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Abstract

We describe a protocol design process, and illustrate its
use by creatingATSPECT, an Authentication Test-based Se-
cure Protocol for Electronic Commerce Transactions. The
design process is organized around theauthentication tests,
a method for protocol verification based on the strand space
theory. The authentication tests dictate how randomly gen-
erated values such as nonces may be combined with encryp-
tion to achieve authentication and freshness.

ATSPECT offers functionality and security guarantees
akin to thepurchase request, payment authorization, and
payment capturephases ofSET, the secure electronic trans-
action standard created by the major credit card firms.

In previous work [10, 12, 8], we have developed a
method—called the “authentication test” method—that can
be used by hand to verify cryptographic protocols. We also
pointed out that the same ideas can be used to guide the
protocol development process, quickly leading to new pro-
tocols; proofs of correctness for these protocols then follow
from the development process. In [10, 12] we illustrated the
point by “reinventing” preexisting protocols. The purpose
of this paper is to use it to create a completely new protocol
with highly non-trivial functionality.

We call our new protocolATSPECT, an Authentica-
tion Test-based Secure Protocol for Electronic Commerce
Transactions. It is intended to achieve the essential security
goals of the existing Secure Electronic Transaction (SET)
purchase request, payment authorization, andpayment cap-
turephases, as we understand them.

The Secure Electronic Transaction protocol [15] was a
major effort undertaken by a consortium of credit card com-
panies and banks in the mid-90s. It was intended to provide
a basis for secure electronic commerce. It is not currently
in use anywhere, presumably partly as a consequence of
being complex, difficult to implement, and difficult to an-
alyze. For these reasons it was viewed as a high-risk un-
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dertaking, something that the financial industry prefers to
avoid. Also, it shifts information away from merchants (for
instance, information about their clients’ credit cards),and
resistance from the retail industry may be another reason
why it languished. However, it would have provided bet-
ter functionality for customers and financial institutionsand
better privacy protection for customers. The security goals
of SET are hard to determine in a precise way, although
Bella, Massacci, and Paulson have recently studied it in its
own terms [2]. We will make no strong claim relatingSET

to ATSPECT.

1 ATSPECT Protocol Goals

Our goals in designingATSPECTare to provide authen-
tication and pairwise confidentiality for certain values ina
three-way protocol exchange.ATSPECTmust also provide
significant non-repudiation guarantees. However, we do not
give any attention to fairness: different participants achieve
their guarantees at different stages of the protocol. Analyz-
ing fairness requires subtler methods [4, 13].

1.1 Protocol Participants

Principals playing three different roles, typically a Cus-
tomer, a Merchant, and a Bank or other financial institution,
desire to engage in an authenticated transaction. We will
refer to the three participants asC, M , andB. Some data
must be agreed among all three participants, for instance
their identities and the total purchase cost for an orderC

places withM .
Other data must be shared between each pair, while re-

maining confidential from the third participant. For in-
stance, the merchandise being purchased must be agreed
betweenC andM , but is no concern ofB’s. C ’s credit
card number must be agreed betweenC andB, but is best
withheld fromM . Otherwise,M ’s systems may be hacked,
revealing all its customers’ credit card numbers. Payment
details such asB’s discount for handling the transaction
may be confidential business information that should not be



disclosed toC. All the data must remain confidential from
principals other than these three.

The same principal may play different roles in different
protocol executions. When different merchants order sup-
plies from each other, they alternately play the roles ofC

andM . A bank or credit card firm may order supplies from
a merchant, playing the role ofC.

1.2 Protocol Goals

The goals of the participants are of four kinds:

Confidentiality All data transmitted in the exchange is to
remain secret, and data intended for a pair should not
be disclosed to the third participant.

Authentication, I Each participantP should receive a
guarantee that each partnerQ has receivedP ’s data
andQ accepted it.

Non-Repudiation Each participantP should be able to
prove itsAuthentication, I guarantee to a third party.

Authentication, II Each participantQ should receive a
guarantee that data purportedly from a partnerP in
fact originated withP , freshly in a recent run of this
protocol.

Each of these goals, with one exception, concerns just a
pair P andQ of principals. We want to achieve the goals
whichever principalsP andQ may be. This observation
motivates our design strategy, which treats the protocol asa
collection of two party subprotocols (Section 3). When we
show that the two-party protocols meet these goals (Sec-
tion 4.1), we will also be more precise about which keys
must be uncompromised to establish each goal.

The exception concerns the confidentiality of the infor-
mation shared among all three participants, and we establish
it directly for the combined protocol (Section 5.3).

2 The Authentication Tests

In this section, we will introduce the basic ideas of the
strand space theory, and then describe the authentication
tests. A more precise summary is in the Appendix.

2.1 Strand Spaces

A strand is a sequence of transmission and reception
events local to a particular run of a principal. If this princi-
pal is honest, it is aregular strand. If it is dishonest, it is a
penetrator strand, taking the forms in Definition A.8.

A bundleB is a causally well-founded directed graph
containing the transmission and reception events of a num-
ber of strands. It represents a global execution possible for

a given protocol (with a penetrator). A nodem in the graph
precedesa noden (written m �B n) if the n is accessi-
ble from m via 0 or more edges of the graph. Likewise,
m ≺B n means it is accessible via 1 or more edges. (See
Definition A.5.)

We writeS for safekeys, i.e. keys we can prove that the
penetrator can never learn. In [12] we show how to de-
fine S in a useful way. In our current context, we are in-
terested only in the private members of public-private key
pairs. Since private keys are never transmitted in the pro-
tocols we will consider, they will belong toS unless com-
promised before execution of the protocol. Thus, we will
not need any elaborate method to prove that a key is inS.
If K ∈ S, the penetrator can never useK for encryption or
decryption.

2.2 The Authentication Test Idea

Suppose a principal in a cryptographic protocol creates
and transmits a message containing a new valuev, later re-
ceivingv back in a different cryptographic context. It can
conclude that some principal possessing the relevant keyK

has received and transformed the message in whichv was
emitted. IfK ∈ S is safe, this principal cannot be the pen-
etrator, but instead must be a regular principal. Atrans-
forming edgeis the action of changing the cryptographic
form in which such a valuev occurs. Theauthentication
tests[9, 12, 14] give sufficient conditions for transforming
edges being the work of regular principals. There are two
main types of authentication test.

Outgoing Tests A uniquely originating valuea may be
transmitted only in encrypted form{| . . . a . . . |}K where the
decryption keyK−1 ∈ S is safe. If it is later received out-
side the context{| . . . a . . . |}K , then a regular participant,
not the penetrator, must have been responsible the first time
it appears in a different context. We write{| . . . a . . . |}K ;

. . . a . . . for a transforming edge that extracts it from this
form. This transforming edge occurs after the original trans-
mission of{| . . . a . . . |}K atm0 and before the transformed
version is received back atm1, where the temporal relations
refer to the ordering�B generated by the arrows in the bun-
dleB.

It is anoutgoing testbecause the encrypted unit goes out;
see Figure 1. Figure 1 presents a theorem, Proposition 19
of [12] in simplified form.

Incoming Tests If, instead,a is received in encrypted
form {| . . . a . . . |}K although it was not sent in that con-
text, and the encryption keyK ∈ S is safe, then a reg-
ular participant must have been responsible whena en-
tered this context. We refer to this transforming edge as
. . . a . . . ; {| . . . a . . . |}K . As with an outgoing test,
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m0

K−1 ∈ S a � {|h|}K - n0

m1
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� a � term(n1) � a � t′

n1
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Assume {|h|}K 6� term(m1)

a originates uniquely atm0,
a contained only in{|h|}K

Conclude nodesn0, n1 exist inB and are regular
{|h|}K 6� t′

m0 ≺ n0 ≺ n1 ≺ m1

Figure 1. Outgoing Authentication Test
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Assume {|h|}K 6� term(m0)

a originates uniquely atm0

Conclude nodesn0, n1 exist inB and are regular
m0 ≺ n0 ≺ n1 ≺ m1

Figure 2. Incoming Authentication Test

the transformation producing{| . . . a . . . |}K must occur af-
term0 and beforem1. We call this anincoming testbecause
the encrypted unit comes in, as shown in Figure 2, repre-
senting Proposition 20 of [12]. In public key cryptography,
K is serving as a signature key.

Sometimes a uniquely originating valuea is transmit-
ted in one encrypted form{|h|}K and received back in a
different {|h′|}K′ . If K−1 ∈ S and K ′ ∈ S, then this
is both an outgoing test and an incoming test. However,
these two views may have different consequences. As an
outgoing test, it implies a regular transforming edge that
accepts{|h|}K and extractsa from it. This may be of some
form other than{|h′|}K′ , since another principal may later
transform it again. The incoming test yields a transforming
edge creating{|h′|}K′ , although it may have receiveda in a
form other than{|h|}K .

Unsolicited Tests A third, related but weaker, type of test
is the unsolicited test. If a term {|t|}K is received, and

K ∈ S is safe, then{|t|}K originated on some regular strand.
After all, it originated somewhere, and that can not have
been a penetrator strand ifK ∈ S. Here we know only
that the regular node originating{|t|}K is before the node
on which it is received. We do not know any node after
which it must have occurred. We write; {|B ˆNa|}KA

for
the positive node that must exist as a result of an unsolicited
test.

Summary The authentication tests are summarized in Ta-
ble 1. The last column contains× if the first node on the test
edge is a lower bound (in the ordering�) constraining when
the transforming edge occurs.

We will designATSPECTso that incoming tests are suf-
ficient to achieve all the authentication properties. A sec-
ond, alternative justification of the goalAuthentication, I
uses an outgoing test. An unsolicited test achieves the non-
repudiation goal.

2.3 Recency

In [8] we study recency as a means for ensuring that pro-
tocols cannot be undermined by key compromise. In the
current paper, we use the same notion of recency for a dif-
ferent purpose, namely to ensure that a transaction is not
caused by a dishonest party replaying a stale message.

Regular strands provide a way to measure recency. Im-
plementers always ensure that a local protocol run will time-
out long before cryptanalysis could have succeeded. Thus,
a principal engaged in a strand knows that an event is recent
if it happened after an earlier event on the same strand.

Definition 2.1 (Recency) A noden is recent fora regular
nodem1 in B if there is a regular nodem0 ∈ B such that
m0 ⇒+ m1 andm0 �B n ≺B m1.

The incoming and outgoing tests entail recency. That is, if
m0 ⇒+ m1 is a test edge, andn0 ; n1 is the correspond-
ing transforming edge inB, thenm0 ≺ n0 ≺ n1 ≺ m1,
so thatn0 andn1 are recent form1. By contrast, the unso-
licited test establishes nothing about recency.

In some cases, we need a more inclusive, “extension lad-
der” notion of recency.

Definition 2.2 (n-Recency) A noden is 1-recent form1 if
n is recent form1 as in Definition 2.1. A noden is i + 1-
recent form1 if there exists a nodem0 such thatn is i-
recent form0 andm0 is recent form1.

If n is i-recent form, then there arei strands, each overlap-
ping a portion of the preceding one. From beginning to end,
at mosti times the time-out for a single regular strand can
have elapsed. In theAuthentication, II goal of ATSPECT,
we will be interested in 2-recency. We will arrange thatQ,
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Test Test edge Constraint Transforming edge Bound

Outgoing +{|h|}K ⇒ − . . . a . . . K−1 ∈ S {|h|}K ; a ×

Incoming +. . . a . . . ⇒ −{|h|}K K ∈ S a ; {|h|}K ×

Unsolicited −{|h|}K K ∈ S ; {|h|}K

Table 1. The Authentication Tests

executing a strandsQ, can be sure thatP ’s data originated
on a strandsP , such that some node ofsP comes after some
node ofsQ. The data may have originated before any node
of sQ, but how much before is limited by the timeout bound
on the duration ofsP .

3 Authentication Tests and Protocol Design

The authentication tests suggest a protocol design pro-
cess. At our level of abstraction, authentication protocolde-
sign is largely a matter of selecting authentication tests,and
constructing a unique regular transforming edge to satisfy
each. We will now examine our security goals and consider
how to achieve them using authentication tests.

Cryptographic Assumptions We will assume that each
principal has two public-private key pairs. In one, the public
key is used for encryption and the private key is used for de-
cryption. In the other, the private key is used for signatures,
and the public key for verification. We assume that the
public keys for any participant can be determined reliably,
e.g. via a public key infrastructure. WhenP is a principal
with public encryption keyKP , we write{|t|}P to stand for
{|t|}KP

. AssumingKP is uncompromised (i.e.K ∈ S),
only P can tractably recovert from this encryption. Like-
wise, [[ t ]]P is the result of signingt usingP ’s private sig-
nature key. We assume that onlyP can tractably construct
[[ t ]]P from a new messaget.

One other cryptographic-quality primitive is needed,
namely a hash function;h(t) is the result of applying
the hash function tot. We assume that no principal can
tractably find a pair of valuest1, t2 such thath(t1) = h(t2),
or, givenv, can tractably findt such thath(t) = v.

We model the cryptographic operators following Dolev-
Yao [5], as formalized in the strand space theory [17, 12].
We regard hashing as encryption with a key for which no
one knows the matching decryption key.

3.1 Payloads and Confidentiality

We will not specify the payloads fully. However, we al-
low one confidential payload to originate at each principal
P , intended for each partnerQ. We refer to it assecP.Q, and

a goal of the protocol is to provide a confidentiality protec-
tion for its contents against any principal other thanP, Q.

We also allow for a shared payloadsharedP sent byP

to both other principals. Confidentiality ofsharedP against
any principal other thanC, M, B is required. We assume
that the identities of the intended principals may be recov-
ered fromsharedP , as well as other core data about the
transaction, via a functioncore(sharedP ). Each principal
P , having received shared data fromQ andR, checks that

core(sharedP ) = core(sharedQ) = core(sharedR)

Since we expect to implement the confidentiality require-
ments using public key cryptography, we will need to have
P encryptsecP.Q, together withsharedP and possibly other
ingredients, usingKQ the public key of the recipientQ.

3.2 Designing the Two-Party Subprotocols

To simplify our problem, we will regard the full, three-
party protocol as being composed out of simpler subproto-
cols that involve pairs of parties. This is natural because our
authentication goals are pairwise goals; we simply want to
achieve them for all six ordered pairs of the three principals.
Thus, we focus on an arbitrary pairP, Q. When we have
seen how to achieve the authentication goals forP, Q in a
subprotocol, we will then piece the subprotocols together to
form the full protocol (Section 5), there being several ways
to do this. Our work on protocol independence [11] will
justify the composition.

Achieving Authentication, I Our first authentication goal
is the assertion:

Authentication, I Each participantP should receive a
guarantee that each partnerQ has receivedP ’s data
andQ accepted it.

P ’s data means the two valuessecP.Q andsharedP , which
we know must be transmitted encrypted withQ’s public
key. The incoming authentication test tells us that one way
to ensure this is to prepare a new valueNP.Q, transmitting
NP.Q with {|secP.Q ˆ sharedP |}Q. After receiving and pro-
cessing this unit,Q returns an authenticating messageAP.Q
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Figure 3. Edges Achieving Authentication, I

containing[[ . . . ˆ NP.Q ˆ . . . ]]Q, which proves thatNP.Q

reachedQ and was accepted as part of a successful strand.
We also want to ensure thatNP.Q was accompanied by

the payloadssecP.Q and sharedP when it was processed.
Therefore we will require the authenticating messageAP.Q

to take the form[[ . . . ˆ NP.Q ˆ t ]]Q where t contains
the payloads in some form. Specifically, we require that
they be decrypted and hashed, so that we haveAP.Q =
[[ . . . ˆ NP.Q ˆ h(secP.Q ˆ sharedP ) ]]Q. We now have the
behavior shown in Figure 3. This is evidently an incoming
test assuming thatQ’s signature key is uncompromised and
NP.Q is uniquely originating.

However, the original message also contains a uniquely
originating value, namelyNP.Q, encrypted withQ’s public
key. If we assume thatQ’s decryption key is also uncom-
promised, then this is also an outgoing test. OnlyQ can
decrypt the payload to extractNP.Q.

This is not merely redundant. It may correspond to a
meaningful work-flow within the principalQ. For instance,
if P = C and Q = M , then the transforming edge for
this outgoing test may be performed in the sales department.
They check that the customer’s order is valid, that the price
of each item is correct, and that each item is available in
inventory. Then they transfer the order to the accounts re-
ceivable department. Accounts receivable prepares the hash
h(secP.Q ˆ sharedP ), affixes the signature, and executes
the rest of the protocol. Although all of these steps occur
automatically within the merchant’s information systems,
they are implemented in a distributed way. The decryption
and signature keys may be separately protected on different
computer systems maintained by independent parts of the
corporation.

The decision to includeNP.Q within the encrypted unit,
and the decision to hashsecP.Q ˆ sharedP rather than the
encrypted component{| . . . ˆ secP.Q ˆ sharedP |}Q, is thus
motivated by a desire to accommodate separation of duty
within enterprises, at least for the caseQ = M . Thus, the
portion of the protocol represented in Figure 3 ensures that
theAuthentication, I goal will be met in two separate ways.

Achieving Non-Repudiation The behavior displayed in
Figure 3 also achieves the non-repudiation goal.

P Q

m0
- n0

m1

�wwwww
�NQ.P ˆ . . . ˆNP.Q ˆh(secP.Q ˆ sharedP )

n1

�wwwww
m2

�wwwww
[[ . . . ˆNP.Q ˆNQ.P ˆh(secP.Q ˆ sharedP ) ]]P- n2

�wwwww
Figure 4. Edges Achieving Authentication, II

Non-Repudiation Each participantP should be able to
prove itsAuthentication, I guarantee to a third party.

If P wishes to holdQ responsible for the transaction, then
P can disclose the plain-textsNP.Q, secP.Q andsharedP ,
together with the signature

[[ . . . ˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q.

This certifies thatQ received, processed, and approved the
transaction. The certification depends only on the assump-
tion thatQ’s signature key is uncompromised, as it relies
on the unsolicited test that a message of this form can be
produced only byQ. BecauseQ signs the decrypted values
secP.Q andsharedP , the principalP must disclose the con-
tent of the transaction in order to holdQ responsible. This
seems desirable from a business point of view.

Achieving Authentication, II In order to achieve the sec-
ond authentication goal, we must extend the protocol.

Authentication, II Each participantQ should receive a
guarantee that data purportedly from a partnerP in
fact originated withP , freshly in a recent run of this
protocol.

In particular, it originates at a 2-recent node (Definition 2.2).
We enrich the protocol exchange displayed in Fig-

ure 3 by havingQ emit a uniquely originating value
NQ.P . P signs NP.Q, NQ.P , and the hash of
the payloads in a recency certificate, taking the form
[[ . . . ˆ NP.Q ˆ NQ.P ˆ h(secP.Q ˆ sharedP ) ]]P . This trans-
forming edge completes an incoming test forQ, assuming
P ’s signature key is uncompromised, as shown (right-to-
left) in the lower rectangle in Figure 4.Q knows that this
signature was generated afterNQ.P was created. Moreover,
if P is behaving properly, then this signature is emitted only
in a run that also caused the origination ofNP.Q. Thus,m2

is recent forn2, andm0 is recent form2. Therefore,m0 is
2-recent forn2.

Q can also use the signed component in the bottom line
of Figure 4 as non-repudiation evidence, to establish the
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Authentication, II guarantee to a third party. In this case,Q

must be willing to disclose the valuessecP.Q andsharedP .

3.3 Distinguishing the Subprotocols

The protocol as described in Figure 4 is a two party pro-
tocol betweenP andQ. We want a three party protocol
involving C, M , andB, in which each successively plays
the role ofP and the role ofQ with each of the other prin-
cipals. We will want to interweave these protocols without
undermining the guarantees that each of them would pro-
vide if executed purely in isolation.

By [11], it suffices that no encrypted unit emitted in one
subprotocol could have been emitted in any other. One way
to achieve this is to assign each encrypted component an
identifying tag to show which subprotocol it belongs to.

Since the behavior of Figure 4 occurs with any of the
principalsC, M, B asP and any of other principal asQ, we
have six possibilities. We select, then, six distinct constants
c1, . . . , c6, which we refer to asC.M, C.B, etc. Here we do
not intendC, M, andB as names for particular principals,
but as constants referring to the three roles. We use the sans
serif font to emphasize that they are constants, not variables
referring to the identities of the participants.

We will also include a constant distinguishing the mes-
sages; although this is strictly unnecessary, it may ease un-
derstanding. We will useS in message 1, indicating its role
in achieving secrecy; we will useA in message 2, indicat-
ing its role in achieving the first authentication goal; and we
will useR in message 3, indicating its role in achieving the
recency guarantee.

Each subprotocol, involving rolesP and Q, takes the
form shown in Figure 5. We refer to an individual subproto-
col asATSPECTP.Q, and we refer to the union of all strands
containing behaviors according to any of the six subpro-
tocols asATSPECT†. An initiator strand is one taking the
form shown in the left column of Figure 5, and aresponder
strand takes the form shown in the right column of Fig-
ure 5. The parameters of an initiator or responder strand are
the variablesP, Q (representing the identities of the partic-
ipants),NP.Q, NQ.P (their respective nonces), andsecP.Q

andsharedP (the secret and shared payloads).

4 Correctness

We address the correctness of the individual subproto-
cols first, and then make sure that they remain correct even
when all are executed by the same principals over the same
network.

P Q

m0

{|ci ˆSˆNP.Q ˆ secP.Q ˆ sharedP |}Q - n0

m1

�wwwww
�NQ.P ˆ [[ ci ˆAˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q

n1

�wwwww
m2

�wwwww
[[ ci ˆRˆNP.Q ˆNQ.P ˆh(secP.Q ˆ sharedP ) ]]P - n2

�wwwww
Figure 5. Subprotocol P.Q

4.1 Correctness of the Subprotocols

Let us focus on subprotocolATSPECTP.Q as defined in
Figure 5. We identified four goals. We will now formulate
each as a theorem about the protocolATSPECTP.Q. We letB
be a bundle in which the regular participants execute strands
of ATSPECTP.Q. Recall from Section 2.1 that if a keyK is
safe in B (written K ∈ S), then the penetrator can never
useK for encryption or decryption. In this section, italics
letters such asP andQ are variables over principals, while
sans serif letters such asP.Q refer to a constant such as
C.M, which labels one particular subprotocol.

Proposition 4.1 (Confidentiality for secP.Q) Suppose
that B is a ATSPECTP.Q-bundle in whichQ’s private de-
cryption key is safe, and supposeB has an Init-strand
Init[P, Q, NP.Q, NQ.P , secP.Q, sharedP ].

If secP.Q is uniquely originating, then there is no node
n ∈ B such that term(n) = secP.Q.

PROOF. Let κ be the set of inverses of unsafe keys,
i.e. (K \ S)−1. Let τ be{secP.Q} ∪ S. By the honest ideal
theorem, [17, Corollary 6.12], if there is a nodem ∈ B with
term(m) ∈ Iκτ , then there a regular noden that is an en-
try point for Iκτ . However, inspecting the positive regular
nodes ofATSPECTP.Q, we see that no value inτ is ever sent,
unless protected by a key whose inverse is safe.�
Secrecy forsharedP is a property of the composite protocol,
as it is transmitted in more than one subprotocol. We will
prove this in Section 5.3.

In the remaining propositions, we use the notion of the
B-height of a strand (Definition A.4); theB-height of a
strands is the number of nodes ofs contained inB.

Proposition 4.2 (Authentication, I) Suppose thatB
is an ATSPECTP.Q-bundle in which Q’s private signa-
ture key K is safe, and supposeB has an Init-strand
Init[P, Q, NP.Q, NQ.P , secP.Q, sharedP ] of B-height at
least 2. IfNP.Q is uniquely originating, thenB has a match-
ing Resp-strand Resp[P, Q, NP.Q, X, secP.Q, sharedP ] of
B-height at least 2 (for someX).
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PROOF. Apply the inbound authentication test,
given that K ∈ S and NP.Q is uniquely orig-
inating. The only transforming edge producing
[[ ci ˆA ˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q is the first edge of
a responder strand Resp[P, Q, NP.Q, X, secP.Q, sharedP ].

BecauseP does not occur explicitly in the initiator’s
message, the claim that the first parameter to the respon-
der strand isP relies on the assumption thatcore(sharedP )
determines that the initiator isP (Section 3.1).�
This proposition depends only onQ’s signature key being
safe, and the non-repudiation guarantee derives from this.
P need not establish that it has behaved honestly, nor that
he generatedNP.Q in such a way as to make it originate
uniquely.

Proposition 4.3 (Non-Repudiation) Suppose thatB is
a ATSPECTP.Q-bundle in whichQ’s private signature key
K is safe, and suppose there exists a noden ∈ B such
that [[ ci ˆ A ˆ NP.Q ˆ h(secP.Q ˆ sharedP ) ]]Q �
term(n). Then there is a Resp-strand
Resp[P, Q, NP.Q, X, secP.Q, sharedP ] of B-height at
least 2 (for someX).

PROOF. Immediate consequence of the unsolicited test
principle, together with the observation that no other
strand emits a term with any subterm of the form
[[ ci ˆA ˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q. �
Proposition 4.4 (Authentication, II) Suppose thatB is
a ATSPECTP.Q-bundle in whichP ’s private signature keyK
is safe, ands ∈ Resp[P, Q, NP.Q, NQ.P , secP.Q, sharedP ]
has B-height 3. Then there existss′ ∈
Init[P, Q, NP.Q, NQ.P , secP.Q, sharedP ] with B-height
3, and〈s, 2〉 ≺ 〈s′, 2〉.

PROOF. This also follows immediately from the inbound
authentication test principle.�

Since 〈s, 2〉 ≺ 〈s′, 2〉, the node〈s′, 1〉, whereNP.Q,
secP.Q, andsharedP originate, is 2-recent for〈s, 2〉.

We have now established the security goals ofATSPECT,
as holding of the individual subprotocolsATSPECTP.Q, ex-
cept the secrecy property forsharedP.Q.

4.2 Independence of the Subprotocols

A primary protocolΣ1 is independentof other proto-
cols (jointly called the secondary protocolΣ2) if the ques-
tion whether the primary protocol achieves a security goal
never depends on whether that secondary protocol is in use.
In [11] we prove that the independence ofΣ1 from Σ2 fol-
lows from “disjoint encryption.” This condition has a some-
what technical definition to allow public key certificates or
Kerberos-style tickets to be created inΣ1 and consumed in
Σ2. However, a simple sufficient condition is “strongly dis-
joint encryption:”

A primary protocolΣ1 and secondary protocol
Σ2 havestrongly disjoint encryptionif, whenever
n1 is a node on some strand ofΣ1, n2 is a node
on some strand ofΣ2, and{|h|}K � (n1), then
{|h|}K 6� (n2).

This is exactly why we included the constantsc1, . . . , c6,
which we write asC.M, etc. LetΣ1 beATSPECTP.Q, and let-
ting Σ2 be all strands of the protocolsATSPECTP′.Q′ , where
P′ 6= P or Q′ 6= Q. If {|h|}K is sent or received on a strand
of Σ1, thenh begins with the constantP.Q. If {|h′|}K′

is sent or received on a strand ofΣ1, thenh begins with
the constantP′.Q′, which is different fromP.Q. Therefore
{|h|}K 6= {|h′|}K′ .

Thus, if ATSPECTP.Q achieves a security goal in isola-
tion, it achieves the same goal when run together with all of
the protocolsATSPECTP′.Q′ . We call the union of all these
protocolsATSPECT†, so we have concluded thatATSPECT†

achieves the goals of the individual protocolsATSPECTP.Q.

5 A Three Party Protocol

At this stage, we need only design the message structure
of the combined, three party protocol. There are numer-
ous possibilities here. For instance, in theory the princi-
palsC, M , andB could simply asynchronously engage in
ATSPECT†, i.e. in interleaved runs of the six subprotocols.
This would not be incorrect, but it would be rather anarchic,
and unlikely to complete transactions promptly.

Instead, we will construct a more structured way of in-
terweaving the protocols. We seek to achieve two goals in
doing so. One is the confidentiality for the shared message
ingredientssharedP , which we postponed in Section 4.1
(Proposition 4.1). The other is

Three-Party Agreement Suppose thatP completes a run
of ATSPECT with apparent interlocutorsQ and R.
ThenQ andR have begun runs ofATSPECTwith

core(sharedP ) = core(sharedQ) = core(sharedR).

In some sense the collection of two-party protocols
ATSPECT† contains the essence of our protocol;ATSPECT

adds only a convenient temporal ordering for the subpro-
tocols, with the added constraint thatThree-Party Agree-
ment holds of this ordering. Alternate orderings could also
serve as well.

5.1 A Triangular Message Structure

The ordering we will present has the message structure
shown in Figure 6. The seven messages flow around a tri-
angle.C, who initiates the exchange, sends three messages,
and the other principals each send two. The sequence of
events is determined by three principles:
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Figure 6. Message Flow for ATSPECT

1. C begins the exchange withC.M andC.B. M andB

begin their subprotocols on receiving messages from
C andM respectively.

2. Each principal, on receiving a component intended for
it in a subprotocol, constructs and transmits the next
component in that subprotocol.

3. Each principal, receiving a component not intended for
it, forwards it to the next principal.

Since some shorthand is useful, we will refer to the message
components in the following way:

SP.Q Payload-bearing units, taking the form

{|P.Q ˆS ˆNP.Q ˆ secP.Q ˆ sharedP |}Q

The subscriptP.Q indicates that this component is pre-
pared byP for Q’s consumption.

AP.Q Authenticators, taking the form

NQ.P ˆ [[ P.Q ˆA ˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q

where the subscriptP.Q indicates that it authenticates
Q’s receipt ofSP.Q.

RP.Q Recency confirmations, taking the form

[[ Q.P ˆR ˆNQ.P ˆNP.Q ˆh(secQ.P ˆ sharedQ) ]]Q

where the subscriptP.Q indicates thatP vouches that
it has freshly generatedNP.Q, and has receivedSQ.P

andAP.Q.

Using the three principles for ordering message compo-
nents, we derive the message sequence shown in Table 2.

1. C → M SC.M ˆSC.B

2. M → B SC.B ˆSM.B ˆSM.C ˆ
AC.M

3. B → C SM.C ˆSB.C ˆSB.M ˆ
AC.M ˆAC.B ˆAM.B

4. C → M SB.M ˆ
AM.B ˆAM.C ˆAB.C ˆ
RC.M ˆRC.B

5. M → B AB.C ˆAB.M ˆ
RC.B ˆRM.B ˆRM.C

6. B → C RM.C ˆRB.C ˆRB.M

7. C → M RB.M

Table 2. Full Message Flow

Each message consists of three portions, containing zero
or more payload-bearing units, followed by zero or more
authenticators and zero or more recency confirmations. In
early messages, payloads predominate, while progressively
authenticators and finally recency confirmations emerge.
We require each principal to check that its shared data
agrees with the shared data sent by the others. InM ’s case
(e.g.), this means thatsharedC , as extracted fromSC.M,
matchessharedB, as extracted fromSB.M, both of which
match the valuesharedM as transmitted byM . B makes
this check before sending message 3;C, before sending
message 4; andM , before sending message 5. They refuse
to continue the protocol by sending new authenticators or
recency components if this check fails.

This protocol requires the party playing a roleP to gener-
ate four nonces, two within the secrecy unitsSP.Q andSP.Q

and two within the authenticatorsAQ.P and AR.P. If we
choose four distinct string constantss1, . . . , s4, then we can
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generate all four nonces from a single random valueN of
reasonable length, using the four hashed valuesh(N ˆ si).

5.2 A Straightened Version

The triangular message flow has a disadvantage from the
implementer’s point of view: it does not match smoothly
with the normal conventions of programming with TCP/IP
and the standard socket library. To solve this problem, we
can revise the message flow, adapting it to use eight mes-
sages:

C
1

−→ M
2

−→ B

B
3

−→ M
4

−→ C

C
5

−→ M
6

−→ B

B
7

−→ M
8

−→ C

This has the advantage that it may be implemented using
a pair of socket connections, one betweenC andM , and
one betweenM and B. There are two disadvantages to
this alternative, first, the extra message, and second, thatM

controls all communication betweenC andB, which occurs
only whenM forwards components.

We regard the triangular protocol of Section 5.1 as the
authoritative version ofATSPECT, although the straightened
eight-message version achieves the same protocol goals.

In practice, it may be unnecessary to use all six subpro-
tocols. For instance, the subprotocolsC.M, C.B, andM.B

may suffice. In this case, we may want to augment the au-
thenticator with some additional payload of information to
be communicated back from responder to initiator. Trun-
cated message flows may be based either on the triangular
scheme or the straightened scheme.

5.3 ATSPECT’s Three-Party Goals

We turn now to the last correctness concerns, whether
ATSPECT achieves confidentiality forsharedP and the
Three-Party Agreementgoal.

Proposition 5.1 (Confidentiality) SupposeB is a bun-
dle in which P completes a run ofATSPECT with inter-
locutorsQ andR, using shared componentsharedP , and
all three principals have safe private decryption keys.

If sharedP is uniquely originating, then there is no node
n ∈ B such that term(n) = sharedP .

PROOF. Apply the honest ideal theorem toκ = (K \ S)−1

and τ = {sharedP } ∪ S, to infer thatIκτ has only reg-
ular entry points. But all regular nodes transmitsharedP

encrypted with a key whose inverse is safe.�
Proposition 5.2 (Three-Party Agreement) SupposeB
is a bundle in whichP completes a run ofATSPECT with
interlocutorsQ andR, using shared componentsharedP .

Then if Q’s signature key is safe,Q has begun a run of
ATSPECTwith P andR, with shared componentssharedQ

andsharedR, and

core(sharedP ) = core(sharedQ) = core(sharedR).

PROOF. Q transmits eitherAP.Q or RP.Q after receiving
both SP.Q andSR.Q; it therefore guarantees toP that the
shared values in these components match (Section 5.1).P

does not transmit its last message until afterP has received
this guarantee fromQ.

Moreover,P has receivedSR.Q and has the shared value
matchessharedQ as contained inSQ.P and sharedP asP

transmitted it inSP.Q andSP.R. sharedQ as transmitted in
SQ.R matches becauseQ is assumed uncompromised. Thus,
all six values match.�
6 Related Work

Woo and Lam’s 1994 paper on protocol design [19] di-
agnosed the faulty design process leading to a protocol in
an earlier paper [18]. They focused on how to safely re-
move information from a “full information” but inefficient
version of a protocol to a less cluttered version. There
are two limitations to their approach. First, no guidance is
given about how to construct a full information protocol to
achieve given goals, especially if these goals are complex,
as inATSPECT. Second, the criteria for safely removing in-
formation seem fragile. One might well wonder whether
they are always valid, or whether there are ambiguities in
how to apply them.

Buttyan et al. [3] describes a BAN-style logic that they
say motivates a design method, but it seems hard to abstract
the method from the example they give.

Perrig and Song’s automated protocol generator
APG [14] uses heuristics related to ours to generate
plausible candidate protocols. APG then calls Athena [16]
to use the strand space model to filter protocols, retaining
those proved to meet their specifications. APG does not,
however, capitalize on protocol independence to decom-
pose the design process and to synthesize protocols from
two-party subprotocols.

The bulk of work on protocol design seems to rely on the
skill and ingenuity of the designer. Notable here is Abadi
and Needham [1], which contains a wealth of information
about cryptographic protocols, what makes them correct,
and how to design them so that they will be. However, they
make no claim to be systematic, nor do they base their ad-
vice on a theory of protocol goals and correctness.

7 Conclusion

In this paper, we have illustrated a protocol design
methodology, based on the authentication tests. The method
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has led to a protocol,ATSPECT, that demonstrably meets
precisely stated security goals. TheATSPECT design pro-
cess required less than three weeks of labor, by contrast with
the major effort invested inSET. ATSPECTappears to pro-
vide security guarantees similar to those ofSET.

The design process has the following steps:

1. Formulate a number of precise goals that the protocol
is intended to meet, such as those of Section 1.2. Goals
that concern a subset of the principals may be achieved
using subprotocols involving only those principals.

2. For each goal, select an authentication test pattern to
use to achieve it, and design a transforming edge that
will satisfy this authentication goal but no other, as in
Section 3.2. Verify the subprotocols achieve the indi-
vidual goals (Section 4.1). Use disjoint encryption to
ensure that subprotocols are independent (Section 4.2).

3. Piece the subprotocols together to construct a single
protocol as illustrated in Sections 5.1–5.2, and justified
in Section 5.3. There is freedom in choosing the com-
bination, allowing trade-offs in number of messages
and in communication pattern.

More refined methods may improve the last step, in which
the subprotocols are combined, by indicating encrypted
components that can be merged or simplified.

Our protocol design method shows how to construct
special-purpose protocols for specific situations in secure
communication or electronic commerce. It allows us to
meet varied trust objectives with a conceptual toolkit jus-
tified by strand spaces and the authentication tests.
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A Strand Space Definitions

This appendix, derived from [9, 12, 17], defines the basic
strand space notions.

A.1 Strands, Strand Spaces, and Origination

Consider a setA, the elements of which, called terms, are
the possible messages to be exchanged between principals
in a protocol. Asubtermrelation� is defined onA.

In a protocol, principals send and receive terms. We rep-
resent transmission of a term with a positive sign, and re-
ception of a term with a negative sign.

Definition A.1 A signed termis a pair 〈σ, a〉 with a ∈ A

and σ one of the symbols+,−. We will write a signed
term as+t or −t. (±A)∗ is the set of finite sequences of
signed terms. We will denote a typical element of(±A)∗ by
〈 〈σ1, a1〉, . . . , 〈σn, an〉 〉.

A strand spaceover A is a setΣ with a trace mapping
tr : Σ → (±A)∗.

By abuse of language, we often treat signed terms as ordi-
nary terms. We represent strand spaces by their underlying
set of strandsΣ.

Definition A.2 Fix a strand spaceΣ.

1. A nodeis a pair 〈s, i〉, with s ∈ Σ and i an integer
satisfying1 ≤ i ≤ length(tr(s)). The set of nodes is
denoted byN .

2. If n = 〈s, i〉 ∈ N then index(n) = i and strand(n) =
s. Define term(n) to be(tr(s))i, i.e. theith signed term
in the trace ofs.

3. There is an edgen1 → n2 if and only if term(n1) =
+a and term(n2) = −a for somea ∈ A. Intuitively,
the edge means that noden1 sends the messagea,
which is received byn2, recording a potential causal
link between those strands.

4. Whenn1 = 〈s, i〉 and n2 = 〈s, i + 1〉 are members
of N , there is an edgen1 ⇒ n2. Intuitively, the edge
expresses thatn1 is an immediate causal predecessor
of n2 on the strands. We writen′ ⇒+ n to mean that
n′ precedesn on the same strand.

5. An unsigned termt occurs inn ∈ N iff t � term(n).

6. SupposeI is a set of unsigned terms. The noden ∈ N
is anentry pointfor I iff term(n) = +t for somet ∈ I,
and whenevern′ ⇒+ n, term(n′) 6∈ I.

7. An unsigned termt originateson n ∈ N iff n is an
entry point for the setI = {t′ : t � t′}.

8. An unsigned termt is uniquely originating ina set of
nodesS ⊂ N iff there is a uniquen ∈ S such thatt
originates onn. The termt is non-originating inS ⊂
N iff there is non ∈ S such thatt originates onn.

N together with both sets of edgesn1 → n2 andn1 ⇒ n2

is a directed graph〈N , (→ ∪ ⇒)〉.

A.2 Bundles and Causal Precedence

A bundle is a finite subgraph of〈N , (→ ∪ ⇒)〉, for
which we can regard the edges as expressing the causal de-
pendencies of the nodes.

Definition A.3 SupposeC = 〈NC , (→C ∪ ⇒C)〉 is a
graph, whereNC ⊂ N ; →C ⊂ →; ⇒C ⊂ ⇒. C is a
bundle if:

1. NC and→C ∪ ⇒C are finite.

2. If n2 ∈ NC and term(n2) is negative, then there is a
uniquen1 such thatn1 →C n2.

3. If n2 ∈ NC andn1 ⇒ n2 thenn1 ⇒C n2.

4. C is acyclic.

In conditions 2 and 3, it follows thatn1 ∈ NC , becauseC is
a graph.

Definition A.4 A noden is in a bundleC = 〈NC ,→C

∪ ⇒C〉, written n ∈ C, if n ∈ NC ; a strands is in C if
all of its nodes are inNC . TheC-heightof a strands is the
largesti such that〈s, i〉 ∈ C.

Definition A.5 If S is a set of edges, i.e.S ⊂→ ∪ ⇒, then
≺S is the transitive closure ofS, and�S is the reflexive,
transitive closure ofS.

Proposition A.6 SupposeC is a bundle. Then�C is a par-
tial order, i.e. a reflexive, antisymmetric, transitive relation.
Every non-empty subset of the nodes inC has�C-minimal
members.

We regard�C as expressing causal precedence, because
n ≺S n′ holds only whenn’s occurrence causally con-
tributes to the occurrence ofn′. When a bundleC is under-
stood, we will simply write�. Similarly, “minimal” will
mean�C-minimal.

A.3 Terms, Encryption, and Freeness

We specialize the set of termsA, assuming given:

• A setT ⊆ A of texts (i.e. atomic messages).
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• A set K ⊆ A of cryptographic keys disjoint fromT,
equipped with a unary operatorinv : K → K. We
assume thatinv is an inverse mapping each member of
a key pair for an asymmetric cryptosystem to the other,
and each symmetric key to itself.

• Two binary operatorsencr : K × A → A and join :
A × A → A.

We follow custom and writeinv(K) asK−1, encr(K, m)
as{|m|}K , andjoin(a, b) asa ˆ b.

We assume thatA is freely generated.

Axiom 1 A is freely generated fromT andK by encr and
join .

Definition A.7 The subterm relation� is defined induc-
tively, as the smallest relation such thata � a; a � {|g|}K

if a � g; anda � g ˆh if a � g or a � h.

By this definition, forK ∈ K, we haveK � {|g|}K only if
K � g already.

A.4 Penetrator Strands

The atomic actions available to the penetrator are en-
coded in a set ofpenetrator traces. They summarize his
ability to discard messages, generate well known messages,
piece messages together, and apply cryptographic opera-
tions using keys that become available to him. A protocol
attack typically requires hooking together several of these
atomic actions.

The actions available to the penetrator are relative to the
set of keys that the penetrator knows initially. We encode
this in a parameter, the set of penetrator keysKP .

Definition A.8 A penetrator tracerelative toKP is one of
the following:

Mt Text message:〈+t〉 wheret ∈ T.

KK Key: 〈+K〉 whereK ∈ KP .

Cg,h Concatenation:〈−g, −h, +g ˆh〉

Sg,h Separation:〈−g ˆh, +g, +h〉

Eh,K Encryption:〈−K, −h, +{|h|}K〉.

Dh,K Decryption:〈−K−1, −{|h|}K , +h〉.

PΣ is the set of all strandss ∈ Σ such thattr(s) is a pene-
trator trace.

A strands ∈ Σ is apenetrator strandif it belongs toPΣ,
and a node is apenetrator nodeif the strand it lies on is a
penetrator strand. Otherwise we will call it anon-penetrator
or regular strand or node. A noden is M, C, etc. node ifn
lies on a penetrator strand with a trace of kindM, C, etc.

Contents

1 ATSPECT Protocol Goals 1
1.1 Protocol Participants . . . . . . . . . . . . 1
1.2 Protocol Goals . . . . . . . . . . . . . . . 2

2 The Authentication Tests 2
2.1 Strand Spaces . . . . . . . . . . . . . . . . 2
2.2 The Authentication Test Idea . . . . . . . . 2
2.3 Recency . . . . . . . . . . . . . . . . . . . 3

3 Authentication Tests and Protocol Design 4
3.1 Payloads and Confidentiality . . . . . . . . 4
3.2 Designing the Two-Party Subprotocols . . . 4
3.3 Distinguishing the Subprotocols . . . . . . 6

4 Correctness 6
4.1 Correctness of the Subprotocols . . . . . . 6
4.2 Independence of the Subprotocols . . . . . 7

5 A Three Party Protocol 7
5.1 A Triangular Message Structure . . . . . . 7
5.2 A Straightened Version . . . . . . . . . . . 9
5.3 ATSPECT’s Three-Party Goals . . . . . . . 9

6 Related Work 9

7 Conclusion 9

A Strand Space Definitions 11
A.1 Strands, Strand Spaces, and Origination . . 11
A.2 Bundles and Causal Precedence . . . . . . 11
A.3 Terms, Encryption, and Freeness . . . . . . 11
A.4 Penetrator Strands . . . . . . . . . . . . . . 12

12


