
Bayesian TransductionThore Graepel, Ralf Herbrich and Klaus ObermayerDepartment of Computer ScienceTechnical University of BerlinFranklinstr. 28/29, 10587 Berlin, Germanyfgraepel2,ralfh,obyg@cs.tu-berlin.deAbstractTransduction is an inference principle that takes a training sam-ple and aims at estimating the values of a function at given pointscontained in the so-called working sample as opposed to the wholeof input space for induction. Transduction provides a con�dencemeasure on single predictions rather than classi�ers | a featureparticularly important for risk-sensitive applications. The possiblyin�nite number of functions is reduced to a �nite number of equiv-alence classes on the working sample. A rigorous Bayesian analysisreveals that for standard classi�cation loss we cannot bene�t fromconsidering more than one test point at a time. The probabilityof the label of a given test point is determined as the posteriormeasure of the corresponding subset of hypothesis space. We con-sider the PAC setting of binary classi�cation by linear discriminantfunctions (perceptrons) in kernel space such that the probability oflabels is determined by the volume ratio in version space. Wesuggest to sample this region by an ergodic billiard. Experimen-tal results on real world data indicate that Bayesian Transductioncompares favourably to the well-known Support Vector Machine,in particular if the posterior probability of labellings is used as acon�dence measure to exclude test points of low con�dence.1 IntroductionAccording to Vapnik [9], when solving a given problem one should avoid solving amore general problem as an intermediate step. The reasoning behind this principle isthat in order to solve the more general task resources may be wasted or compromisesmay have to be made which would not have been necessary for the solution of theproblem at hand. A direct application of this common-sense principle reduces themore general problem of inferring a functional dependency on the whole of inputspace to the problem of estimating the values of a function at given points (workingsample), a paradigm referred to as transductive inference. More formally, given aprobability measure PXY on the space of data X � Y = X � f�1;+1g, a trainingsample S = f(x1; y1) ; : : : ; (x`; y`)g is generated i.i.d. according to PXY. Additionalm data points W = fx`+1; : : : ;x`+mg are drawn: the working sample. The goalis to label the objects of the working sample W using a �xed set H of functions



f : X 7! f�1;+1g so as to minimise a prede�ned loss. In contrast, inductiveinference, aims at choosing a single function f` 2 H best suited to capture thedependency expressed by the unknown PXY. Obviously, if we have a transductivealgorithm A (W;S;H) that assigns to each working sample W a set of labels giventhe training sample S and the set H of functions, we can de�ne a function fS : X 7!f�1;+1g by fS (x) = A (fxg ; S;H) as a result of the transduction algorithm. Thereare two crucial di�erences to induction, however: i) A (fxg ; S;H) is not restrictedto select a single decision function f 2 H for each x, ii) a transduction algorithmcan give performance guarantees on particular labellings instead of functions. Inpractical applications this di�erence may be of great importance.After all, in risk sensitive applications (medical diagnosis, �nancial and criticalcontrol applications) it often matters to know how con�dent we are about a givenprediction. In this case a general con�dence measure of the classi�er w.r.t. thewhole input distribution would not provide the desired warranty at all. Note thatfor linear classi�ers some guarantee can be obtained by the margin [7] which inSection 4 we will demonstrate to be too coarse a con�dence measure. The idea oftransduction was put forward in [8], where also �rst algorithmic ideas can be found.Later [1] suggested an algorithm for transduction based on linear programming and[3] highlighted the need for con�dence measures in transduction.The paper is structured as follows: A Bayesian approach to transduction is formu-lated in Section 2. In Section 3 the function class of kernel perceptrons is introducedto which the Bayesian transduction scheme is applied. For the estimation of volumesin parameter space we present a kernel billiard as an e�cient sampling technique.Finally, we demonstrate experimentally in Section 4 how the con�dence measurefor labellings helps Bayesian Transduction to achieve low generalisation error at alow rejection rate of test points and thus to outperform Support Vector Machines(SVMs).2 Bayesian Transductive Classi�cationSuppose we are given a training sample S = f(x1; y1) ; : : : ; (x`; y`)g drawn i.i.d. fromPXY and a working sample W = fx`+1; : : : ;x`+mg drawn i.i.d. from PX. Givena prior PH over the set H of functions and a likelihood P(XY)`jH=f we obtain aposterior probability PHj(XY)`=S def= PHjS by Bayes' rule. This posterior measureinduces a probability measure on labellings b 2 f�1;+1gm of the working sampleby1 PYmjS;W (b) def= PHjS (ff : 8x`+i 2W f (x`+i) = big) : (1)For the sake of simplicity let us assume a PAC style setting, i.e. there exists afunction f� in the space H such that PYjX=x (y) = � (y � f� (x)). In this case onecan de�ne the so-called version-space as the set of functions that is consistent withthe training sample V (S) = ff : 8 (xi; yi) 2 S f (xi) = yig ; (2)outside which the posterior PHjS vanishes. Then PYmjS;W (b) represents the priormeasure of functions consistent with the training sample S and the labelling bon the working sample W normalised by the prior measure of functions consistentwith S alone. The measure PH can be used to incorporate prior knowledge into1Note that the number of di�erent labellings b implementable by H is bounded aboveby the value of the growth function �H (jW j) [8, p. 321].



the inference process. If no such knowledge is available, considerations of symmetrymay lead to \uninformative" priors.Given the measure PYmjS;W over labellings, in order to arrive at a risk minimaldecision w.r.t. the labelling we need to de�ne a loss function l : Ym � Ym 7! R+between labellings and minimise its expectation,R (b; S;W ) = EYmjS;W [l (b;Ym)] = Xfb0g l (b;b0)PYmjS;W (b0) ; (3)where the summation runs over all the 2m possible labellings b0 of the workingsample. Let us consider two scenarios:1. A 0{1{loss on the exact labelling b, i.e. for two labellings b and b0lc (b;b0) = 1� mYi=1 � (bi � b0i) , Rc (b; S;W ) = 1� PYmjS;W (b) : (4)In this case choosing the labelling bc = argminbRc (b; S;W ) of the highestjoint probability PYmjS;W (b) minimises the risk. This non-labelwise loss isappropriate if the goal is to exactly identify a combination of labels, e.g. thecombination of handwritten digits de�ning a postal zip code. Note thatclassical SVM transduction (see, e.g. [8, 1]) by maximising the margin onthe combined training and working sample approximates this strategy andhence does not minimise the standard classi�cation risk on single instancesas intended.2. A 0{1{loss on the single labels bi, i.e. for two labellings b and b0ls (b;b0) = 1m mXi=1 (1� � (bi � b0i)) ; (5)Rs (b; S;W ) = 1m mXi=1 Xfb0g (1� � (bi � b0i))PYmjS;W (b0)= 1m mXi=1 �1� PHjS (ff : f (x`+i) = big)� :Due to the independent treatment of the loss at working sample points therisk Rs (b; S;W ) is minimised by the labelling of highest marginal proba-bility of the labels, i.e.bi = argmaxy2Y PHjS (ff : f (x`+i) = yg) :Thus in the case of the labelwise loss (5) a working sample of m > 1point does not o�er any advantages over larger working samples w.r.t. theBayes-optimal decision. Since this corresponds to the standard classi�ca-tion setting, we will restrict ourselves to working samples of size m = 1,i.e. to one working point x`+1.3 Bayesian Transduction by Volume3.1 The Kernel PerceptronWe consider transductive inference for the class of kernel perceptrons. The decisionfunctions are given byf (x) = sign (hw;� (x)iF ) = sign X̀i=1 �ik (xi;x)! w = X̀i=1 �i� (xi) 2 F ;



++�+ �� +��2(x) �1(x) w1V+� V ++V �� V �+w2Figure 1: Schematic view of data space (left) and parameter space (right) for aclassi�cation toy example. Using the duality given by hw;� (x)iF = 0 data pointson the left correspond to hyperplanes on the right, while hyperplanes on the leftcan be thought of as points on the right.where the mapping � : X 7! F maps from input space X to a feature space Fcompletely determined by the inner product function (kernel) k : X � X 7! R(see [9, 10]). Given a training sample S = f(xi; yi)gì=1 we can de�ne the versionspace | the set of all perceptrons compatible with the training data | as in (2)having the additional constraint kwkF = 1 ensuring uniqueness. In order to obtaina prediction on the label b1 of the working point x`+1 we note that x`+1 maybisects the volume V of version space into two sub{volumes V + and V �, where theperceptrons in V + would classify x`+1 as b1 = +1 and those in V � as b1 = �1.The ratio p+ = V +=V is the probability of the labelling b1 = +1 given a uniformprior PH over w and the class of kernel perceptrons, accordingly for b1 = �1 (seeFigure 1). Already Vapnik in [8, p. 323] noticed that it is troublesome to estimatesub{volumes of version space. As the solution to this problem we suggest to use abilliard algorithm.3.2 Kernel Billiard for Volume EstimationThe method of playing billiard in version space was �rst introduced by Rujan [6]for the purpose of estimating its centre of mass and consequently re�ned and ex-tended to kernel spaces by [4]. For Bayesian Transduction the idea is to bouncethe billiard ball in version space and to record how much time it spends in eachof the sub-volumes of interest. Under the assumption of ergodicity [2] w.r.t. theuniform measure in the limit the accumulated 
ight times for each sub-volume areproportional to the sub-volume itself.Since the trajectory is located in F each position w and direction v of the ball canbe expressed as linear combinations of the � (xi), i.e.w = X̀i=1 �i� (xi) v = X̀i=1 �i� (xi) hw;viF = X̀i;j=1�i�jk (xi;xj)where �;� are real vectors with ` components and fully determine the state of thebilliard. The algorithm for the determination of the label b1 of x`+1 proceeds asfollows:1. Initialise the starting position w0 in V (S) using any kernel perceptronalgorithm that achieves zero training error (e.g. SVM [9]). Set V + = V � =0.



2. Find the closest boundary of V (S) starting from current w into directionv, where the 
ight times �j for all points including x`+1 are determinedusing �j = �hw;� (xj)iFhv;� (xj)iF :The smallest positive 
ight time �c = minj:�j>0 �j in kernel space corre-sponds to the closest data point boundary � (xc) on the hypersphere. Note,that if �c !1 we randomly generate a direction v pointing towards versionspace, i.e. y hv;� (x)iF > 0 assuming the last bounce was at � (x).3. Calculate the ball's new position w0 according tow0 = w + �cvkw + �cvkF :Calculate the distance tyi = kw �w0ksphere = arccos �1� kw �w0k2F =2�on the hypersphere and add it to the volume estimate V y corresponding tothe current label y = sign (hw +w0;� (x`+1)iF ). If the test point � (x`+1)was hit, i.e. c = ` + 1, keep the old direction vector v. Otherwise updateto the re
ection direction v0,v0 = v � 2 hv;� (xc)iF � (xc) :Go back to step 2 unless the stopping criterion (8) is met.Note that in practice one trajectory can be calculated in advance and can be usedfor all test points. The estimators of the probability of the labellings are then givenby bp+ = V +=(V + + V �) and bp� = V �=(V + + V �). Thus, the algorithm outputsbb1 with con�dence bctrans according tobb1 def= argmaxy2Y bpy ; (6)bctrans def= �2 �max �bp+; bp�� � 1� 2 [0; 1] : (7)Note that the Bayes Point Machine (BPM) [4] aims at an optimal approximationof the transductive classi�cation (6) by a single function f 2 H and that the wellknown SVM can be viewed as an approximation of the BPM by the centre of thelargest ball in version space. Thus, treating the real valued output jf(x`+1)j def= bcindof SVM classi�ers as a con�dence measure can be considered an approximation of(7). The consequences will be demonstrated experimentally in the following section.Disregarding the issue of mixing time [2] and the dependence of trajectories weassume for the stopping criterion that the fraction p+i of time t+i spent in volumeV + on trajectory i of length �t+i + t�i � is a random variable having expectation p+.Hoe�ding's inequality [5] bounds the probability of deviation from the expectationp+ by more than �,P 1n nXi=1 p+i � p+ � �! � exp ��2n�2� def= � : (8)Thus if we want the deviation � from the true label probability to be less than� < 0:05 with probability at least 1 � � = 0:99 we need approximately n � 1000bounces. The computational e�ort of the above algorithm for a working set of sizem is of order O (n` (m + `)).
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SVM(a) (b)Figure 2: Generalisation error vs. rejection rate for Bayesian Transduction andSVMs for the thyroid data set (� = 3) (a) and the heart data set (� = 10).The error bars in both directions indicate one standard deviation of the estimatedmeans. The upper curve depicts the result for the SVM algorithm; the lower curveis the result obtained by Bayesian Transduction.4 Experimental ResultsWe focused on the con�dence bctrans Bayesian Transduction provides together withthe prediction bb1 of the label. If the con�dence bctrans re
ects reliability of a labelestimate at a given test point then rejecting those test points whose predictions carrylow con�dence should lead to a reduction in generalisation error on the remainingtest points. In the experiments we varied a rejection threshold � between [0; 1] thusobtaining for each � a rejeection rate together with an estimate of the generalisationerror at non-rejected points. Both these curves were linked by their common �-axisresulting in a generalisation error versus rejection rate plot.We used the UCI2 data sets thyroid and heart because they are medical ap-plications for which the con�dence of single predictions is particularly important.Also a high rejection rate due to too conservative a con�dence measure may in-cur considerable costs. We trained a Support Vector Machine using RBF kernelsk (x;x0) = exp��kx� x0k2 =2�2� with � chosen such as to insure the existence of aversion space. We used 100 di�erent training samples obtained by random 60%:40%splits of the whole data set. The margin bcind of each test point was calculated as acon�dence measure of SVM classi�cations. For comparison we determined the la-bels bb1 and resulting con�dences bctrans using the Bayesian Transduction algorithm(see Section 3) with the same value of the kernel parameter. Since the rejection forthe Bayesian Transduction was in both cases higher than for SVMs at the same level� we determined �max which achieves the same rejection rate for the SVM con�-dence measures as Bayesian Transduction achieves at � = 1 (thyroid: �max = 2:15,heart: �max = 1:54). The results for the two data sets are depicted in Figure 2.In the thyroid example Figure 2 (a) one can see that bctrans is indeed an appropriateindicator of con�dence: at a rejection rate of approximately 20% the generalisationerror approaches zero at minimal variance. For any desired generalisation errorBayesian Transduction needs to reject signi�cantly less examples of the test set ascompared to SVM classi�ers, e.g. 4% less at 2.3% generalisation error. The results ofthe heart data set show even more pronounced characteristics w.r.t. to the rejection2UCI University of California at Irvine: Machine Learning Repository



rate. Note that those con�dence measures considered cannot capture the e�ects ofnoise in the data which leads to a generalisation error of 16:4% even at maximalrejection � = 1 corresponding to the Bayes error under the given function class.5 Conclusions and Future WorkIn this paper we a presented a Bayesian analysis of transduction. The requiredvolume estimates for kernel perceptrons in version space are performed by an ergodicbilliard in kernel space. Most importantly, transduction not only determines thelabel of a given point but also returns a con�dence measure of the classi�cationin the form of the probability of the label under the model. Using this con�dencemeasure to reject test examples then lead to improved generalisation error overSVMs. The billiard algorithm can be extended to the case of non-zero trainingerror by allowing the ball to penetrate walls, a property that is captured by addinga constant � to the diagonal of the kernel matrix [4]. Further research will aim atthe discovery of PAC-Bayesian bounds on the generalisation error of transduction.AcknowledgementsWe are greatly indebted to U. Kockelkorn for many interesting suggestions anddiscussions. This project was partially funded by Technical University of Berlin viaFIP 13/41.References[1] K. Bennett. Advances in Kernel Methods | Support Vector Learning, chapter 19,Combining Support Vector and Mathematical Programming Methods for Classi�ca-tion, pages 307{326. MIT Press, 1998.[2] I. Cornfeld, S. Fomin, and Y. Sinai. Ergodic Theory. Springer Verlag, 1982.[3] A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In Proceedingsof Uncertainty in AI, pages 148{155, Madison, Wisconsin, 1998.[4] R. Herbrich, T. Graepel, and C. Campbell. Bayesian learning in reproducing kernelHilbert spaces. Technical report, Technical University Berlin, 1999. TR 99-11.[5] W. Hoe�ding. Probability inequalities for sums of bounded random variables. Journalof the American Statistical Association, 58:13{30, 1963.[6] P. Ruj�an. Playing billiard in version space. Neural Computation, 9:99{122, 1997.[7] J. Shawe-Taylor. Con�dence estimates of classi�cation accuracy on new examples.Technical report, Royal Holloway, University of London, 1996. NC2{TR{1996{054.[8] V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer, 1982.[9] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.[10] G. Wahba. Spline Models for Observational Data. Society for Industrial and AppliedMathematics, Philadelphia, 1990.


