
AN ONTOLOGY FOR LINEAR SPATIAL
REASONING

F.Coenen, B. Beattie, T.J.M.Bench-Capon, M.J.R.Shave
and B.M.Diaz

Department of Computer Science, The University of Liverpool, Chadwick Building,
P.O. Box 147, Liverpool L69 3BX, England. email: frans@uk.ac.liverpool.compsci Tel:

0151 794 3698 Fax: 0151 794 3715

Abstract. An ontology for spatial reasoning based on a tesseral repre-
sentation of space is presented. The principal advantage offered is that
the representation has the effect of linearising multi-dimensional space
while still supporting translation through the space in any direction and
through any number of dimensions. Consequently, all multi-dimensional
spatial reasoning can be implemented using one dimensional (temporal)
reasoning techniques. As a result, many of the concerns associated with
conventional multi-dimensional spatial reasoning systems, based on more
traditional representations, no longer apply.

KEYWORDS: Multi-dimensional spatial reasoning, Ontology

1 INTRODUCTION

An ontology is presented for multi-dimensional spatial reasoning based on an ad-
dressing system that has the effect of linearising space (regardless of the number
of dimensions under consideration). As a result all multi-dimensional reasoning
can be implemented in terms of a single dimension and hence many of the con-
cerns associated with more traditional forms of multi-dimensional reasoning no
longer apply.
There are many methods whereby the linearisation of space can be achieved,
particularly in the field of computer graphics. Generally the object space, the
two, three or four dimensional space in which the spatial objects we wish to rea-
son about exist, is tessellated (divided up) into a set of isohedral (same shape)
sub-spaces down to some predetermined resolution. Each sub-space has the same
number of dimensions as the original object space: in two dimensions the sub-
space is referred to as a tile, and in three dimensions as a cube, etc. Every sub-
space is allocated a unique numeric address following some sequence (based on
either a Cartesian conceptualisation of space or ideas concerning the hierarchical
decomposition of space) so that the entire space can be “unravelled” to form a
linear sequence of addresses. Spatial objects can then be represented as sets of ad-
dresses and related by comparing individual addresses or sequences of addresses
using less than, equals to and greater than operators. We can also perform sim-
ple arithmetic to (say) determine the immediate predecessor or successor of an
address or to translate backwards and forwards through the sequence. Further,



by regarding addresses as complex numbers, we can use “complex” arithmetic to
translate through the object space in any direction and through any number of
dimensions, and rotate and scale objects with respect to a single axis, in a man-
ner that obviates recourse to computationally expensive matrix or trigonometric
techniques.
The ontology is presented in a series of tables. The syntax used is based on
the MIR knowledge representation langauge which was developed as part of the
MAKE (Maintenance Assistance for Knowledge Engineers) project [?]. This was
a collaborative project between ICL, British Coal and the University of Liver-
pool, that addressed the role of maintenance in knowledge based systems. The
result was the Make Authoring and Development Environment (MADE) which
encouraged the production of systems which can be maintained through an in-
termediate representation - the Make Intermediate Representation (MIR). MIR
is essentially a simple language to create ontologies describing objects and rules
arranged in hierarchies which can then be translated into a target executable rep-
resentation. The original target was a language called Compiled MIR (CMIR),
but could equally well be any other executable representation. As such MIR has
similarities with other tools for creating ontologies such as Ontolingua [?].

2 ADDRESSES

The primitive unit of the system is the (tesseral) address which can be regarded
as a unique label associated with some two, three or four dimensional sub-space.
The class hierarchy associated with addresses is presented in Table 1. An address
has some integer value that lies within a minimum and maximum defined by the
addressing mechanism adopted. We then define an arithmetic for the addressing
system (based on complex number theory) to implement translation through
an object space using complex number addition and subtraction. Similarly we
define rotation and scaling (with respect to one axis) using complex number
multiplication and division.

Table 1: Address ontology

CLASS Address SUPERCLASS TopClass {
"The primitive unit of the system"

slot address integer range (Min .. Max);

method +(Address, Address -> Address);

method -(Address, Address -> Address);

method *(Address, Address -> Address);

method /(Address, Address -> Address);

}

CLASS Sequence SUPERCLASS Address {
"Data structure used to store linear sequences of addresses"

slot sequence (Address.address .. Address.address);

}



CLASS SetAddresses SUPERCLASS Sequence {
"Data structure used to store set of addresses defining the shape

and/or location of spatial objects"

slot setAddresses list (NULL, [Address.addressSetAddresses],
[Sequence.sequenceSetAddresses]);

method subset(setAddresses, setAddresses -> Boolean);

method notSubset(setAddresses, setAddresses -> Boolean);

method equals(setAddresses, setAddresses -> Boolean);

method notEquals(setAddresses, setAddresses -> Boolean);

method intersection(setAddresses, setAddresses -> setAddresses);

method union(setAddresses, setAddresses -> setAddresses);

method complement(setAddresses, setAddresses -> setAddresses);

method box(Address.address, Address.address -> setAddresses);

method line(Address.address, Address.address -> setAddresses);

method circle(Address.address, Address.address -> setAddresses);

}

CLASS ObjectSpace SUPERCLASS TopClass {
"The multi-dimensional space in which the spatial objects of interest

are contained"

slot minAddress integer (Min .. Max);

slot maxAddress integer (minAddress .. Max);

slot objectSpace Sequence (minAddress .. maxAddress);

}

Numeric sequences of addresses can be expressed simply using a “range” oper-
ator, such as ‘..’. This mechanism facilitates data compression to reduce the
storage requirements associated with objects, and computationally-inexpensive
comparison of sets of addresses. For example, with respect to the latter, to de-
termine whether the set of addresses {p..q} is contained within the set {r..t}
we simply compare the start and end addresses of the two ranges, rather than
considering all individual addresses (elements) involved in turn. Object spaces
are defined in terms of a sequence of addresses ranging from some minimum to
some maximum address.
A set of addresses is then a list of zero (NULL), one or more elements where each
element can be either a single tesseral address or a sequence of addresses (in
the tables the ‘|’ operator should be read as a traditional (Prolog) head-tail
operator). There are a number of operations that can be performed on pairs of
sets of addresses, namely the following Boolean operations:

X ⊂ Y (subset) X 6⊂ Y (notSubset)
X = Y (equals) X 6= (notEquals)

and the functions:

X ∪ Y (union) X ∩ Y (intersection)
X \ Y (complement)

The superset Boolean operation is not included because this can simply be ex-
pressed as a subset relation with the operands transposed. Similarly we do not



differentiate between a subset and a “proper subset” (or a superset and a “proper
superset”) because, in spatial reasoning terms, we have not found an applica-
tion where the distinction is significant. Each operation is defined in terms of a
method associated with the SetAddresses class.
To allow the user to express simply sets of addresses it has also been found useful
to provide a facility to define sets of addresses in terms of geometric shapes. Some
two dimensional examples are given in Table 1:

1. Box. A box of addresses defined in terms of (say) its “south-west” and “north-
east” corner addresses.

2. Line. A line of addresses defined in terms of its start and end addresses.
3. Circle. A circle of addresses defined in terms of its centre address and its

radius defined in addresse units.

These can be extended to three dimensions by including shapes such as sphere
and cube.

3 SPATIAL OBJECTS

The ontology associated with spatial objects is presented in Table 2. Spatial
objects have a number of attributes associated with them:

Table 2: Object ontology

CLASS SpatialObject SUPERCLASS TopClass {
"A spatial object is any object contained in the object space that we

might wish to reason about"

slot objectName string;

slot location SetAddresses;

slot ref Address;

slot locationList list (NULL, [[location,ref]locationList]);
slot locationListPair list (NULL, [locationList, locationList]);
}

CLASS FixedObject SUPERCLASS SpatialObject {
"A fixed object is a spatial object with a fixed location, and

consequently a definite shape"

method solveBoolean(locationListPair,

booleanConstraint.definition -> locationListPair);

}

CLASS FreeObject SUPERCLASS SpatialObject {
"A free object is a spatial object which has no fixed location

associated with it"

slot locationSpace SetAddresses;

}

CLASS ShapedObject SUPERCLASS FreeObject {
"A shaped object is a spatial object that has a definite shape



associated with it, but an unknown location"

slot shape SetAddresses;

slot ref Address (cardinality many);

method candidateLocations(shape, locationSpace -> locationList);

method solveBoolean(locationListPair, booleanConstraint.definition ->

locationListPair);

}

CLASS ShapelessObject SUPERCLASS SpatialObject {
"A shapeless object is a spatial object that has an undefined (or only

partialy defined) shape and an unknown location"

slot minSize integer range (ObjectSpace.minAddress ..

ObjectSpace.maxAddress);

slot maxSize integer range (ObjectSpace.minAddress..

ObjectSpace.maxAddress);

slot contiguityFlag boolean values (true, false);

method solveFunctional(locationListPair,

functionConstraint.definition -> locationListPair);

}

1. NAME. The most obvious attribute that a spatial object must have is a
label which allows the object to be identified and which ties all the other
attributes associated with it together under a single unifying name.

2. LOCATION. An object can either be fixed in that it has a “fixed” location
associated with it, or it may be free in that it has some location space (which
might extend to the entire object space) associated with it in which the
object may be contained. The classes FixedObject and FreeObject are
thus sub-classes of the class SpatialObject. Both locations and locations
spaces are expressed in terms of sets of addresses (see Table 1).

3. SHAPE. An object can either be shaped in that it has a definite shape
associated with it (again defined in terms of a set of addresses), or shapeless.
A fixed object, by definition, must have a “shape” associated with it although
there is no need for this to be specifically defined. However, a free object may
be either a shaped or a shapeless object. The classes ShapedObject and
ShapelessObject are thus a sub-class of the FreeObject class. A shaped
object may be “fitted” into its associated location space in a precise number
of ways. We say the object has a number of candidate locations associated
with it. The ShapedObject class includes a class method to calculate this.
If such an object has no candidate locations then it cannot be physically
realised.

4. REF ADDRESS. When objects are manipulated (translated, rotated etc.)
this must be done with respect to some reference address associated with the
object. Similarly the shape of an object must be defined with respect to some
reference address (such as the south-west corner address of the minimum
bounding box surrounding the shape definition). Thus the spatialObject
class also has an attribute ref associated with it.

5. MINIMUM AND MAXIMUM SIZE, and CONTIGUITY. With respect to



shapeless objects there are some additional attributes which the object may
take and which serve to partially define the shape of an object. Such at-
tributes include a minimum and/or maximum size in terms of addresses,
or a requirement that it is contiguous. In the case of shaped objects these
attributes are of course implied. These have been included in the Shapeless
Object class definition.

Attributes such as location, location space and shape must either be extracted
from a database or supplied by a user. In the case of the latter, to facilitate user
interaction a scripting language has been developed (together with an appro-
priate lexical analyser and parser) in which users can define the desired objects
without requiring any familiarity with the particular addressing systems used.
Experiments have indicated that the use of the Cartesian coordinate system is
still the approach which users are most familiar with. Further, so that users do
not have to identify every address that forms part of a spatial object it has been
found that use of a number of class methods (such as the square, line and circle
methods associated with the SetAddresses class) to identify groups of addresses
substantially simplifies the definition task.
The locations associated with objects are stored in location lists (defined in the
SpatialObject class) where each location is linked to a reference address. In the
case of a fixed object the location list will consist of only one location-reference
pair, in the case of a shaped object the list will comprise one or more candidate
location-reference pairs, otherwise the list will comprise a single location space
definition and an arbitrary reference address.
Individual locations associated with particular objects can be related through the
seven relationships presented in Section 2. The relations expressed in this manner
are then referred to as constraints. Boolean relations are only meaningful with
respect to shaped objects, while the functions are only appropriate where the
prefix operand is a shapeless object. Both types of constraint are solved taking
a pair of location lists and a constraint definition and returning a revised pair
of location lists that satisfy the constraint. If the constraint cannot be satisfied
NULL will be returned. The definition of constraints is discussed in the following
Section.

4 CONSTRAINTS

Given a set of objects defined as described in Section 3 and using the relations
given in section 2 we can define both boolean and functional constraints to
express the relationships which we require certain pairs of objects to display. For
example we can express the desire that a location associated with some shaped
object is located wholly within a location associated with some other object (or
not), or whether the location is identical to the location of some other object
(or not). Alternatively we can cause a location associated with some object
to become a complement (not a subset), intersection (subset) or union with
respect to some other location. However, for spatial reasoning purposes this is
not enough; we also want to be able to define predicates such as “is X to the



north west of Y?” or “cause X to be to the north-west of Y”. To do this we must
apply an appropriate offset to the location concerned, Y in this case. This can
be applied in two ways:

1. To the reference associated with an object’s location in a location list (see
SaptialObject class definition in table 2).

2. To all the addresses defining a particular location associated with an object.

(By application we mean addition or subtraction of addresses as defined in Sec-
tion 2 to achieve the appropriate translation). The first of the above allows us to
define spaces (say) within another object or at some location outside an object.
The second allows us to expand an object in all or some direction(s). In this
manner all the standard multi-dimensional topological relations such as those
identified by (say) Egenhofer [?], Hernández [?] or Cohn [?] can be defined. Of
course it is only appropriate to apply such offsets to shaped objects - applying
offsets to shapeless objects will result in unpredictable conclusions.
Thus a constraint definition has an operator and two operands plus possibly
two offsets to be applied to the operands with the proviso that the operand in
question must indicate a shaped object. The ontology associated with constraints
is given in Table 3.

Table 3: Constraint ontology

CLASS Operand SUPERCLASS TopClass {
”An operand is the prefix or postfix operand associated with a relation operator”

slot operandValue setAddresses;
}

CLASS ShapelessOperand SUPERCLASS Operand {
”An operand associated with a shapeless object”

slot operandDefinition list ([”shapeless”, spatialObject.objectName]) ;
method operand(fixedObject.location -¿ operandValue);
}

CLASS ShapedOperand SUPERCLASS Operand {
”An operand associated with a shaped object”

slot offset SetAddresses;
slot type string (”offset”, ”reference”);
slot operandDefinition list ([type, spatialObject.objectName, offset]);
}

CLASS OffsetOperand SUPERCLASS ShapedOperand {
”An operand associated with a shaped object that has been generated by applying

an offset to all the addresses associated with a particular location”
slot type string (”offset”);
method operandOffset(fixedObject.location, offset -¿ operandValue);
}

CLASS ReferenceOperand SUPERCLASS ShapedOperand {
”An operand associated with a shaped object that has been generated by applying



an offset to a reference address associated with a particular location”
slot type string (”reference”);
method operandRefOffset(fixedObject.reference, offset -¿ operandValue);
}

CLASS Constraint SUPERCLASS TopClass {
”A constraint comprises a relation operator and two operands generated from the

locations associated with the spatial objects we wish to relate”
slot operand Operand, cardinality 2;
}

CLASS BooleanConstraint SUPERCLASS constraint {
”A constraint that evaluates to true or false with the effect that the locations

associated with the spatial objects of interest are valid or invalid.
Can only be used to relate shaped objects”

slot operator string values (subset, notSubset, equals, notEquals);
slot definition list ([ShapedOperand.operandDefinition, operator,

ShapedOperand.operandDefinition]);
}

CLASS FunctionalConstraint SUPERCLASS constraint {
”A constraint that relates a shapeless object to a shaped object with the purpose

of redefining the location/shape of the shapeless object.”
slot operator string values (intersection, complement, union);
slot definition list ([ShapelessOperand.operandDefinition, operator,

ShapedOperand.operandDefinition]);
}

5 CONSTRAINT SATISFACTION

Spatial problems couched in terms of sets of object declarations and constraints
as described here can more generally be defined as comprising a set of variables
that can take values from a finite set of domains, and a set of constraints which
specify which values are compatible with each other. A solution to such a problem
is thus an assignment of values to all variables which satisfy all constraints. Given
that the domains under consideration are finite, and assuming that the given
constraints are satisfiable, a solution (or solutions) is always possible. The real
problem associated with the satisfaction of such problems is that of complexity
(they are NP-complete) and, as a result, efficiency.
There are two broad techniques that can be used to solve spatial problems
couched in terms of constraints. One approach is to generate all possible assign-
ments of values to variables and test these against the given set of constraints, in
a manner that will result in early identification of fruitless assignments (see [?]
for further discussion). An alternative approach is to use constraint propagation
techniques where variables range over a set of values and the constraints are
used to prune this set of values (see [?] and [?] for further discussion).



Current implementations of the system described here adopt this second ap-
proach. This requires a constraint selection strategy and some mechanism for
storing results. The current implementations store all partial solutions and end
solutions in a solution tree structure, each node of which represents a solution
“state” after one or more constraints have been satisfied. Branches in the tree
indicate nodes where, on satisfaction of a constraint, more than one solution has
been produced. The current constraint selection strategy is geared to limiting
the growth of this solution tree and the early identification of fruitless branches.

6 CONCLUSIONS

In this paper we have presented an ontology for spatial reasoning based on a
tesseral representation of space. The advantages gained (over more traditional
representations) can be summarised as follows:

1. Linearisation of space so that all multi-dimensional spatial reasoning need
take place in only one-dimension while at the same time supporting the
description of complex multi-dimensional shapes.

2. Simple manipulation of groups of addresses making full use of the sequencing
of addresses and the complex arithmetic that can be superimposed over the
representation.

As a result many of the concerns associated with traditional approaches to multi-
dimensional reasoning are no longer relevant. The system has been implemented
using a quad-tesseral representation based on the hierarchical decomposition of
space (see [?]) and a Cartesian “grid-referencing” system. The ontolog has been
used in demonstration systems which address a number of application areas:
examples include support for environmental impact assessment with respect to
building projects [?], provision of spatial reasoning capabilities for Geographic
Information Systems [?], and to address timetabling problems [?]. Earlier ver-
sions of the system operated using only one dimension and were used to address
temporal reasoning problems (see [?]).

References

1. B. Beattie, F.P. Coenen, A. Hough, T.J.M. Bench-Capon, B. Diaz and M.J.R.
Shave. ‘Spatial Reasoning for Environmental Impact Assessment’, to be presented
at Third International Conference/Workshop on Integrating GIS and Environmen-
tal Modelling, Santa Fé, 1996.

2. B. Beattie, F.P. Coenen, T.J.M. Bench-Capon, B. Diaz and M.J.R. Shave, ‘Spatial
Reasoning for GIS using a Tesseral Data Representation’, in N. Revell and A.M.
Tjoa (eds.), Database and Expert Systems Applications, (Proceedings DEXA’95),
Lecture Notes in Computer Science 978, Springer Verlag, 207-216, 1995.

3. F.P. Coenen, B. Beattie, T.J.M. Bench-Capon, Shave, M.J.R and B. Diaz, ‘Spatial
Reasoning for Timetabling: The TIMETABLER system’, Proceedings of the 1st
International Conference on the Practice and Theory of Automated Timetabling
(ICPTAT’95), Napier University, Edinburgh, 57-68, 1995.



4. F.P. Coenen, B. Beattie, B. Diaz, T.J.M. Bench-Capon and M.J.R. Shave, ‘A
Temporal Calculus for GIS Using Tesseral Addressing’, in M.A. Bramer and A.L.
Macintosh (eds), Research and Development in Expert Systems XI, Proceedings of
ES’94, 261-273, 1994

5. F.P. Coenen and T.J.M. Bench-Capon, ‘Maintenance and Maintainability in Reg-
ulation Based KBS’, ICL Technical Journal, 9-3, May, 67-84, 1992.

6. A.G. Cohn, ‘A More Expressive Formulation of Many Sorted Logic’, Jo of Au-
tomation and Reasoning, 3-2, 113-200, 1987.

7. B. Diaz and S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural
Environment Research Council publication, Swindon, England, 1986

8. M.J. Egenhofer, ‘Deriving the Composition of Binary Topological Relations’, Jour-
nal of Visual Languages and Computing, 5, 133-149, 1994.

9. T.R. Gruber, ‘Ontolingua: A Mechanism to Support Portable Ontologies’, Techni-
cal Report KSL 91-66, Stanford University, Knowledge Systems Laboratory, Stan-
ford, USA, 1992.

10. P. van Hentenryck, ‘Constraint Satisfaction in Logic Programming’, MIT Press,
Cambridge, Massachusetts, 1989.

11. D. Hernández, ‘Relative Representation of Spatial Knowledge: The 2-D Case’ in
D.M. Mark and A.U. Frank, A.U. (eds), Cognitive and Linguistic Aspects of Geo-
graphic Space, Kluwer, Dordrecht, Netherlands, 373-385, 1991.

12. A.K. Mackworth, ‘Consistency in Networks of Relations’, AI Journal, 8-1, 99-118,
1977.

13. A.K. Mackworth and E.C. Freuder. ‘The Complexity of Some Polynomial Net-
work Consistency Algorithms for Constraint Satisfaction Problems’ Artificial In-
telligence, 25, 65-74, 1985

This article was processed using the LATEX macro package with LLNCS style


