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Abstract— We consider massively dense ad-hoc networks and
study their continuum limits as the node density increases
and as the graph providing the available routes becomes a
continuous area with location and congestion dependent costs.
We study both the global optimal solution as well as the non-
cooperative routing problem among a large population of users.
Each user seeks a path from its source to its destination so
as to minimize its individual cost. We seek for a (continuum
version of the) Wardrop equilibrium. We first show how to
derive meaningful cost models as a function of the scaling
properties of the capacity of the network as a function of the
density of nodes. We present various solution methodologies for
the problem: (1) the viscosity solution of the Hamilton-Jacobi-
Bellman equation, (2) a transformation into an equivalent global
optimization problem that is obtained by identifying some
potential related to the costs. We finally study the problem
in which the routing decisions are taken by a finite number of
competing service providers.

I. INTRODUCTION

In the design and analysis of wireless networks, researchers
frequently stumble on the scalability problem that can be
summarized in the following sentence: “As the number of
nodes in the network increases, problems become harder to
solve” [20]. The sentence takes his meaning from several
issues. Some examples are the following:

• In Routing: As the network size increases, routes con-
sists of an increasing number of nodes, and so they are
increasingly susceptible to node mobility and channel
fading [19].

• In Transmission Scheduling: The determination of the
maximum number of non-conflicting transmissions in a
graph is a NP-complete problem [21].

• In Capacity of Wireless Networks: As the number of
nodes increases, the determination of the precise capac-
ity becomes an intractable problem.

Nevertheless when the system is sufficiently large, one
may hope that a macroscopic view would provide a more
useful abstraction of the network. The properties of the new
macroscopic model would, however, consider microscopic
considerations. Indeed we are going to sacrifice some details,
but this macroscopic view will preserve enough information
to allow a meaningful network optimization solution and the
derivation of insightful results in a wide range of settings.

The physics-inspired paradigms used for the study of large
ad-hoc networks go way beyond those related to statistical-
mechanics in which macroscopic properties are derived from
microscopic structure. Starting from the pioneering work by
Jacquet in [17] in that area, a number of research groups
have worked on massively dense ad-hoc networks using
tools from geometrical optics [17]1 as well as electrostatics
(see e.g. [13], [20], [25] and the survey [22] and references
therein). We shall describe these in the next two sections.

The physical paradigms allow the authors to minimize
various metrics related to the routing. In contrast, Hyytia and
Virtamo propose in [15] an approach based on load balancing
arguing that if shortest path (or cost minimization) arguments
were used then some parts of the network would carry more
traffic than others and may use more energy than others. This
would result in a shorter life time of the network since some
parts would be out of energy earlier than others and earlier
than any part in a load balanced network.

The development of the original theory of routing in
massively dense networks among the community of ad-hoc
networks has emerged in a complete independent way of the
existing theory of routing in massively dense networks which
had been developed within the community of road traffic

1We note that this approach is restricted to costs that do not depend on
the congestion.



engineers. Indeed, this approach had already been introduced
on 1952 by Wardrop [27] and by Beckmann [4] and is still an
active research area among that community, see [6], [7], [14],
[16], [28] and references therein. We have thus chosen to
devote part of this work to complement the physical-inspired
methods that have been in use in the wireless networking
community by some tools from road traffic engineering, and
from the area of optimal control theory.

The structure of this paper is as follows. We begin by
presenting models for costs that will later be used in various
optimization models related to routing or to node assignment.
We then present optimization problems related to massively
dense ad-hoc network, and focus on limits obtainend from
the use of directional antennas.

II. DETERMINING ROUTING COSTS IN DENSE AD-HOC
NETWORKS

In optimizing a routing protocol in ad-hoc networks, or in
decisions the optimization of placement of nodes, one of the
starting points is the determination of the cost function. To
determine it, we need a detailed specification of the network
which includes the following:
• A model for the placement of nodes in the network.
• A forward rule that nodes will use to select the next hop

of a packet.
• A model for the cost incurred in one hop, i.e. for

transmitting a packet to an intermediate node.
Below we present several ways of choosing cost functions.

A. Costs derived from capacity scaling

Many models have been proposed in the literature that
show how the transport capacity scales with the number of
nodes n or with their density λ. Assume that we use a
protocol that provides a transport capacity of the order of
f(λ) at some region in which the density of nodes is λ.

A typical cost (used at [25]) at a neighborhood of x
is the density of nodes required there to carry a given
flow. Assuming that a flow T(x)2 is assigned through a
neighborhood of x, the cost is taken to be

c(x,T(x)) = f−1(T(x)). (1)

Examples for f :
• The capacity of a CSMA scheme with a fixed carrier

sense range is O
( √

λ√
log λ

)

• Using a network theoretic approach based on multi-hop
communication, in the paper of Gupta and Kumar [11]
the authors show that the throughput of the system that
can be transported by the network when the nodes are
optimally located is Ω(

√
λ) and when the nodes are

randomly located this throughput becomes Ω(
√

λ√
log λ

).

2We denote with bold font the vectors.

Using percolation theory, the authors of [9] have shown
that in the randomly located set the same Ω(

√
λ) can

be achieved.
• Baccelli, Blaszczyszyn and Mühlethaler introduce in [2]

an access scheme, MSR (Multi-hop Spatial Reuse
Aloha), reaching the Gupta and Kumar bound O(

√
λ)

which does not require prior knowledge of the node
density.

• A protocol introduced by Tse and Glosglauser [10] has
a capacity that scales as O(λ). However, it does not
fall directly within the the class of massively dense ad-
hoc networks and indeed, it relies on mobility and on
relaying for handling disconnectivity.

We conclude that for the approach of Gupta and Kumar
with either approaches the optimal location or the random
location, as well as for the MSR protocol with a Poisson
distribution of nodes, we obtain a quadratic cost of the form

c(T(x)) = k|T(x)|2.

B. Congestion independent routing

A metric often used in the Internet for determining routing
is the number of hops, which routing protocols try to mini-
mize. The number of hops is proportional to the expected
delay along the path in the context of ad-hoc networks,
in case that the queueing delay is negligible with respect
to the transmission delay over each hop. This criterion is
insensitive to interference or congestion. We assume that the
network is sufficiently dense so that the number of hops does
not depend on the density of nodes. It depends only of the
transmission range. We describe various cost criteria that can
be formulated.

• If the range were constant then the cost density c(x) is
constant so that the cost of a path is its length in meters.
The routing then follows a shortest path selection.

• Let’s assume that the range R(x) depends on local radio
conditions at a point x (for example, it is influenced
by weather conditions) but not on interference. The
latter is justified when dedicated orthogonal channels
(e.g. in time or frequency) can be allocated to traffic
flows that would otherwise interfere with each other.
Then determining the routing becomes a path cost
minimization problem. We further assume, as in Gupta
and Kumar, that the range is scaled to go to 0 as the total
density λ of nodes grows to infinity. More precisely, let’s
consider a scaling of the range such that the following
limit exists:

r(x) := lim
λ→∞

R(x)
f(λ)

where limλ→∞ f(λ) = 0. Then in the dense limit, the
density of nodes that participate in forwarding packets
along a path is 1/r(x) and the path cost is the integral
of this density along the path.



• The influence of varying radio conditions on the range
can be eliminated using power control that can equalize
the hop distance.

C. Costs related to energy consumption

In the absence of capacity constraints, the cost can rep-
resent energy consumption. In a general multi-hop ad-hoc
network the hop distance can be optimized so as to minimize
the energy consumption. Even within a single cell of 802.11
IEEE wireless LAN one can improve the energy consumption
by using multiple hops, as it has been shown not to be
efficient in terms of energy consumption to use a single
hop [26].

Alternatively, the cost can take into account the scaling
of the nodes (as we had in Subsection II-A that is obtained
when there are energy constraints. As an example, assuming
random deployment of nodes, where each nodes has traffic to
send to another randomly selected node, the capacity (in bits
per Joule) has then the form f(λ) = Ω

(
(λ/ log λ)(q−1)/2

)
where q is the path-loss, see [18]. The cost is then obtained
using (1).

III. PRELIMINARY

In the work of Toumpis et al. ( [13], [20], [22]–[25]) the
authors address the problem of the optimal deployment of
Wireless Sensor Networks by a parallel with Electrostatic.

Consider the continuous information density function
ρ(x), measured in bps/m2, such that at locations x where
ρ(x) > 0 there is a distributed data source such that the rate
with which information is created in an infinitesimal area of
size dΦ centered at x is ρ(x)dΦ. Similarly, at locations x
where ρ(x) < 0 there is a distributed data sink such that the
rate with which information is absorbed by an infinitesimal
area of size dΦ, centered at point x, is equal to −ρ(x)dΦ.

The total rate at which sinks must absorb data is the same
as the total rate which the data is created at the sources, i.e.∫

X1×X2

ρ(x) dS = 0.

Next we present the flow conservation [6], [25]. For
information to be conserved over a surface Φ0 of arbitrary
shape on the X1×X2 plane it is necessary that the rate with
which information is created in the area is equal to the rate
with which information is leaving the area, i.e∫

Φ0

ρ(x) dx =
∮

∂Φ0

[T(`) · n(`)] d`

The integral on the left is the surface integral of ρ(x) over
Φ0. The integral on the right is the path integral of the inner
product T · n over the curve ∂Φ0. The vector n is the unit
vector perpendicular to ∂Φ0 at the boundary point ∂Φ0(s)
and pointing outwards. The function T · n(s) measured in
bps/m2 is equal at the rate with which information is leaving
the surface Φ0 at the boundary point ∂Φ0(s).

Dividing both terms by |Φ0| and taking limit when |Φ0|
goes to 0, yields the following equivalent equation:

∇ ·T :=
∂T1(x)

∂x1
+

∂T2(x)
∂x2

= ρ. (2)

where “∇·” is the divergence operator.
Extension to multi-class The work on massively dense

ad-hoc networks, considered a single class of traffic. In the
geometrical optics approach it corresponded to demand from
a point a to a point b. In the electrostatic case it corresponded
to a set of origins and a set of destinations where traffic
from any origin point could go to any destination point.
The analogy to positive and negative charges in electrostatics
may limit the perspectives of multi-class problems where
traffic from distinct origin sets has to be routed to distinct
destination sets.

The model based on geometrical optics can directly be
extended to include multiple classes as there are no elements
in the model that suggest coupling between classes. This is
due in particular to the fact that the cost density has been
assumed to depend only on the density of the mobiles and
not on the density of the flows.

In contrast, the cost in the model based on electrostatics
is assumed to depend both on the location as well as on the
local flow density. It thus models more complex interactions
that would occur if we considered the case of ν traffic classes.
Extending the relation (2) to the multi-class case, we have
traffic conservation at each point in space to each traffic class
as expressed in the following:

∇ ·Tj(x) = ρj(x), ∀x ∈ Φ. (3)

The function Tj is the flow distribution of class j and ρj

corresponds to the distribution of the external sources and/or
sinks.

Let T(x) be the total flow vector at point x ∈ Φ. A generic
multi-class optimization problem would then be: minimize Z
over the flow distributions {T j

i }

Z =
∫

Φ

g(x,T(x)) dx1 dx2 subject to (4a)

∇ ·Tj(x) = ρj(x), j = 1, ..., ν ∀x ∈ Φ. (4b)

IV. DIRECTIONAL ANTENNAS

For energy efficiency, it is assumed that each terminal is
equipped with one or with two directional antennas, allowing
transmission at each hop to be directed either from North to
South or from West to East. Thus T j

1 ≥ 0, T j
2 ≥ 0, j =

1, ..., ν. In the dense limit, a curved path can be viewed as a
limit of a path with many such hops as the hop distance tends
to zero. The approach that we follow is based on the work of
Dafermos [6] where the author gave a similar approach on
the road traffic equilibrium context. In our paper we give a
mathematical development and formulate the problem in the
multi-class framework.

Some assumptions on the cost:



• Individual cost: We allow the cost for a horizontal
(West-East) transmission from a point x to be different
than the cost for a vertical transmission (North-South).
It is assumed that a packet located at the point x
and traveling in the direction of the axis xi incurs
a transportation cost gi and such transportation cost
depends upon the traffic flow. We thus allow for a vector
valued cost g = g(x,T(x)).

• The local cost corresponding to the global optimization
problem is given by g(x,T(x)) = g(x,T(x)) ·T(x) if
it is perceived as the sum of costs of individuals.

•
• The global cost will be the integral of the local cost

density.
• The local cost g(x,T(x)) is assumed to be non-

negative, convex increasing in each of the components
of T (T1 and T2 in our 2-dimensional case).

The boundary conditions will be determined by the
options that travelers have in selecting their origins and/or
destinations. Examples of the boundary conditions are:

• Assignment problem: users of the network have prede-
termined origins and destinations and are free to choose
their travel paths.

• Combined distribution and assignment: users of the
network have predetermined origins and are free to
choose their destinations (within a certain destination
region) as well as their paths.

• Combined generation, distributions and assignment:
users are free to choose their origins, their destinations,
as well as their travel paths.

The problem formulation is again to minimize Z as defined
in (4).

Kuhn-Tucker conditions. Define the Lagrangian as

Lζ(x,T) :=
∫

Φ

`ζ(x,T) dx where

`ζ(x,T) = g(x,T(x))−
ν∑

j=1

ζj(x)
[∇ ·Tj(x)− ρj(x)

]

where ζj(x) ∈ H1(Φ) are Lagrange multipliers. The crite-
rion is convex, and the constraint (3) affine. Therefore the
Kuhn-Tucker theorem holds, stating that the lagrangian is
minimumm at the optimum.

A variation δT(·) will be admissibe if T(x)+ δT(x) ≥ 0
for all x, hence in particular, ∀x : T j

i (x) = 0, δT j
i (x) ≥ 0.

Euler’s inequality reads:

∀δT admissible, DLζ · δT ≥ 0,

therefore here∫

Φ

∑

j

〈∇Tj g(x,T(x)), δTj(x)〉 dx

−
∫

Φ

∑

j

ζj(x)∇·δTj(x) dx ≥ 0.

Integrating by parts with Green’s formula, this is equivalent
to ∫

Φ

∑

j

[〈∇Tj g, δTj〉+ 〈∇xζj , δTj〉] dx

−
∫

∂Φ

∑

j

ζj〈δTj ,n〉d` ≥ 0.

We may choose all the δTk = 0 except δTj , and choose
that one in (H1

0 (Φ))2, i.e. such that the boundary integral
be zero. This is always feasible and admissible. Then the
last term above vanishes, and it is a classical fact that the
inequality implies for i = 1, 2:

∂g(x,T)
∂T j

i

+
∂ζj(x)

∂xi
= 0

if T j
i (x) > 0 (5a)

∂g(x,T)
∂T j

i

+
∂ζj(x)

∂xi
≥ 0

if T j
i (x) = 0. (5b)

Placing this back in Euler’s inequality, and using a δTj non
zero on the boundary, it follows that necessarily 3 ζj(x) = 0
at any x of the boundary ∂Φ where T (x) > 0. This provides
the boundary condition to recover ζj from the condition (3).

Consider the following special cases that we shall need
later. We assume a single traffic class, but this could easily
be extended to several. Let

g(x,T(x)) =
∑

i=1,2

gi(x,T(x))Ti(x).

1) Monomial cost per packet:

gi(x,T(x)) = ci(x) (Ti(x))β (6)

for some β > 1. Then (5a)-(5b) simplify to

(β + 1)ci(x) (Ti(x))β +
∂ζj(x)

∂xi
= 0

if T j
i (x) > 0, (7a)

(β + 1)ci(x) (Ti(x))β +
∂ζj(x)

∂xi
≥ 0

if T j
i (x) = 0. (7b)

2) Affine cost per packet:

gi(x,T(x)) =
1
2
ki(x)Ti(x) + hi(x). (8)

3This is a complementary slackness condition on the boundary.



Then (5a)-(5b) simplify to

ki(x)Ti(x) + hi(x) +
∂ζ(x)
∂xi

= 0

if Ti(x) > 0

ki(x)Ti + hi(x) +
∂ζ(x)
∂xi

≥ 0

if Ti(x) = 0.

Assume that the ki(·) are everywhere positive and
bounded away from 0. For simplicity, let ai = 1/ki,
and b be the vector with coordinates bi = hi/ki, all
assumed to be square integrable. Assume that there
exists a solution where T (x) > 0 for all x. Then

Ti(x) = −
(

ai(x)
∂ζ(x)
∂xi

+ bi(x)
)

.

As a consequence, from (3) and the above remark, we
get that ζ(·) is to be found as the solution in H1

0 (Φ)
of the elliptic equation (an equality in H−1(Φ))

∑

i

∂

∂xi

(
ai(x)

∂ζ

∂xi

)
+∇·b(x) + ρ(x) = 0 .

This is a well behaved Dirichlet problem, known to
have a unique solution in H1

0 (Φ), furthermore easy to
compute numerically.

V. USER OPTIMIZATION AND WARDROP EQUILIBRIUM

We expand on the shortest path approach for optimization
that has already appeared using geometrical optics tools [17].
We present general optimization frameworks for handling
shortest path problems and more generally, minimum cost
paths. We go beyond the approach of geometrical optics by
allowing the cost to depend on congestion. Shortest path costs
can be a system objective as we shall motivate below. But
it can also be the result of decentralized decision making
by many “infinitesimally small” players where a player may
represent a single packet (or a single session) in a context
where there is a huge population of packets (or of sessions).
The result of such a decentralized decision making can be
expected to satisfy the following properties which define the
so called, user (or Wardrop) equilibrium:

“Under equilibrium conditions traffic arranges itself in
congested networks such that all used routes between OD
pair have equal and minimum costs while all unused routes
have greater or equal costs” [27].

Related work. Both the framework of global optimization
as well as the one of minimum cost path had been studied
extensively in the context of road traffic engineering. The
use of a continuum network approach was already introduced
on 1952 by Wardrop [27] and by Beckmann [4]. For more
recent papers in this area, see e.g. [6], [7], [14], [16], [28] and
references therein. We formulate it below and obtain some
of its properties.

Motivation. One popular objective in some routing pro-
tocols in ad-hoc networks is to assign routes for packets in
a way that each packet follows a minimal cost path (given
the others’ paths choices) [12]. This has the advantage of
equalizing source-destination delays of packets that belong
to the same class, which allows one to minimize the amount
of packets that come out of sequence. (This is desirable since
in data transfers, out of order packets are misinterpreted to
be lost which results not only in retransmissions but also in
drop of systems throughput.

Traffic assignment that satisfies the above definition is
known in the context of road traffic as Wardrop equilib-
rium [27].

A. Directional antennas and congestion-dependent costs

Congestion independent cost
We consider the model of Subsection IV. We assume that the
local cost depends on the direction of the flow but not on its
size. The cost is c1(x) for a flow that is locally horizontal and
is c2(x) for a flow that is locally vertical. We first assume
that c1 and c2 do not depend on T. The cost incurred by a
user traveling along a path p is given by the line integral

cp =
∫

p

c · dx.

Let V j(x) be the minimum cost to go from a point x to a
set Bj , j = 1, ..., ν. We shall assume here that Bj ⊂ ∂Φ
is part of the boundary of Φ and that the south-east corner
of the rectangle is included in all Bj’s. The fact that the
destinations are on the boundary can represent a situation of
access points situated at the boundary of a region in which
sensors are deployed. Then

V j(x) = min
(
c1(x) dx1 + V j(x1 + dx1, x2),

c2(x) dx2 + V j(x1, x2 + dx2)
)

(10)

This can be written as

0 = min
(

c1(x) +
∂V j(x)

∂x1
, c2(x) +

∂V j(x)
∂x2

)
, (11)

∀x ∈ Bj , V j(x) = 0 .

If V j is differentiable then, under suitable conditions, it is the
unique solution (11). In the case that V j is not everywhere
differentiable then, under suitable conditions, it is the unique
viscosity solution of (11) see [3], [8]. There are many
numerical approaches for solving the HJB equation. One can
discretize the HJB equation and obtain a discrete dynamic
programming for which efficient solution methods exist. If
one repeats this for various discretization steps, then we
know that the solution of the discrete problem converges to
the viscosity solution of the original problem (under suitable
conditions) as the step size converges to zero [3].
Congestion dependent cost
We now add to c1 the dependence on T1 and to c2 the



dependence on T2, as in section IV. Let V j(x) be the
minimum cost to go from a point x to Bj at equilibrium. The
equation (10) still holds but this time with ci that depends
on T j

i , i = 1, 2. and on the total flows Ti, i = 1, 2. Thus
(11) becomes

0 = min
i=1,2

(
ci(x, Ti) +

∂V j(x)
∂xi

)
, ∀x ∈ Bj , V j(x) = 0.

(12)
We note that if T j

i (x) > 0 then by the definition of the
equilibrium, i attains the minimum at (12). Hence (12)
implies the following relations for each traffic class j, and
for i = 1, 2:

ci(x, Ti) +
∂V j

∂xi
= 0 if T j

i > 0, (13a)

ci(x, Ti) +
∂V j

∂xi
≥ 0 if T j

i = 0. (13b)

Beckmann transformation
As Beckmann et al. did in [5] for discrete networks, we trans-
form the minimum cost problem into an equivalent global
minimization one. We shall restrict here to the single class
case. To that end we note that (13a)-(13b) has exactly the
same form as the Kuhn-Tucker conditions (5a)-(5b) except
that ci(x, Ti) in the former are replaced by ∂g(x,T)/∂Ti(x)
in the latter. We conclude that if there exists a scalar function
(potential) ψ(x,T) such that for both i = 1, 2:

ci(x, Ti) =
∂ψ(x,T)
∂Ti(x)

then the user equilibrium flow is the one obtained from
the global optimization problem where we use ψ(x,T) as
local cost. Hence, the Wardrop equilibrium is obtained as
the solution of

min
T (x), x∈Φ

∫

Φ

ψ(x,T)dx subject to

∇ ·T(x) = ρ(x), ∀x ∈ Φ.

The potential ψ is given by

ψ(x,T) =
∑

i=1,2

∫ Ti(x)

0

ci(x, s) ds

In the special case where costs are given as a power of the
flow as defined in eq (6), we observe that equations (13a)-
(13b) coincide with equations (7a)-(7b) (up-to a multiplica-
tive constant of the cost). We conclude that for such costs,
the user equilibrium and the global optimization solution
coincide.

VI. COMPETITIVE ROUTING

We describe in this Section a competitive framework for
routing decisions taken by a finite number N of competing
decision makers that represent service providers. We restrict
to the framework of directional antennas.

There are n classes. T j is the flow distribution of class j
and ρj corresponds to the distribution of the external sources
and/or sinks.

Assumption A1: The local cost gj(x,Tj ,T) correspond-
ing to player j may depend on

• The total horizontal and the total vertical flow and not
directly on the amount of flow of each class.

• The total horizontal and vertical flow of that same
player,

• The location.

Player j (controlling the routing of class j) minimizes the
total cost Zj for its traffic, where

Zj =
∫

Φ

gj(x,T) dx,

subject to

∇ ·Tj(x) = ρj(x), ∀x ∈ Φ.

Kuhn-Tucker conditions. Define the Lagrangian for player j
as

Lζ,j(x,T) :=
∫

Φ

`ζ,j(x,T) dx where

`ζ,j(x,T) = gj(x,T(x)) + ζj(x)
[∇ ·Tj(x)− ρj(x)

]
(14)

The Kuhn-Tucker (KT) conditions corresponding to this
problem are

∂`ζ,j(x,T)
∂T j

i (x)
= 0 if T j

i (x) > 0,

∂`ζ,j(x,T)
∂T j

i (x)
≥ 0 if T j

i (x) = 0

for i = 1, 2. We thus obtain for i = 1, 2:

∂gj(x,T)
∂T j

i (x)
+

∂ζj(x)
∂xi

= 0 if T j
i (x) > 0, (15a)

∂gj(x,T)
∂T j

i (x)
+

∂ζj(x)
∂xi

≥ 0 if T j
i (x) = 0. (15b)

Next we assume that the per packet local cost density is
linear in the congestion:

gj(x,T(x)) =
∑

i=1,2

(ci(x)Ti(x) + di(x)) T j
i (x)

Then

∂gj(x,T)
∂Ti(x)

= ci(x)(Ti(x) + T j
i (x)) + di(x).



Eq. (15a)-(15b) simplify to

ci(x)(Ti(x) + T j
i (x)) + di(x) +

∂ζj(x)
∂xi

= 0

if T j
i (x) > 0, (16a)

ci(x)(Ti(x) + T j
i (x)) + di(x) +

∂ζj(x)
∂xi

≥ 0

if T j
i (x) = 0. (16b)

Assume now that at equilibrium, there is positive density of
flow Tj(x) over the whole plane Φ for every player j. Then
(16a) holds for all j. Summing over j we obtain for i = 1, 2 :

(n + 1)Ti(x)ci(x) + ndi(x) +
∂ζ(x)
∂xi

≥ 0

where ζ =
∑n

j=1 ζj . We thus obtained the KT conditions
for the globally optimal problem in which ρ =

∑
j ρj and in

which the local cost is given by

g(x,T(x)) = (17)
∑

i=1,2

(
n + 1

2
ci(x)Ti(x) + ndi(x)

)
Ti(x) (18)

Hence as in the Wardrop case, it is possible to transform
the game into an equivalent globally optimal problem with a
single decision maker.

VII. CONCLUSIONS

Routing in adhoc networks have received much attention
in the massively dense limit. The main tools to describe
the limits had been electrostatics and geometric optics. We
exploit another approach for the problem that has its roots in
road traffic theory, and present both quantitative as well as
qualitative results for various optimization frameworks. For
lack of space we have omitted numerical results that can be
found in [1].
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