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Abstract

This paper introduces a novel algorithm to approximate the matrix with minimum nuclear
norm among all matrices obeying a set of convex constraints. This problem may be understood as
the convex relaxation of a rank minimization problem, and arises in many important applications
as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix
problem). Off-the-shelf algorithms such as interior point methods are not directly amenable to
large problems of this kind with over a million unknown entries.

This paper develops a simple first-order and easy-to-implement algorithm that is extremely
efficient at addressing problems in which the optimal solution has low rank. The algorithm is
iterative and produces a sequence of matrices {Xk,Y k} and at each step, mainly performs a
soft-thresholding operation on the singular values of the matrix Y k. There are two remarkable
features making this attractive for low-rank matrix completion problems. The first is that
the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of
the iterates {Xk} is empirically nondecreasing. Both these facts allow the algorithm to make
use of very minimal storage space and keep the computational cost of each iteration low. On
the theoretical side, we provide a convergence analysis showing that the sequence of iterates
converges. On the practical side, we provide numerical examples in which 1, 000×1, 000 matrices
are recovered in less than a minute on a modest desktop computer. We also demonstrate that
our approach is amenable to very large scale problems by recovering matrices of rank about 10
with nearly a billion unknowns from just about 0.4% of their sampled entries. Our methods are
connected with the recent literature on linearized Bregman iterations for `1 minimization, and
we develop a framework in which one can understand these algorithms in terms of well-known
Lagrange multiplier algorithms.

Keywords. Nuclear norm minimization, matrix completion, singular value thresholding, La-
grange dual function, Uzawa’s algorithm.

1 Introduction

1.1 Motivation

There is a rapidly growing interest in the recovery of an unknown low-rank or approximately low-
rank matrix from very limited information. This problem occurs in many areas of engineering and
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applied science such as machine learning [1, 3, 4], control [42] and computer vision, see [48]. As
a motivating example, consider the problem of recovering a data matrix from a sampling of its
entries. This routinely comes up whenever one collects partially filled out surveys, and one would
like to infer the many missing entries. In the area of recommender systems, users submit ratings
on a subset of entries in a database, and the vendor provides recommendations based on the user’s
preferences. Because users only rate a few items, one would like to infer their preference for unrated
items; this is the famous Netflix problem [2]. Recovering a rectangular matrix from a sampling of
its entries is known as the matrix completion problem. The issue is of course that this problem is
extraordinarily ill posed since with fewer samples than entries, we have infinitely many completions.
Therefore, it is apparently impossible to identify which of these candidate solutions is indeed the
“correct” one without some additional information.

In many instances, however, the matrix we wish to recover has low rank or approximately low
rank. For instance, the Netflix data matrix of all user-ratings may be approximately low-rank
because it is commonly believed that only a few factors contribute to anyone’s taste or preference.
In computer vision, inferring scene geometry and camera motion from a sequence of images is a well-
studied problem known as the structure-from-motion problem. This is an ill-conditioned problem
for objects may be distant with respect to their size, or especially for “missing data” which occur
because of occlusion or tracking failures. However, when properly stacked and indexed, these images
form a matrix which has very low rank (e.g. rank 3 under orthography) [21, 48]. Other examples
of low-rank matrix fitting abound; e.g. in control (system identification), machine learning (multi-
class learning) and so on. Having said this, the premise that the unknown has (approximately) low
rank radically changes the problem, making the search for solutions feasible since the lowest-rank
solution now tends to be the right one.

In a recent paper [13], Candès and Recht showed that matrix completion is not as ill-posed as
people thought. Indeed, they proved that most low-rank matrices can be recovered exactly from
most sets of sampled entries even though these sets have surprisingly small cardinality, and more
importantly, they proved that this can be done by solving a simple convex optimization problem.
To state their results, suppose to simplify that the unknown matrix M ∈ Rn×n is square, and that
one has available m sampled entries {Mij : (i, j) ∈ Ω} where Ω is a random subset of cardinality
m. Then [13] proves that most matrices M of rank r can be perfectly recovered by solving the
optimization problem

minimize ‖X‖∗
subject to Xij = Mij , (i, j) ∈ Ω,

(1.1)

provided that the number of samples obeys

m ≥ Cn6/5r log n (1.2)

for some positive numerical constant C.1 In (1.1), the functional ‖X‖∗ is the nuclear norm of the
matrix M , which is the sum of its singular values. The optimization problem (1.1) is convex and
can be recast as a semidefinite program [29,30]. In some sense, this is the tightest convex relaxation
of the NP-hard rank minimization problem

minimize rank(X)
subject to Xij = Mij , (i, j) ∈ Ω,

(1.3)

1Note that an n× n matrix of rank r depends upon r(2n− r) degrees of freedom.
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since the nuclear ball {X : ‖X‖∗ ≤ 1} is the convex hull of the set of rank-one matrices with
spectral norm bounded by one. Another interpretation of Candès and Recht’s result is that under
suitable conditions, the rank minimization program (1.3) and the convex program (1.1) are formally
equivalent in the sense that they have exactly the same unique solution.

1.2 Algorithm outline

Because minimizing the nuclear norm both provably recovers the lowest-rank matrix subject to
constraints (see [45] for related results) and gives generally good empirical results in a variety of
situations, it is understandably of great interest to develop numerical methods for solving (1.1). In
[13], this optimization problem was solved using one of the most advanced semidefinite programming
solvers, namely, SDPT3 [47]. This solver and others like SeDuMi are based on interior-point
methods, and are problematic when the size of the matrix is large because they need to solve huge
systems of linear equations to compute the Newton direction. In fact, SDPT3 can only handle
n× n matrices with n ≤ 100. Presumably, one could resort to iterative solvers such as the method
of conjugate gradients to solve for the Newton step but this is problematic as well since it is well
known that the condition number of the Newton system increases rapidly as one gets closer to the
solution. In addition, none of these general purpose solvers use the fact that the solution may have
low rank. We refer the reader to [40] for some recent progress on interior-point methods concerning
some special nuclear norm-minimization problems.

This paper develops the singular value thresholding algorithm for approximately solving the
nuclear norm minimization problem (1.1) and by extension, problems of the form

minimize ‖X‖∗
subject to A(X) = b,

(1.4)

where A is a linear operator acting on the space of n1×n2 matrices and b ∈ Rm. This algorithm is
a simple first-order method, and is especially well suited for problems of very large sizes in which
the solution has low rank. We sketch this algorithm in the special matrix completion setting and
let PΩ be the orthogonal projector onto the span of matrices vanishing outside of Ω so that the
(i, j)th component of PΩ(X) is equal to Xij if (i, j) ∈ Ω and zero otherwise. Our problem may be
expressed as

minimize ‖X‖∗
subject to PΩ(X) = PΩ(M),

(1.5)

with optimization variable X ∈ Rn1×n2 . Fix τ > 0 and a sequence {δk}k≥1 of scalar step sizes.
Then starting with Y 0 = 0 ∈ Rn1×n2 , the algorithm inductively defines{

Xk = shrink(Y k−1, τ),
Y k = Y k−1 + δkPΩ(M −Xk)

(1.6)

until a stopping criterion is reached. In (1.6), shrink(Y , τ) is a nonlinear function which applies a
soft-thresholding rule at level τ to the singular values of the input matrix, see Section 2 for details.
The key property here is that for large values of τ , the sequence {Xk} converges to a solution which
very nearly minimizes (1.5). Hence, at each step, one only needs to compute at most one singular
value decomposition and perform a few elementary matrix additions. Two important remarks are
in order:

3



1. Sparsity. For each k ≥ 0, Y k vanishes outside of Ω and is, therefore, sparse, a fact which can
be used to evaluate the shrink function rapidly.

2. Low-rank property. The matrices Xk turn out to have low rank, and hence the algorithm has
minimum storage requirement since we only need to keep principal factors in memory.

Our numerical experiments demonstrate that the proposed algorithm can solve problems, in
Matlab, involving matrices of size 30, 000×30, 000 having close to a billion unknowns in 17 minutes
on a standard desktop computer with a 1.86 GHz CPU (dual core with Matlab’s multithreading
option enabled) and 3 GB of memory. As a consequence, the singular value thresholding algorithm
may become a rather powerful computational tool for large scale matrix completion.

1.3 General formulation

The singular value thresholding algorithm can be adapted to deal with other types of convex
constraints. For instance, it may address problems of the form

minimize ‖X‖∗
subject to fi(X) ≤ 0, i = 1, . . . ,m,

(1.7)

where each fi is a Lipschitz convex function (note that one can handle linear equality constraints by
considering pairs of affine functionals). In the simpler case where the fi’s are affine functionals, the
general algorithm goes through a sequence of iterations which greatly resemble (1.6). This is useful
because this enables the development of numerical algorithms which are effective for recovering
matrices from a small subset of sampled entries possibly contaminated with noise.

1.4 Contents and notations

The rest of the paper is organized as follows. In Section 2, we derive the singular value threshold-
ing (SVT) algorithm for the matrix completion problem, and recasts it in terms of a well-known
Lagrange multiplier algorithm. In Section 3, we extend the SVT algorithm and formulate a gen-
eral iteration which is applicable to general convex constraints. In Section 4, we establish the
convergence results for the iterations given in Sections 2 and 3. We demonstrate the performance
and effectiveness of the algorithm through numerical examples in Section 5, and review additional
implementation details. Finally, we conclude the paper with a short discussion in Section 6.

Before continuing, we provide here a brief summary of the notations used throughout the
paper. Matrices are bold capital, vectors are bold lowercase and scalars or entries are not bold.
For instance, X is a matrix and Xij its (i, j)th entry. Likewise, x is a vector and xi its ith
component. The nuclear norm of a matrix is denoted by ‖X‖∗, the Frobenius norm by ‖X‖F
and the spectral norm by ‖X‖2; note that these are respectively the 1-norm, the 2-norm and the
sup-norm of the vector of singular values. The adjoint of a matrix X is X∗ and similarly for
vectors. The notation diag(x), where x is a vector, stands for the diagonal matrix with {xi} as
diagonal elements. We denote by 〈X,Y 〉 = trace(X∗Y ) the standard inner product between two
matrices (‖X‖2F = 〈X,X〉). The Cauchy-Schwarz inequality gives 〈X,Y 〉 ≤ ‖X‖F ‖Y ‖F and it is
well known that we also have 〈X,Y 〉 ≤ ‖X‖∗‖Y ‖2 (the spectral and nuclear norms are dual from
one another), see e.g. [13, 45].
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2 The Singular Value Thresholding Algorithm

This section introduces the singular value thresholding algorithm and discusses some of its ba-
sic properties. We begin with the definition of a key building block, namely, the singular value
thresholding operator.

2.1 The singular value shrinkage operator

Consider the singular value decomposition (SVD) of a matrix X ∈ Rn1×n2 of rank r

X = UΣV ∗, Σ = diag({σi}1≤i≤r), (2.1)

where U and V are respectively n1 × r and n2 × r matrices with orthonormal columns, and the
singular values σi are positive (unless specified otherwise, we will always assume that the SVD of
a matrix is given in the reduced form above). For each τ ≥ 0, we introduce the soft-thresholding
operator Dτ defined as follows:

Dτ (X) := UDτ (Σ)V ∗, Dτ (Σ) = diag({σi − τ)+}), (2.2)

where t+ is the positive part of t, namely, t+ = max(0, t). In words, this operator simply applies a
soft-thresholding rule to the singular values of X, effectively shrinking these towards zero. This is
the reason why we will also refer to this transformation as the singular value shrinkage operator.
Even though the SVD may not be unique, it is easy to see that the singular value shrinkage operator
is well defined and we do not elaborate further on this issue. In some sense, this shrinkage operator
is a straightforward extension of the soft-thresholding rule for scalars and vectors. In particular,
note that if many of the singular values of X are below the threshold τ , the rank of Dτ (X) may
be considerably lower than that of X, just like the soft-thresholding rule applied to vectors leads
to sparser outputs whenever some entries of the input are below threshold.

The singular value thresholding operator is the proximity operator associated with the nuclear
norm. Details about the proximity operator can be found in e.g. [35].

Theorem 2.1 For each τ ≥ 0 and Y ∈ Rn1×n2, the singular value shrinkage operator (2.2) obeys

Dτ (Y ) = arg min
X

{
1
2
‖X − Y ‖2F + τ‖X‖∗

}
. (2.3)

Proof. Since the function h0(X) := τ‖X‖∗ + 1
2‖X − Y ‖2F is strictly convex, it is easy to see that

there exists a unique minimizer, and we thus need to prove that it is equal to Dτ (Y ). To do this,
recall the definition of a subgradient of a convex function f : Rn1×n2 → R. We say that Z is a
subgradient of f at X0, denoted Z ∈ ∂f(X0), if

f(X) ≥ f(X0) + 〈Z,X −X0〉 (2.4)

for all X. Now X̂ minimizes h0 if and only if 0 is a subgradient of the functional h0 at the point
X̂, i.e.

0 ∈ X̂ − Y + τ∂‖X̂‖∗, (2.5)

where ∂‖X̂‖∗ is the set of subgradients of the nuclear norm. Let X ∈ Rn1×n2 be an arbitrary
matrix and UΣV ∗ be its SVD. It is known [13,37,49] that

∂‖X‖∗ =
{
UV ∗ + W : W ∈ Rn1×n2 , U∗W = 0, WV = 0, ‖W ‖2 ≤ 1

}
. (2.6)
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Set X̂ := Dτ (Y ) for short. In order to show that X̂ obeys (2.5), decompose the SVD of Y as

Y = U0Σ0V
∗

0 + U1Σ1V
∗

1 ,

where U0, V0 (resp. U1, V1) are the singular vectors associated with singular values greater than τ
(resp. smaller than or equal to τ). With these notations, we have

X̂ = U0(Σ0 − τI)V ∗0

and, therefore,
Y − X̂ = τ(U0V

∗
0 + W ), W = τ−1U1Σ1V

∗
1 .

By definition, U∗0 W = 0, WV0 = 0 and since the diagonal elements of Σ1 have magnitudes
bounded by τ , we also have ‖W ‖2 ≤ 1. Hence Y − X̂ ∈ τ∂‖X̂‖∗, which concludes the proof.

2.2 Shrinkage iterations

We are now in the position to introduce the singular value thresholding algorithm. Fix τ > 0 and
a sequence {δk} of positive step sizes. Starting with Y0, inductively define for k = 1, 2, . . .,{

Xk = Dτ (Y k−1),
Y k = Y k−1 + δkPΩ(M −Xk)

(2.7)

until a stopping criterion is reached (we postpone the discussion this stopping criterion and of the
choice of step sizes). This shrinkage iteration is very simple to implement. At each step, we only
need to compute an SVD and perform elementary matrix operations. With the help of a standard
numerical linear algebra package, the whole algorithm can be coded in just a few lines.

Before addressing further computational issues, we would like to make explicit the relationship
between this iteration and the original problem (1.1). In Section 4, we will show that the sequence
{Xk} converges to the unique solution of an optimization problem closely related to (1.1), namely,

minimize τ‖X‖∗ + 1
2‖X‖

2
F

subject to PΩ(X) = PΩ(M).
(2.8)

Furthermore, it is intuitive that the solution to this modified problem converges to that of (1.5) as
τ →∞ as shown in Section 3. Thus by selecting a large value of the parameter τ , the sequence of
iterates converges to a matrix which nearly minimizes (1.1).

As mentioned earlier, there are two crucial properties which make this algorithm ideally suited
for matrix completion.

• Low-rank property. A remarkable empirical fact is that the matrices in the sequence {Xk}
have low rank (provided, of course, that the solution to (2.8) has low rank). We use the word
“empirical” because all of our numerical experiments have produced low-rank sequences but
we cannot rigorously prove that this is true in general. The reason for this phenomenon is,
however, simple: because we are interested in large values of τ (as to better approximate the
solution to (1.1)), the thresholding step happens to ‘kill’ most of the small singular values
and produces a low-rank output. In fact, our numerical results show that the rank of Xk is
nondecreasing with k, and the maximum rank is reached in the last steps of the algorithm,
see Section 5.
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Thus, when the rank of the solution is substantially smaller than either dimension of the
matrix, the storage requirement is low since we could store each Xk in its SVD form (note
that we only need to keep the current iterate and may discard earlier values).

• Sparsity. Another important property of the SVT algorithm is that the iteration matrix Y k

is sparse. Since Y 0 = 0, we have by induction that Y k vanishes outside of Ω. The fewer
entries available, the sparser Y k. Because the sparsity pattern Ω is fixed throughout, one can
then apply sparse matrix techniques to save storage. Also, if |Ω| = m, the computational cost
of updating Y k is of order m. Moreover, we can call subroutines supporting sparse matrix
computations, which can further reduce computational costs.

One such subroutine is the SVD. However, note that we do not need to compute the entire
SVD of Y k to apply the singular value thresholding operator. Only the part corresponding
to singular values greater than τ is needed. Hence, a good strategy is to apply the iterative
Lanczos algorithm to compute the first few singular values and singular vectors. Because
Y k is sparse, Y k can be applied to arbitrary vectors rapidly, and this procedure offers a
considerable speedup over naive methods.

2.3 Relation with other works

Our algorithm is inspired by recent work in the area of `1 minimization, and especially by the work
on linearized Bregman iterations for compressed sensing, see [9–11,23,44,51] for linearized Bregman
iterations and [14–17, 26] for some information about the field of compressed sensing. In this line
of work, linearized Bregman iterations are used to find the solution to an underdetermined system
of linear equations with minimum `1 norm. In fact, Theorem 2.1 asserts that the singular value
thresholding algorithm can be formulated as a linearized Bregman iteration. Bregman iterations
were first introduced in [43] as a convenient tool for solving computational problems in the imaging
sciences, and a later paper [51] showed that they were useful for solving `1-norm minimization
problems in the area of compressed sensing. Linearized Bregman iterations were proposed in [23]
to improve performance of plain Bregman iterations, see also [51]. Additional details together
with a technique for improving the speed of convergence called kicking are described in [44]. On
the practical side, the paper [11] applied Bregman iterations to solve a deblurring problem while
on the theoretical side, the references [9, 10] gave a rigorous analysis of the convergence of such
iterations. New developments keep on coming out at a rapid pace and recently, [32] introduced a
new iteration, the split Bregman iteration, to extend Bregman-type iterations (such as linearized
Bregman iterations) to problems involving the minimization of `1-like functionals such as total-
variation norms, Besov norms, and so forth.

When applied to `1-minimization problems, linearized Bregman iterations are sequences of
soft-thresholding rules operating on vectors. Iterative soft-thresholding algorithms in connection
with `1 or total-variation minimization have quite a bit of history in signal and image processing
and we would like to mention the works [12, 39] for total-variation minimization, [24, 25, 31] for
`1 minimization, and [5, 7, 8, 19, 20, 27, 28, 46] for some recent applications in the area of image
inpainting and image restoration. Just as iterative soft-thresholding methods are designed to find
sparse solutions, our iterative singular value thresholding scheme is designed to find a sparse vector
of singular values. In classical problems arising in the areas of compressed sensing, and signal or
image processing, the sparsity is expressed in a known transformed domain and soft-thresholding is
applied to transformed coefficients. In contrast, the shrinkage operatorDτ is adaptive. The SVT not
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only discovers a sparse singular vector but also the bases in which we have a sparse representation.
In this sense, the SVT algorithm is an extension of earlier iterative soft-thresholding schemes.

Finally, we would like to contrast the SVT iteration (2.7) with the popular iterative soft-
thresholding algorithm used in many papers in imaging processing and perhaps best known under
the name of Proximal Forward-Backward Splitting method (PFBS), see [8,22,24,31,33] for example.
The constrained minimization problem (1.5) may be relaxed into

minimize λ‖X‖∗ +
1
2
‖PΩ(X)− PΩ(M)‖2F (2.9)

for some λ > 0. Theorem 2.1 asserts that Dλ is the proximity operator of λ‖X‖∗ and Proposition
3.1(iii) in [22] gives that the solution to this unconstrained problem is characterized by the fixed
point equation X = Dλδ(X + δPΩ(M −X)) for each δ > 0. One can then apply a simplified
version of the PFBS method (see (3.6) in [22]) to obtain iterations of the form

Xk = Dλδk−1
(Xk−1 + δk−1PΩ(M −Xk−1)).

Introducing an intermediate matrix Y k, this algorithm may be expressed as{
Xk = Dλδk−1

(Y k−1),
Y k = Xk + δkPΩ(M −Xk).

(2.10)

The difference with (2.7) may seem subtle at first—replacing Xk in (2.10) with Y k−1 and setting
δk = δ gives (2.7) with τ = λδ—but has enormous consequences as this gives entirely different
algorithms. First, they have different limits: while (2.7) converges to the solution of the constrained
minimization (2.8), (2.10) converges to the solution of (2.9) provided that the sequence of step sizes
is appropriately selected. Second, selecting a large λ (or a large value of τ = λδ) in (2.10) gives
a low-rank sequence of iterates and a limit with small nuclear norm. The limit, however, does
not fit the data and this is why one has to choose a small or moderate value of λ (or of τ = λδ).
However, when λ is not sufficiently large, the Xk may not have low rank even though the solution
has low rank (and one may need to compute many singular vectors), and Y k is not sufficiently
sparse to make the algorithm computationally attractive. Moreover, the limit does not necessary
have a small nuclear norm. These are reasons why (2.10) is not suitable for matrix completion.

2.4 Interpretation as a Lagrange multiplier method

In this section, we recast the SVT algorithm as a type of Lagrange multiplier algorithm known as
Uzawa’s algorithm. An important consequence is that this will allow us to extend the SVT algorithm
to other problems involving the minimization of the nuclear norm under convex constraints, see
Section 3. Further, another contribution of this paper is that this framework actually recasts linear
Bregman iterations as a very special form of Uzawa’s algorithm, hence providing fresh and clear
insights about these iterations.

In what follows, we set fτ (X) = τ‖X‖∗+ 1
2‖X‖

2
F for some fixed τ > 0 and recall that we wish

to solve (2.8)
minimize fτ (X)
subject to PΩ(X) = PΩ(M).

The Lagrangian for this problem is given by

L(X,Y ) = fτ (X) + 〈Y ,PΩ(M −X)〉,
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where Y ∈ Rn1×n2 . Strong duality holds and X? and Y ? are primal-dual optimal if (X?,Y ?) is a
saddlepoint of the Lagrangian L(X,Y ), i.e. a pair obeying

sup
Y

inf
X
L(X,Y ) = L(X?,Y ?) = inf

X
sup
Y
L(X,Y ). (2.11)

(The function g0(Y ) = infX L(X,Y ) is called the dual function.) Uzawa’s algorithm approaches
the problem of finding a saddlepoint with an iterative procedure. From Y0 = 0, say, inductively
define {

L(Xk,Y k−1) = minX L(X,Y k−1)
Y k = Y k−1 + δkPΩ(M −Xk),

(2.12)

where {δk}k≥1 is a sequence of positive step sizes. Uzawa’s algorithm is, in fact, a subgradient
method applied to the dual problem, where each step moves the current iterate in the direction of
the gradient or of a subgradient. Indeed, observe that

∂Y g0(Y ) = ∂Y L(X̃,Y ) = PΩ(M − X̃), (2.13)

where X̃ is the minimizer of the Lagrangian for that value of Y so that a gradient descent update
for Y is of the form

Y k = Y k−1 + δk∂Y g0(Y k−1) = Y k−1 + δkPΩ(M −Xk).

It remains to compute the minimizer of the Lagrangian (2.12), and note that

arg min fτ (X) + 〈Y ,PΩ(M −X)〉 = arg min τ‖X‖∗ +
1
2
‖X − PΩY ‖2F . (2.14)

However, we know that the minimizer is given by Dτ (PΩ(Y )) and since Y k = PΩ(Y k) for all k ≥ 0,
Uzawa’s algorithm takes the form{

Xk = Dτ (Y k−1)
Y k = Y k−1 + δkPΩ(M −Xk),

which is exactly the update (2.7). This point of view brings to bear many different mathemat-
ical tools for proving the convergence of the singular value thresholding iterations. For an early
use of Uzawa’s algorithm minimizing an `1-like functional, the total-variation norm, under linear
inequality constraints, see [12].

3 General Formulation

This section presents a general formulation of the SVT algorithm for approximately minimizing the
nuclear norm of a matrix under convex constraints.

3.1 Linear equality constraints

Set the objective functional fτ (X) = τ‖X‖∗ + 1
2‖X‖

2
F for some fixed τ > 0, and consider the

following optimization problem:

minimize fτ (X)
subject to A(X) = b,

(3.1)
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where A is a linear transformation mapping n1×n2 matrices into Rm (A∗ is the adjoint of A). This
more general formulation is considered in [13] and [45] as an extension of the matrix completion
problem. Then the Lagrangian for this problem is of the form

L(X,y) = fτ (X) + 〈y, b−A(X)〉, (3.2)

where X ∈ Rn1×n2 and y ∈ Rm, and starting with y0 = 0, Uzawa’s iteration is given by{
Xk = Dτ (A∗(yk−1)),
yk = yk−1 + δk(b−A(Xk)).

(3.3)

The iteration (3.3) is of course the same as (2.7) in the case where A is a sampling operator
extracting m entries with indices in Ω out of an n1 × n2 matrix. To verify this claim, observe
that in this situation, A∗A = PΩ, and let M be any matrix obeying A(M) = b. Then defining
Y k = A∗(yk) and substituting this expression in (3.3) gives (2.7).

3.2 General convex constraints

One can also adapt the algorithm to handle general convex constraints. Suppose we wish to
minimize fτ (X) defined as before over a convex set X ∈ C. To simplify, we will assume that this
convex set is given by

C = {X : fi(X) ≤ 0, ∀i = 1, . . . ,m},

where the fi’s are convex functionals (note that one can handle linear equality constraints by
considering pairs of affine functionals). The problem of interest is then of the form

minimize fτ (X)
subject to fi(X) ≤ 0, i = 1, . . . ,m.

(3.4)

Just as before, it is intuitive that as τ →∞, the solution to this problem converges to a minimizer
of the nuclear norm under the same constraints (1.7) as shown in Theorem 3.1 at the end of this
section.

Put F(X) := (f1(X), . . . , fm(X)) for short. Then the Lagrangian for (3.4) is equal to

L(X,y) = fτ (X) + 〈y,F(X)〉,

where X ∈ Rn1×n2 and y ∈ Rm is now a vector with nonnegative components denoted, as usual,
by y ≥ 0. One can apply Uzawa’s method just as before with the only modification that we will
use a subgradient method with projection to maximize the dual function since we need to make
sure that the successive updates yk belong to the nonnegative orthant. This gives{

Xk = arg min {fτ (X) + 〈yk−1,F(X)〉},
yk = [yk−1 + δkF(Xk)]+.

(3.5)

Above, x+ is of course the vector with entries equal to max(xi, 0). When F is an affine mapping
of the form b−A(X) so that one solves

minimize fτ (X)
subject to A(X) ≥ b,
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this simplifies to {
Xk = Dτ (A∗(yk−1)),
yk = [yk−1 + δk(b−A(Xk))]+,

(3.6)

and thus the extension to linear inequality constraints is straightforward.

3.3 Example

An interesting example concerns the extension of the Dantzig selector [18] to matrix problems.
Suppose we have available linear measurements about a matrix M of interest

b = A(M) + z, (3.7)

where z ∈ Rm is a noise vector. Then under these circumstances, one might want to find the
matrix which minimizes the nuclear norm among all matrices which are consistent with the data b.
Inspired by the work on the Dantzig selector which was originally developed for estimating sparse
parameter vectors from noisy data, one could approach this problem by solving

minimize ‖X‖∗
subject to |vec(A∗(r))| ≤ vec(E), r := b−A(X),

(3.8)

where E is an array of tolerances, which is adjusted to fit the noise statistics [18]. Above, vec(A) ≤
vec(B), for any two matrices A and B, means componentwise inequalities; that is, Aij ≤ Bij for all
indices i, j. We use this notation as not to confuse the reader with the positive semidefinite ordering.
In the case of the matrix completion problem where A extracts sampled entries indexed by Ω, one
can always see the data vector as the sampled entries of some matrix B obeying PΩ(B) = A∗(b);
the constraint is then natural for it may be expressed as

|Bij −Xij | ≤ Eij , (i, j) ∈ Ω,

If z is white noise with standard deviation σ, one may want to use a multiple of σ for Eij . In
words, we are looking for a matrix with minimum nuclear norm under the constraint that all of its
sampled entries do not deviate too much from what has been observed.

Let Y+ ∈ Rn1×n2 (resp. Y− ∈ Rn1×n2) be the Lagrange multiplier associated with the compo-
nentwise linear inequality constraints vec(A∗(r)) ≤ vec(E) (resp. −vec(A∗(r)) ≤ vec(E)). Then
starting with Y 0

± = 0, the SVT iteration for this problem is of the form{
Xk = Dτ (A∗A(Y k−1

+ − Y k−1
− )),

Y k
± = [Y k−1

± + δk(±A∗(rk)−E)]+, rk = bk −A(Xk),
(3.9)

where again [·]+ is applied componentwise.
We conclude by noting that in the matrix completion problem where A∗A = PΩ and one

observes PΩ(B), one can check that this iteration simplifies to{
Xk = Dτ (Y k−1

+ − Y k−1
− ),

Y k
± = [Y k−1

± + δkPΩ(±(B −Xk)−E)]+.
(3.10)

Again, this is easy to implement and whenever the solution has low rank, the iterates Xk have low
rank as well.

11



3.4 When the proximal problem gets close

We now show that minimizing the proximal objective fτ (X) = τ‖X‖∗ + 1
2‖X‖

2
F is the same as

minimizing the nuclear norm in the limit of large τ ’s. The theorem below is general and covers the
special case of linear equality constraints as in (2.8).

Theorem 3.1 Let X?
τ be the solution to (3.4) and X∞ be the minimum Frobenius-norm solution

to (1.7) defined as
X∞ := arg min

X
{‖X‖2F : X is a solution of (1.7)}. (3.11)

Assume that the fi(X)’s, 1 ≤ i ≤ m, are convex and lower semi-continuous. Then

lim
τ→∞

‖X?
τ −X∞‖F = 0. (3.12)

Proof. It follows from the definition of X?
τ and X∞ that

‖X?
τ ‖∗ +

1
2τ
‖X?

τ ‖2F ≤ ‖X∞‖∗ +
1
2τ
‖X∞‖2F , and ‖X∞‖∗ ≤ ‖X?

τ ‖∗. (3.13)

Summing these two inequalities gives

‖X?
τ ‖2F ≤ ‖X∞‖2F , (3.14)

which implies that ‖X?
τ ‖2F is bounded uniformly in τ . Thus, we would prove the theorem if we

could establish that any convergent subsequence {X?
τk
}k≥1 must converge to X∞.

Consider an arbitrary converging subsequence {X?
τk
} and set Xc := limk→∞X?

τk
. Since for

each 1 ≤ i ≤ m, fi(X?
τk

) ≤ 0 and fi is lower semi-continuous, Xc obeys

fi(Xc) ≤ 0, i = 1, . . . ,m. (3.15)

Furthermore, since ‖X?
τ ‖2F is bounded, (3.13) yields

lim sup
τ→∞

‖X?
τ ‖∗ ≤ ‖X∞‖∗, ‖X∞‖∗ ≤ lim inf

τ→∞
‖X?

τ ‖∗.

An immediate consequence is limτ→∞ ‖X?
τ ‖∗ = ‖X∞‖∗ and, therefore, ‖Xc‖∗ = ‖X∞‖∗. This

shows that Xc is a solution to (1.1). Now it follows from the definition of X∞ that ‖Xc‖F ≥
‖X∞‖F , while we also have ‖Xc‖F ≤ ‖X∞‖F because of (3.14). We conclude that ‖Xc‖F =
‖X∞‖F and thus Xc = X∞ since X∞ is unique.

4 Convergence Analysis

This section establishes the convergence of the SVT iterations. We begin with the simpler proof
of the convergence of (2.7) in the special case of the matrix completion problem, and then present
the argument for the more general constraints (3.5). We hope that this progression will make the
second and more general proof more transparent.
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4.1 Convergence for matrix completion

We begin by recording a lemma which establishes the strong convexity of the objective fτ .

Lemma 4.1 Let Z ∈ ∂fτ (X) and Z ′ ∈ ∂fτ (X ′). Then

〈Z −Z ′,X −X ′〉 ≥ ‖X −X ′‖2F . (4.1)

Proof. An element Z of ∂fτ (X) is of the form Z = τZ0 + X, where Z0 ∈ ∂‖X‖∗, and similarly
for Z ′. This gives

〈Z −Z ′,X −X ′〉 = τ 〈Z0 −Z ′0,X −X ′〉+ ‖X −X ′‖2F
and it thus suffices to show that the first term of the right-hand side is nonnegative. From (2.6),
we have that any subgradient of the nuclear norm at X obeys ‖Z0‖2 ≤ 1 and 〈Z0,X〉 = ‖X‖∗. In
particular, this gives

|〈Z0,X
′〉| ≤ ‖Z0‖2‖X ′‖∗ ≤ ‖X ′‖∗, |〈Z ′0,X〉| ≤ ‖Z ′0‖2‖X‖∗ ≤ ‖X‖∗.

Whence,

〈Z0 −Z ′0,X −X ′〉 = 〈Z0,X〉+ 〈Z ′0,X ′〉 − 〈Z0,X
′〉 − 〈Z ′0,X〉

= ‖X‖∗ + ‖X ′‖∗ − 〈Z0,X
′〉 − 〈Z ′0,X〉 ≥ 0,

which proves the lemma.
This lemma is key in showing that the SVT algorithm (2.7) converges.

Theorem 4.2 Suppose that the sequence of step sizes obeys 0 < inf δk ≤ sup δk < 2. Then the
sequence {Xk} obtained via (2.7) converges to the unique solution of (2.8).

Proof. Let (X?,Y ?) be primal-dual optimal for the problem (2.8). The optimality conditions give

0 = Zk − PΩ(Y k−1)
0 = Z? − PΩ(Y ?),

for some Zk ∈ ∂fτ (Xk) and some Z? ∈ ∂fτ (X?). We then deduce that

(Zk −Z?)− PΩ(Y k−1 − Y ?) = 0

and, therefore, it follows from Lemma 4.1 that

〈Xk −X?,PΩ(Y k−1 − Y ?)〉 = 〈Zk −Z?,Xk −X?〉 ≥ ‖Xk −X?‖2F . (4.2)

We continue and observe that because PΩX? = PΩM ,

‖PΩ(Y k − Y ?)‖F = ‖PΩ(Y k−1 − Y ?) + δkPΩ(X? −Xk)‖F .

Therefore, setting rk = ‖PΩ(Y k − Y ?)‖F ,

r2
k = r2

k−1 − 2δk〈PΩ(Y k−1 − Y ?),Xk −X?〉+ δ2
k‖PΩ(X? −Xk)‖2F

≤ r2
k−1 − 2δk‖Xk −X?‖2F + δ2

k‖Xk −X?‖2F (4.3)

since for any matrix X, ‖PΩ(X)‖F ≤ ‖X‖F . Under our assumptions about the size of δk, we have
2δk − δ2

k ≥ β for all k ≥ 1 and some β > 0 and thus

r2
k ≤ r2

k−1 − β‖Xk −X?‖2F . (4.4)

Two properties follow from this:
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1. The sequence {‖PΩ(Y k − Y ?)‖F } is nonincreasing and, therefore, converges to a limit.

2. As a consequence, ‖Xk −X?‖2F → 0 as k →∞.

The theorem is established.

4.2 General convergence theorem

Our second result is more general and establishes the convergence of the SVT iterations to the
solution of (3.4) under general convex constraints. From now now, we will only assume that the
function F(X) is Lipschitz in the sense that

‖F(X)−F(Y ‖ ≤ L(F)‖X − Y ‖F , (4.5)

for some nonnegative constant L(F). Note that if F is affine, F(X) = b − A(X), we have
L(F) = ‖A‖2 where ‖A‖2 is the spectrum norm of the linear transformation A defined as ‖A‖2 :=
sup{‖A(X)‖`2 : ‖X‖F = 1}. We also recall that F(X) = (f1(X), . . . , fm(X)) where each fi is
convex, and that the Lagrangian for the problem (3.4) is given by

L(X,y) = fτ (X) + 〈y,F(X)〉, y ≥ 0.

We will assume to simplify that strong duality holds which is automatically true if the constraints
obey constraint qualifications such as Slater’s condition [6].

We first establish the following preparatory lemma.

Lemma 4.3 Let (X?,y?) be a primal-dual optimal pair for (3.4). Then for each δ > 0, y? obeys

y? = [y? + δF(X?)]+. (4.6)

Proof. Recall that the projection x0 of a point x onto a convex set C is characterized by{
x0 ∈ C,
〈y − x0,x− x0〉 ≤ 0, ∀y ∈ C.

In the case where C = Rm
+ = {x ∈ Rm : x ≥ 0}, this condition becomes x0 ≥ 0 and

〈y − x0,x− x0〉 ≤ 0, ∀y ≥ 0.

Now because y? is dual optimal we have

L(X?,y?) ≥ L(X?,y), ∀y ≥ 0.

Substituting the expression for the Lagrangian, this is equivalent to

〈y − y?,F(X?)〉 ≤ 0, ∀y ≥ 0,

which is the same as

〈y − y?,y? + ρF(X?)− y?〉 ≤ 0, ∀y ≥ 0, ∀ρ ≥ 0.

Hence it follows that y? must be the projection of y? + ρF(X?) onto the nonnegative orthant Rm
+ .

Since the projection of an arbitrary vector x onto Rm
+ is given by x+, our claim follows.

We are now in the position to state our general convergence result.
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Theorem 4.4 Suppose that the sequence of step sizes obeys 0 < inf δk ≤ sup δk < 2/‖L(F)‖2,
where L(F) is the Lipschitz constant in (4.5). Then assuming strong duality, the sequence {Xk}
obtained via (3.5) converges to the unique solution of (3.4).

Proof. Let (X?,y?) be primal-dual optimal for the problem (3.4). We claim that the optimality
conditions give that for all X

〈Zk,X −Xk〉+ 〈yk−1,F(X)−F(Xk)〉 ≥ 0,
〈Z?,X −X?〉+ 〈y?,F(X)−F(X?)〉 ≥ 0, (4.7)

for some Zk ∈ ∂fτ (Xk) and some Z? ∈ ∂fτ (X?). We justify this assertion by proving one of the
two inequalities since the other is exactly similar. For the first, Xk minimizes L(X,yk−1) over all
X and, therefore, there exist Zk ∈ ∂fτ (Xk) and Zk

i ∈ ∂fi(Xk), 1 ≤ i ≤ m, such that

Zk +
m∑
i=1

yk−1
i Zk

i = 0.

Now because each fi is convex,

fi(X)− fi(Xk) ≥ 〈Zk
i ,X −Xk〉

and, therefore,

〈Zk,X −Xk〉+
m∑
i=1

yk−1
i (fi(X)− fi(Xk)) ≥ 〈Zk +

m∑
i=1

yk−1
i Zk

i ,X −Xk〉 = 0.

This is (4.7).
Now write the first inequality in (4.7) for X?, the second for Xk and sum the two inequalities.

This gives
〈Zk −Z?,Xk −X?〉+ 〈yk−1 − y?,F(Xk)−F(X?)〉 ≤ 0.

The rest of the proof is essentially the same as that of Theorem 4.5. It follows from Lemma 4.1
that

〈yk−1 − y?,F(Xk)−F(X?)〉 ≤ −〈Zk −Z?,Xk −X?〉 ≤ −‖Xk −X?‖2F . (4.8)

We continue and observe that because y? = [y? + δkF(X)]+ by Lemma 4.3, we have

‖yk − y?‖ = ‖[yk−1 + δkF(Xk)]+ − [y? + δkF(X?)]+‖
≤ ‖yk−1 − y? + δk(F(Xk)−F(X?))‖

since the projection onto the convex set Rm
+ is a contraction. Therefore,

‖yk − y?‖2 = ‖yk−1 − y?‖2 + 2δk 〈yk−1 − y?,F(Xk)−F(X?)〉+ δ2
k‖F(Xk)−F(X?)‖2

≤ ‖yk−1 − y?‖2 − 2δk‖Xk −X?‖2F + δ2
kL

2 ‖Xk −X?‖2F ,

where we have put L instead of L(F) for short. Under our assumptions about the size of δk, we
have 2δk − δ2

kL
2 ≥ β for all k ≥ 1 and some β > 0. Then

‖yk − y?‖2 ≤ ‖yk−1 − y?‖2 − β‖Xk −X?‖2F , (4.9)
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and the conclusion is as before.
The problem (3.1) with linear constraints can be reduced to (3.4) by choosing

F(X) =
[

b
−b

]
−
[
A
−A

]
X,

and we have the following corollary:

Corollary 4.5 Suppose that the sequence of step sizes obeys 0 < inf δk ≤ sup δk < 2/‖A‖22. Then
the sequence {Xk} obtained via (3.3) converges to the unique solution of (3.1).

Let ‖A‖2 := sup{‖A(X)‖F : ‖X‖F = 1}. With F(X) given as above, we have |L(F)|2 = 2‖A‖22
and thus, Theorem 4.4 guarantees convergence as long as 0 < inf δk ≤ sup δk < 1/‖A‖22. However,
an argument identical to the proof of Theorem 4.2 would remove the extra factor of two. We omit
the details.

5 Implementation and Numerical Results

This section provides implementation details of the SVT algorithm—as to make it practically
effective for matrix completion—such as the numerical evaluation of the singular value thresholding
operator, the selection of the step size δk, the selection of a stopping criterion, and so on. This
section also introduces several numerical simulation results which demonstrate the performance
and effectiveness of the SVT algorithm. We show that 30, 000 × 30, 000 matrices of rank 10 are
recovered from just about 0.4% of their sampled entries in a matter of a few minutes on a modest
desktop computer with a 1.86 GHz CPU (dual core with Matlab’s multithreading option enabled)
and 3 GB of memory.

5.1 Implementation details

5.1.1 Evaluation of the singular value thresholding operator

To apply the singular value tresholding operator at level τ to an input matrix, it suffices to know
those singular values and corresponding singular vectors above the threshold τ . In the matrix
completion problem, the singular value thresholding operator is applied to sparse matrices {Y k}
since the number of sampled entries is typically much lower than the number of entries in the
unknown matrix M , and we are hence interested in numerical methods for computing the dominant
singular values and singular vectors of large sparse matrices. The development of such methods is
a relatively mature area in scientific computing and numerical linear algebra in particular. In fact,
many high-quality packages are readily available. Our implementation uses PROPACK, see [36]
for documentation and availability. One reason for this choice is convenience: PROPACK comes
in a Matlab and a Fortran version, and we find it convenient to use the well-documented Matlab
version. More importantly, PROPACK uses the iterative Lanczos algorithm to compute the singular
values and singular vectors directly, by using the Lanczos bidiagonalization algorithm with partial
reorthogonalization. In particular, PROPACK does not compute the eigenvalues and eigenvectors
of (Y k)∗Y k and Y k(Y k)∗, or of an augmented matrix as in the Matlab built-in function ‘svds’ for
example. Consequently, PROPACK is an efficient—both in terms of number of flops and storage
requirement—and stable package for computing the dominant singular values and singular vectors
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of a large sparse matrix. For information, the available documentation [36] reports a speedup
factor of about ten over Matlab’s ‘svds’. Furthermore, the Fortran version of PROPACK is about
3–4 times faster than the Matlab version. Despite this significant speedup, we have only used the
Matlab version but since the singular value shrinkage operator is by-and-large the dominant cost in
the SVT algorithm, we expect that a Fortran implementation would run about 3 to 4 times faster.

As for most SVD packages, though one can specify the number of singular values to compute,
PROPACK can not automatically compute only those singular values exceeding the threshold τ .
One must instead specify the number s of singular values ahead of time, and the software will
compute the s largest singular values and corresponding singular vectors. To use this package, we
must then determine the number sk of singular values of Y k−1 to be computed at the kth iteration.
We use the following simple method. Let rk−1 = rank(Xk−1) be the number of nonzero singular
values of Xk−1 at the previous iteration. Set sk = rk−1 +1 and compute the first sk singular values
of Y k−1. If some of the computed singular values are already smaller than τ , then sk is a right
choice. Otherwise, increment sk by a predefined integer ` repeatedly until some of the singular
values fall below τ . In the experiments, we choose ` = 5. Another rule might be to repeatedly
multiply sk by a positive number—e.g. 2—until our criterion is met. Incrementing sk by a fixed
integer works very well in practice; in our experiments, we very rarely need more than one update.

We note that it is not necessary to rerun the Lanczos iterations for the first sk vectors since they
have been already computed; only a few new singular values (` of them) need to be numerically
evaluated. This can be done by modifying the PROPACK routines. We have not yet modified
PROPACK, however. Had we done so, our run times would be decreased.

5.1.2 Step sizes

There is a large literature on ways of selecting a step size but for simplicity, we shall use step sizes
that are independent of the iteration count; that is δk = δ for k = 1, 2, . . .. From Theorem 4.2,
convergence for the completion problem is guaranteed (2.7) provided that 0 < δ < 2. This choice
is, however, too conservative and the convergence is typically slow. In our experiments, we use
instead

δ = 1.2
n1n2

m
, (5.1)

i.e. 1.2 times the undersampling ratio. We give a heuristic justification below.
Consider a fixed matrix A ∈ Rn1×n2 . Under the assumption that the column and row spaces of

A are not well aligned with the vectors taken from the canonical basis of Rn1 and Rn2 respectively—
the incoherence assumption in [13]—then with very large probability over the choices of Ω, we have

(1− ε)p ‖A‖2F ≤ ‖PΩ(A)‖2F ≤ (1 + ε)p ‖A‖2F , p := m/(n1n2), (5.2)

provided that the rank of A is not too large. The probability model is that Ω is a set of sampled
entries of cardinality m sampled uniformly at random so that all the choices are equally likely. In
(5.2), we want to think of ε as a small constant, e.g. smaller than 1/2. In other words, the ‘energy’
of A on Ω (the set of sampled entries) is just about proportional to the size of Ω. The near isometry
(5.2) is a consequence of Theorem 4.1 in [13], and we omit the details.

Now returning to the proof of Theorem 4.2, we see that a sufficient condition for the convergence
of (2.7) is

∃β > 0, −2δ‖X? −Xk‖2F + δ2‖PΩ(X? −Xk)‖2F ≤ −β‖X? −Xk‖2F ,
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compare (4.4), which is equivalent to

0 < δ < 2
‖X? −Xk‖2F

‖PΩ(X? −Xk)‖2F
.

Since ‖PΩ(X)‖F ≤ ‖X‖F for any matrix X ∈ Rn1×n2 , it is safe to select δ < 2. But suppose that
we could apply (5.2) to the matrix A = X? −Xk. Then we could take δ inversely proportional
to p; e.g. with ε = 1/4, we could take δ ≤ 1.6p−1. Below, we shall use the value δ = 1.2p−1 which
allows us to take large steps and still provides convergence, at least empirically.

The reason why this is not a rigorous argument is that (5.2) cannot be applied to A = X?−Xk

even though this matrix difference may obey the incoherence assumption. The issue here is that
X? −Xk is not a fixed matrix, but rather depends on Ω since the iterates {Xk} are computed
with the knowledge of the sampled set.

5.1.3 Initial steps

The SVT algorithm starts with Y 0 = 0, and we want to choose a large τ to make sure that the
solution of (2.8) is close enough to a solution of (1.1). Define k0 as that integer obeying

τ

δ‖PΩ(M)‖2
∈ (k0 − 1, k0]. (5.3)

Since Y 0 = 0, it is not difficult to see that

Xk = 0, Y k = kδPΩ(M), k = 1, . . . , k0.

To save work, we may simply skip the computations of X1, . . . ,Xk0 , and start the iteration by
computing Xk0+1 from Y k0 .

This strategy is a special case of a kicking device introduced in [44]; the main idea of such
a kicking scheme is that one can ‘jump over’ a few steps whenever possible. Just like in the
aforementioned reference, we can develop similar kicking strategies here as well. Because in our
numerical experiments the kicking is rarely triggered, we forgo the description of such strategies.

5.1.4 Stopping criteria

Here, we discuss stopping criteria for the sequence of SVT iterations (2.7), and present two possi-
bilities.

The first is motivated by the first-order optimality conditions or KKT conditions tailored to the
minimization problem (2.8). By (2.14) and letting ∂Y g0(Y ) = 0 in (2.13), we see that the solution
X?
τ to (2.8) must also verify {

X = Dτ (Y ),
PΩ(X −M) = 0,

(5.4)

where Y is a matrix vanishing outside of Ωc. Therefore, to make sure that Xk is close to X?
τ , it

is sufficient to check how close (Xk,Y k−1) is to obeying (5.4). By definition, the first equation in
(5.4) is always true. Therefore, it is natural to stop (2.7) when the error in the second equation is
below a specified tolerance. We suggest stopping the algorithm when

‖PΩ(Xk −M)‖F
‖PΩ(M)‖F

≤ ε, (5.5)
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where ε is a fixed tolerance, e.g. 10−4. We provide a short heuristic argument justifying this choice
below.

In the matrix completion problem, we know that under suitable assumptions

‖PΩ(M)‖2F � p ‖M‖2F ,

which is just (5.2) applied to the fixed matrix M (the symbol � here means that there is a constant
ε as in (5.2)). Suppose we could also apply (5.2) to the matrix Xk−M (which we rigorously cannot
since Xk depends on Ω), then we would have

‖PΩ(Xk −M)‖2F � p ‖Xk −M‖2F , (5.6)

and thus
‖PΩ(Xk −M)‖F
‖PΩ(M)‖F

� ‖X
k −M‖F
‖M‖F

.

In words, one would control the relative reconstruction error by controlling the relative error on
the set of sampled locations.

A second stopping criterion comes from duality theory. Firstly, the iterates Xk are generally
not feasible for (2.8) although they become asymptotically feasible. One can construct a feasible
point from Xk by projecting it onto the affine space {X : PΩ(X) = PΩ(M)} as follows:

X̃k = Xk + PΩ(M −Xk).

As usual let fτ (X) = τ‖X‖∗ + 1
2‖X‖

2
F and denote by p? the optimal value of (2.8). Since X̃k is

feasible, we have
p? ≤ fτ (X̃k) := bk.

Secondly, using the notations of Section 2.4, duality theory gives that

ak := g0(Y k−1) = L(Xk,Y k−1) ≤ p?.

Therefore, bk − ak is an upper bound on the duality gap and one can stop the algorithm when this
quantity falls below a given tolerance.

For very large problems in which one holds Xk in reduced SVD form, one may not want to
compute the projection X̃k since this matrix would not have low rank and would require signifi-
cant storage space (presumably, one would not want to spend much time computing this projection
either). Hence, the second method only makes practical sense when the dimensions are not pro-
hibitively large, or when the iterates do not have low rank.

5.1.5 Algorithm

We conclude this section by summarizing the implementation details and give the SVT algorithm
for matrix completion below (Algorithm 1). Of course, one would obtain a very similar structure
for the more general problems of the form (3.1) and (3.4) with linear inequality constraints. For
convenience, define for each nonnegative integer s ≤ min{n1, n2},

[Uk,Σk,V k]s, k = 1, 2, . . . ,

where Uk = [uk1, . . . ,u
k
s ] and V k = [vk1 , . . . ,v

k
s ] are the first s singular vectors of the matrix Y k,

and Σk is a diagonal matrix with the first s singular values σk1 , . . . , σ
k
s on the diagonal.
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Algorithm 1: Singular Value Thresholding (SVT) Algorithm

Input: sampled set Ω and sampled entries PΩ(M), step size δ, tolerance ε, parameter
τ , increment `, and maximum iteration count kmax

Output: Xopt

Description: Recover a low-rank matrix M from a subset of sampled entries

1 Set Y 0 = k0δPΩ(M) (k0 is defined in (5.3))
2 Set r0 = 0
3 for k = 1 to kmax

4 Set sk = rk−1 + 1
5 repeat
6 Compute [Uk−1,Σk−1,V k−1]sk

7 Set sk = sk + `
8 until σk−1

sk−` ≤ τ
9 Set rk = max{j : σk−1

j > τ}
10 Set Xk =

∑rk
j=1(σk−1

j − τ)uk−1
j vk−1

j

11

if ‖PΩ(Xk −M)‖F /‖PΩM‖F ≤ ε then break
12

Set Y k
ij =

{
0 if (i, j) 6∈ Ω,
Y k−1
ij + δ(Mij −Xk

ij) if (i, j) ∈ Ω
13 end for k
14 Set Xopt = Xk

5.2 Numerical results

5.2.1 Linear equality constraints

Our implementation is in Matlab and all the computational results we are about to report were
obtained on a desktop computer with a 1.86 GHz CPU (dual core with Matlab’s multithreading
option enabled) and 3 GB of memory. In our simulations, we generate n × n matrices of rank r
by sampling two n× r factors ML and MR independently, each having i.i.d. Gaussian entries, and
setting M = MLM∗

R as it is suggested in [13]. The set of observed entries Ω is sampled uniformly
at random among all sets of cardinality m.

The recovery is performed via the SVT algorithm (Algorithm 1), and we use

‖PΩ(Xk −M)‖F /‖PΩM‖F < 10−4 (5.7)

as a stopping criterion. As discussed earlier, the step sizes are constant and we set δ = 1.2p−1.
Throughout this section, we denote the output of the SVT algorithm by Xopt. The parameter τ
is chosen empirically and set to τ = 5n. A heuristic argument is as follows. Clearly, we would like
the term τ‖M‖∗ to dominate the other, namely, 1

2‖M‖
2
F . For products of Gaussian matrices as

above, standard random matrix theory asserts that the Frobenius norm of M concentrates around
n
√
r, and that the nuclear norm concentrates around about nr (this should be clear in the simple

case where r = 1 and is generally valid). The value τ = 5n makes sure that on the average, the
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Unknown M Computational results
size (n× n) rank (r) m/dr m/n2 time(s) # iters relative error

10 6 0.12 23 117 1.64× 10−4

1, 000× 1, 000 50 4 0.39 196 114 1.59× 10−4

100 3 0.57 501 129 1.68× 10−4

10 6 0.024 147 123 1.73× 10−4

5, 000× 5, 000 50 5 0.10 950 108 1.61× 10−4

100 4 0.158 3,339 123 1.72× 10−4

10 6 0.012 281 123 1.73× 10−4

10, 000× 10, 000 50 5 0.050 2,096 110 1.65× 10−4

100 4 0.080 7,059 127 1.79× 10−4

10 6 0.006 588 124 1.73× 10−4

20, 000× 20, 000
50 5 0.025 4,581 111 1.66× 10−4

30, 000× 30, 000 10 6 0.004 1,030 125 1.73× 10−4

Table 1: Experimental results for matrix completion. The rank r is the rank of the unknown
matrix M , m/dr is the ratio between the number of sampled entries and the number of
degrees of freedom in an n×n matrix of rank r (oversampling ratio), and m/n2 is the fraction
of observed entries. All the computational results on the right are averaged over five runs.

value of τ‖M‖∗ is about 10 times that of 1
2‖M‖

2
F as long as the rank is bounded away from the

dimension n.
Our computational results are displayed in Table 1. There, we report the run time in seconds, the

number of iterations it takes to reach convergence (5.7), and the relative error of the reconstruction

relative error = ‖Xopt −M‖F /‖M‖F , (5.8)

where M is the real unknown matrix. All of these quantities are averaged over five runs. The table
also gives the percentage of entries that are observed, namely, m/n2 together with a quantity that
we may want to think as the information oversampling ratio. Recall that an n× n matrix of rank
r depends upon dr := r(2n− r) degrees of freedom. Then m/dr is the ratio between the number of
sampled entries and the ‘true dimensionality’ of an n× n matrix of rank r.

The first observation is that the SVT algorithm performs extremely well in these experiments.
In all of our experiments, it takes fewer than 200 SVT iterations to reach convergence. As a
consequence, the run times are short. As indicated in the table, we note that one recovers a
1, 000×1, 000 matrix of rank 10 in less than a minute. The algorithm also recovers 30, 000×30, 000
matrices of rank 10 from about 0.4% of their sampled entries in just about 17 minutes. In addition,
higher-rank matrices are also efficiently completed: for example, it takes between one and two
hours to recover 10, 000×10, 000 matrices of rank 100 and 20, 000×20, 000 matrices of rank 50. We
would like to stress that these numbers were obtained on a modest CPU (1.86GHz). Furthermore,
a Fortran implementation is likely to cut down on these numbers by a multiplicative factor typically
between three and four.

We also check the validity of the stopping criterion (5.7) by inspecting the relative error defined
in (5.8). The table shows that the heuristic and nonrigorous analysis of Section 5.1 holds in practice
since the relative reconstruction error is of the same order as ‖PΩ(Xopt−M)‖F /‖PΩM‖F ∼ 10−4.
Indeed, the overall relative errors reported in Table 1 are all less than 2× 10−4.
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We emphasized all along an important feature of the SVT algorithm, which is that the matrices
Xk have low rank. We demonstrate this fact empirically in Figure 1, which plots the rank of
Xk versus the iteration count k, and does this for unknown matrices of size 5, 000 × 5, 000 with
different ranks. The plots reveal an interesting phenomenon: in our experiments, the rank of Xk

is nondecreasing so that the maximum rank is reached in the final steps of the algorithm. In fact,
the rank of the iterates quickly reaches the value r of the true rank. After these few initial steps,
the SVT iterations search for that matrix with rank r minimizing the objective functional. As
mentioned earlier, the low-rank property is crucial for making the algorithm run fast.
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Figure 1: Rank of Xk as a function k when the unknown matrix M is of size 5, 000× 5, 000
and of rank r.

Finally, we demonstrate the results of the SVT algorithm for matrix completion from noisy
sampled entries. Suppose we observe data from the model

Bij = Mij + Zij , (i, j) ∈ Ω, (5.9)

where Z is a zero-mean Gaussian white noise with standard deviation σ. We run the SVT algorithm
but stop early, as soon as Xk is consistent with the data and obeys

‖PΩ(Xk −B)‖2F ≤ (1 + ε)mσ2, (5.10)

where ε is a small parameter. Our reconstruction M̂ is the first Xk obeying (5.10). The results
are shown in Table 2 (the quantities are averages of 5 runs). Define the noise ratio as

‖PΩ(Z)‖F /‖PΩ(M)‖F ,

and the relative error by (5.8). From Table 2, we see that the SVT algorithm works well as the
relative error between the recovered and the true data matrix is just about equal to the noise ratio.

The theory of low-rank matrix recovery from noisy data is nonexistent at the moment, and is
obviously beyond the scope of this paper. Having said this, we would like to conclude this section
with an intuitive and nonrigorous discussion, which may explain why the observed recovery error
is within the noise level. Suppose again that M̂ obeys (5.6), namely,

‖PΩ(M̂ −M)‖2F � p‖M̂ −M‖2F . (5.11)
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Unknown matrix M Computational resultsnoise ratio
size (n× n) rank (r) m/dr m/n2 time(s) # iters relative error

10 6 0.12 10.8 51 0.78× 10−2

10−2 1, 000× 1, 000 50 4 0.39 87.7 48 0.95× 10−2

100 3 0.57 216 50 1.13× 10−2

10 6 0.12 4.0 19 0.72× 10−1

10−1 1, 000× 1, 000 50 4 0.39 33.2 17 0.89× 10−1

100 3 0.57 85.2 17 1.01× 10−1

10 6 0.12 0.9 3 0.52
1 1, 000× 1, 000 50 4 0.39 7.8 3 0.63

100 3 0.57 34.8 3 0.69

Table 2: Simulation results for noisy data. The computational results are averaged over five
runs.

As mentioned earlier, one condition for this to happen is that M and M̂ have low rank. This is
the reason why it is important to stop the algorithm early as we hope to obtain a solution which
is both consistent with the data and has low rank (the limit of the SVT iterations, limk→∞Xk,
will not generally have low rank since there may be no low-rank matrix matching the noisy data).
From

‖PΩ(M̂ −M)‖F ≤ ‖PΩ(M̂ −B)‖F + ‖PΩ(B −M)‖F ,

and the fact that both terms on the right-hand side are on the order of
√
mσ2, we would have

p‖M̂ −M‖2F = O(mσ2) by (5.11). In particular, this would give that the relative reconstruction
error is on the order of the noise ratio since ‖PΩ(M)‖2F � p‖M‖2F—as observed experimentally.

5.2.2 Linear inequality constraints

We now examine the speed at which one can solve similar problems with linear inequality constraints
instead of linear equality constraints. We assume the model (5.9), where the matrix M of rank
r is sampled as before, and solve the problem (3.8) by using (3.10). We formulate the inequality
constraints in (3.8) with Eij = σ so that one searches for a solution M̂ with minimum nuclear
norm among all those matrices whose sampled entries deviate from the observed ones by at most
the noise level σ.2 In this experiment, we adjust σ to be one tenth of a typical absolute entry of
M , i.e. σ = 0.1

∑
ij∈Ω |Mij |/m, and the noise ratio as defined earlier is 0.780. We set n = 1, 000,

r = 10, and the number m of sampled entries is five times the number of degrees of freedom,
i.e. m = 5dr. Just as before, we set τ = 5n, and choose a constant step size δ = 1.2p−1.

The results, reported in Figure 2, show that the algorithm behaves just as well with linear
inequality constraints. To make this point, we compare our results with those obtained from
noiseless data (same unknown matrix and sampled locations). In the noiseless case, it takes about
150 iterations to reach the tolerance ε = 10−4 whereas in the noisy case, convergence occurs in
about 200 iterations (Figure 2(a)). In addition, just as in the noiseless problem, the rank of the
iterates is nondecreasing and quickly reaches the true value r of the rank of the unknown matrix

2This may not be conservative enough from a statistical viewpoint but this works well in this case, and our
emphasis here is on computational rather than statistical issues.
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Figure 2: Computational results of the algorithm applied to noisy (linear inequality con-
straints as in (3.8)) and noiseless data (equality constraints). The blue (resp. red) color is
used for the noisy (resp. noiseless) experiment. (a) Plot of the reconstruction errors from
noisy and noiseless data as a function of the iteration count. The thin line is the residual
relative error ‖PΩ(Xk −M)‖F /‖PΩ(M)‖F and the thick line is the overall relative error
‖Xk−M‖F /‖M‖F . (b) Rank of the iterates as a function of the iteration count. (c) Time it
takes to compute the singular value thresholding operation as a function of the iteration count.
The computer here is a single-core 3.00GHz Pentium 4 running Matlab 7.2.0.

M we wish to recover (Figure 2(b)). As a consequence the SVT iterations take about the same
amount of time as in the noiseless case (Figure 2(c)) so that the total running time of the algorithm
does not appear to be substantially different from that in the noiseless case.

We close by pointing out that from a statistical point of view, the recovery of the matrix M
from undersampled and noisy entries by the matrix equivalent of the Dantzig selector appears to
be accurate since the relative error obeys ‖M̂ −M‖F /‖M‖F = 0.0769 (recall that the noise ratio
is about 0.08).

6 Discussion

This paper introduced a novel algorithm, namely, the singular value thresholding algorithm for
matrix completion and related nuclear norm minimization problems. This algorithm is easy to
implement and surprisingly effective both in terms of computational cost and storage requirement
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when the minimum nuclear-norm solution is also the lowest-rank solution. We would like to close
this paper by discussing a few open problems and research directions related to this work.

Our algorithm exploits the fact that the sequence of iterates {Xk} have low rank when the
minimum nuclear solution has low rank. An interesting question is whether one can prove (or
disprove) that in a majority of the cases, this is indeed the case.

It would be interesting to explore other ways of computing Dτ (Y )—in words, the action of
the singular value shrinkage operator. Our approach uses the Lanczos bidiagonalization algorithm
with partial reorthogonalization which takes advantages of sparse inputs but other approaches are
possible. We mention two of them.

1. A series of papers have proposed the use of randomized procedures for the approximation
of a matrix Y with a matrix Z of rank r [38, 41]. When this approximation consists of the
truncated SVD retaining the part of the expansion corresponding to singular values greater
than τ , this can be used to evaluate Dτ (Y ). Some of these algorithms are efficient when the
input Y is sparse [41], and it would be interesting to know whether these methods are fast
and accurate enough to be used in the SVT iteration (2.7).

2. A wide range of iterative methods for computing matrix functions of the general form f(Y )
are available today, see [34] for a survey. A valuable research direction is to investigate
whether some of these iterative methods, or other to be developed, would provide powerful
ways for computing Dτ (Y ).

In practice, one would like to solve (2.8) for large values of τ . However, a larger value of τ
generally means a slower rate of convergence. A good strategy might be to start with a value of
τ , which is large enough so that (2.8) admits a low-rank solution, and at the same time for which
the algorithm converges rapidly. One could then use a continuation method as in [50] to increase
the value of τ sequentially according to a schedule τ0, τ1, . . ., and use the solution to the previous
problem with τ = τi−1 as an initial guess for the solution to the current problem with τ = τi (warm
starting). We hope to report on this in a separate paper.
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