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This article presents a simple yet powerful new approach for approximating the value of 
America11 options by simulation. The kcy to this approach is the use of least squares to 
estimate the conditional expected payoff to the optionholder from continuation. This 
makes this approach readily applicable in path-dependent and multifactor situations 
where traditional finite difference techniques cannot be used. We illustrate this tech- 
nique with several realistic exatnples including valuing an option when the underlying 
asset follows a jump-diffusion process and valuing an America11 swaption in a 20-factor 
string model of the term structure. 

One of the most important problems in option pricing theory is the valuation 
and optimal exercise of derivatives with American-style exercise features. 
These types of derivatives are found in all major financial markets includ- 
ing the equity, commodity, foreign exchange, insurance, energy, sovereign, 
agency, municipal, mortgage, credit, real estate, convertible, swap, and emerg- 
ing markets. Despite recent advances, however, the valuation and optimal 
exercise of American options remains one of the most challenging problems 
in derivatives finance, particularly when more than one factor affects the 
value of the option. This is primarily because finite difference and binomial 
techniques become impractical in situations where there are multiple factors.' 
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In this article, we present a simple, yet powerful new approach to approx- 
imating the value of American options by simulation. By its nature, sirnu- 
lation is a promising alternative to traditional finite difference and binomial 
techniques and has many advantages as a framework for valuing, risk inan- 
aging, and optimally exercising American options. For example, simulation 
is readily applied when the value of the option depends on multiple factors. 
Simulation can also be used to value derivatives with both path-dependent 
and American-exercise features. Simulation allows state variables to follow 
general stochastic processes such as jump diffusions, as in Merton (1976) 
and Cox and Ross (1976), non-Markovian processes, as in Heath, Jarrow, 
and Morton (1992), and even general semimartingales, as in Harrison and 
Pliska (1981).' From a practical perspective. simulation is well suited to par- 
allel computing, which allowc significant gains in computational speed and 
efficiency. Finally, simulation techniques are simple, transparent, and flexible. 

To understand the intuition behind this approach, recall that at any exer- 
cise time, the holder of an American option optimally compares the payoff 
from immediate exercise with the expected payoff from continuation, and 
then exercises if the immediate payoff is higher. Thus the optimal exercise 
strategy is fundamentally determined by the conditional expectation of the 
payoff from continuing to keep the option alive. The key insight underlying 
our approach is that this conditional expectation can be estimated from the 
cross-sectional information in the sirnulation by using least squares. Specifi- 
cally, we regress the ex post realized payoffs from continuation on functions 
of the values of the state variables. The fitted value from this regression pro- 
vides a direct estimate of the conditional expectation function. By estimating 
the conditional expectation function for each exercise date, we obtain a com- 
plete specification of the optimal exercise strategy along each path. With this 
specification, American options can then be valued accurately by simulation. 
We refer to this technique as the least squares Monte Carlo (LSM) approach. 

This approach is easy to implement since nothing more than simple least 
squares is required. To illustrate this, we present a series of increasingly com- 
plex but realistic examples. In the first, we value an American put option in a 
single-factor setting. In the second, we value an exotic American-Bermuda- 
Asian option. This option is path dependent and has rnultifactor features. 
In the third, we value a cancelable index amortizing swap where the term 
structure is driven by several factors. This standard fixed-income derivative 
product has almost pathological path-dependent properties. In each case, the 
simulation algorithm gives values that are indistinguishable from those given 
by more computationally intensive finite difference techniques. In the fourth 
example, we value American options on an asset which follows a jump- 
diffusion process. This option cannot be valued using standard finite differ- 
ence techniques. To illustrate the full generality of this approach, the fifth 

"emnirnartingales are essentially the broadest class of processes for which stochastic integrals can be defined 
and standard option pricing theory applied. 
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example values a deferred American swaption in a 20-factor string model 
where each point on the interest-rate curve is a separate factor. We also show 
how the algorithm can be used in a risk-management context by computing 
the sensitivity of swaption values to each point along the curve. 

A number of other recent articles also address the pricing of American 
options by simulation. In an important early contribution to this literature, 
Bossaerts (1989) solves for the exercise strategy that maximizes the simu- 
lated value of the option. Other important examples of this literature include 
Tilley (1993 j, Basraquand and Martineau (1995), Averbukh (1997), Broadie 
and Glasserman (1997a,b,c), Broadie, Glasserman, and Jain (1997), Raymar 
and Zwecher (1997), Broadie et al. (1998), Carr (1998). Ibanez and Zapatero 
(1998), and Garcia (1999). These articles use various stratification or param- 
eterization techniques to approximate the transitional density function or the 
early exercise boundary. This article takes a fundamentally different approach 
by focusing directly on the conditional expectation function. 

Several recent articles that use an approach similar to ours include 
Carriere (1996) and Tsitsiklis and Van Roy (1999). Our work, however, dif- 
fers in a number of ways. For example, neither of these articles take the 
approach to the level of practical implementation we do in this article. Fur- 
thermore, we include in the regression only paths for which the option is 
in the money. This significantly increases the efficiency of the algorithm and 
decreases the computational time. In addition, we demonstrate the application 
of the methodology to complex derivatives with many underlying factors and 
evaluate the accuracy of the algorithm by comparing our solutions to finite 
difference approximation^.^ 

The remainder of this article is organized as follows. Section 1 presents a 
simple numerical example of the simulation approach. Section 2 describes the 
underlying theoretical framework. Sections 3-7 provide specific examples of 
the application of this approach. Section 8 discusses a number of numerical 
and implementation issues. Section 9 summarizes the results and contains 
concluding remarks. 

1. A Numerical Example 

At the final exercise date, the optimal exercise strategy for an American 
option is to exercise the option if it is in the money. Prior to the final date, 
howevel; the optimal strategy is to compare the immediate exercise value 
with the expected cash flows from continuing, and then exercise if immediate 
exercise is more valuable. Thus, the key to optimally exercising an American 
option is identifying the conditional expected value of continuation. In this 
approach, we use the cross-sectional information in the simulated paths to 

'Another related article is Keane and Wolpill (1991). which uses iegression In a siinulation context to solve 
discrete choice dyna~niz progra~n~ning problems. 
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identify the conditional expectation function. This is done by regressing the 
subsequent realiaed cash flows from continuation on a set of basis functions 
of the values of the relevant state variables. The fitted value of this regression 
is an efficient unbiased estimate of the conditional expectation function and 
allows us to accurately estimate the optimal stopping rule for the option. 

Perhaps the best way to convey the intuition of the LSM approach is 
through a simple numerical example. Consider an American put option on a 
share of non-dividend-paying stock. The put option is exercisable at a strike 
price of 1.10 at times 1 ,  2, and 3, where time three is the final expiration 
date of the option. The riskless rate is 6%. For simplicity, we illustrate the 
algorithm using only eight sample paths for the price of the stock. These 
sample paths are generated under the risk-neutral measure and are shown in 
the following matrix. 

Stock price paths 

Path t = O  t = l  t = 2  t = 3  


Our objective is to solve for the stopping rule that maximizes the value of 
the option at each point along each path. Since the algorithm is recursive, 
however, we first need to compute a number of intermediate matrices. Con- 
ditional on not exercising the option before the final expiration date at time 
3, the cash flows realized by the optionholder from following the optimal 
strategy at time 3 are given below. 

Cash-flow matrix at time 3 
Path t = l  t = 2  t = 3  
1 .OOA -

2 - .ooA 

3 .07 
4 .18 
5 .OO 
6 .20 
7 - - .09 
8 - - .OO 

These cash flows are identical to the cash flows that would be received if the 
option were European rather than American. 



If the put is in the money at time 2, the optionholder must then decide 
whether to exercise the option immediately or continue the option's life until 
the final expiration date at time 3. From the stock-price matrix, there are only 
five paths for which the option is in the money at time 2. Let X denote the 
stock prices at time 2 for these five paths and Y denote the corresponding 
discounted cash flows received at time 3 if the put is not exercised at time 
2. We use only in-the-money paths since it allows us to better estimate the 
conditional expectation function in the region where exercise is relevant and 
significantly improves the efficiency of the algorithm. The vectors X and Y 
are given by the nondalhed entries below. 

Regression at time 2 
Path Y X 
1 .OO x .94176 1.08 
2 - -

3 .07 x ,94176 1.07 
4 .18 x .94176 .97 
5 - -

6 .20 x ,94176 .77 
7 .09 x .94176 .84 
8 - -

To estimate the expected cash flow from continuing the option's life con- 
ditional on the stock price at time 2, we regress Y on a constant, X, and X2. 
This specification is one of the ~implest possible; more general specifica- 
tions are considered later in the article. The resulting conditional expectation 
function is E [  Y / X ] = -1.070 + 2.983X - 1 .813x2. 

With this conditional expectation function, we now compare the value of 
immediate exercise at time 2, given in the first column below, with the value 
from continuation. given in the second column below. 

Optimal early exercise decision at time 2 
Path Exercise Continuation 

The value of immediate exercise equals the intrinsic value 1.10 - X for the 
in-the-money paths, while the value from continuation is given by substitut- 
ing X into the conditional expectation function. This comparison implies that 
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it is optimal to exercise the option at time 2 for the fourth, sixth, and sev- 
enth paths. This leads to the following matrix, which shows the cash flows 
received by the optionholder conditional on not exercising prior to time 2. 

Cash-flow matrix at time 2 

Path t = l  t = 2  t = 3  


Observe that when the option is exercised at time 2, the cash flow in the final 
column becomes zero. This is because once the option is exercised there are 
no further cash flows since the option can only be exercised once. 

Proceeding recursively, we next examine whether the option should be 
exercised at time 1. From the stock price matrix, there are again five paths 
where the option is in the money at time 1. For these paths, we again define 
Y as the discounted value of subsequent option cash flows. Note that in 
defining Y ,  we use actual realized cash flows along each path; we do not 
use the conditional expected value of Y estimated at time 2 in defining Y 
at time 1. As is discussed later, discounting back the conditional expected 
value rather than actual cash flows can lead to an upward bias in the value 
of the option. 

Since the option can only be exercised once, future cash flows occur at 
either time 2 or time 3, but not both. Cash flows received at time 2 are 
discounted back one period to time 1, and any cash flows received at time 3 
are discounted back two periods to time 1. Similarly X represents the stock 
prices at time 1 for the paths where the option is in the money. The vectors 
X and Y are given by the nondashed elements in the following matrix. 

Regression at time 1 
Path Y X 
1 .OO x ,94176 1.09 
2 
3 - -

4 .13 x .94176 .93 
5 - -

6 .33 x .94176 .76 
7 .26 x .94176 .92 
8 .OO x .94176 .88 
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The conditional expectation function at time 1 is estimated by again 
regressing Y on a constant, X and X2. The estimated conditional expec- 
tation function is E [  Y 1 X ] = 2.038 - 3.335X + 1.356X2. Substituting the 
values of X into this regression gives the estimated conditional expectation 
function. These estimated continuation values and immediate exercise values 
at time 1 are given in the first and second columns below. Comparing the 
two columns shows that exercise at time 1 is optimal for the fourth, sixth, 
seventh, and eighth paths. 

Optimal early exercise decision at time I 
Path Exercise Continuation 
1 .O1 ,0139 
2 
3 
4 .17 .I092 
5 
6 .34 ,2866 
7 .18 ,1175 
8 .22 .I533 

Having identified the exercise strategy at times 1, 2, and 3, the stopping 
rule can now be represented by the following matrix, where the ones denote 
exercise dates at which the option is exercised. 

Stopping rule 
Path t = l  t = 2  t = 3  
1 0 0 0 
2 0 0 0 
3 0 0 1 
4 1 0 0 
5 0 0 0 
6 1 0 0 
7 1 0 0 
8 1 0 0 

With this specification of the stopping rule, it is now straightforward 
to determine the cash flows realized by following this stopping rule. This 
1s done by simply exerclsing the option at the exercise dates where there 
is a one in the above matrix. This leads to the following option cash 
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flow matrix. 
Option cash flow matrix 

Path t = l  t = 2  t = 3  
1 .oo .oo .oo 
2 .oo .oo .oo 
3 .OO .OO .07 
4 .17 .OO .OO 
5 .oo .oo .oo 
6 .34 .OO .OO 
7 .18 .oo .oo 
8 .22 .OO .OO 

Having identified the cash flows generated by the American put at each 
date along each path, the option can now be valued by discounting each cash 
flow in the option cash flow matrix back to time zero, and averaging over all 
paths. Applying this procedure results in a value of ,1144 for the American 
put. This is roughly twice the value of .0564 for the European put obtained 
by discounting back the cash flows at time 3 from the first cash flow matrix. 

Although very stylized, this example illustrates how least squares can use 
the cross-sectional information in the simulated paths to estimate the condi- 
tional expectation function. In turn, the conditional expectation function is 
used to identify the exercise decision that maximizes the value of the option 
at each date along each path. As shown by this example, the LSM approach 
is easily implemented since nothing more than simple regression is involved. 

2. The Valuation Algorithm 

In this section we describe the general LSM algorithm. The valuation frame- 
work underlying the LSM algorithm is based on the general derivative pric- 
ing paradigm of Black and Scholes (1973), Merton (1973),  Harrison and 
Kreps (1979). Harrison and Pliska (1981), Cox. Ingersoll, and Ross (1985). 
Heath, Jarrow, and Morton (1992),and others. We also present several con- 
vergence results for the algorithm. 

2.1 The valuation framework 
We assume an underlying complete probability space (SZ,3,P) and finite 
time horizon [0, T I ,  where the state space SZ is the set of all possible real- 
izations of the stochastic economy between time 0 and T and has typical 
element w representing a sample path, 3 is the sigma field of distinguish- 
able events at time T , and P is a probability measure defined on the elements 
of F.We define F = {3<;t E [0, T I }  to be the augmented filtration gener- 
ated by the relevant price processes for the securities in the economy, and 
assume that FT= F.Consistent with the no-arbitrage paradigm, we assume 
the existence of an equivalent martingale measure Q for this economy. 

We are interested in valuing American-style derivative securities with ran- 
dom cash flows which may occur during [0, T I . We restrict our attention to 
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derivatives with payoffs that are elements of the space of square-integrable or 
finite-variance functions L2(Q,F ,Q). Standard results such as 
Bensoussan (1984) and Karatzas (1988) imply that the value of an American 
option can be represented by the Snell envelope; the value of an American 
option equals the maximized value of the discounted cash flows from 
the option, where the maximum is taken over all stopping times with respect 
to the filtration F. We introduce the notation C(a,s: t ,  T )  to denote the path 
of cash flows generated by the option, conditional on the option not being 
exercised at or prior to time t and on the optionholder following the optimal 
stopping strategy for all s, t is 5 T. This function is analogous to the 
intermediate cash-flow matrices used in the previous section. 

The objective of the LSM algorithm is to provide a pathwise approxima- 
tion to the optimal stopping rule that maximizes the value of the American 
option. To convey the intuition behind the LSM algorithm, we focus the 
discussion on the case where the American option can only be exercised at 
the K discrete times 0 < t ,  5 t, 5 t, 5 . . . 5 tK = T ,  and consider the 
optimal stopping policy at each exercise date. In practice, of course, many 
American options are continuously exercisable; the LSM algorithm can be 
used to approximate the value of these options by taking K to be sufficiently 
large. 

At the final expiration date of the option, the investor exercises the option 
if it is in the money, or allows it to expire if it is out of the money. At 
exercise time t, prior to the final expiration date, however, the optionholder 
must choose whether to exercise immediately or to continue the life of the 
option and revisit the exercise decision at the next exercise time. The value of 
the option is maximized pathwise, and hence unconditionally, if the investor 
exercises as soon as the immediate exercise value is greater than or equal to 
the value of continuation.' 

At time t,, the cash flow from immediate exercise is known to the investor, 
and the .ilalue of immediate exercise simply equals this cash flow. The cash 
flows from continuation, of course, are not known at time t,. No-arbitrage 
valuation theory, however, implies that the value of continuation, or equiva- 
lently, the value of the option assuming that it cannot be exercised until after 
t,, is given by taking the expectation of the remaining discounted cash flows 
C(w,s: t,, T )  with respect to the risk-neutral pricing measure Q. Specifically, 
at time t,, the value of continuation F ( w ;  t,) can be expressed as 

'For  a options, see Duffie (1996) Lamberton and discussion of optimal exercise policies for A m e r ~ c a ~ i  or 
Lapeyie (1996). Bossaerts (1989) directly uses this maxi~niration property in developing simulation estimates 
of American option prices by parameterizing the stopplng rule and then solving for the parameters that 
maxilnize the value of the option. 
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where r ( o ,  t) is the (possibly stochastic) riskless discount rate, and the expec- 
tation is taken conditional on the information set .Fri at time t,. With this 
representation, the problem of optimal exercise reduces to comparing the 
immediate exercise value with this conditional expectation, and then exercis- 
ing as soon as the immediate exercise value is positive and greater than or 
equal to the conditional expectation. 

2.2 The LSM algorithm 
The LSM approach uses least squares to approximate the conditional expec- 
tation function at t,-,, t,_,, . . . , t , .  We work backwards since the path 
of cash flows C(w, s; t ,  T) generated by the option is defined recursively; 
C(w, s; t,, T)  can differ from C(w, s: t,,,. T) since it may be optimal to stop 
at time t,,,, thereby changing all subsequent cash flows along a realized path 
w. Specifically, at time t,-,, we assume that the unknown f~~nctional form 
of F(w; tK-,) in Equation (1) can be represented as a linear combination of 
a countable set of -measurable basis functions. 

This assumption can be formally justified, for example, when the condi- 
tional expectation is an element of the L2 space of square-integrable func- 
tions relative to some measure. Since L2 is a Hilbert space, it has a countable 
orthonormal basis and the conditional expectation can be represented as a lin- 
ear function of the elements of the basis5 As an example, assume that X is 
the value of the asset underlying the option and that X follows a Markov 
p r ~ c e s s . ~One possible choice of basis functions is the set of (weighted) 
Laguerre polynomials: 

With this specification, F(w; t,-,) can be represented as 

where the a, coefficients are constants. Other types of basis functions include 
the Hermite, Legendre, Chebyshev, Gegenbauer, and Jacobi polynomial^.^ 

' 	For a discussion of Hilbert space theory and Hilbert space representations of square-integrable functions. see 
Royden (1968). 

For Markovian problems, only currenl values of the state variables are necessary. For non-Markovian prob- 
lems, both current and past realizations of the state variables can be included in the basis Cunctions and the 
regressions. 

These functions are described in Chapter 22 of Abramowitz and Stegun (1970). 
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Numerical tests indicate that Fourier or trigonometric series and even simple 
powers of the state variables also give accurate results. 

To implement the LSM approach, we approximate F(w; tK-,) using the 
first M ioo basis functions, and denote this approximation F,w(w; tK_,). 
Once this subset of basis functions has been specified, FM(w: tK-,) is esti- 
mated by projecting or regressing the discounted values of C(w, s; t,_, , T) 
onto the basis functions for the paths where the option is in the money at 
time tK-,. We use only in-the-money paths in the estimation since the exer- 
cise decision is only relevant when the option is in the money. By focusing 
on the in-the-money paths, we limit the region over which the conditional 
expectation must be estimated, and far fewer basis functions are needed to 
obtain an accurate approximation to the conditional expectation f u n ~ t i o n . ~  
Since the values of the basis functions are independently and identically 
distributed across paths, weak assumptions about the existence of moments 
allow us to use Theorem 3.5 of White (1984) to show that the fitted value 
of this regression pM(w; tK-,) converges in mean square and in probability 
to F,w(w; t,_,) as the number N of (in-the-money) paths in the simulation 
goes to infinity. Furthermore, Theorem 1.2.1 of Amemiya (1985) implies that 
A 

F,,(w; tK-,) is the best linear unbiased estimator of FM(w; tK-,) based on a 
mean-squared metric. 

Once the conditional expectation function at time tK-, is estimated, we can 
determine whether early exercise at time tK_, is optimal for an in-the-money 

A 


path w by comparing the immediate exercise value with ~ , ( w ;  tK_,) ,  and 
repeating for each in-the-money path. Once the exercise decision is identi- 
fied, the option cash flow paths C(w, s; tK_,, T) can then be approximated. 
The recursion proceeds by rolling back to time tK_, and repeating the proce- 
dure until the exercise decisions at each exercise time along each path have 
been determined. The American option is then valued by starting at time 
zero, moving forward along each path until the first stopping time occurs, 
discounting the resulting cash flow from exercise back to time zero, and then 
taking the average over all paths w. 

When there are two state variables X and Y ,  the set of basis functions 
should include terms in X and in Y ,  as well as cross-products of these 
terms. Similarly for higher-dimensional problems. Intuitively this seems to 
suggest that the number of basis functions needed grows exponentially with 
the dimensionality of the problem. In actuality, however, there may be rea- 
sons why the number of basis functions necessary to obtain a desired level 
of convergence might grow at a slower rate. As an example, Judd (1998) 

"ve conducted a variety of numerical experiments which indicated that if all paths are used, Inore than two 
or three times as Inany basis functions may be needed to obtain the same level of accuracy as obtained by 
the esti~nator based on in-the-money paths. Intuitively this makes sense since we are interested in estimating 
the expectation conditional on the current state and the event that the option is in the money. By using all 
paths, and hence, not conditioning on the event that the option is in the money, we obtain estimates of the 
conditional expectation function which have larger standard errors than those obtained by using all of the 
conditioning information. 
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shows that by using sets of complete polynomials, kth degree convergence 
is obtained asymptotically using a number of terms that grows only poly- 
nomially with the dimension of the problem. Similar results are also well 
known in the neural-network literature; as examples, see Barron (1993) and 
Refenes, Burgess, and Bentz (1997). In the numerical results given later in 
the article, we find that the number of basis functions needed to obtain con- 
vergence appears to grow much more slowly than exponentially. Our expe- 
rience suggests that the number of basis functions necessary to approximate 
the conditional expectation function may be very manageable even for high- 
dimensional problems. 

2.3 Convergence results 
The LSM algorithm provides a simple and elegant way of approximating 
the optimal ear!y exercise strategy for an American-style option. While the 
ultimate test of the algorithm is how well it performs using a realistic number 
of paths and basis functions, it is also useful to examine what can be said 
about the theoretical convergence of the algorithm to the true value V(X) of 
the American option. 

The first convergence result addresses the bias of the LSM algorithm and 
is applicable even when the American option is continuously exercisable. 

Proposition 1. For anyjaite choice of M ,  K ,  and vector 0 E R M x ( K p l )rep-

resenting the coeflcients for the M basis functions at each of the K - 1 early 
exercise dates, let L S M  (u;  M ,  K )  denote the discounted cash jlow resulting 
from following the LSM rule of exercising when the immediate exercise value 
is positive and greater than or equal to c w ( u i ;t k )  as dejned by 0. Then the 
following inequality holds almost surely, 

Proof. See the appendix. H 

The intuition for this result is easily understood. The LSM algorithm 
results in a stopping rule for an American-style option. The value of an 
American-style option, however, is based on the stopping rule that maxi- 
mizes the value of the option; all other stopping rules, including the stopping 
rule implied by the LSM algorithm, result in values less than or equal to that 
implied by the optimal stopping rule. 

This result is particularly useful since it provides an objective criterion for 
convergence. For example, this criterion provides guidance in determining 
the number of basis functions needed to obtain an accurate approximation; 
simply increase iM until the value implied by the LSM algorithm no longer 
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increases. This useful and important property is not shared by algorithms that 
simply discount back functions based on the estimated continuation value.g 

By its nature, providing a general convergence result for the LSM algo- 
rithm is difficult since we need to consider limits as the number of discretiza- 
tion points K ,  the number of basis functions M, and the number of paths N 
go to infinity. In addition, we need to consider the effects of propagating the 
estimating stopping rule backwards through time from t,-, to t, .  In the case 
where the American option can only be exercised at K = 2 discrete points 
in time, however, convergence of the algorithm is more easily demonstrated. 
As an example, consider the following proposition. 

Propositioit 2. Assume that the value of an American option depends on 
a single state variable X with support on (0,co)which follows a Markov 
process. Assume further that the option can only be exercised at times t ,  
and t,, and that the conditional e.wpectation function F(w;t , )  is absolutely 
continuous and 

Then for any t > 0, there exists an M < ce such that 

Proof. See the appendix. H 

Intuitively this result means that by selecting M large enough and letting 
N + cm,the LSM algorithm results in a value for the American option 
within t of the true value. Thus the LSM algorithm converges to any desired 
degree of accuracy since E is arbitrary. The key to this result is that the con- 
vergence of F,(w; t , )  to F(w;t , )  is uniform on (0,m) when the indicated 
integrability conditions are met. This bounds the maximum error in estimat- 
ing the conditional expectation, which in turn, bounds the maximum pricing 
error. An important implication of this result is that the number of basis 
functions needed to obtain a desired level of accuracy need not go to infinity 
as N + m. While this proposition is limited to one-dimensional settings, 
we conjecture that similar results can be obtained for higher-dimensional 
problems by finding conditions under which uniform convergence occurs. 

or example, if the American option were valued by taking the rnaxinium of the immediate exercise value 
and the estimated continuation value, and discounting this value back, the resulting American option value 
could be severely upward biased. This bias arises since the maximum operator is convex; measurement error 
in the estimated continuation value results in the rnaxilnuln operator being upwald biased. We are indebted 
to Peter Bossaerts for making this point. 
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3. Valuing American Put Options 

Earlier we used a stylized example to illustrate how this approach could be 
applied to the valuation of American put options. In this section we present 
an in-depth example of the application of the LSM algorithm to American 
put options 

Assume that we are interested in pricing an American-style put option 
on a share of stock, where the risk-neutral stock price process follows the 
stochastic differential equation 

and where r and G are constants, Z is a standard Brownian motion, and the 
stock does not pay dividends. Furthermore, assume that the option is excer- 
cisable 50 times per year at a strike price of K up to and including the final 
expiration date T of the option. This type of discrete American-style exercise 
feature is also sometimes termed a Bermuda exercise feature. As the set of 
basis functions, we use a constant and the first three Laguerre polynomi- 
als as given in Equations (2)-(4). Thus we regress discounted realized cash 
flows on a constant and three nonlinear functions of the stock price. Since 
we use linear regression to estimate the conditional expectation function, it 
is straightforward to add additional basis functions as explanatory variables 
in the regression if needed. Using more than three basis functions, however, 
does not change the numerical results; three basis functions are sufficient to 
obtain effective convergence of the algorithm in this example. 

To illustrate the results, Table 1 reports the values of the early exercise 
option implied by both the finite difference and LSM techniques. The value 
of the early exercise option is the difference between the American and 
European put values. The European put value is given by the Black-Scholes 
formula. In this article we focus primarily on the early exercise value since it 
is the most difficult component of an American options's value to determine: 
the European component of an American option's value is much easier to 
identify. 

The finite difference results reported in Table 1 are obtained from an 
implicit finite difference scheme with 40,000 time steps per year and 1,000 
steps for the stock price. The partial differential equation satisfied by the put 
price P (S, t )  is 

subject to the expiration condition P (S ,  T) = max(0, K - S T ) . The implicit 
finite difference results were also compared with the results from an explicit 
finite difference algorithm; the two finite difference techniques resulted in 
values that were generally within one cent of each other. The LSM estimates 
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Table 1 

Finite Closed Early Closed Early Difference in 
difference form exercise Sirnulared f o ~ n l  exercise early exzrcise 

S o T American European Value American (s.e.) European value value 

3 6 . 2 0  1 4.478 3.844 ,634 4.472 (.010) 3.844 ,628 ,006 
36 .20 2 4.840 3.763 1.077 4.821 (.012) 3.763 1.058 ,019 
36 .40 1 7.101 6.711 ,390 7.091 (.020) 6.711 ,380 ,010 
36 .40 2 8.508 7.700 ,808 8.488 (.024) 7.700 ,788 ,020 

38 .20 1 3.250 2.852 ,398 3.244 (.009) 2.852 ,392 ,006 
38 .20 2 3.745 2.991 ,754 3.735 (.011) 2.991 ,744 ,010 
38 .40 1 6.148 5.834 ,314 6.139 (.019) 5.834 ,305 ,009 
38 .40 2 7.670 6.979 ,691 7.669 (.022) 6.979 ,690 ,001 

40 .20 1 2.314 2.066 ,248 2.313 (.009) 2.066 ,247 ,001 
40 .20 2 2.885 2.356 ,529 2.879 (.010) 2.356 ,523 ,006 
40 .40 1 5.312 5.060 ,252 5.308 (.018) 5.060 ,248 ,004 
40 .40 2 6.920 6.326 ,594 6.921 (.022) 6.326 ,595 -.001 

42 .20 1 1.617 1.465 ,152 1.617 (.007) 1.465 ,152 ,000 
42 .20 2 2.212 1.841 ,371 2.206 (.010) 1.841 ,365 ,006 
42 .40 1 4.582 4.379 ,203 4.588 (.017) 4.379 ,209 -.006 
42 .40 2 6.248 5.736 ,512 6.243 (.021) 5.736 ,507 ,005 

4 4 . 2 0  1 1.110 1.017 ,093 1.118 (.007) 1.017 ,101 -.008 
44 .20 2 1.690 1.429 ,261 1.675 (.009) 1.429 ,246 ,015 
44 .40 1 3.948 3.783 ,165 3.957 (.017) 3.783 ,174 -.009 
44 .40 2 5.647 5.202 ,445 5.622 (.021) 5.202 ,420 ,025 

Comparison of the finite difference and s~mulation values for the early exercise option in an American-style put option on 
a share of stock, where the option is exercisable 50 times per year. The early exercise value is the difference between the 
Amelican and European put values. In this cornpalison, the strike puce of the put 1s 40. the short-term iiiterest rate is .06, and 
the underlying ~tock  price S, the volatility of leturn? ir, and the i~uinber of years until the final eapiiation of the option T 
are as indicated. The European option \'slues are based on the closed-form Black-Scholes formula. The simulation is based on 
100,000 (50,000 plus 50,000 antithetic) paths for the stock-price process. The standard errors of the simulation estimates (s.e.) 
are given in parentheses. 

are based on 100,000 (50,000 plus 50,000 antithetic) paths using 50 exercise 
points per year. 

As shown, the differences between the finite difference and LSM algo-
rithms are typically very small. Of the 20 differences shown in Table 1, 16 
are less than or equal to one cent in absolute value. The standard errors for 
the simulated values range from 0.7 to 2.4 cents, which is well within the 
market bid-ask spread for these types of options.1° In addition, the differences 
are both positive and negative. These results suggest that the LSM algorithm 
is able to approximate closely the finite-difference values. 

Broadie ad Glasserman (1997a,b), Raymar and Zwecher (1997), Garcia 
(1999), and others suggest an interesting diagnostic test for the convergence 
of a simulation algorithm. Essentially the stopping rule is estimated from 
one set of paths and then applied to another set of paths. In our context, this 
can be implemented by estimating the conditional expectation regressions 

'"xchange traded stock option premiums are typically quoted in sixteenths or eighths of a dollar. The bid-ask 
spread for an at-the-money option would generally be some n~ultiple of these fractions. 
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from one set of paths and then applying the regression functions to an out- 
of-sample set of paths. A successful algorithm should lead to out-of-sample 
values that closely approximate the in-sample values for the option." 

The results from these diagnostic tests are shown in Table 2. For selected 
sets of parameters from Table 1, we estimate the regressions in sample, value 
the option using the in-sample LSM procedure, and then value the option 
out of sample using the in-sample regression parameters but different paths. 
We repeat this process for five different initial seeds of the random number 
generator; the five rows for each example shown in Table 2 correspond to 
different initial seeds. As shown, the in-sample and out-of-sample values 
are virtually identical. The differences between the in-sample and out-of- 
sample values are virtually identical. The differences between the in-sample 
and out-of-sample values are both positive and negative and only 5% of the 
values are larger than two standard errors. This provides strong support for 
the accuracy of the algorithm. Given these results, we recommend using the 
LSM algorithm in sample in order to minimize computational time. 

4. Valuing an American-Bermuda-Asian Option 

In this section we apply the LSM algorithm to a more exotic path-dependent 
option. In particular, we consider a call option on the average price of a stock 
over some horizon, where the call option can be exercised at any time after 
some initial lockout period. Thus this option is an Asian option since it is 
an option on an average, and has both a Bermuda and American exercise 
feature; an American-Bermuda-Asian option. 

Define the current valuation date as time 0. We assume that the option has 
a final expiration date of T = 2, and that the option can be exercised at any 
time after t = .25 by payment of the strike price K. The underlying average 
A,, .25 5 t 5 T, is the continuous arithmetic average of the underlying 
stock price during the period three months prior to the valuation date (a 
three-month lookback) to time t .  Thus the cash flow from exercising the 
option at time t is max(0, A, - K). The risk-neutral dynamics for the stock 
price are the same as in the previous section. 

This option is particularly complex because it not only has an American 
exercise feature, but the cash flow from exercise is path dependent since A, 
depends on the path of the stock price over the averaging window. In general, 
these types of problems are very difficult to solve using finite difference tech- 
niques. In this case, we can value the option by finite difference techniques by 
transforming the problem from a path-dependent one to a Markovian prob- 
lem. This is done by introducing the average to date as a second state variable 

" 	We are grateful to the referee for suggesting this diagnostic test and for pro\-iding some results about the 
performance of the LSM algorithm. 
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Table 2 

L S M  in sample  L S M  o u t  of sample  

S u T Value (s.e) Value (s.e.)  Difference 

36 

36 

36 

36 

M e a n  

44 

44 

44 

44 

M e a n  

Comparison of the in-sample and out-of-sample LSM estimates of the value of an Amencan-style put optlon on a share of 
stock, where the option 1s exercisable 50 times per year. 111 this comparison, the strike price of the put is 40, and the short-term 
interest rate is .06. The underlying stock price S, the volatility of returns o,and the nuinbe, of years until the final expiration 
date of the option T are as indicated. The LSbI valuations for each of the indicated options are repeated five tunes with different 
in~tial seeds fol the random number generatoi, the five rows for each of the options are based on a different seed value The 
ill-sample and out-of-sample compansons are each based on 100,000 (50,000 plus 50,000 ant~thetic) paths of the stock-price 
process. The standard errors of the simulation estimates (s.e.1 are glveti in parentheses. 
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Table 3 

A S 

Finite difference 

Early 
exercise 

American European value American 

Simulation 

(s.e) European (s.e) 

Early 
exercise 

value 

Difference in  
early exercise 

value 

Coinparison of the finite difference and simulation balues for the early exercise opt1011 in an Aniericaii-Bermuda-iisian option 
on a share of stock. The early exercise value is the difference in the \ d u e  of the Americaii-Ber~nuda-Aslaii option and its 
European couiitei~art, In thls example. tile strike price is 100, the short-term Interest rate is .06, the ~nitial merage value of 
the stock is A,  the underlyiiig stock price is S. the volatility ot returns IS .20, and the final expiration of the option is in two 
years. The average stock price is computed over the perlod beginning three moiiths beiore the xaluation date to the exe~cise 
date The option is not exercisable uiitil three months aftei the valuation date. The si~nulation ia based on 50,000 (25,000 plus 
25,000 antithet~c) paths for the stock-price process wit11 100 discretization points pel year The standard errors of tile simulation 
estimates (s.e.1 are given In parantheses 

in the problem. Consequently the option price H(S,  A ,  t )  is the solution of 
the following two-dimensional partial differential equation 

( u 2 s 2 / 2 ) ~ , ,+ rSHS + -1 
( S -  A ) H A  - r H  + H, = 0 ,  (9).25 $. t 

subject to the expiration condition H ( S , A ,  T) = max(0, A, -K). Note that 
the path dependence of the option payoff does not pose any difficulties to 
the simulation-based LSM algorithm. 

Table 3 compares the numerical results from valuing this option by finite 
difference techniques with those obtained by the LSM approach. In this 
example, we compute both the value of the American-Bermuda-Asian option 
and its European counterpart, and focus primarily on the difference which 
represents the value of the early exercise option. The European counterpart 
of the American-Bermuda-Asian option is an option on the average stock 
price which can only be exercised at the final option maturity date T = 2. 
In this example, as well as in later examples in the article, we use the same 
paths to price the European option that is used to value the American option. 

The finite difference results are obtained using an alternating directions 
implicit (ADI) algorithm with 10,000 time steps per year and 200 steps in 
both the stock price and the average stock price. The results were checked 
against a standard explicit finite difference scheme with a similar number of 



V(zluing Amel-icnn Options by Siini~lntroi~ 

steps for the stock price and the average stock price. The finite difference 
algorithms result in values that are typically within three cents per $100 
notional. The LSM results are based on 50,000 (25,000 plus 25,000 anti- 
thetic) paths and use 100 discretization points per year to approximate the 
continuous exercise feature of the option. As basis functions in the regres- 
sions. we use a constant. the first two Laguene polynomials evaluated at the 
stock price, the first two Laguerre polynomials evaluated at the average stock 
price, and the cross products of these Laguerre polynomials up to third-order 
terms. Thus we use a total of eight basis functions in the regres~ions. '~ 

As shown in Table 3, the finite difference and LSM results are very similar. 
The differences in the early exercise values are typically less than two or 
three cents per $100 notional value. The differences are again both positive 
and negative; there is no evidence that the LSM algorithm systematically 
undervalues the early exercise option. The differences in the early exercise 
values are also small relative to the level of the early exercise value, and 
very small relative to the level of the American and European option values. 
These differences would likely be well within the bid-ask spread or other 
transaction cost bounds. 

5. Valuing Cancelable Index Amortizing Swaps 

This section uses the LSM approach to value a cancelable index amortiz- 
ing swap in a multifactor term structure model. Index amortizing swaps 
have been widely used on Wall Street in recent years and are among the 
most difficult types of structured interest-rate derivative products to value 
and risk manage. The reason for this is that the notional amount of these 
swaps declines over time in a complex way. For example, index amortizing 
swaps often have notional amounts that amortize on the basis of a nonlinear 
function of a constant maturity Treasury (CMT) or constant maturity swap 
(CMS) rate. This stochastic amortization property makes these derivatives 
highly path dependent. These swaps become even more complex when one 
of the counterparties has the right to cancel the swap at any time; a cance- 
lable index amortizing swap consists of both an index amortizing swap and 
an American-style cancellation option. Index amortizing swaps are widely 
used to hedge or mimic the cash flows from mortgages; the amortization 
feature of an index amortizing swap is typically patterned after a mortgage 
prepayment model. 

To simplify the example, we focus on a specific cancelable index amor- 
tizing swap with a five-year final maturity. We assume that the counterparty 
with the right to cancel receives a fixed coupon c and pays the floating 
Libor rate in the swap. We assume that the fixed coupon is received contin- 
uously and the floating rate is paid continuously on an actual/actual basis. 

' *  Numerical tests indicated that adding additional basis fulictions had little or no effect on the results; using 
eight basis functions was sufficient to obtain effective convergence. 



The Review of Fiiiniicial Strrdies / v 14 n 1 2001 

The notional balance on which the fixed and floating cash flows are based 
is initially $100, but amortizes continuously on the basis of the 10-year par 
swap rate, CMS 10. Let I,  denote the notional balance of the swap at time t .  
The dynamics of I, are given by 

d l  = -f (CMS 10)dt, 	 (10) 

where f ( u )  = .00,u 2 .07, f ( .06)  = . lo,  f( .05) = .50, f ( v )  = 4.00, 
v 5 .04. When C M S  10 is between .04 and .07, the function f (CMS 10) 
is linearly interpolated between the two closest points in this schedule. For 
example, if CMS 10 = ,0543, f (CMS 10) = .328. Note that f (CMS 10) 
is a rate; f (CMS 10) = 4.00 implies that the swap is amortizing at a rate 
that would completely amortize the swap in three months. The counterparty 
with the right to cancel can choose to cancel the swap at any time; can- 
celing the swap terminates all future cash flows from the swap to either 
party. Since the cash flows accrue and pay on a continuous basis, there is 
no lump sum accrued coupon or interest payment made when the swap is 
canceled.13 

In this example, we assume that the swap term structure is determined by 
a simple two-factor Vasicek (1977)type of model.14 In particular, we assume 
that the instantaneous Libor rate r equals the sum of two state variables, 
r = X + Y. The risk-neutral dynamics of X and Y are assumed to be 

where a, 0, a, y ,  q ,  and s are constants and Z ,  and Z ,  are independent 
Brownian motions. In this framework, the value of a zero-coupon bond 
D ( X ,  Y ,  T )  with maturity T is given by 

''	In practice, index amortizing swaps typically follow the swap market convention of exchanging payments on 
a quarterly or ~enuannual  cycle. where the floating payment is determined at the beginning of the cycle and 
paid at the end of the cycle. Cancelable index amortizing swaps typically can only be canceled on a coupon 
payment date, and only after exchanging any accrued fixed or floating payments. 

I" 	 In this example, and in the suaption example in Section 8, we make the standard simplifying assumption that 
the swap curve can be modeled as if it were a risk-free term structure. In reality. Libor rates incorporate Tome 
small default-risk component Since both legs of the swap ale discounted using the sanie curve, however, the 
net effect on the value of the swap is typically very small. 
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where 

The CMS 10 rate, conditional on the current values of X and Y ,  is given 

by 

In this model, the value of the cancelable index amortizing swap depends 
on three state variables; the two factors X and Y as well as the current 
notional amount I. The swap S ( X ,  Y ,  I, t )  can be valued by finite differ- 
ence techniques by solving the following three-dimensional partial differen- 
tial equation implied by the dynamics for X ,  Y ,  and I .  

( a 2 / 2 ) s X x+ ( s 2 / 2 ) S y y+ (a - P X ) S x  + (Y- v Y ) S Y  

- f (CMS 10)S ,  - (X + Y ) S  + (C - X - Y ) I  + S,  = 0, ( 1 5 )  

subject to the conditions S ( X ,  Y ,  I, T )  = 0 and S(X, Y ,  0 ,  t )  = 0 .  Similarly, 
the swap call also be valued by the LSM algorithm by simulating paths of 
X and Y and keeping track of the notional balance along each path. The 
parameter values used in this example are chosen to approximate a current 
term structure and cap volatility curve." 

Table 4 presents the numerical results from the finite difference and LSM 
valuation of the cancellation option on the underlying index amortizing swap. 
The value of the cancellation option is the difference between the value of 
the cancelable index amortizing swap and the underlying noncancelable index 
amortizing swap. The table reports the results for a range of different values 
of the fixed coupon paid 011the swap. The finite difference methodology is 
an implementation of a successive overrelaxation technique similar to that 
described in Press et al. (1992) .The finite difference algorithm uses 50  steps 
for X ,  40 steps for Y ,  and 15 steps for I .  The LSM algorithm is based on 

'' 	The parameter values used in the example are oc = ,001, ~'3 = . l ,  y = ,0525, 11 = 1.00, o = .006951, 
s = ,00867. The initial values of X and Y are ,002 and ,050. 
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5,000 (2,500 plus 2,500 antithetic in both X and Y ) paths. As basis functions, 
we use a constant, the first three powers of the value of the underlying 
noncancelable swap, X, X 2 ,  Y ,  Y 2 , and X Y .  This results in a total of nine 
basis fii~lctions." 

As shown in Table 4, the two valuation approaches produce very simi- 
lar numerical results for the value of the cancellation option; the differences 
in the value of the cancellation option are uniformly small. In fact, most 
of the differences are less than one cent per $100 notional amount. The 
bid-ask spread on these complex derivatives is likely at least an order of 
magnitude greater than the size of these differences. As before, the differ- 
ences are both positive and negative in sign. The numerical values of the 
cancelable and noncancelable swaps do differ slightly between the finite dif- 
ference and LSM techniques. 111 general, the values implied by the finite 
difference algorithm for the cancelable and nonca~lcelable swaps are about 
four to seven cents higher than the col-sesponding values implied by the LSM 
approach. This systematic pattern is due to slight differences in the way that 
the two techniques discretize the continuous coupon payments and the con- 
tinuous amortization feature. These differences produce minor differences in 
the levels of the swap values, but have almost no effect on the value of the 
cancellation option. 

6. Jump-Diffusions and American Option Valuation 

In this section, we illustrate how the LSM approach can be applied to value 
American options when the underlying asset follows a jump-diffusion pro- 
cess. In particular, we revisit the American put option considered in Section 3. 
To simplify the illustration, we focus on the basic jump-to-ruin model pre- 
sented in Merton (1976). In this model, the stock price follows a geometric 
Brownian motion as in Equation (7) until a Poisson event occurs, at which 
point the stock price becomes zero. The dynamics for this jump-diffirsion 
process are given by 

where q is an independent Poisson process with intensity h. When a Poisson 
event occurs, the value of q jumps from zero to one, implying clq = 1, and 
the stock price jumps downward from S to zero. As in Merton, we assume 
that jump risk is nonsystematic and unpriced by the market. This assumption 
could eafily be relaxed. Similarly, the LSM approach can be readily applied 
using much more complex jump-diffusion processes than in this example or 
the other examples given in Merton. 

"Again. adding inore basis functioils has little effect on the value of the option. This provides nun~erical 
evidence that the number of basis functions needed to obtain effective convergence grows at a much slower 
rate than exponential as the dimensionality of the problem increases, consistent with Judd (1998). 
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Merton (1976) provides a closed-form solution for the value of a European 
option on the stock when its price follows the jump-to-ruin process in 
Equation (16). He also shows, however, that the price of an American option 
is given by a complex mixed differential-difference equation which is difficult 
to solve.17 

To put the results into perspective, we compare the price and early exer- 
cise boundary for the American put option for the cases where there is no 
possibility of a jump h = .OO and when a jump can occur with intensity 
h = .05. Note that when h > 0, the stock price process has a mass point at 
zero, and the distributioll of the stock price is no longer conditionally log- 
normal. Furthermore, as h increases, the conditional variance of the future 
stock price increases. Specifically, the variance of the stock price is 

To make the comparison more meaningful, we adjust the parameters in 
the two cases so that the means and variances are equal; the two cases differ 
in the shape of their collditional distributions but not in terms of their first 
two moments. From Equation (16), the mean of the risk-neutral distribution 
for the stock price is S(0) exp(rT) and is the same across cases because of 
the martingale restriction implied by the risk-neutral framework. To equalize 
variances, we assume that when h = 0, o2= .09. Similarly, when h = .05, 
o2 = .04. With these parameter values, the two distributions for the stock 
price have the same means and variances. We use 26 exercise points per year 
in the LSM algorithm and use the same basis functions in these examples as 
in Section 3. We focus on the case T = 1. 

Applying the LSM algorithm, the American put values are 3.80 for the 
h = .OO case and 3.40 for the h = .05 case. The European put values are 
3.58 for the h = .OO case and 3.23 for the h = .05 case. The early exercise 
values are .22 and .17, respectively. Thus the values of the options are lower 
when there is a possibility of a jump, holding fixed the variance across the 
examples. This is intuitive since the diffusion coefficient in the h = .05 
case is only .20, while the diffusion coefficient in the i, = .OO case is .30. 
This means that in the absence of a jump, the option is less likely to be 
deep in the money in the A = .05 case. If a jump occurs, of course, then 
the option is much more valuable than it would be otherwise. The results 
indicate, however. that the windfall gain to the optionholder from a jump 
does not offset the effects of the lower diffusion coefficient. 

Since the value of the early exercise premium is less in the case where 
h = .05, there is less incentive to keep the option alive. Consequently, it 
is not surprising that the optimal early exercise strategy is more aggressive 

"	Pham (1995) shows that the price of an 4merican option can also be represented as the solution of a parabolic 
integrodifferential free boundary problem \\'hen the underlying price process exhibits jumps. 
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WEEKS TO EXPIRATION 

+JUMPS -NO JUMPS 

Figure 1 

Graph of the early exercise boundary for an American put option 

The early exerclse boundary is sllown as a proportion of the exercise price of the option. The jump graph 
s l ~ o a s  the early exercise boundary when the underlying stock prlce follows a jump d~ffusion. The uojulnp 
graph shows the early exercise boundary when the underlying stock price follows a pure diffusion process. 

in the case where h = .05 than in the case where h = .00. To see this, 
Figure 1 plots the early exercise boundaries for the two cases. The early 
exercise boundaries are obtained by solving for the critical stock price at each 
exercise point at which the estimated conditional expectation function equals 
the immediate exercise value of the option. As shown, the early exercise 
boundary for the case where the stock price can jump is sigilificantly higher 
than for the continuous case. 

7. Valuing Swaptions in a String Model 

To illustrate its generality, we apply the LSM approach to a deferred America11 
swaptioil in a 20-factor string model. Swaptions are one of the most impor- 
tant and widely used derivatives in fixed-income markets. We focus on a 
basic swaption where the optionholder has the right to enter into a swap in 
which the optionholder receives fixed coupons and pays floating coupons 011 

a semiannual cycle. The floating coupon paid at the end of the semiannual 
cycle is tied to the six-month rate determined at the beginning of the semi- 
annual cycle; the floating leg sets in advance and pays in arrears. Both legs 
of the swap are paid 011 an actual/actual basis. The swaption can only be 
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exercised on semiannual coupon payment dates and only after exchanging 
the coupons due on the payment date. As is typical, the swaption cannot be 
exercised until after a specific lockout period. 

To provide a specific example, we focus on a 10 NC 1 swaption. This 
notation indicates the underlying swap has a final maturity of 10 years. The 
NC 1 (noncall 1) feature indicates that the swaption cannot be exercised 
until one year has elapsed; the swaption cannot be exercised until the second 
semiannual coupon payment date. Since there are 20 semiannual coupon 
payment dates during the life of the underlying 10-year swap. there are 18 
possible exercise dates for the swaption: the swaption cannot be exercised 
at the first coupon payment date, and the swaption has no value at the final 
coupon payment date. 

String models of the term structure have recently received a significant 
amount of attention in fixed-income markets. In these models, each point 
along the term structure is a separate random variable, where the term struc- 
ture is defined either as a discount function or spot curve as in Ho and 
Lee (1986), a forward curve as in Heath, Jarrow, and Morton (1992), or as 
a par curve as in Longstaff, Santa-Clara, and Schwartz (1999). Important 
examples of string models include the recent articles by Goldstein (1997), 
Santa-Clara and Sornette (2001), Longstaff, Santa-Clara, and Schwartz (1999, 
2000). 

Since the underlying swap makes coupon payments at 20 different points 
in time, its value is sensitive to 20 different points along the curve. We 
implement a simple string model by assuming that each of these 20 points 
represents a separate but col-related factor, and model the joint dynamics of 
these 20 factors. Specifically, let D( t ,  T)  denote the value at time t of a zero- 
coupon bond with final maturity date T,  where t _( T. Since the expected 
rate of return on all securities must equal the riskless rate in the no-arbitrage 
equivalent martingale-measure framework, we can represent the no-arbitrage 
dynamics of the zero-coupon bond price by the following. 

where r ( t )  is the riskless rate, a ( T  - t) is a time-homogeneous volatility 
function, and Z ,  is a standard Brownian motion specific to the zero-coupon 
bond with final maturity date T. 

To operationalize this string model, we assume that the 20 factors are the 
20 zero-coupon bond prices with maturities col~esponding to the 20 coupon 
payment dates; specifically, D(t .  .5). D(t .  1.0), D(t .  1.5), . . . , D(t.  10.0). 
We assume that the volatility function a (T -t) is piecewise constant; a (T -t) 
is constant over .5(N - 1) < T - t 5 .5N, N = 1 ,2 .  . . . .20.  For simplic- 
ity, we set cr(T - t) = 0 for values of T - t < .5. The remaining 19 
values of a ( T  - t) are selected to approximate a cap volatility curve. Sim- 
ilarly, we assume that r ( t )  is piecewise constant over six-month intervals; 



we set r( t)  equal to the six-month rate defined by -2111(D(t, t + 112)). This 
discretization results in little loss of accuracy and guarantees that the price 
of a zero-coupon bond converges to one at its maturity date.18 

The dynamics of the term structure are simulated by first solving the 
stochastic differential equation in Equation (IS), 

With this closed-form expression, the evolution of the term structure can be 
simulated over six-month periods. The only remaining issue is the correlation 
structure of the fundamental Brownian motions 2,.To model the correlation 
matrix in a parsimonious way, we assume that the correlation between Zi and 
Z,, i ,  j 5 T is given by the function p,j = exp(-K I i - 1 I), where K = .02. 
This results in correlations among spot rates similar to those observed empir- 
ically. Altenlatively, spot-rate correlations could be estimated using historical 
data and then directly incorporated into the simulation. 

The sirnulatioil consists of paths where at each coupon date, the entire vec- 
tor of zero-coupon bond prices is specified. From these zero-coupon bonds, 
the value of the underlying swap at that coupon date is easily computed by 
discounting the remaining fixed coupon payments; recall that the floating leg 
of the swap can be assumed to be worth par 011 coupon payment dates. Given 
the value of the swap, the basis functions are chose11 to be a constant, the 
first three powers of the value of the underlying swap, and all unmatured 
discount bond prices with final maturity dates up to and i~lcluding the final 
maturity date of the swap. Thus there are up to 22 basis functions in the 
regression. This specification results in values veiy similar to those obtained 
by using additional basis fi~nctions. 

Table 5 reports the estimated values of the deferred American swaption, 
the corresponding European swaption, and the probabilities of early exer- 
cise at each coupon payment date for a variety of fixed coupoil rates. As 
shown, the deferred American exercise feature has significant value; when 
the coupon rate is ,0575, the deferred American swaption is more than three 
times as valuable as its European counterpart. This underscores the fact that 
the deferred American and European swaptions are fundamentally different 
derivatives despite their superficial similarities. 

The coupon rate on the fixed leg of the swap also has a major effect on the 
properties of the swaptions. Clearly, the higher the coupon, the more valuable 
it is to enter the swap and receive the fixed coupons. For the European swap- 
tion, this translates into a higher probability of exercise at the exercise date. 

The minor discret~zation error induced by using the six-month rate as a proxy for r ( t )  can easily be avoided 
by using more points along the term structure. For example, we could use daily, monthly, or even quarterly 
rates. Alternatively, we could simply d e ~ e l o p  the model in a discrete rather than continuous framework as is 
coi~unonly done in practice. 
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Table 5 

Exercisetype European America11 European American European American 
Coupon ,0575 ,0575 ,0605 ,0605 ,0635 ,0635 
Value ,739 2.577 1.529 3.278 2.711 4.204 
Standard error ,011 ,018 ,016 ,020 ,021 ,022 

Ex. prob. 1 0.00 0.00 0.00 0.00 0.00 0.00 
Ex. prob. 2 29.77 2.72 49.17 7.17 68.63 17.30 
Ex. prob. 3 0.00 5.14 0.00 8.10 0.00 9.19 
Ex. prob. 4 0.00 4.13 0.00 5.94 0.00 6.29 
Ex. prob. 5 0.00 3.83 0.00 4.85 0.00 5.51 
Ex, prob. 6 0.00 2.77 0.00 3.44 0.00 4.17 
Ex. prob. 7 0.00 1.46 0.00 4.25 0.00 3.49 
Ex. prob. 8 0.00 2.90 0.00 3.21 0.00 3.34 
Ex. prob. 9 0.00 3.43 0.00 3.40 0.00 3.45 
Ex. prob. 10 0.00 3.13 0.00 3.21 0.00 2.86 
Ex. prob. 11 0.00 3.35 0.00 3.02 0.00 2.66 
Ex. prob. 12 0.00 3.11 0.00 2.63 0.00 2.26 
Ex. prob. 13 0.00 3.19 0.00 2.91 0.00 2.61 
Ex. prob. 14 0.00 3.20 0.00 2.63 0.00 2.00 
Ex, prob. 15 0.00 3.80 0.00 3.22 0.00 2.92 
Ex.prob. 16 0.00 3.36 0.00 3.24 0.00 2.58 
Ex. prob. 17 0.00 4.39 0.00 4.22 0.00 2.79 
Ex. prob. 18 0.00 5.69 0.00 4.65 0.00 3.75 
Ex, prob. 19 0.00 8.33 0.00 7.13 0.00 5.45 
Ex. prob. 20 0.00 0.00 0.00 0.00 0.00 0.00 

Total prob. 29.77 69.93 49.17 77.22 68.63 82.62 

Ectimared values and exercise plobabilltles for a deferred American swaprloa implied by the 20-fact01 strlng model. This 
cwaption gives the optionholder the right to enter into a cwap with a final inaturlty of 10 yeais and receive a fixed coupon 
and pay the cix-month late cemiannuall>. Thc swaption is not exercisable until one year from the valuation date. The exercise 
probabilities are shown for each of the 20 sem~annuril coupon payment dates and represent the percentage of paths for which 
exercise occurred on that coupon payment date. Values are gi\cn per $100 not~onal amount The elmulation results ale based 
on 20,000 paths. 

In contrast, a higher fixed coupon does not necessarily imply a higher prob- 
ability of exercise at a specific coupon date for the deferred American swap- 
tion. To see this, note that the probability of exercise at the 19th coupon date 
is 8.33% when the coupon is .0575, but is only 5.45% when the coupon is 
.0635. The total probability of exercise, however, is monotonic in the coupon 
rate. These results illustrate that the term structure of exercise probabilities 
for American options can display very complex patterns in a multifactor 
framework. 

Since each point on the term structure affects the values of the deferred 
American and European swaptions, it is also interesting to compare the sen- 
sitivities of each swaption to each point on the curve. This is done by varying 
each of the six-month forward rates implied by the initial zero-coupon curve 
to express the risk exposures in a forward-space metric. As shown in Table 6, 
deferred American and European swaptions have major differences in their 
sensitivities to movements in the term structure. For example, the European 
swaption has the greatest sensitivity to the third forward. In contrast, the 
deferred American swaption has its greatest sensitivity to the 20th forward. 
These results illustrate the importance of incorporating the multif. dctor nature 
of the term structure in fixed-income derivative risk management. 



Table 6 

Forward 

rate European 


-~ ~ 

.O-.5 -.00008 

.5-1.0 - .00008 

1.0-1.5 -.00236 

1.5-2.0 -.00230 

2.0-2.5 -.00223 

2.5-3.0 -.00217 

3.0-3.5 -.00211 

3.5-4.0 -.00205 

4.0-4.5 -.00199 

4.5-5.0 -.00193 

5.0-5.5 -.00188 

5.5-6.0 -.00182 

6.0-6.5 -.a0177 

6.5-7.0 -.00172 

7.0-7.5 -.00167 

7.5-8.0 -.00162 

8.0-8.5 -.00157 

8.5-9.0 -.00153 

9.0-9.5 -.00148 

9.5-10.0 -.00144 


Parallel shift -.03380 

Sensltlbit) of swaption values to Individual forward rates in the 20-factor string model. These sensitibit~es are computed by 
\ar;ing the indicated six-month fonva~d rate while holding the others fixed. The American swaption gives the optionholder the 
right to enter into a swap with a final maturity of 10 )ears and leceire a fixed coupon of ,0605 and pa) the six-month late 
semiarinually. The sxaption 19 not exerciqable until one year from the valuation date. The Euiopsan swaption is the counterpart 
of the American swaption with the restriction that the option can only be exercised one )'eal frorn the valuation date. The 
sensiti~ities shown are with respect to a one-bas15 point rn0L.e in the forward per SlOO notional amount The s~mulation results 
are based on 20,000 paths. 

8. Numerical and Implementation Issues 

In this section, we discuss a number of numerical and implementation issues 
associated with the LSM algorithm. These are discussed individually below. 

8.1 Higher-dimensional problems 
The numerical examples in Sections 3-5 benchmark the performance of the 
LSM algorithm for several low-dimensional problems which can be solved 
by standard finite difference techniques. As an additional benchmark, we 
also investigate the performance of the algorithm for a higher dimensional 
problem studied by Broadie and Glasserman (1997c), the valuation of an 
American options on the maximum of five risky assets. 

In their article, Broadie and Glasserman (1997) apply a stochastic mesh 
approach to place bounds on the value an American call option on the max- 
imum of five assets, where each asset has a return volatility of 20% and 
each return is independent of the others. The option has a three-year life and 
is exercisable three times per year. The assets each pay a 10% proportional 
dividend and the riskless rate is assumed to be 5%.  The strike price of the 
option is 100, and the initial values of all assets are assumed to be the same 
and equal to either 90, 100, or 110. Using their algorithm, they ase able to 
estimate a 90% confidence band for the value of the option. From Table 6 of 
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their article, the tightest 90% confidence bands reported are 116.602, 16.7101, 
[26.101, 26.2111, and [36.719, 36.8421 for the cases where the initial asset 
values are 90, 100, and 110, respectively. Broadie and Glasserman report that 
computing these bounds requires slightly more than 20 hours apiece using a 
266 MHz Pentium I1 processor. 

We value this American call option using essentially the same simulation 
procedure used in Section 3. Specifically, we use 50,000 paths and choose 
19 basis functions consisting of a constant, the first five Hermite polynomials 
in the maximum of the values of the five assets, the four values and squares 
of the values of the second through fifth highest asset prices, the product 
of the highest and second highest, second highest and third highest, etc., 
and finally, the product of all five asset values. The values of the American 
call option given by the LSM algorithm are 16.657, 26.182, and 36.812 for 
the cases where the initial asset values are 90, 100, and 110, respectively. In 
each of these cases, the LSM value is within the tightest bounds given by the 
Broadie and Glasserman algorithm. We note that computing these values by 
LSM requires only one to two minutes apiece using a 300 MHz Pentium I1 
processor. 

8.2 Least squares 
In this article, we use ordinary least squares to estimate the conditional expec- 
tation function. In some cases, however, it may be more efficient to use other 
techniques such as weighted least squares. generalized least squares, or even 
GI\/IM in estimating the conditional expectation function. For example, if 
the process for the state variables has state dependent volatility, the resid- 
uals from the regression may be heteroskedastic and these alternative least 
squares techniques may have advantages. 

In estimating the least squares regressions, it may be noted that the R2s 
from the regressions are often somewhat low. The reason for this is simply the 
volatility of realized cash flows around their conditional expected values. The 
R2 from the regression measures the percentage of the total variation in the 
ex post cash flows explained by the variation in the conditional expectation 
function; a low R2 simply means that the volatility of unexpected cash flows 
is large relative to the volatility of expected cash flows. Thus low R2 are 
to be expected when unexpected cash flows are highly volatile. In general, 
since the LSkI algorithm ic based on conditional first moments rather than 
second moments, the R2s from the regression should have little impact on 
the quality of the LSM approximation to the American option value. 

8.3 Choice of basis functions 
Extensive numerical tests indicate that the results from the LSM algorithm 
are remarkably robust to the choice of basis functions. For example, we use 
the first three Laguerre polynomials as basis functions in the American put 
illustration in Section 3. We obtain results that are virtually identical to those 
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reported in Table 1 when we use S, S', and S3 as basis functions, when we 
use the first three Hernlite polynomials as basis functions, or when we use 
three trigonometric functions as basis functions. Similarly for all of the other 
examples presented in the article. As reported earlier, few basis functions are 
needed to closely approximate the conditional expectation function over the 
relevant range where early exercise may be optimal. 

While the results are robust to the choice of basis functions, it is impor- 
tant to be aware of the numerical implications of the choice. For example, 
the weighted Laguerre polynomials used in the American put illustration 
in Section 3 include an exponential term in the stock price S. In Table 1, 
however, the stock price ranges from 36 to 44. Thus, directly applying the 
weighted Laguerre polynomials to the problem could result in computational 
underflows. To avoid this problem, we renormalized the American put exam- 
ple by dividing all cash flows and prices by the strike price, and estimating 
the conditional expectation function in the renormalized space; the results 
reported in Table 1 are based on this renormalization. Note that this is only 
for numerical convenience; the option value is unaffected since we discount 
back the unnormalized value of the cash flows along each path to obtain its 
value. We recommend normalizing appropriately to avoid numerical errors 
resulting from scaling problems. 

Finally, the choice of basis functions also has implications for the statisti- 
cal significance of individual basis f~lnctions in the regression. In particular, 
some choices of basis functions are highly correlated with each other, result- 
ing in estimation difficulties for individual regression coefficients akin to the 
multicolinearity problem in econometrics. This difficulty does not affect the 
LSM algorithm since the focus is on the fitted value of the regression rather 
than on individual coefficients; the fitted value of the regression is unaffected 
by the degree of correlation among the explanatory variables. However, if the 
choice of basis functions leads to a cross-moment matrix that is nearly singu- 
lar, then numerical inaccuracies in some least squares algorithms may affect 
the functional form of estimated conditional expectation function. To avoid 
these types of numerical problems, the regressions are estimated using the 
double-precision DLSBRR algorithm in IMSL which estimates least squares 
via an iterative-refinement algorithm. We also cross-checked the results by 
estimating the regressions using a variety of alternative procedures such as 
Cholesky-decomposition and QR-algorithm least squares techniques. 

8.4 Computational speed 
An important advantage of simulation techniques is that they lend them- 
selves well to parallel computing architecture. For example, we could gen- 
erate 5,000 paths using a single CPU, or we could generate 100 paths each 
on 50 CPUs. In many large-scale applications, computational speed is far 
more important than the cost of hardware; valuation and risk management 
by simulation is ideally suited for these applications. Furthermore, for some 
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types of large-scale applications such as valuing large portfolios of fixed- 
income or mortgage derivatives, the same paths can be used for all options; 
significant computational efficiencies are obtained by only having to generate 
paths once. From the perspective of the LSWI algorithm, the only constraint 
on parallel computation is that the regression needs to use the cross-sectional 
information in the simulation. Given the speed at which regressions can be 
estimated, however, this bottleneck involves little loss of computational effi- 
ciency. Furthennore, there are many ways in which regressions could be 
estimated using individual CPUs, and then aggregated across CPUs to form 
a composite estimate of the conditional expectation f~l~lction. Finally, the 
use of quasi-Monte-Carlo techniques in conjunction with the LSM algo- 
rithm may lead to significant improvements in computational speed and effi- 
ciency. Important recent examples of the application of quasi-Monte-Carlo 
techniques include Morokoff and Caflisch (1994, 1995). 

9. Conclusion 

This article presents a simple new technique for approximating the value 
of American-style options by simulation. This approach is intuitive, accurate, 
easy to apply, and computationally efficient. We illustrate this technique using 
a number of realistic examples, including the valuation of an American put 
when the underlying stock price follows a jump-diffusion as well as the 
valuation of a deferred American swaption in a 20-factor string model of the 
term structure. 

As a framework for valuing and risk managing derivatives, simulation 
has many important advantages. With the ability to value American options, 
the applicability of simulation techniques becomes much broader and more 
promising, particularly in markets with multiple factors. Furthermore, simu- 
lation techniques make it much easier to implement advanced models such 
as Heath, Jarrow, and Morton (1992) or Santa-Clara and Sornette (1997) in 
practice. 

Appendix 

Proof of Proposition 1. By definition. the value of the underlying asset X,#is F)"-measurable. 
Similarly. the immediate exercise value of the option is Ftk-measurable. By construction. 
F,,, (w; t,) is a linear function of F,,-measurable functions of X,, ,and is therefore F,>-measurable. 
Hence the event that the immediate exercise value is greater than zero and greater than or 
equal to F,,,(w; t,) is in F,&.and therefore. the LSM rule to exercise when this event occurs 
defines a stopping time. Denote the prescnt value of following this stopping rule by E,. Since 
V(X) is the supremum of the present values obtained over the set of all stopping times, 
V(X) 1 E,. Sincc the functional form of F,(w; t,) is the same across all paths, the discounted 
cash flows LSM(oj,: I M ,  K) are independently and identically distributed, and the strong law of 
large numbers [Billingsley (1979; Theorem 6.1)] implies that 



This result, combined with the inequality V ( X )  3 E,, implies the result. 

Proof of Proliosition 2. At time t,, the LSM stopping strategy is the same as the optimal 
strategy; the option is exercised if it is in the money. Under the given assumptions, the condi-
tional expectation function F ( w ;  I , )  is a function only of X,, . If F(w:  1 , )  satisfies the indicated 
conditions, then Theorem IV.9.1 of Sansone (1959) implies that the convergence of F,,(w; t , )  
to F ( o ;  t , )  is uniform in M on the set (0, a),where the first M Laguerre polynomials are 
used as the set of basis functions. This implies that for a given c ,  there exists an 12.I such 
that sup, 1 F ( o :  1 , )  - F,v(w;t , )  /< €12. From the integrability conditions and Theorem 3.5 

of White ;1984), the fitted value of the LSM regression F$,(w;I , )  converges in probability to 
F,,*(w:t , )  as N + x, 

Thus, for any c ,  there is an M such that 

lim ~ r [ /F ( w ;  1 , )  - &(w;  t , )  I>  c ]  = 0 
,A+% 

To complete the proof, we partltlon R Into five sets: 1) the set of paths where the optlon 
is exercised at time t ,  under both the optimal and the LSM strategy, 2 )  the set of paths where 
the option is not exercised at time t ,  under either the optimal or LSM strategies, 3) the set 
of paths where the option is exercised at time t ,  under the LSM strategy but not under the 
optimal strategy, 4 )  the set of paths where the option is exercised at time t ,  under the optimal 
strategy, but not under the LSM straf_egy,and 5 )  a zero-probability set of paths for which 
the difference between F ( w ;  t , )  and F,,(w; t ! )  is greater than E as N + a .  Now consider 
a portfolio consisting of a long position in an option exercised usmg the LSM strategy, an 
investment of E in a money market account, and a short position in an option exercised using 
the optimal strategy. For paths in set 3), at time t , ,  use the funds from the money market account 
and the option exercise to purchase a European option with final maturity date t,. For paths in 
set 4 ) ,  at time t , ,  use the funds from the money market account and from shorting a European 
option with final maturity date t ,  to fund the cash outflow from the option exercise. It is easily 
shown that this strategy results in cash flows that are greater than or equal to zero for each path 
in sets I ) ,  2), 3), and 4 )  Since the pathwise cash flows are nonnegative, averages over paths 
are nonnegative, and the result follows from a standard no-arbitrage argument, the definition of 
V ( X ) ,and the law of large numbers. 

References 
Ahramowitz. >'I.,and I. A. Stegun, 1970. Hriridbook of Matheri~oticcilFirrictions, Dover Publicatioiis. New York. 

Amemiya, T.. 1985. Advunceil Econonzetrics, Basil Black\vell, London. UK. 

Averbukh. V.. 1997. "Pricing American Options Using Monte Carlo Simulation," Ph.D. dissertation. Cornell 
University. 

Barraquand, J.. and D. blartineau, 1995. "Numerical Valuation of High Dimensional Multivariate American 
Securities." Joidrrinl of Firrciricinl and QirrmfifutiveArinlyris. 30. 383405.  

Barron. A,. 1993, "Universal Approxirnation Bounds for Superpositions of a Siglnoidal Function." IEEE 
Trnnsrictiorir, Ir~orrnn~ionTheory. 39. 930-945. 

Bensoussan. A., 1984. "On the Theory of Option Pricing." Actn Applicandrie ~W(it1iernaticae.2, 139-158 

Billingsley, P., 1979, Probnbilic artd Mensilre, Wiley, New York 



The Review of Firinncinl Stlrdies / s. 14 r z  1 2001 

Black. F.. and M.Scholes, 1973. "The Pricing of Options and Co~porate Liabilities." Joitr-ila1 of Political 
Ecortomy. XI. 637-654. 


Bossaerts. P., 1989, "Simulation Estimators of Optimal Ezly  Exercise." worki~ig paper, Camegie-hlellon 

Unhersity. 


Broadie, >I.. J .  Detemple, E. Ghyseli, and 0 .  Torres, 1998. "'4merican Options w~tli Stochastic Dividends and 
Volatility: A Nonparanietric Investigation." working paper. Columbia University. 


Broadie. hl . ,  and P. Glasserman, 1997a. "Monte Carlo Methods for Pricing High-Diniensional American 

Options: An Overview:' working paper. Columbia University. 


Broadie. hl.. and P. Glasserman, 1997b, "Pricing American-Style Securities Using Siinulation." Joir?-nal of 
Econotnic Dynamics rind Control, 21, 1323-1352. 


Broadie, >I.. and P. Glasserman, 1997c. "A Stochastic Mesh hlethod tor Pric~ng High-Dimensional American 

Options:' working paper. Columbia University. 


Broadie. h4.. P Glasserman, and G. Jain. 1997. "Enhanced Monte Carlo Estimates for American Option 

Prices," Joirrtial of Derivatives, 5. 2 5 4 4 .  


Ca~siere.J., 1996, "Valuation of Early-Exercise Price of Options Using Simulations and No~ipara~netric 

Regression:' Itisii,-iaice: Mafheninfics and Econornics, 19. 19-30. 


Can, P., 1998. "Randomization and the Aiiierican Put," Re1,ievr. of Finrr~icial St~rdies, 1I ,  597-626. 

Cox. J., J .  E. Ingersoll. and S. A. Ross. 1985, 'An Interteiiiporal General Equilibriuni Model of Asset Prices," 
Econometricrr, 53, 363-384 

Cox, J., and S. A. Ross. 1976, "The Valuation of Options for Alternative Stochastic Processeu," Joiirriril of 
Finnncinl Economics, 3. 145-166. 

Duffie. D., 1996, Dyrimizic Arset Pricing Theory, Princeton University Press. Princeton. N.J 

Garcia, D., 1999. "A Monte Carlo Method for Pricing American Options;' working paper. Univerpity of 
California. Berkeley. 

Goldstein. K.. 1997, "The 'Term Structure of Interest Rateu as a Random Field." working paper. Ohio State 

University. 


Harrison, J. hl., and D. M.Kseps. 1979. ">Iartingales and Arbitrage in hlultiperiod Securities hlarkets." 

.Joirrtiul of Econori~ic 7'lzeory. 20, 381-408. 

Harrison, J. hl., and S. K. Pliska, 1981. "hlartingales and Stochastic Integrals in the Theory o f  Continuous 
Trading;' Stochnstic Procesres ~ i i d  tiieir Appiiccitions, 11, 261-271 

Heath. D., R. Jarrow, and A. blorton. 1992. "Bond Pricing and the Term Structure of Interest Rates," Eco~io-
tnefrica,60, 77-106. 

Ho. T.. and S. Lee, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Joiirnal 
of Fitionce, 41, 101 1-1029. 

Ibaner. A,,  and F. Zapatero, 1998. "Monte CDrlo Valuation of American Options through Computation of the 
Optimal Exercise Frontier." working paper. Universit) of Southern California. 

Keane, M..and K. Wolpin. 1994. "The Solut~oii and Estimat~on of Discrete Choice Dynamic Prograniming 
Models by Simulation: hIo11te Carlo E~idence," Review of Econornicr cind Stiitistics. 76, 648-672. 

Judd, K.. 1998, ~V~irnericalMefiiorls in Eco~iomics. &!IT Press. Cambridge, Mass 

Karatras, I, 1988, "On the Pricing of Amencan Options." '4pplied Mnthe~~intics 17. 37-60. and Ol~tin~izntio~z. 

Laiiiberton, D., and B. Lapeyre. 1996. Stociinstic Calcirli/s Applieci to Firinnce, Chapma11 & Hall. London. 
UK. 



Will~irig Aniericaii Optioiis 4\. Siiii~ilntiori 

Longstaff. F.. P. Santa-Clara. and E. Schwartz, 1999, "Throwing Away a Billion Dollars: The Cost of Subop- 

timal Exercise Strategies in the Swaptions Market." working paper. University of California, Los Angeles. 


Longstaft, F., P. Santa-Clara. and E. Schwartz. 2000, "The Relative Valuation of Interest-Rate Caps and 

Swaptions: Theory and Empirical Evidence." working paper. Uui\ersity of California, Los Angeles. 


Merton, R. C.. 1973, "The Theoly of Rational Option Pricing," Bell Jotir.ria1 of Ecoiiornic~ and Mariager?~e~~i 

Science, 4, 141-181. 


hlerton. R. C.. 1976. "Option Pricing When Underlying Stock Returns Are Discontinuous." Joiii?iul of Firiari- 

cia1 Economics, 3. 125-144. 


Morokoff. W. J., and R. E. Caflisch, 1994, "Quasi-Randoni Sequences and Their Diicrepanciei," SMM Jourrinl 

o f  Cornpirting. 15. 1251-1279. 


hlorokoff, W. J., and R. E. Caflisch. 1995. "Quasi-Monte Carlo Integrat~on." Jui~rrral of Cori~pi~rurionc~l 

Plzysics, 122, 218-230. 


Pham, H.. 1995. "Optimal Stopping, Free Boundary and American Option in a Jump Diffusion hlodel." 

working paper, Universite Paris IX Dauphine. 


Press, W. H., S. A. Teukolsky. TV, T. Vetterling, and B. P. Flannery. 1992, Niiiiiericnl Recipes ~ I IFortrait. 2nd 

ed.. Cambridge University Press. Cambridge. UK. 


Kaymar. S., and bl. Zwecher. 1997, "A Monte Carlo Valuation of American Call Options on the hlaxinium 

of Several Stocks." Joiir.rin1 of Dei-ir,ari?;es. 5, 7-23. 


Refenes, A , ,  A. Burgess. and Y. Bentz, 1997, "Neural Networks in Financial Engineering: A Study in Method- 

ology." IEEE Transnciioris, ~Veiirni Ventoi%s, 8. 1222-1267. 


Royden, H. L., 1968, Real Analysi~.  >Iac>lillan, New York 

Sansone, G. ,  1959, Ortiiogonnl Fiirictioiis. Interscience Publishers, New York 

Santa-Clara. P., and D. Sornette. 2001. "The Dynamics of the Forward Interest Rate Curve with Stochastic 
String Shocks:' The Review o f  Fii~oncinl Stitdies. 14, 149-185. 

Tilley, J .  A,. 1993, "Valuing American Options in a Path Si~iiulation hlodel." Trcinmcfiori~0.f tile Socreh of 

Aciiiaries. 15. 83-101. 


Tsitsiklis. J.. and B. Van Roy, 1999. "Optimal Stopping of klarkov Processes: Hilbert Space Theory. Approxi- 

mation Algorithms. and an Application to Pricing High-Dimensional Financial Deri\rativei," lEEE Tr.rmsactioris 

or! Ai~torrzcitic Corltrol. 44. 1840-1 85 1. 


Vasicek. O., 1977. "An Equilibrium Characterization of the Term Structure," Joi~r.iln1 of Firlaricinl Ecorior?iics. 

5. 177-188. 


White, H.. 1984. Asyrnplotic T h ~ o q  for. Econometricimis, Academic Press, New York. 




You have printed the following article:

Valuing American Options by Simulation: A Simple Least-Squares Approach
Francis A. Longstaff; Eduardo S. Schwartz
The Review of Financial Studies, Vol. 14, No. 1. (Spring, 2001), pp. 113-147.
Stable URL:

http://links.jstor.org/sici?sici=0893-9454%28200121%2914%3A1%3C113%3AVAOBSA%3E2.0.CO%3B2-W

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

[Footnotes]

3 The Solution and Estimation of Discrete Choice Dynamic Programming Models by
Simulation and Interpolation: Monte Carlo Evidence
Michael P. Keane; Kenneth I. Wolpin
The Review of Economics and Statistics, Vol. 76, No. 4. (Nov., 1994), pp. 648-672.
Stable URL:

http://links.jstor.org/sici?sici=0034-6535%28199411%2976%3A4%3C648%3ATSAEOD%3E2.0.CO%3B2-9

References

Numerical Valuation of High Dimensional Multivariate American Securities
Jérôme Barraquand; Didier Martineau
The Journal of Financial and Quantitative Analysis, Vol. 30, No. 3. (Sep., 1995), pp. 383-405.
Stable URL:

http://links.jstor.org/sici?sici=0022-1090%28199509%2930%3A3%3C383%3ANVOHDM%3E2.0.CO%3B2-7

References

http://www.jstor.org

LINKED CITATIONS
- Page 1 of 3 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0893-9454%28200121%2914%3A1%3C113%3AVAOBSA%3E2.0.CO%3B2-W&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0034-6535%28199411%2976%3A4%3C648%3ATSAEOD%3E2.0.CO%3B2-9&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1090%28199509%2930%3A3%3C383%3ANVOHDM%3E2.0.CO%3B2-7&origin=JSTOR-pdf


The Pricing of Options and Corporate Liabilities
Fischer Black; Myron Scholes
The Journal of Political Economy, Vol. 81, No. 3. (May - Jun., 1973), pp. 637-654.
Stable URL:

http://links.jstor.org/sici?sici=0022-3808%28197305%2F06%2981%3A3%3C637%3ATPOOAC%3E2.0.CO%3B2-P

Randomization and the American Put
Peter Carr
The Review of Financial Studies, Vol. 11, No. 3. (Autumn, 1998), pp. 597-626.
Stable URL:

http://links.jstor.org/sici?sici=0893-9454%28199823%2911%3A3%3C597%3ARATAP%3E2.0.CO%3B2-G

An Intertemporal General Equilibrium Model of Asset Prices
John C. Cox; Jonathan E. Ingersoll, Jr.; Stephen A. Ross
Econometrica, Vol. 53, No. 2. (Mar., 1985), pp. 363-384.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28198503%2953%3A2%3C363%3AAIGEMO%3E2.0.CO%3B2-D

Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent
Claims Valuation
David Heath; Robert Jarrow; Andrew Morton
Econometrica, Vol. 60, No. 1. (Jan., 1992), pp. 77-105.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28199201%2960%3A1%3C77%3ABPATTS%3E2.0.CO%3B2-D

Term Structure Movements and Pricing Interest Rate Contingent Claims
Thomas S. Y. Ho; Sang-Bin Lee
The Journal of Finance, Vol. 41, No. 5. (Dec., 1986), pp. 1011-1029.
Stable URL:

http://links.jstor.org/sici?sici=0022-1082%28198612%2941%3A5%3C1011%3ATSMAPI%3E2.0.CO%3B2-H

The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation
and Interpolation: Monte Carlo Evidence
Michael P. Keane; Kenneth I. Wolpin
The Review of Economics and Statistics, Vol. 76, No. 4. (Nov., 1994), pp. 648-672.
Stable URL:

http://links.jstor.org/sici?sici=0034-6535%28199411%2976%3A4%3C648%3ATSAEOD%3E2.0.CO%3B2-9

http://www.jstor.org

LINKED CITATIONS
- Page 2 of 3 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0022-3808%28197305%2F06%2981%3A3%3C637%3ATPOOAC%3E2.0.CO%3B2-P&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0893-9454%28199823%2911%3A3%3C597%3ARATAP%3E2.0.CO%3B2-G&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0012-9682%28198503%2953%3A2%3C363%3AAIGEMO%3E2.0.CO%3B2-D&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0012-9682%28199201%2960%3A1%3C77%3ABPATTS%3E2.0.CO%3B2-D&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1082%28198612%2941%3A5%3C1011%3ATSMAPI%3E2.0.CO%3B2-H&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0034-6535%28199411%2976%3A4%3C648%3ATSAEOD%3E2.0.CO%3B2-9&origin=JSTOR-pdf


The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks
Pedro Santa-Clara; Didier Sornette
The Review of Financial Studies, Vol. 14, No. 1. (Spring, 2001), pp. 149-185.
Stable URL:

http://links.jstor.org/sici?sici=0893-9454%28200121%2914%3A1%3C149%3ATDOTFI%3E2.0.CO%3B2-J

http://www.jstor.org

LINKED CITATIONS
- Page 3 of 3 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0893-9454%28200121%2914%3A1%3C149%3ATDOTFI%3E2.0.CO%3B2-J&origin=JSTOR-pdf



