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Abstract— Here we present an anytime algorithm for clearing
an environment using multiple searchers. Prior methods in
the literature treat multi-agent search as either a worst-case
problem (i.e., clear an environment of an adversarial evader
with potentially infinite speed), or an average-case problem (i.e.,
minimize average capture time given a model of the target’s
motion). We introduce an algorithm that combines finite-horizon
planning with spanning tree traversal methods to generate plans
that clear the environment of a worst-case adversarial target and

have good average-case performance considering a target motion
model. Our algorithm is scalable to large teams of searchers
and yields theoretically bounded average-case performance. We
have tested our proposed algorithm through a large number of
experiments in simulation and with a team of robot and human
searchers in an office building. Our combined search algorithm
both clears the environment and reduces average capture times
by up to 75% when compared to a purely worst-case approach.

I. INTRODUCTION

Imagine you are the leader of a team of agents (humans,

robots, and/or virtual agents), and you enter a building looking

for a person, moving object, or contaminant. You wish either

to locate a target in the environment or authoritatively say that

no target exists. Such a scenario may occur in urban search and

rescue [1], military operations, network decontamination [2],

or even aged care [3]. In some special cases, you may have a

perfect model of how the target is moving; however, in most

cases you will only have an approximate model or even no

model at all. To complicate the situation further, the target

may be adversarial and actively avoiding being found.

Known algorithms would force you, the leader, to make a

choice in this situation. Do you make the worst-case assump-

tion and choose to treat the target as adversarial? This would

allow you to utilize graph search algorithms to guarantee

finding the target (if one exists), but it would not allow you to

take advantage of any model of the target’s motion. As a result

your search might take a very long time. Or do you decide to

trust your motion model of the target and assume that the target

is non-adversarial? This assumption would allow the use of

efficient (average-case) search methods from the optimization

literature, but it would eliminate any guarantees if the model is

inaccurate. In this case, your target may avoid you entirely. It

is necessary to make one of these choices because no existing

method provides fast search times and also guarantees finding

a target if the model is wrong.

Fig. 1. Volunteer firefighter searching with a Pioneer mobile robot. The robot
and humans exectue a combined schedule that both clears the environment
of an adversarial target and optimizes a non-adversarial target motion model.
Our decentralized algorithm allows for robots and humans flexibly to fill the
different search roles. The agents share their paths and an estimation of the
target’s position.

In this paper, we bridge the gap between worst-case (or

guaranteed) search and average-case (or efficient) search.

We propose a novel algorithm that augments a guaranteed

clearing schedule with an efficient component based on a

non-adversarial target motion model. We extend a guaranteed

search spanning tree traversal algorithm to optimize clearing

time, and we augment it with a decentralized finite-horizon

planning method in which agents implicitly coordinate by

sharing plans. We show that the average-case performance

of the combined algorithm is bounded, and we demonstrate

how our algorithm can be used in an anytime fashion by

providing additional search schedules with increasing runtime.

This produces a family of clearing schedules that can easily

be selected before the search or as new information becomes

available during the search. The contribution of this paper

is the first algorithm to provide guaranteed solutions to the

clearing problem and additionally improve the performance

of the search with fortuitous information.

The remainder of this paper is organized as follows. We first

discuss related work in both worst-case search and average-

case search highlighting the lack of a combined treatment



(Section II). We then define both the worst-case and average-

case search problems and show the formal connection between

the two (Section III). This leads us to the presentation of our

search algorithm, including a description of the finite-horizon

and spanning tree traversal components, as well as theoretical

analysis of performance bounds (Sections IV and V). We

then test our algorithm through simulated trials and through

experiments on a heterogeneous human/robot search team

(Section VI). Finally, we conclude and discuss avenues for

future work (Section VII).

II. RELATED WORK

As mentioned above, literature in autonomous search can

be partitioned into average-case and worst-case problems. The

initial formulation of the worst-case graph search problem is

due to Parsons [4]. He described a scenario where a team

of agents searches for an omniscient, adversarial evader with

unbounded speed in a cave-like topology represented by a

graph. In this formulation, the edges of the graph represent

passages in the cave, and the nodes represent intersections. The

evader hides in the edges (passages) of the graph, and it can

only move through nodes that are not guarded by searchers.

This problem was later referred to as edge search since the

evader hides in the edges of the graph. Parsons defined the

edge search number of a graph as the number of searchers

needed to guarantee the capture of an evader on that graph.

Megiddo et al. later showed that finding the edge search

number is NP-complete for arbitrary graphs [5].

Several variations of the edge search problem appear in the

literature that place restrictions on the form of the cleared set:

the nodes on the graph that have been cleared of a potential

target. Connected edge search requires that the cleared set be a

connected subgraph at all times during the search. Barrière et

al. argued that connected edge search is important for network

decontamination problems because decontaminating agents

should not traverse dangerous contaminated parts of the graph.

They also formulated a linear-time algorithm that generates

search schedules with the minimal number of searchers on

trees [2].

Unfortunately, edge search does not apply directly to many

robotics problems. The possible paths of an evader in many

indoor and outdoor environments in the physical world cannot

be accurately represented as the edges in a graph.1 For this rea-

son, robotics researchers have studied alternative formulations

of the guaranteed search problem. LaValle et al. formulated

the search problem in polygonal environments and presented

a complete algorithm for clearing with a single searcher [6].

However, their algorithm shows poor scalability to large teams

and complex environments. Gerkey et al. demonstrate how a

stochastic optimization algorithm (PARISH) can be used to

coordinate multiple robotic searchers in small indoor environ-

ments [7]. Though it is more scalable than complete algo-

rithms, PARISH still requires considerable computation and

1One exception would be a road network, which could be modeled as an
edge search problem. The application of our combined algorithm to these
types of environments is left for future work.

communication between searchers, which makes it difficult to

apply to complex environments.

In our prior work, we examined the node search problem

in which the evader hides in the nodes of a graph, and we

showed how search problems in the physical world can be

represented as node search.2 We proposed the Guaranteed

Search with Spanning Trees (GSST) anytime algorithm that

finds connected node search clearing schedules with a near-

minimal number of searchers [9]. GSST is the first anytime

algorithm for guaranteed search, and it is linearly scalable in

the number of nodes in the graph, which makes it scalable

to large teams and complex environments. Note that the

algorithms described above (including our own prior work)

do not optimize the time to clear the environment, and they

do not take into account a model of the target’s movement

beyond a worst-case model.

A different, but closely related, search problem arises if we

relax the need to deal with an adversarial target. If the target’s

motion model is non-adversarial and approximately known

to the searchers, the searchers can optimize the average-case

performance of their search schedule given this motion model.

Assuming a Markovian motion model (i.e., the target’s next

position is dependent only on the target’s current position), the

average-case search problem can be expressed as a Partially

Observable Markov Decision Process (POMDP). Near-optimal

solutions to fairly large POMDPs are possible [10]; however,

the size of search problems scales exponentially in the number

of searchers. Thus, search problems with even moderately

sized teams are outside the scope of general POMDP solvers.

In response to the intractability of optimal solutions, re-

searchers have proposed several approximation algorithms for

average-case search. Sarmiento et al. examined the case of

a stationary target and presented a scalable heuristic [11].

Singh et al. discussed the related problem of multi-robot

informative path planning and showed a scalable constant

factor approximation algorithm in that domain [12]. In our

prior work, we extended these approximation guarantees to

average-case search with our Finite-Horizon Path Enumera-

tion with Sequential Allocation (FHPE+SA) algorithm [13].

Our algorithm provides near-optimal performance in our test

domains, but it does not consider the possibility that the

model is inaccurate. Thus, the search may last for infinite

time if the target is acting in a way that is not properly

modeled. For instance, if a target is modeled as moving but is

actually stationary, the searchers may never examine parts of

the environment because they believe the target would have

moved out of them.

To the best of our knowledge, no search algorithm exists

that can clear an environment of a worst-case target and

improve average-case search performance based on additional

2Note that several alternative versions of “node search” appear in the
literature (see Alspach [8] for a survey). In one formulation, the evader resides
in the edges of the graph, and these edges are cleared by trapping (i.e., two
searchers occupy the adjacent nodes). In another, the pursuers have knowledge
of the evader’s position while attempting to capture the evader by moving onto
the same node.



information (e.g., a target motion model or online sensor data).

Our algorithm fills this gap.

III. PROBLEM SETUP

In this section, we define the search problem with respect

to both a worst-case adversarial target and a non-adversarial

target. We also show the formal connection between worst-

case search and the guaranteed search problem found in the

literature. Assume we are given K searchers and a graph

G(N, E) with |N | nodes and |E| edges. The nodes in the

graph represent possible locations in the environment, and

the edges represent connections between them (see Figure 2

for examples in indoor environments). At all times t =
1, 2, . . . , T , searchers and a target exist on the nodes of this

graph and can move through an edge to arrive at another

node at time t + 1. Given a graph of possible locations and

times, we can generate a time-evolving, time-unfolded graph

G′(N ′, E′), which gives a time-indexed representation of the

nodes in the environment (the formal definition of G′ is given

in the Appendix).

The searchers’ movements are controlled, and they are

limited to feasible paths on G′. We will refer to the path

for searcher k as Ak ⊂ N ′, and their combined paths as

A = A1 ∪ . . .∪AK . The searchers receive reward by moving

onto the same node as the target. This reward is discounted

by the time at which this occurs. Given that a target takes

path Y , the searchers receive reward FY (A) = γtA , where

tA = min {t : (m, t) ∈ A ∩ Y } (i.e., the first time at which

path Y intersects path A), with the understanding that γ ∈
(0, 1), min ∅ = ∞, and γ∞ = 0. Thus, if the paths do not

intersect, the searchers receive zero reward.

This paper considers two possible assumptions on the tar-

get’s behavior, which yield the average-case and worst-case

search problems. If we make a non-adversarial assumption on

the target’s behavior, we can utilize a target motion model

independent of the locations of the searchers. This yields a

probability P (Y ) for all possible target paths Y ∈ Ψ. We can

now define the optimization problem in Equation 1. Equation 1

maximizes the average-case reward given a motion model

defined by P (Y ). Note that if the target’s motion model obeys

the Markov property, we can estimate a probability distribution

of its location efficiently using matrix algebra.

A∗ = argmax
A

∑

Y ∈Ψ

P (Y )FY (A) (1)

The average-case optimization problem in Equation 1 does

not consider the possibility that the motion model may be

incorrect. An alternative assumption on the target’s behavior is

to assume that it actively avoids the searchers as best possible.

For the search problem, this implies that the target chooses

path Y that minimizes FY (A). This yields the game theoretic

optimization problem in Equation 2. Here, the searchers’ goal

is to maximize the worst-case reward if the target acts as best

it can to reduce reward.

A∗ = argmax
A

min
Y

FY (A) (2)

It is important to note that this formulation assumes that

the searchers have a “perfect” sensor that will always detect

the target is it resides in the same cell. We can relax this

assumption somewhat by modeling a non-unity capture proba-

bility into the average-case reward function. For the worst-case

reward function, the searchers could run the schedule several

times to generate a bound on the worst-case probability of

missing the target (i.e., each schedule will be guaranteed to

have some nonzero probability of locating the target).

Given the worst-case and average-case assumptions on

the target’s behavior (either of which could be correct), the

searchers’ goal is to generate a feasible set of paths A such

that the reward of both optimization problems are maximized.

One option is to use scalarization to generate a final weighted

optimization problem as shown in Equation 3. The variable

α is a weighting value that can be tuned depending on how

likely the target is to follow the average-case model.

A∗ = argmax
A

α
∑

Y ∈Ψ

P (Y )FY (A) + (1− α)min
Y

FY (A),

(3)

where α ∈ [0, 1] is a weighting variable to be tuned based on

the application.

While scalarization is a viable approach, we argue that it

makes the problem more difficult to solve. Note that the under-

lying function FY (A) is nondecreasing and submodular (see

Appendix for definition) as is its expectation in Equation 1. In

fact, Equation 1 is the efficient search (MESPP) optimization

problem as defined by Hollinger and Singh [13], which can be

optimized using the FHPE+SA algorithm. FHPE+SA yields a

bounded approximation and has been shown to perform near-

optimally in practice. In contrast, minY FY (A) is nondecreas-

ing but is not submodular. Thus, FHPE+SA is not bounded

and, in fact, performs poorly in practice. Furthermore, Krause

et al. show that game theoretic sensor placement problems

of similar form to Equation 2 do not yield any bounded

approximation (unless P = NP ) [14]. Thus, scalarization

combines an easier problem with a more difficult problem,

which prevents exploiting the structure of the easier MESPP

problem.

We propose treating the combined search problem as a

resource allocation problem. More specifically, some searchers

make the average-case assumption while others make the

worst-case assumption. One case where this approach can

improve the search schedule is in the (very common) scenario

where a portion of the map must be cleared before progressing.

In this scenario, several searchers are often assigned to guard

locations while waiting for the other searchers to finish clear-

ing. Some of these guards can be used to explore the uncleared

portion of the map. An example of this case is shown in our

human-robot experiments in Section VI.

If the searchers are properly allocated to the average-case

and worst-case tasks, we can generate search schedules with

good performance under both assumptions. The decentralized

nature of the multi-robot search task makes this approach

feasible by allowing different robots to optimize the two



separate components of the combined problem. The question

now becomes: how many searchers do we assign to each

task? Several observations relating worst-case search to graph

theoretic node search can help answer this question.

The graph theoretic node search optimization problem is

to find a feasible set of paths A for a minimal number of

searchers Kmin such that A is a clearing path [9, 2]. In other

words, find a path that clears the environment of an adversarial

evader using the smallest number of searchers. Propositions 1

and 2 show the connection between node clearing and the

worst-case search problem defined in Equation 2.3

Proposition 1: The value minY FY (A) > 0 if and only if A

is a clearing path (i.e., a set of paths that clear the environment

of any target within it).

Proof: Assume that A is not a clearing path and

minY FY (A) > 0. Since A is not a clearing path, this implies

that one or more nodes in G are contaminated (i.e., may

contain a target) at all times t = 1, . . . , T . W.l.o.g. let Y

be a target path that remains within the contaminated set for

all t. Such a path is feasible due to the assumptions of the

evader and the recontamination rules. The contaminated set at

a given time is by definition not observed by the searchers at

that time. Thus, A ∩ Y = ∅, which implies that FY (A) = 0
for these A and Y . If the target chooses this path, we have a

contradiction.

Now, assume that A is a clearing path and minY FY (A) =
0. This assumption implies that A ∩ Y = ∅. By definition of

clearing path, the contaminated set of G = ∅ at some time

T . However, this implies that A ∩ Y 6= ∅ or else there would

exist a contaminated cell. Again we have a contradiction.

Proposition 2: For a given number of searchers K and

graph G, maxA minY FY (A) = 0 if and only if K < s(G),
where s(G) is the node search number of G.

Proof: The value of s(G) implies that a clearing schedule

exists for all K ≥ s(G). By Proposition 1, this implies that

a schedule A exists such that minY FY (A) > 0 for all K ≥
s(G).

Similarly, the value of s(G) implies that a clearing schedule

does not exist with K < s(G). By Proposition 1, this implies

that a schedule A does not exist such that minY FY (A) > 0
for K < s(G).

Proposition 1 shows that any non-zero solution to the

optimization problem in Equation 2 will also be a node search

solution with K searchers. Proposition 2 shows that s(G), the

node search number of G, will affect the optimization problem

in Equation 2; if K < s(G), then minY FY (A) = 0 for all

A. Drawing on this analysis, we now know that at least s(G)
searchers must make the worst-case assumption to generate a

schedule with any nonzero worst-case reward. This motivates

the use of guaranteed search algorithms that minimize the

attained search number. However, current guaranteed search

algorithms in the literature do not minimize clearing time. We

show how this limitation can be overcome in the next section.

3Note that Propositions 1 and 2 hold for both monotone and non-monotone
clearing schedules. In other words, the propositions hold regardless of whether
recontamination is allowed in the schedule.

IV. ALGORITHM DESCRIPTION

Drawing off the observations in the previous section, we

can design an algorithm that both clears the environment of

an adversarial target and performs well with respect to a

target motion model. The first step in developing a combined

algorithm is to generate a guaranteed search schedule that

optimizes clearing time with a given number of searchers. We

extend the Guaranteed Search with Spanning Trees (GSST)

algorithm [9] to do just this.

The GSST algorithm is an anytime algorithm that lever-

ages the fact that guaranteed search is a linear-time solvable

problem on trees. Barrière et al. show how to generate a

recursive labeling of a tree (we will refer to this labeling as B-

labeling) in linear-time [2]. Informally, the labeling determines

how many searchers must traverse a given edge of the tree

in the optimal schedule (see Algorithm 1). If an edge label is

positive, it means that one or more searchers must still traverse

that edge to clear the tree. From the labeling, a guaranteed

search algorithm can be found using the minimal number

of searchers on the tree. GSST generates spanning trees of

a given graph and then B-labels them. The labeling is then

combined with the use of “guards” on edges that create cycles

to generate a guaranteed search schedule on arbitrary graphs

(see reference [9] for more detail). However, GSST gives

no mechanism for utilizing more searchers than the minimal

number. Thus, it does not optimize clearing time.

Algorithm 1 B-labeling for Trees

1: Input: Tree T (N, E), Start node b ∈ N

2: O ← leafs of T

3: while O 6= ∅ do

4: l← any node in O, O← O \ l

5: if l is a leaf then

6: e← only edge of l, λ(e) = 1
7: else if l has exactly one unlabeled edge then

8: e← unlabeled edge of l

9: e1, . . . , ed ← labeled edges of l

10: λm ← max{λ(e1), . . . , λ(ed)}
11: if multiple edges of l have label λm then

12: λ(e)← λm + 1
13: else

14: λ(e)← λm

15: end if

16: if l 6= b and parent(l) ready for labeling then

17: O ← O ∪ parent(l)
18: end if

19: end if

20: end while

21: Output: B-labeling λ(E)

Algorithm 2 shows how GSST can be modified to improve

clearing time with additional searchers. The algorithm uses B-

labeling to guide different groups of searchers into subgraphs

that are cleared simultaneously. Algorithm 2 does not explic-

itly use guards on edges creating cycles; the guards are instead



Algorithm 2 Guardless Guaranteed Search with Spanning

Trees (G-GSST)

1: Input: Graph G, Spanning tree T with B-labeling,

Searchers Kg

2: while graph not cleared do

3: for all searchers do

4: if moving will recontaminate then

5: Do not move

6: else if positive adjacent edge label exists then

7: Travel along edge with smallest positive label

8: Decrement edge label

9: else

10: Move to closest node (on tree) with positive label

11: end if

12: end for

13: if no moves possible without recontamination then

14: Return failure

15: end if

16: end while

17: Return feasible clearing schedule

determined implicitly from the B-labeling. Thus, we refer to it

as Guardless GSST or G-GSST. Note that the use of B-labeling

allows the searchers to perform the schedule asynchronously.

For example, a searcher who arrives at a node does not need

to wait for other searchers to finish their movement before

clearing the next node (assuming that the move does not cause

a recontamination).

Unlike other algorithms in the literature, G-GSST can be

combined with model-based search algorithms to generate

a combined search schedule. We augment G-GSST with

Finite-Horizon Path Enumeration and Sequential Allocation

(FHPE+SA) to yield our combined search algorithm. In short,

FHPE+SA algorithm has each searcher plan its own path on a

finite-horizon and then share that path with other searchers in a

sequential fashion (see reference [13] for a formal description).

In other words, one searcher plans its finite-horizon path and

shares it with the other searchers; then another searcher plans

its finite-horizon path and shares it, and so on. After the initial

sequential allocation, searchers replan asynchronously as they

reach replanning points in the environment.

Algorithm 3 shows how G-GSST can be augmented with

FHPE+SA to yield a combined algorithm. An important qual-

ity of the combined search is that, depending on the actions of

the FHPE+SA searchers, the schedule may be non-monotone

(i.e., it may allow for recontamination). However, since the

schedule of the G-GSST searchers is monotone, the search will

still progress towards clearing the environment of a worst-case

target.

It is important to note that the schedule of the G-GSST

searchers (i.e., the searchers performing the guaranteed sched-

ule) can be generated in conjunction with the FHPE+SA plans.

For instance, we can modify the G-GSST searcher schedule

based on the actions of the FHPE+SA searchers by pruning

Algorithm 3 Combined G-GSST and FHPE+SA search

1: Input: Graph G, Spanning tree T with B-labeling, Total

searchers K , Guaranteed searchers Kg ≤ K

2: while graph not cleared do

3: for all searchers do

4: if guaranteed searcher then

5: Run next step of G-GSST

6: else

7: Run FHPE+SA step

8: end if

9: end for

10: end while

Algorithm 4 Anytime combined search algorithm

1: Input: Graph G, Searchers K

2: while time left do

3: Generate spanning tree T of G and B-label it

4: for Kg = K down to Kg = 1 do

5: Run Algorithm 3 with Kg guaranteed searchers and

K −Kg efficient searchers

6: if clearing feasible then

7: Store strategy

8: else

9: Break

10: end if

11: end for

12: end while

13: if strategies stored then

14: Return strategy with maximal αRavg + (1− α)Rworst

15: else

16: Run FHPE+SA to maximize Ravg (cannot clear)

17: end if

portions of the map that happen to be cleared by the FHPE+SA

searchers.4 This provides a tighter coupling between the

FHPE+SA searchers and the G-GSST searchers. Alternative

methods for integrating the search plans are discussed in

Section VII.

Finally, we generate many spanning trees (similarly to

the GSST algorithm) to develop many search schedules (see

Algorithm 4). These schedules range in quality and also

tradeoff worst-case and average-case performance. At any

time, the user can stop the spanning tree generation and choose

to execute the search schedule that best suits his/her needs.

This yields an anytime solution to the worst-case/average-case

search problems: one that continues to generate solutions with

increasing runtime.

4Note that implementing this extension requires ensuring that ignoring a
portion of the map cleared by the FHPE+SA searchers does not lead to
later recontamination. This can be determined by dynamically relabeling the
spanning tree and taking into account the cleared set. Since labeling is a
linear-time operation, this does not significantly affect runtime.



V. THEORETICAL ANALYSIS

A. Average-Case Performance Bounds

We now show that the average-case component of the

combined algorithm is a bounded approximation. Let A be

the set of nodes visited by the FHPE+SA algorithm. Let O

be the set of nodes visited by the optimal average-case path

(maximizes Equation 1), and let Ok be the set of nodes visited

by searcher k on the optimal path. The average-case reward is

bounded as in Theorem 1. This bound is simply the FHPE+SA

bound for K −Kg searchers.

Theorem 1:

FAC(A) ≥
FAC(O1 ∪ . . . ∪OK−Kg

)− ǫ

2
, (4)

where K is the total number of searchers, Kg is the number

of searchers used for the clearing schedule, and ǫ is the finite-

horizon error (ǫ = Rγd+1, where R is the reward received

for locating the target, γ is the discount factor, and d is the

search depth). FAC(·) =
∑

Y ∈Ψ
P (Y )FY (·) as described in

Section III.

Proof: This bound is immediate from the theoretical

bounds on sequential allocation [12], the monotonic submod-

ularity of FAC [13], and the fact that K − Kg searchers

are deployed to perform sequential allocation. The addition

of G-GSST searchers cannot decrease FAC(A) due to the

monotonicity of FAC and the monotonicity of the cleared set

in the G-GSST schedule.

We can extend the FHPE+SA component of the combined

algorithm to optimize over several different known models. If

there are M models being considered, and each has a probabil-

ity of β1 . . . βM , we can optimize the weighted average-case

objective function in Equation 5.

F (A) = β1

∑

Y ∈Ψ

P1(Y )FY (A)+ . . .+βM

∑

Y ∈Ψ

PM (Y )FY (A),

(5)

where β1+. . .+βM = 1, and Pm(Y ) describes the probability

of the target taking path Y if it is following model m.

If all models obey the Markov assumption, this linear

combination of models can be estimated using matrices as

if it were a single model without an increase in computation.

Additionally, monotonic submodularity is closed under non-

negative linear combination, so the theoretical bounds hold in

this extended case.

B. Computational Complexity

The labeling component of G-GSST requires visiting each

node once and is O(N), where N is the number of nodes in the

search graph. The G-GSST traversal is O(NKg), where Kg

is the number of guaranteed searchers. Finally, the FHPE+SA

component replanning at each step is O(N(K−Kg)b
d), where

b is the average branching factor of the search graph, and d is

the FHPE search depth. Thus, generating a single plan with the

combined algorithm is O(N + NKg + N(K −Kg)b
d). This

is linear in all terms except the FHPE search depth, which

Fig. 2. Example floorplans (left) and graphical representations (right) of
environments used for simulated coordinated search. The office (top) required
three searchers to clear, and the museum (bottom) required five. Starting cells
are denoted with a blue square.

often can be tuned to a very low number depending on the

application.

VI. EXPERIMENTAL RESULTS

A. Simulated Results

We performed simulated testing of our combined search

algorithm in two complex environments. The first map has two

major cycles representing the hallways in a single floor of the

Newell-Simon Hall office building. The second map is that

of the U.S. National Gallery museum, which contains many

cycles. Increasing the number of cycles in a graph complicates

the search problem because it increases the paths by which

the target can avoid being found. Figure 2 shows floorplans

of these environments as well as the resulting search graphs.

We ran our algorithm on 1000 random spanning trees on

both maps, and we compared these results to the schedules

found by pure average-case and pure worst-case algorithms.

Table I gives a summary of these results. The first row shows

the average-case steps (i.e., at each step one or more searchers

moves between nodes) to capture a randomly moving target

using FHPE+SA with all searchers.5 This strategy does not

have worst-case guarantees if the model is incorrect. The sec-

ond row shows the best clearing time using GSST on 10,000

random spanning trees. Note that GSST does not optimize

for clearing time and only utilizes the minimal number of

searchers required to clear. The results show that our combined

algorithm yields much lower clearing times than those found

with GSST. This is due to the use of additional searchers as in

Algorithm 2. In addition, our combined algorithm reduces the

average capture time by over 75% in the office when compared

to GSST. Furthermore, a worst-case guarantee in the office can

be gained by sacrificing only one step of average capture time.

5The expected capture steps for FHPE+SA were determined over 200
trials with a randomly moving target. The expected capture steps for the
combined algorithm were computed in closed form. This is possible because
the environment is cleared.



TABLE I

AVERAGE-CASE AND WORST-CASE CAPTURE STEPS COMPARISON IN

MUSEUM AND OFFICE. THE AVERAGE-CASE IS THE EXPECTED STEPS TO

CAPTURE A RANDOMLY MOVING TARGET. THE WORST-CASE IS THE

NUMBER OF STEPS TO CLEAR THE ENVIRONMENT.

Office (K = 5) Museum (K = 7)

FHPE+SA [13] A.C. 4.8 W.C. ∞ A.C. 9.4 W.C. ∞
GSST [9] A.C. 24.7 W.C. 72 A.C. 21.8 W.C. 56

Combined (α = 0.5) A.C. 14.0 W.C. 36 A.C. 17.3 W.C. 41
Combined (α = 0.75) A.C. 7.2 W.C. 47 A.C. 13.5 W.C. 45
Combined (α = 0.99) A.C. 5.9 W.C. 77 A.C. 11.6 W.C. 61

The user can determine the weighting of average-case vs.

worst-case performance by tuning the value of the α parameter.

This explores the Pareto-optimal frontier of solutions. This

frontier forms a convex hull of solutions, any of which can

be selected after runtime. Figure 3 gives a scatter plot of

average-case versus worst-case capture steps for all feasible

schedules. The figure also shows the number of G-GSST

searchers, Kg, used for each data point. Note that the total

number of searchers is fixed throughout the trials, and the

remainder of the searchers performed FHPE+SA. All results

with lowest average-case capture times are from the lowest

Kg. This is because more searchers are used for average-

case search and less for clearing. This demonstrates the utility

of using FHPE+SA searchers in the schedule. Similarly, the

lowest clearing times are with Kg = K (i.e., all searchers are

guaranteed searchers). Note that better solutions yield points

to the left/bottom of these plots.

B. Human-Robot Teams

To examine the feasibility of our algorithm, we ran several

experiments with a human/robot search team. We conducted

these experiments on a single floor of an office building

as shown in Figure 4. Two humans and a single Pioneer

robot share their position information through a wireless

network, and the entire team is guided by a decentralized

implementation of Algorithm 3. The robot’s position is deter-

mined by laser AMCL, and it is given waypoints through the

Player/Stage software [15]. The humans input their position

through the keyboard, and they are given waypoints through

a GUI.

In the first experiment, all three searchers (humans and

robots) were assigned as G-GSST searchers. This configu-

ration takes 178 seconds to clear the floor of a potential

adversary, and it yields an expected capture time of 78 seconds

w.r.t. the random model. We also calculated the expected

capture time if the model is 50% off (i.e., the target is

moving 50% slower than expected). With this modification,

the expected capture time increases to 83 seconds.

In the second experiment, the mobile robot was switched

to an FHPE searcher, which took 177 seconds to clear and

yielded an expected capture time of 73 seconds. The expected

capture time with a 50% inaccurate model was 78 seconds.

Thus, switching the mobile robot to an FHPE searcher yields a
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Fig. 3. Scatter plot of search schedules from the combined algorithm.
Each data point represents a schedule generated by a different spanning tree
input to Algorithm 3. The data points are colored based on the allocation
of searchers to the guaranteed and efficient search roles. The total searchers
remains constant throughout the trials.

5 second decrease in expected capture time without sacrificing

any worst-case capture time. The 5 second decrease remains

even if the model is inaccurate. This shows that the schedules

generated in this scenario are fairly robust to changes in the

target’s motion model.

In both experiments, the schedule clears the left portion of

the map first and then continues to clear the right portion.

Accompanying videos are available at the following URL that

include playback of both simulated and human-robot results.

http://www.andrew.cmu.edu/user/gholling/RSS09/

In this environment, the assignment of the robot as an

FHPE searcher does not increase the clearing time. The reason

for this is that the robot spends a significant portion of the

schedule as a redundant guard. Consequently, the right portion

of the map is not searched until very late in the clearing

schedule. In contrast, when the robot is used as an FHPE

searcher, the right hallway is searched early in the schedule,

which would locate a non-adversarial target moving in that

area. This confirms our simulated results.

In addition, our results with a human/robot team demon-

strate the feasibility of the communication and computational

requirements of our algorithm on a small team. The initial plan

generation stage is distributed among the searcher network,

and once stopped by the user, the best plan is chosen. During

execution, there is a broadcast communication requirement as

the searchers share their positions on the search graph. This

small amount of information was easily handled by a standard

wireless network in an academic building.



Fig. 4. Map of office building (top) used for experiments with a human/robot
search team, and corresponding search graph (bottom right). Pioneer robot
searcher (bottom left) with laser rangefinder and camera. The robot used the
laser rangefinder for localization, and it used the camera to provide video feed
to the humans. The robot and human team started at the entrance in cell 8.

VII. CONCLUSION AND FUTURE WORK

This paper has presented an algorithm for generating multi-

agent search paths that both clear an environment of a potential

adversary and optimize over a non-adversarial target motion

model. Our algorithm bridges the gap between guaranteed

search and efficient search by providing a combined search

algorithm with both worst-case and average-case guarantees.

We have shown through simulated experiments that our algo-

rithm performs well when compared to state-of-the-art search

algorithms in both guaranteed and efficient search. In addition,

we have demonstrated the feasibility of our algorithm on a het-

erogeneous human/robot search team in an office environment.

Our current algorithm does not directly use a weighting

variable α to incorporate confidence in the model. Instead,

we cache many solutions and allow the user to choose one

at runtime in an anytime fashion. One method for directly

incorporating α would be first to determine the lowest number

of searchers capable of clearing and assign the remainder of

the searchers proportional to α. An alternative would be to

have searchers switch between G-GSST and FHPE+SA during

the schedule with some probability related to α. This would

allow for dynamic switching but would require careful tuning

of the switching function.

Additional future work includes more extensive robustness

testing with inaccurate motion models and analysis of the

communication requirements with very large search teams.

Future field testing includes applications in emergency re-

sponse, military reconnaissance, and aged care. Combining

search guarantees against an adversarial target with efficient

performance using a model has the potential to improve

autonomous search across this wide range of applications. This

paper has contributed the first algorithm and results towards

this goal.
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APPENDIX: DEFINITIONS

Definition 1: The time-augmented search graph G′ is a

directed graph and is obtained from G as follows: if u is

a node of G then (u, t) is a node of G′, where t = 1, 2, ..., T

is the time stamp; if uv is an edge of G, then (u, t) (v, t + 1)
and (v, t) (u, t + 1) are directed edges of G′ for every t. There

is also a directed edge from (u, t) to (u, t + 1) for all u and

t. In other words, G′ is a “time evolving” version of G and

every path in G′ is a “time-unfolded” path in G.

Definition 2: A function F : P(N ′) → ℜ+
0 is called

nondecreasing iff for all A, B ∈ P(N ′), we have

A ⊆ B ⇒ F (A) ≤ F (B).
Definition 3: A function F : P(N ′) → ℜ+

0 is called

submodular iff for all A, B ∈ P(N ′) and all singletons

C = {(m, t)} ∈ P (N ′), we have

A ⊆ B ⇒ F (A ∪ C)− F (A) ≥ F (B ∪ C)− F (B).


