods that 
luster regions (rather than quantizing their repre-sentation) to ensure that region 
lusters are improved by word information.A
knowledgementsThis proje
t is part of the Digital Libraries Initiative sponsored by NSF andmany others. Kobus Barnard also re
eives funding from NSERC (Canada), andPinar Duygulu is funded by TUBITAK (Turkey). We are grateful to JitendraMalik and Doron Tal for normalized 
uts software, and Robert Wilensky forhelpful 
onversations.Referen
es1. K. Barnard, P. Duygulu and D. A. Forsyth. Clustering art. In IEEE Conf. onComputer Vision and Pattern Re
ognition, II: 434-441, 2001.2. K. Barnard and D. A. Forsyth. Learning the semanti
s of words and pi
tures. InInt. Conf. on Computer Vision pages 408-15, 2001.3. P. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mer
er. The mathemati
sof statisti
al ma
hine translation: Parameter estimation. Computational Linguisti
s,32(2):263-311, 1993.4. D.A. Forsyth and J. Pon
e. Computer Vision: a modern approa
h. Prenti
e-Hall2001. in preparation.



Fig. 11. Result of 
lustering words after the �rst, se
ond, and third iterations of 
luster-ing. Clustering in
reases the predi
tion sin
e indistinguishable words are grouped intoone (e.g. lo
omotive-train, horses-mare).5. D. Jurafsky and J. H. Martin. Spee
h and Language Pro
essing: An Introdu
tionto Natural Language Pro
essing, Computational Linguisti
s and Spee
h Re
ognition.Prenti
e-Hall, 2000.6. C. D. Manning and H. S
h�utze. Foundations of Statisti
al Natural Language Pro-
essing. MIT Press, 1999.7. M. Markkula and E. Sormunen. End-user sear
hing 
hallenges indexing pra
ti
esin the digital newspaper photo ar
hive. Information retrieval, 1:259-285, 2000.8. Y. Mori, H. Takahashi, R. Oka Image-to-word transformation based on dividing andve
tor quantizing images with words In First International Workshop on MultimediaIntelligent Storage and Retrieval Management (MISRM'99), 19999. O. Maron. Learning from Ambiguity. PhD thesis, MIT, 1998.10. O. Maron and A. L. Ratan. Multiple-Instan
e Learning for Natural S
ene Classi-�
ation, In The Fifteenth International Conferen
e on Ma
hine Learning, 199811. I. Dan Melamed. Empiri
al Methods for Exploiting Parallel Texts. MIT Press,2001.12. S. Ornager. View a pi
ture, theoreti
al image analysis and empiri
al user studieson indexing and retrieval. Swedis Library Resear
h, 2-3:31-41, 1996.13. J. Shi and J. Malik. Normalised 
uts and image segmentation. In IEEE Conf. onComputer Vision and Pattern Re
ognition, pages 731-737, 1997.


