
Refining a Graphical User Interface

Janet Feigenspan
Otto-von-Guericke-University

Magdeburg, Germany
janet.feigenspan@st.ovgu.de

Abstract

Stepwise refinement has been proven useful in develop-
ing complex programs by incrementally adding features to
a basic program.

The importance of graphical user interfaces is known
since the development of personal computers. Users should
be able to use a program without putting much effort in
learning how to use it.

In this work, we want to answer the question if refining
a graphical user interface using feature oriented program-
ming offers a practical approach.

1 Introduction

In the past few years, feature-oriented programming
(FOP) was suggested for the stepwise refinement of com-
plex programs like software product lines (SPLs). It over-
comes problems of object-oriented programming (OOP),
especially the problem of crosscutting concerns, which
makes it difficult to implement and extend software mod-
ularly [5], a crucial property for implementing SPLs [7].

FOP is used mainly for refining the functionality of a
program, but to the best of our knowledge, there are only
few case studies on refining a graphical user interface
(GUI) [5].

In everyday life, we interact with many technical devices
via their user interfaces. Technical devices can be as sim-
ple as a door (even they can be tricky to use, see [13] for
an example), or as complex as a personal computer. In re-
spect to computer programs, the user interface is commonly
a GUI. For efficiency reasons, it is desirable that the user in-
terface is well designed. According to Spolsky [15], a GUI
is well designed, when a program behaves exactly how the
user thought it would.

Taking this into account, it is preferable that GUIs should
be able to be adapted to the user’s needs. Just consider the
graphical desktop of a computer: You can add shortcuts to
folders, programs, or files. You can resize and move opened

windows so that your desktop looks exactly like you want it
to be. As another example, think of the Microsoft Windows
Calculator. You can choose between a standard and a sci-
entific view. The standard view offers basic arithmetic op-
erations, whereas in the scientific view, you can work with
different numeral bases and angle measures.

The following question arises: Is it practical to use step-
wise refinement for building a GUI SPL? To answer that,
we implemented a basic calculator, refined it, and evaluated
the resulting source code, regarding three criteria: The lines
of code (LOC) of the source code, the structure of the source
code, and the obliviousness principle.

In the next Section, we describe the basic calculator,
the use of two source versions and their refinements. In
Section 3, we compare the final source code of the two
versions containing all features regarding the three criteria
mentioned above. In Section 4 we point out some other
approaches for the refinement of a GUI that could solve the
encountered problems. We conclude with a summary of our
results in Section 5.

2 Calculator Case Study

In this Section, we describe our case study. We used a
calculator as example for a GUI, because the interface is
simple and one can easily think of features to add. We im-
plemented two versions of the basic calculator and refined
them separately. At the end of this Section, we evaluate the
refinements for every version.

We begin with a description of the GUI of the basic cal-
culator, regarding some basic principles of design. Then,
we describe the two implementations of the basic calculator
and the their refinements for both versions separately.

We generated two versions of source code for the ba-
sic calculator, both in Java. The GUI looks the same in
both implementations. The first version was implemented
by hand. A second version was build with an editor that
allows generating GUIs using the what you see is what you
get principle (WYSIWYG), the Borland JBuilder 2.00 [2].
The reason for the handwritten source code is, that former

Figure 1. Left: The basic calculator. The
red frames mark the panels, where A is the
panel containing the number buttons (num-
ber panel) and B containing the calculate but-
tons (calculate panel). Right: Panel B con-
taining five calculate buttons.

case studies on the refinement of complex programs were
done with handwritten source code [5]. However, GUIs are
often implemented using a WYSIWYG-Editor. With our
approach, we can compare our results with those of former
case studies and furthermore compare a typical source code
for GUIs with a handwritten version. The two versions and
their refinements are explained separately.

2.1 The Basic Calculator

In Figure 1 the basic calculator is shown. We applied
some basic principles of interface design during layouting
the GUI. As the principle of consistency [15] implies, the
design is similar to that of a usual calculator: The numbers
are ordered in the same way and the buttons for basic arith-
metic operations are placed on the right hand side. Both
groups of buttons are separated by space and color, which
leads to a visual grouping of the different buttons, structur-
ing the GUI [14]. The only operation available in the basic
calculator is plus.

When a term is entered, it appears in the text field on the
top, so that the user does not have to memorize it, aiding
the user in long and complex calculations [15]. When the
“=”-button is pressed, the status display changes to an in-
termediate message. Thus, the user has direct feedback that
his input is being processed by the program [13].

We refined each source code version separately and then
evaluated each source code in order to find some criteria
on structuring a base source code for GUIs that should be
refined (cf. Section 3). To maintain comparability, both

Figure 2. The Feature Model

version used Java AWT components.
Both versions were structured in the same way: The

main class creates the GUI and adds the listeners, a cal-
culator class instantiates the GUI object and is designed to
perform the calculations. An observer pattern is used to re-
act to events [9].

2.2 Refinements

For refining both versions, FeatureIDE [3] was used. The
remaining basic arithmetic operations subtraction (Minus),
division (Divide) and multiplication (Multiplication) were
added, as well as some standard operations like square root
(Root), reciprocal value (Reciprocal) or squaring (Square).
Furthermore, negative (Negative) and floating point (Float-
ing) numbers were introduced and a backspace button
(Backspace), which deletes the last number or operator en-
tered. Figure 2 depicts all implemented features in a feature
model.

In the next two Sections, the refinement of the two base
source code versions will be explained, the encountered
problems of each implementation and how these problems
were solved.

Handwritten Source Code

In the source code implemented by hand, all buttons are
grouped into Java AWT panels semantically (cf. Figure 1).
The grouping to panels has the advantage that shifting but-
tons to get space for new features can be done by simply
shifting the panel containing the buttons. All panels and the
according buttons are instantiated and added to the main
frame in specialized methods.

For every feature added, some changes had to be made
in the basic source code. First of all, since FeatureIDE uses
mixins and thus refinements are transformed to class inher-
itance during composition, the access of most methods and
fields had to be changed from private to protected.
Of course, this could have been anticipated so that the fields
and methods could have been declared protected in the
first place. However, since Java coding conventions suggest

private access [4] and the source code should not have been
prepared for refinements, they were declared private.

Second, since many of the features needed new buttons
to be added to an existing panel, panels that were initially
declared as local variables in the according methods had
to be made accessible for the refining classes. There are
several ways to accomplish this, we preferred defining them
as fields instead of local variables.

Aside from the above mentioned adaptations, adding the
Negative and Floating feature as well as the Backspace fea-
ture led to no further changes in the basic source code.

Listing 1. Excerpt of the source code of the
implementation of the Minus feature for the
handwritten version

Gr idLayou t g l = new Gr idLayou t () ;
sw i t ch (c a l c u l a t e B u t t o n P a n e l . getComponentCount ()) {

case 0 :
g l . se tRows (3) ;
g l . se tColumns (1) ;
c a l c u l a t e B u t t o n P a n e l . s e tBounds (1 7 0 , 130 , 50 , 1 2 0) ;

break ;
case 1 :

g l . setRows (4) ;
g l . se tColumns (1) ;
c a l c u l a t e B u t t o n P a n e l . s e tBounds (1 7 0 , 100 , 50 , 1 5 0) ;
break ;

case 2 :
g l . setRows (5) ;
g l . se tColumns (1) ;
c a l c u l a t e B u t t o n P a n e l . s e tBounds (1 7 0 , 100 , 50 , 1 5 2) ;
break ;

}

Implementing the remaining basic arithmetic operations
subtraction, division and multiplication was rather compli-
cated, because the panel containing those buttons has differ-
ent properties depending on how many buttons it contains.
This led to many lines of code and code replication in all of
the three features. Listing 1 shows an example of the source
code for the Minus feature. In Figure ?? the panel owning
two buttons is compared to the same panel containing five
buttons to make this problem clear.

For the features Root, Square, and Reciprocal a new
panel was defined. Like the panel for basic arithmetic oper-
ations, this panel has different properties depending on the
buttons it contains. This problem was solved in the same
way (cf. Figure ?? and Listing 1).

Concluding the refinements, it was surprisingly comfort-
able to add new features to the basic calculator. However,
the source code of the basic calculator had to be adjusted for
adding new features. This indicates that the obliviousness
principle does not apply for the refinement of GUIs using
source code like our handwritten source code, i.e. grouping
buttons to panels and creating both in specialized methods.

JBuilder Source Code

Like in the handwritten version of the source code, the Bor-
land JBuilder generates a main frame to which the compo-
nents are added. However, the buttons are not grouped into
panels, but added one by one to the frame. The creating and
adding of components was realized in one single method.
All variables were initialized as private fields.

For the refinements, the access of the method that creates
the components and the access of most of the fields had
to be changed from private to protected as in the
handwritten version of the source code.

Since the buttons are all added separately to the frame,
adding the remaining basic arithmetic operations subtrac-
tion, division and multiplication led to some difficulties.
The size and positions of those buttons depend on how
many arithmetic operations are already available. In the
first version, the number of buttons used for basic arithmetic
operations was easily obtained by calling a method on the
panel containing the buttons. However, in this version, there
is no panel grouping similar buttons, so the buttons with the
corresponding labels have to be searched in all components
of the frame, which leads to a loop and more lines of code.
In Listing 2 an excerpt of the source code for the Minus
feature is depicted.

Listing 2. Excerpt of the source code of the
implementation of the Minus feature for the
JBuilder version

Component [] components InFrame = t h i s . ge tComponents () ;
i n t c a l c u l a t e B u t t o n C o u n t = 0 ;
f o r (i n t i = 0 ; i < components InFrame . l e n g t h ; i ++) {

/ / c o u n t b u t t o n s f o r b a s i c a r i t h m e t i c o p e r a t i o n s
}

sw i t ch (c a l c u l a t e B u t t o n C o u n t) {
case 0 :

t h i s . add (minus , new X Y C o n s t r a i n t s (1 5 4 , 86 , 45 , 4 5)) ;
break ;

case 1 :
t h i s . add (minus , new X Y C o n s t r a i n t s (1 5 4 , 59 , 45 , 4 0)) ;
/ / r e p l a c e one o f t h e o t h e r b u t t o n s (m u l t i p l y / d i v i d e)
/ / r e p l a c e t h e c a l c u l a t e base b u t t o n s
/ / . . .
break ;

case 2 :
/ / r e p l a c e a l l e x i s t i n g c a l c u l a t e b u t t o n s
/ / . . .
break ;

}

For the Backspace feature, all buttons need to be moved
(cf. Figure 1). Since the shifting has to be done for every
single button, not just for a panel grouping the buttons as in
the handwritten version of the source code, code replication
occurs, because the new position has to be set explicitly for
every single button.

To sum up, it was not difficult to refine the basic calcula-
tor, but it was tedious and time-consuming to deal with the

components one by one. Furthermore, it led to more lines
of code compared to the handwritten version as discussed
below.

In the next Section, we compare the two source code ver-
sions regarding the three above mentioned criteria: LOC,
structure of the source code containing all features and the
obliviousness principle.

3 Discussion

The last two Sections showed that in both implementa-
tions problems occurred when we refined the base source
codes. We will now evaluate and compare the two versions
regarding the above mentioned criteria: LOC, structure of
the source code and the obliviousness principle.

1. lines of code (LOC). LOC is an easily obtainable mea-
sure to evaluate the source code [12]. Less LOC usu-
ally is better.

2. Structure of the source code. Well structured code is
easier to maintain and to refine. Hence, the structure
of the source code is an important indicator for how
easily the source code can be refined.

3. The obliviousness principle. The obliviousness prin-
ciple implies refining a source code without chang-
ing it first [8]. Or, as the preplanning problem de-
scribes, how to design source code so that it can be
refined without adaptations. Hence, source code that
does not need to be changed for refinement is better
suited for adding features than source code that has to
be adapted.

From the results we will deduce a guideline when to
choose which kind of source code.

Comparing the LOC of the two source code versions
over all features, the handwritten source code has 718 and
the JBuilder version 993, indicating that the first source
code is better suited for refinement, because it leads to less
LOC.

Evaluating the structure of the source code, the hand-
written source is better structured than the JBuilder source
code. In the latter one, some workarounds had to be applied
to generate the refined GUI. For example, for the Minus fea-
ture, the existing calculate buttons had to be searched in all
components to determine the size and position of the minus
button. (cf. Listing 2).

For the evaluation of the obliviousness principle, we
compare the number of changes in the base feature. As Sec-
tion 2.2 pointed out, both source code versions needed to
be adapted for refinement. Thus, the obliviousness prin-
ciple does not apply. However, there are differences in
the number of changes in the two source code versions:

The JBuilder source code only yields 22 LOC of change,
whereas the handwritten source code has 40, almost twice
as much. This indicates that it is easier to refine a GUI
which was build using a source code in which the compo-
nents are defined as fields and dealt with in a single method,
as the JBuilder generated it.

In conclusion, both versions have their shortcomings:
Either the refined source code is rather bad structured, un-
maintainable and has many LOC (JBuilder version), or the
base source code has to be restructured for the refinements
(handwritten version).

From this result we can deduce guidelines for design-
ing code that should be refined. We can provide different
advise depending on whether the features are known up-
front (proactive adaption) or developed later (reactive adap-
tion) [6].

Our results imply that if you want to build a GUI that
should be extended without knowledge of the features to be
added, it is recommended to implement a source code simi-
lar to the one generated by the Borland JBuilder, i.e., regard-
ing the components one by one without grouping and defin-
ing them as fields. This implementation allows refining the
base source code without changing it much. However, im-
plementing the refinements is tedious and time-consuming,
because every component has to be managed individually.
As another shortcoming, the resulting source code contain-
ing all features has many LOC and is harder to maintain,
because some workarounds have to be applied. This leads
to a rather bad structured source code, e.g., for the Minus
feature finding all created buttons for basic arithmetic oper-
ations (cf. Listing 2).

On the other hand, if the resulting GUI can be planned in
advance very well, it is more advisable to write the source
code by hand, because it can be prepared for refinements.
The resulting source code is shorter, better structured and
maintainable. However, using Java and no framework or vi-
sual aid tool for generating a GUI is rather tedious, because
the standard Java layout managers do not give enough sup-
port to implement a well designed GUI, however using no
layout manager at all requires placing every component by
hand without direct feedback of the placement (in contrast
to the WYSIWYG principle).

All this evidence suggests that it is possible to build a
well designed GUI SPL using stepwise refinement. How-
ever, despite different versions of a basic source code, some
difficulties can occur: None of the versions could be refined
without changes in the base source code, indicating that the
obliviousness principle does not apply to the stepwise re-
finement of GUIs. For the implementation of a GUI that
should be refined, the source code has to be planned very
carefully. However, as the preplanning problem describes,
this is a very complicated issue, in most cases even impos-
sible.

In the next Section we point out some ideas for future
work on the stepwise refinement of a GUI, giving some ap-
proaches that may solve the encountered problems as dis-
cussed in this Section.

4 Related Topics

In the last two Sections, we showed that using FOP for
the stepwise refinement of the calculator led to some diffi-
culties in the implementation of the features. It would have
been easier if refinements were possible inside methods, not
just before or after them (e.g., in the handwritten version,
the panels grouping the buttons could have remained as lo-
cal variables in the according methods).

Another approach for the stepwise refinement of a pro-
gram is Aspect Oriented Programming (AOP). It was intro-
duced by Kiczales [11]. Aspects react to events occurring
during the execution of a program, like the initializing of
a variable, the instantiating of an object or the calling of a
method. This suggests that it is possible to add source code
to arbitrary points in a program.

AOP is useful, when the refinements are homogeneous,
i.e., adding the same source code into multiple classes or
methods. In the present implementation, code replication
occurred, e.g., replacing all buttons for the Backspace fea-
ture. Implementing the Backspace feature as aspect, e.g.,
with AspectJ [1, 10], would have probably reduced the
LOC.

Regarding the LOC of changes in the base source code,
one particular problem was outlined in Section 2: The ac-
cessibility of methods and fields had to be changed from
private to protected. This is a problem of the cur-
rent implementation of FeatureIDE, since mixins are used
for the combining of the features. Future implementations
of FeatureIDE could take into account changing the ac-
cess of methods and fields of classes, that are refined, from
private to protected automatically or use jampack
composition instead of mixins.

5 Conclusion

We implemented a calculator GUI using a feature ori-
ented approach for stepwise refinement. We used two ver-
sions of a basic calculator and refined each separately using
FeatureIDE to build a GUI SPL. The results indicate that it
is practical to use stepwise refinement to build a GUI SPL.
However, a feature-oriented approach does not seem to be
the optimal way to refine a GUI, because the obliviousness
principle does not apply and the resulting source code of all
features contains some workarounds and code replication.

We developed a guideline for the use of the two source
code versions: Knowing the GUI with all features in ad-
vance suggests a base source code in which the components

are grouped into panels according to semantic issues and
the creating of the grouped components is implemented in
separate methods, because it can be better prepared for re-
finements. However, having no requirements to the refine-
ments, it is more advisable to use a source code like the
Borland JBuilder generates it, i.e., defining the components
as fields and creating them in one method, because the gen-
erated source code is better suited for refinements.

References

[1] ApsectJ, 2008. http://www.eclipse.org/
aspectj/.

[2] Borland JBuilder, 2008. http://www.borland.com/
de/products/jbuilder/.

[3] FeatureIDE, 2008. http://wwwiti.cs.
uni-magdeburg.de/iti_db/research/
featureide/.

[4] Java coding conventions, 2008. http://java.sun.
com/docs/codeconv/html/CodeConvTOC.doc.
html.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Transaction on Software Engineer-
ing, 30(6):355–371, 2004.

[6] P. Clements and C. Krüger. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adaption Barrier. IEEE
Software, 19(4):28–31, 2002.

[7] P. Clements and L. Northrop. Software Product Lines - Prac-
tice and Pattern. Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 2002.

[8] R. Filman and D. Friedman. Aspect-Oriented Programming
is Quantification and Obliviousness. In Workshop on Ad-
vanced Separation of Concerns, OOPSLA, 2000.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley Publishing Company, Inc., Read-
ing, Massachusetts, 1994.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. Proceed-
ings of the 15th European Conference on Object-Oriented
Programming, 2047:327–353, 2001.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. In Proc. Europ. Conf. on Object-Oriented Pro-
gramming (ECOOP), 1241:220–242, 1997.

[12] S. McConnell. Code Complete: A Practical Handbook of
Software Construction. Microsoft Press, Redmond, Wash-
ington, 1993.

[13] D. A. Norman. The Psychology of Everyday Things. Basic
Books, New York, 2001.

[14] B. Preim. Entwicklung Interaktiver Systeme. Springer-
Verlag, Berlin, Heidelberg, 1999.

[15] J. Spolsky. User Interface Design for Programmers.
Springer-Verlag, Heidelberg, 2001.

