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Abstract

Broad classes of statistical classification algorithms have been developed and applied
successfully to a wide range of real world domains. In general, ensuring that the
particular classification algorithm matches the properties of the data is crucial in
providing results that meet the needs of the particular application domain. One
way in which the impact of this algorithm/application match can be alleviated is by
using ensembles of classifiers, where a variety of classifiers (either different types of
classifiers or different instantiations of the same classifier) are pooled before a final
classification decision is made. Intuitively, classifier ensembles allow the different
needs of a difficult problem to be handled by classifiers suited to those particular
needs. Mathematically, classifier ensembles provide an extra degree of freedom in
the classical bias/variance tradeoff, allowing solutions that would be difficult (if
not impossible) to reach with only a single classifier. Because of these advantages,
classifier ensembles have been applied to many difficult real world problems. In this
paper, we survey select applications of ensemble methods to problems that have
historically been most representative of the difficulties in classification. In particular,
we survey applications of ensemble methods to remote sensing, person recognition,
one vs. all recognition, and medicine.
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1 Introduction

Classifying a set of inputs into one of many classes is one of the most basic
statistical pattern recognition tasks. A classification task requires the construc-
tion of a statistical model that represents a mapping from input data (nor-
mally described by several features) to the appropriate outputs. This model
is intended to approximate the true mapping from the inputs to the outputs,
typically with the intent of generating predictions of outputs for new, previ-
ously unseen inputs. Applications of such classification or pattern recognition
algorithms cover a broad array of domains, ranging from medical diagnosis,
to fraud detection to remote sensing.

In general, there are two types of learning approaches for pattern recogni-
tion: supervised and unsupervised. In supervised learning, a set of training
examples—examples with known output values—is used by a learning algo-
rithm to create a classifier. For example, the classification task may be to learn
to predict whether a particular credit card charge is legitimate or fraudulent.
Each pattern (input) corresponds to a particular charge and is composed of
multiple features (e.g., time of transaction, amount of transaction, average
daily credit card balance, store in which transaction was made) as well as ac-
tual information on whether this charge was fraudulent (output). A learning
algorithm uses the supplied examples to generate a classifier that approximates
the mapping between each transaction and the legitimacy of that transaction.
This classifier can then be used to predict whether a new transaction is legit-
imate or not.

An unsupervised classification task on the other hand consists of assigning a
class to a training example without having a known target class. For example,
different credit card transactions can be grouped together based on similarity.
This information can then be used to screen transactions that may need to
be reviewed by another algorithm or a human operator. This approach, also
known as clustering provides value in finding correlations and similarities in
large data sets where the actual class memberships of the training patterns
are not known.

Many learning algorithms generate a single classifier (e.g., a decision tree or
neural network) that can be used to make predictions for new examples. How-
ever, many decisions (e.g., initial model parameter settings) affect the per-
formance of that classifier. Selecting the best available classifier is an option,
but because the distribution over new examples that the classifier may en-
counter during operation may vary (slightly or significantly depending on the
application), this approach does not provide the best solution in all cases. Fur-
thermore, because many classifiers are generally tried before a single classifier
is selected, this approach also discards valuable information by ignoring the
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performance of all the other classifiers.

Classifier ensembles–also known as combiners or committees–are aggregations
of several classifiers whose individual predictions are combined in some manner
(e.g., averaging or voting) to form a final prediction. Because they use all
the available classifier information, ensembles generally provide better and/or
more robust solutions in most applications. As an example, consider the case
where neural networks with different structure (or with just a different set
of starting weights) were generated from a supplied training set. Now, an
ensemble of these three classifiers can be formed by having each classifier
provide a prediction for a given pattern and returning the class that gets
the maximum number of votes. Many researchers have demonstrated that
ensembles often outperform their base models (the component models of the
ensemble) if the base models perform well on novel examples and tend to make
errors on different examples (e.g., [12,81,52,114,117]).

In this article we provide a summary of the leading ensemble methods and
provide a discussion of their application to four broad classes of real world
classification problems. In Section 2, we present a motivating example, fol-
lowed by the bias/variance tradeoff and Bayesian interpretation of classifier
ensembles. In Section 3 we present the background on the most commonly
used ensemble techniques, including basic averaging, weighted averaging, bag-
ging, boosting and order statistics ensembles. In Section 4, we present four
different domains where classifier ensembles have been successfully applied.
These domains are remote sensing, person recognition (face,fingerprint), one-
vs-all classification (which covers many types of fault and intrusion detection),
and medicine. Finally, in Section 5 we discuss the impact of these results and
highlight future research and application directions for classifier ensembles.

2 Motivation and Mathematical Insight

2.1 Motivating Example

To intuitively show the impact of ensembles, let us define h1, h2, h3 to be the
three neural networks in the previous example and consider a new example x.
If all three networks always agree, then whenever h1(x) is incorrect, h2(x) and
h3(x) will also be incorrect, so that the incorrect class will get the majority
of the votes and the ensemble will also be incorrect—having an ensemble
of three networks provides no benefit over only one network. On the other
hand, if the networks tend to make errors on different examples, then when
h1(x) is incorrect, h2(x) and h3(x) may be correct, so that the ensemble will
return the correct class by majority vote. More precisely, if an ensemble has
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Fig. 1. An ensemble of linear classifiers. Each line A, B, and C is a linear classifier.
The boldface line is the ensemble that classifies new examples by returning the
majority vote of A, B, and C.

M base models having an error rate ε < 1/2 and if the base models’ errors
are independent, then the probability that the ensemble makes an error is the
probability that more than M/2 base models misclassify the example. This
is precisely P (B > M/2), where B is a Binomial(M, ε) random variable. In
our three-network example, if all the networks have an error rate of 0.3 and
make independent errors, then the probability that the ensemble misclassifies
a new example is 0.21. Even better than base models that make independent
errors would be base models that are somewhat anti-correlated. For example,
if no two networks make a mistake on the same example, then the ensemble’s
performance will be perfect because if one network misclassifies an example,
then the remaining two networks will correct the error.

We can see the intuition behind this point graphically in Figure 1. The goal of
the learning problem depicted in the figure is to separate the positive examples
(‘+’) from the negative examples (‘−’). The figure depicts an ensemble of
three linear classifiers. For example, line C classifies examples above it as
negative examples and examples below it as positive examples. Note that
none of the three lines separates the positive and negative examples perfectly.
For example, line C misclassifies all the positive examples in the top half of
the figure. Indeed, no straight line can separate the positive examples from the
negative examples. However, the ensemble of three lines, where each line gets
one vote, correctly classifies all the examples—for every example, at least two
of the three linear classifiers correctly classifies it, so the majority is always
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correct. This is the result of having three very different linear classifiers in the
ensemble. This example clearly depicts the need to have base models whose
errors are not highly correlated. If all the linear classifiers make mistakes on
the same examples (for example if the ensemble consisted of three copies of
line A), then a majority vote over the lines would also make mistakes on the
same examples, yielding no performance improvement.

Another way of explaining the superior performance of the ensemble is that
the class of ensemble models has greater expressive power than the class of
individual base models. We pointed out earlier that, in the figure, no straight
line can separate the positive examples from the negative examples. Our en-
semble is a piecewise linear classifier (the bold line), which is able to perfectly
separate the positive and negative examples. This is because the class of piece-
wise linear classifiers has more expressive power than the class of single linear
classifiers.

2.2 Bias vs. Variance

The intuition that we have just described has been formalized [109,113]. En-
semble learning can be justified in terms of the bias and variance of the learned
model [39,118]. The bias of a model is the difference between the true function
that generated the data and the “average” function returned by the learning
algorithm (averaged over all possible training sets). The variance of the model
is the variance over the possible training sets of the function returned by the
learning algorithm.

Intuitively, the simpler the space of models, the higher the bias and the lower
the variance. Simpler models may be too simple to fit the variations present in
the data, so systematic errors may remain regardless of the amount of training
performed—this is bias. On the other hand, simpler model spaces are smaller
than more complicated model spaces; therefore, variations in the training set
are less likely to introduce significant changes in the returned model; therefore,
the variance will be lower. An extreme example of this is a learning algorithm
that always returns a particular model regardless of the training set presented
as input. This will clearly have a high bias because it does not attempt to fit
the data at all. However, it will have low variance (zero, in fact) because there
is only one model, so there will be no variation over different training sets.

2.3 Bayesian Interpretation

Ensemble learning can also be seen as a tractable approximation to full Bayesian
learning [11,26,50]. In full Bayesian learning, the final learned model is a mix-
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ture of a very large set of models—typically all models in a given family (e.g.,
all decision trees up to a certain depth). If we are interested in predicting
some quantity Y , and we have a set of models hm (m ∈ {1, 2, . . . ,M} for
some presumably large M) and a training set T , then the final learned model
is

P (Y |T ) =
M∑

m=1

P (Y |hm)P (hm|T ) =
M∑

m=1

P (Y |hm)
P (T |hm)P (hm)

P (T )
.

Full Bayesian learning combines the explanatory power of all the models
(P (Y |hm)) weighted by the posterior probability of the models given the train-
ing set (P (hm|T )). However, full Bayesian learning is intractable because it
uses a very large (possibly infinite) set of models. Ensembles can be seen as
approximating full Bayesian learning by using a mixture of a small set of the
models having the highest posterior probabilities (P (hm|T )) or highest likeli-
hoods (P (T |hm)). Ensemble learning lies between traditional machine learning
with single models and full Bayesian learning in that it uses an intermediate
number of models.

3 Ensemble Methods

The concept of ensembles appeared in the classification literature as early
as 1965 [79], and has subsequently been studied in several forms, including
stacking [117], boosting [24,25,36,37], bagging [12,13] model averaging [83] and
forecast combining [45].

Some ensemble combination techniques such as majority voting can generally
be applied to any type of classifier, while others rely on specific outputs, or
specific interpretations of the output. The concept of voting is both simple to
implement and appealing [4,5,13,18,47,82]. It is in fact the simplest ensemble
scheme: given a new pattern x, each classifier votes for a target class. The class
that gets the highest number of votes is selected. The rationale for averaging is
based on the result that the outputs of parametric classifiers that are trained to
minimize a cross-entropy or mean square error (MSE) function, given “one-of-
L” desired output patterns, approximate the a posteriori probability densities
of the corresponding class [90,92]. In particular, the MSE is shown to be
equivalent to:

MSE = K1 +
L∑

i=1

∫

x

Di(x) (p(Ci|x)− hi(x))2 dx
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where K1 and Di(x) depend on the class distributions only, hi(x) is the clas-
sifier output intended to approximate the probability of class Ci given an
output x, p(Ci|x) denotes the true posterior probability of class Ci and the
summation is over all classes [99]. Thus minimizing the MSE is equivalent
to a weighted least squares fit of the network outputs to the corresponding
posterior probabilities [47,55,67].

3.1 Simple Averaging

One of the most popular ways of combining multiple classifiers is through
simple averaging of the corresponding output values [46,71,83,108,111]. If M
classifiers (hm

i (x),m ∈ {1, 2, . . . , M})are available, the class Ci output of the
averaging combiner is:

have
i (x) =

1

N

M∑

m=1

hm
i (x), (1)

This simple averaging achieves most of the benefits of ensembles in that it
reduces the variance of the estimate of the output class posteriors [74,108]. Be-
cause of its simplicity it has been widely applied to real world problems [63,97,110].
Though considered ”too simple” to be effective, many detailed studies have
shown simple averaging to be a very effective ensemble method, particularly
in large complex data sets [110,119].

For classification problems, simple averaging reduces the model error (the error
in addition to the Bayes error) by a factor of M for M independent, unbiased
classifiers [55,109,110]. 1 If the classifiers are not independent, the reduction
in model error for an average classifier can be expressed as [110]:

Eensemble
model =

1 + ρ(M − 1)

M
Emodel . (2)

where ρ is the average correlation among the errors of the different classifiers.
The model error reduction depends on the correlation among the classifiers. If
the classifiers are uncorrelated, then the reduction by a factor of M holds. If
the classifiers are fully correlated, then as common sense would dictate, there
is no improvement. This equation highlights the need for selecting classifiers
that have uncorrelated errors.

1 This result has an equivalent for regression estimators where a reduction in Mean
Square Error by a factor of M can be obtained by pooling M independent estima-
tors [83].
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3.2 Weighted Averaging

Weighted averaging has also been proposed, along with different methods of
computing the proper classifier weights [8,48,71,76,83]:

have
i (x) =

1

M

M∑

m=1

wmhm
i (x), (3)

Weighted averaging is mathematically similar to simple averaging, but due to
the added degrees of freedom, can in some instances provide better solutions.
In practice though, it has often failed to provide improvement to justify its
added complexity, especially when there is limited training data with which
the weights can be properly estimated [110].

3.3 Stacking

Stacking introduced a new concept to the ensemble literature in that it ac-
tively seeks to improve the performance of the ensemble by “correcting” the
errors [12,117]. Stacked generalization addresses the issue of classifier bias with
respect to a training set, and aims at learning and using these biases to im-
prove classification. The main concept is to use a new classifier to correct the
errors of a previous classifier (hence the classifier are “stacked” on top of one
another).

The simple idea behind stacking is that if an input-output pair (x, y) is left
out of the training set of hi, after training has been completed for hi, the
output y can still be used to assess the model’s error. In fact, since (x, y) was
not in the training set of hi, hi(x) may differ from the desired output y. A new
classifier then can be trained to estimate this discrepancy, given by y − h(x).
In essence, a second classifier is trained to learn the errors the first classifier
has made. Adding the estimated errors to the outputs of the first classifier can
provide an improved final classification decision.

3.4 Bagging

Earlier we discussed the concept of combining classifiers through voting. Al-
though used sparingly, this concept really took hold when Breiman introduced
Bootstrapped Aggregating (Bagging), which combined voting with a method
for generating the classifiers that provide the votes. The simple idea was based

8



Bagging(T ,M)
For each m = 1, 2, . . . ,M ,

Tm = Sample With Replacement(T, |T |)
hm = Lb(Tm)

Return hfin(x) = argmaxy∈Y

∑M
m=1 I(hm(x) = y)

Sample With Replacement(T ,N)
S = ∅
For i = 1, 2, . . . , N ,

r = random integer(1, N)
Add T [r] to S.

Return S.

Fig. 2. Batch Bagging Algorithm and Sampling with Replacement: T is the original
training set of N examples, M is the number of base models to be learned, Lb is the
base model learning algorithm, the hi’s are the classification functions that take a
new example as input and return the predicted class from the set of possible classes
Y , random integer(a, b) is a function that returns each of the integers from a to b
with equal probability, and I(A) is the indicator function that returns 1 if event A
is true and 0 otherwise.

on allowing each base classifier to be trained with a different random subset
of the patterns with the goal of bringing about diversity in the base classifiers.

Devising different ways of generating base classifiers that perform well but are
diverse (i.e., make different errors) has historically been one of the most active
subtopics within ensemble methods research. Bagging is a simple example of
one such method of generating diverse base classifiers; therefore, we discuss
it in more detail here. Bagging generates multiple bootstrap training sets
from the original training set and uses each of them to generate a classifier for
inclusion in the ensemble. The algorithms for bagging and doing the bootstrap
sampling (sampling with replacement) are shown in Figure 2.

To create a bootstrap training set from a training set of size N , we perform N
Multinomial trials, where in each trial, we draw one of the N examples. Each
example has probability 1/N of being drawn in each trial. The second algo-
rithm shown in Figure 2 does exactly this—N times, the algorithm chooses a
number r at random from 1 to N and adds the rth training example to the
bootstrap training set S. Clearly, some of the original training examples will
not be selected for inclusion in the bootstrapped training set and others will
be chosen one time or more. On average, each generated bootstrapped training
set will contain 0.63N unique training examples even though it will contain
N actual training examples. In bagging, we create M such bootstrap training
sets and then generate classifiers using each of them. Bagging returns a func-
tion h(x) that classifies new examples by returning the class y that gets the
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AdaBoost({(x1, y1), . . . , (xN , yN )}, Lb,M)
Initialize D1(n) = 1/N for all n ∈ {1, 2, . . . , N}.
For m = 1, 2, . . . , M :

hm = Lb({(x1, y1), . . . , (xN , yN )}, Dm).
Calculate the error of hm : εm =

∑
n:hm(xn)6=yn

Dm(n).
If εm ≥ 1/2 then,

set M = m− 1 and abort this loop.
Update distribution Dm:

Dm+1(n) = Dm(n)×




1
2(1−εm) if hm(xn) = yn

1
2εm

otherwise

Output the final model:
hfin(x) = argmaxy∈Y

∑
m:hm(x)=y log 1−εm

εm
.

Fig. 3. AdaBoost algorithm: {(x1, y1), . . . , (xN , yN )} is the set of training examples,
Lb is the base model learning algorithm, and M is the number of base models to be
generated.

maximum number of votes from the base models h1, h2, . . . , hM . In bagging,
the M bootstrap training sets that are created are likely to have some differ-
ences. If these differences are enough to induce noticeable differences among
the M base models while leaving their performances reasonably good, then
the ensemble will probably perform better than the base models individually.

In general, bagged ensembles tend to improve upon their base models more if
the base model learning algorithms are unstable—differences in their training
sets tend to induce significant differences in the models [13]. Another way of
stating this is that bagging does more to reduce the variance in the base models
than the bias, so bagging performs best relative to its base models when the
base models have high variance and low bias. Decision trees are unstable, which
explains why bagged decision trees often outperform individual decision trees;
similarly, bagging, or in general bootstrapping works well for neural network
classifiers [109]. However, Näıve Bayes classifiers or k-nearest neighbor (kNN)
classifiers are stable, which explains why bagging is not particularly effective
for Näıve Bayes or kNN classifiers [39].

3.5 Boosting

The AdaBoost algorithm, which is one of the most popular within the class
of boosting algorithms, generates a sequence of base models with different
weight distributions over the training set. The AdaBoost algorithm is shown
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in Figure 3. Its inputs are a set of N training examples, a base model learning
algorithm Lb, and the number M of base models that we wish to combine.
AdaBoost was originally designed for two-class classification problems; there-
fore, for this explanation we will assume that there are two possible classes.
However, AdaBoost is regularly used with a larger number of classes. 2

The first step in AdaBoost is to construct an initial distribution of weights D1

over the training set. This distribution assigns equal weight to all N training
examples. We now enter the loop in the algorithm. To construct the first base
model, we call Lb with distribution D1 over the training set. 3 After getting
back a model h1, we calculate its error ε1 on the training set itself, which is
just the sum of the weights of the training examples that h1 misclassifies. We
require that ε1 < 1/2 (this is the weak learning assumption—the error should
be less than what we would achieve through randomly guessing the class 4 )—if
this condition is not satisfied, then we stop and return the ensemble consist-
ing of the previously-generated base models. If this condition is satisfied, then
we calculate a new distribution D2 over the training examples as follows. Ex-
amples that were correctly classified by h1 have their weights multiplied by

1
2(1−ε1)

. Examples that were misclassified by h1 have their weights multiplied

by 1
2ε1

. Note that, because of our condition ε1 < 1/2, correctly classified exam-
ples have their weights reduced and misclassified examples have their weights
increased. Specifically, examples that h1 misclassified have their total weight
increased to 1/2 under D2 and examples that h1 correctly classified have their
total weight reduced to 1/2 under D2. We then go into the next iteration
of the loop to construct base model h2 using the training set and the new
distribution D2. We construct M base models in this fashion. The ensemble
returned by AdaBoost is a function that takes a new example as input and
returns the class that gets the maximum weighted vote over the M base mod-
els, where each base model’s weight is log(1−εm

εm
), which is proportional to the

base model’s accuracy on the weighted training set presented to it.

Clearly, the heart of AdaBoost is the distribution updating step. The idea
behind it is as follows. We can see from the algorithm that εm is the sum of the

2 In fact, the AdaBoost algorithm we discuss here is called AdaBoost.M1. There are
other versions of AdaBoost that are designed to work on multi-class classification
problems. In this paper, we will continue to refer to AdaBoost.M1 as AdaBoost,
since this is the only version that we discuss in detail.
3 If Lb cannot take a weighted training set, then one can call it with a training set
generated by sampling with replacement from the original training set according to
the distribution Dm.
4 This requirement is perhaps too strict when there are more than two classes.
There is a multi-class version of AdaBoost [38] that does not have this requirement.
However, the AdaBoost algorithm presented here is often used even when there
are more than two classes if the base model learning algorithm is strong enough to
satisfy the requirement.

11



weights of the misclassified examples. The misclassified examples’ weights are
multiplied by 1

2εm
, so that the sum of their weights is increased to εm∗ 1

2εm
= 1

2
.

The correctly classified examples start out having total weight 1−εm, but their
weights are multiplied by 1

2(1−εm)
, therefore, the sum of their weights decreases

to (1−εm)∗ 1
2(1−εm)

= 1
2
. The point is that the next base model will be generated

by a weak learner (i.e., the base model will have error less than 1/2); therefore,
at least some of the examples misclassified by the previous base model will
have to be learned.

Boosting does more to reduce bias than variance. For this reason, boosting
tends to improve upon its base models most when they have high bias and
low variance. Examples of such models are Näıve Bayes classifiers and decision
stumps (decision trees of depth one). Boosting’s bias reduction comes from
the way it adjusts its distribution over the training set. The examples that a
base model misclassifies have their weights increased, causing the base model
learning algorithm to focus more on those examples. If the base model learning
algorithm is biased against certain training examples, those examples get more
weight, yielding the possibility of correcting this bias. However, this method
of adjusting the training set distribution causes boosting to have difficulty
when the training data are noisy [23]. Noisy examples are normally difficult to
learn. Because of this, the weights assigned to noisy examples often become
much higher than for the other examples, often causing boosting to focus too
much on those noisy examples and overfit the data. Nevertheless, boosting is
currently one of the best performing supervised classifier learning algorithms.

3.6 Order Statistics

Approaches to pooling classifiers can be separated into two main categories:
simple combiners, e.g., averaging, and computationally expensive combiners,
e.g., stacking. The simple combining methods are best suited for problems
where the individual classifiers perform the same task, and have comparable
success. However, such combiners are susceptible to outliers and to unevenly
performing classifiers. In the second category, “meta-learners,” i.e., either sets
of combining rules, or full fledged classifiers acting on the outputs of the in-
dividual classifiers, are constructed. This type of combining is more general,
but suffers from all the problems associated with the extra learning (e.g.,
overparameterizing, lengthy training time).

Both these categories of methods are in fact ill-suited for problems where most
(but not all) classifiers perform within a well-specified range. In such cases the
simplicity of averaging the classifier outputs is appealing, but the prospect of
one poor classifier corrupting the combiner makes this a risky choice. Although
weighted averaging of classifier outputs appears to provide some flexibility, ob-
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taining the optimal weights can be computationally expensive. Furthermore,
the weights are generally assigned on a per classifier, rather than per sam-
ple or per class basis. If a classifier is accurate only in certain areas of the
inputs space, this scheme fails to take advantage of the variable accuracy of
the classifier in question. Using a meta learner that would have weights for
each classifier on each pattern would solve this problem, but at a considerable
computational cost and danger of overfitting the training data. The robust
combiners presented in this section aim at bridging the gap between simplic-
ity and generality by allowing the flexible selection of classifiers without the
associated cost of training meta classifiers.

Order statistics combiners that selectively pick a classifier on a per sample
basis were introduced in [107,110]. In general the model error is given by:

Eensemble
model = α Emodel . (4)

where α is a factor that depends on the number of classifiers M and the order
statistic chosen and the error model (combining M independent classifiers by
linear averaging is equivalent to having α = 1

M
). Values for α were tabulated

in detail in [113], based on early work on order statistics [94]. Table 1 shows an
example of α values for Gaussian model error. Note that the reduction factors
are lower than they would be for independent classifier errors (e.g., α ≥ 1

M
).

For example, selecting the median of three classifiers’ outputs reduces the
error by a factor of 0.449 rather than a theoretical best of 0.333 for averaging
independent classifiers.

Table 1
Error Reduction Factors α, for the min, max and med Combiners (Gaussian Error
Model).

M OS Combiners

min/max med

1 1.000 1.000

2 0.682 0.532

3 0.560 0.449

4 0.492 0.305

5 0.448 0.287

10 0.344 0.139

15 0.301 0.102

20 0.276 0.074
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4 Ensemble Applications

In this section we take a closer look at four types of problems that have
dominated the field of pattern recognition over the last decade. They are
remote sensing, person recognition (face, fingerprint), one-vs-all classification
(which covers many types of fault and intrusion detection), and medicine.
Each of these fields has statistical difficulties (ranging from “too much data”
to “too little of a particular type of data”) that make it hard for standard
pattern recognition algorithms to be applied and as such are fertile ground for
the application of ensembles.

4.1 Remote Sensing

4.1.1 Review

As satellite/sensor technology has improved, the amount of remote sensing
data collected has expanded both in sheer volume (e.g., terabytes) and de-
tail (e.g., hundreds of spectral bands). As a consequence, this domain poses
distinct challenges to classification algorithms [9,42,44,46,88,100,121]. In par-
ticular, classification algorithms need to account for:

• a large number of inputs as the patterns are collected repeatedly for large
spaces [44,121];

• a large number of features as the data is collected across hundreds of bands
[96];

• a large number of outputs as the classes cover many types of terrain (forest,
agricultural area, water) and man-made objects (houses, streets) [65]

• missing or corrupted data as different bands or satellites may fail to collect
data at certain times [100]; and

• poorly labeled (or unlabeled) data as the data needs to be postprocessed
and assigned to classes [88].

Because of these difficulties hyper-spectral data classification is particularly
well suited to the divide and conquer approach of classifier ensembles, where
different classifiers with different properties can extract the necessary infor-
mation from the raw data before an ensemble puts it all together. This allows
for the inputs and/or features to be sampled to reduce the difficulty each clas-
sifier faces; the data labels to be estimated; and the multi class problems to
be reduced to multiple two-class problems.
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4.1.2 Example Applications

To show the breadth of applicability of classifier ensembles to remote sensing,
we will highlight four types of ensembles on four different types of remote
sensing data. The ensembles will range from:

• Bagging/boosting and random forests of classification trees [44];
• Majority voting and belief combination for neural networks [42];
• Hierarchical classification of binary Bayesian classifiers [30]; and
• Information fusion for fuzzy set interpretation of classifier outputs [65].

The domains include:

• Mountainous terrain from Colorado [44];
• Agricultural land from the United Kingdom (UK) [42];
• Urban terrain from Iceland [30]; and
• Wetlands from Florida [65].

Random Forests and Mountainous Terrain: Using random forests to
provide land classification is a good example of the applicability of classifier
ensembles to remote sensing [44]. In this work, Gislason, Benediktsson and
Sveinsson use Bagging, Boosting, and Random Forests (ensembles of classi-
fication trees, hence the name) composed of individual CART-like [14] trees.
Random forests are ideally suited for this type multisource classification par-
ticularly when the importance of particular variables (e.g., channels) is not
known a priori. Random forests are generated just like bagged decision trees
except that, at every decision tree node, the best feature is chosen from a
random subset of unused features rather than all the unused features. For the
final classification stage each tree gets one vote to determine the winning class
to which a given output belongs. One key feature of this algorithm is that
it limits the number of inputs it uses to build the tree and hence is readily
applicable to large data sets.

The results reported in this paper are based on Landsat, elevation, slope and
Aspect data [9,44] collected from mountainous areas in Colorado. They focus
on a ten-class problem where, in addition to water and meadows, eight types
of trees (or tree combinations) are classified. The results show that six of the
seven ensemble methods used (three types of bagging, three types of boost-
ing and one type of random forest) provide improvement over simply using
CART, showing the great appeal of using ensemble methods for classifying
large multisource data sets.

Majority voting for agricultural land: While the work above focused
on classification trees and bagging/boosting, neural networks are also ideally
suited for classifying remote sensing images. Giacinto and Roli use ensembles
of neural networks to classify images from an agricultural area from the town

15



of Feltwell, UK [42]. This is a challenging problem of classifying five classes
(sugar cane, stubble, bare soil, potatoes and carrots), using both a multi-
band optical sensor (eleven bands) and a multi-channel radar sensor (twelve
channels).

The authors used three types of neural networks, a multi-layered perceptron
(MLP), a radial basis function (RBF) network and a probabilistic neural net-
work (PNN), as well as two statistical classifiers, a Gaussian classifier and a
k-nearest neighbor classifier (KNN), as their base classifiers. In using a va-
riety of parameters for each, in total they trained 182 base classifiers. Their
ensemble results showed that even using as few as three classifiers provided sig-
nificant improvements over the base classifiers for this difficult remote sensing
problem.

Hierarchical classification of wetlands: The third example for this sec-
tion focuses on using a hierarchical classification scheme to classify wetlands
around the Kennedy Space Center in Florida [65,88]. In this work Kumar et.
al use an automatically generated hierarchy of binary classifiers for a C-class
problem. They generate ‘meta classes’ to partition the data and then recur-
sively continue to partition the data until each meta class is reduced to one of
the original classes. Because the resulting classification problems are simpler
and two-dimensional, they select a Bayesian classifier as their base classifier.
They also report results on a variety of single and ensemble classifiers for this
domain.

The data used in this work consists of a 12-class landcover data that has
180 bands. Their results further show that using a hierarchical classification
scheme provides improvements over both base classifiers and an ensemble of
MLPs.

Information fusion for Urban areas: The final application uses the inter-
esting concept of interpreting the outputs of base classifiers as fuzzy sets and
using that information to perform information fusion [30]. Fauvel et. al apply
this idea to urban satellite images from Iceland. They use both a neural net-
work and a fuzzy classifier to obtain probability of membership to a particular
class. They then interpret these classifications as memberships in fuzzy sets
(classes) and fuse the fuzzy sets to obtain the final classification results.

The data is based high resolution pictures of Rejkjavik, Iceland, and consists of
six classes (large buildings, houses, large roads, streets, open areas and shad-
ows). Each image is single channel with one meter resolution. The information
fusion based results show significant improvement over both base classifiers.
What is particularly interesting in this work is that the two base classifiers
have very different strengths and perform unevenly across the different classes.
The fuzzy classifier for example performs well on shadows (83% correct) and
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poorly on streets (9.8% correct), whereas the neural network performs well
on the streets (55% correct) but poorly on houses (33%). The fusion of the
two though generally performs as well as the best method, providing accurate
final classification.

4.2 Person Recognition

4.2.1 Review

Person recognition is the problem of verifying the identity of a person using
characteristics of that person, typically for security applications. Examples
include iris recognition, fingerprint recognition, face recognition, and behavior
recognition (such as speech and handwriting)—recognizing characteristics of
a person, as opposed to depending upon specific knowledge that the person
may have (such as usernames and passwords for computer account access).
Person recognition has historically been one of the most frequent applications
of ensemble learning methods.

There are many facets to the person recognition problem, some of which make
it especially well-suited to be addressed by ensemble methods. Person recogni-
tion can involve multiple types of features. In case of iris, fingerprint, and face
recognition, the features are those that are often used in computer vision. Of-
ten, such as in face recognition, Principal Components Analysis (PCA) is used
to identify a set of features that is smaller than the entire image but is never-
theless more informative. In speech recognition, characteristics of the speech
signal such as frequencies and amplitudes must be captured and appropriate
new features extracted or selected. Speech and other behavioral characteris-
tics, unlike more static features such as fingerprints and faces, also can be
represented as time series. Combining such diverse feature types into one rec-
ognizer is difficult because they have different scales. Ensembles consisting
of individual recognizers for each modality would work better because they
combine at the decision level where the scales would be the same.

Another facet to the person recognition problem is the difficulty in collecting
good data. The environment and data collection instruments introduce noise,
which is common to many applications. However, some environments are par-
ticularly difficult. For example, Erdogan et. al perform person recognition in
a vehicle [28]. If person recognition is to be performed during vehicle opera-
tion, then obviously the data collection method must not interfere with vehicle
operation, must be non-intrusive, and must be robust to the noise typical of
roads and highways.

In person recognition, just as in medical applications and certain anomaly
detection applications, there are different misclassification costs. For example,
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in person recognition, denying system access to a legitimate user who should
be given such access may be less costly than allowing access to an illegitimate
user. In some systems, it may be possible for the recognition system to defer to
a human in cases where the recognition system cannot firmly decide whether
the person seeking access is a legitimate or illegitimate user.

4.2.2 Example Applications

Unobtrusive Person Identification: One example of a person recognition
application is covered by Suutala and Roning [103]. Here, the goal is to keep
track of the locations and identities of people within an environment. Con-
tinuous monitoring of this sort requires that the recognition system identify
people in as unobtrusive a manner as possible—these are known as calm ap-
plications [115]. That is, the system should not require people to take any
specific authentication actions the way fingerprint or iris scanning systems
do. Also, the system should not require people to wear sensors. The sensors
should be hidden in the environment so as to not make users conscious that
they are being constantly monitored—this makes computer vision-based gait
recognition systems [73,53,57] less than ideal for this task. The system devel-
oped in [103] recognizes people by characterizing their walking patterns using
a pressure-sensitive floor.

The authors tested a variety of ensembles for this task. They used three dif-
ferent sets of features as inputs: spatial and statistical features of individual
footsteps calculated from the pressure signal, frequency domain of the pres-
sure signals, and the frequency domain of the derivative of the pressure signal.
They tested individual classifiers with either one feature set or all the fea-
ture sets together. For classifiers, they used K-nearest neighbors, Learning
Vector Quantization (LVQ), Multi-Layer Perceptrons (MLPs), Radial Basis
Function (RBF) networks, and Support Vector Machines (SVMs). For com-
bining methods they used maximum, minimum, median, sum, and product
combiners. They also compared classification based on single footsteps versus
classification based on footstep sequences. In addition to these, they tested
what happens when classifiers are allowed to reject options that they are not
sure about, with the idea that rejected options can be evaluated by humans.
In particular, they allowed rejection of examples that were not clearly a part
of any class (the maximum posterior probability over the classes is too low)
as well as examples that are too close to the boundary between two classes
to allow one to clearly determine which class they are in (the difference be-
tween the highest and second-highest posterior probabilities is too low). In
their work, SVMs and MLPs generally outperformed the other single classi-
fiers. Having separate classifiers for each feature type worked best, ensembles
outperformed individual classifiers, and the reject method greatly increased
classifier reliability.
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Face Recognition: Chawla and Bowyer [19] addressed the standard prob-
lem of face recognition [1,35,20,93] but under different lighting conditions and
with different facial expressions. They tested recognition of subjects that they
trained with but also subjects that they did not train with. Their data con-
sisted of images of multiple subjects, each with multiple pictures taken under
two different lighting conditions and with two different facial expressions (neu-
tral and smiling). They converted the image matrices into vectors and per-
formed PCA on these vectors, and they retained m− 1 components, where m
is the number of training images. They used 1-Nearest Neighbor (1-NN) and
Linear Discriminant Analysis (LDA) as their classifiers. They created both
specialized classifiers (classifiers trained on only training images of one light-
ing condition and one facial expression) and classifiers trained across multiple
conditions. They also experimented with ensembles of 1-NN classifiers. They
refer to their ensembles as Ensemble-1, Ensemble-2, and Ensemble-3, where
1, 2, and 3 refer to the number of images per subject (out of 4) in the training
set that they randomly select for inclusion in the training set of each 1-NN
classifier. They found that 1-NN always outperformed LDA—the authors feel
that this is because there were not enough training images for LDA to gen-
eralize. They found that their ensembles always outperformed LDA and the
specialized classifiers.

Multi-modal Person Recognition: Erdogan, et. al. [28] prepared a multi-
modal person recognition system. Their application involved recognition of
the driver of a vehicle. They discuss several benefits to such an application:

• Ensuring that only authorized drivers drive the vehicle.
• Personalizing the vehicle for the driver’s physical and behavioral character-

istics.
• Warning the driver and appropriate authorities if the driver is not in the

proper condition to drive.
• Allowing secure transactions, such as banking, from within the car.

In a vehicle, face recognition, speech recognition, and driver behavior recogni-
tion (e.g., steering and pedal inputs) are possible. However, all have difficulties.
All the usual problems in face recognition exist, including changes in illumi-
nation, pose, and facial expression. The usual problems in speech recognition
are also present, including noise and variations in speech due to illness and
emotions. However, these problems are bigger in a vehicle since the recog-
nition needs to be performed in an unobtrusive manner. For example, the
microphone cannot be near the driver’s mouth. The authors of [28] hoped to
use all three recognition modalities to yield better performance than any one
modality would by itself.

For speech recognition, they used Mel-Frequency Cepstral Coefficients (MFCC) [75]
as inputs, and Gaussian Mixture Models (GMMs) with eight mixture compo-
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nents as the classifiers. For Face Recognition, they use PCA to extract features
from face images and these serve as inputs to a single Gaussian model. For
driver recognition, they use brake and acceleration pedal positions and deriva-
tives as inputs and GMMs with eight mixture components as the classifiers.
They compared the performance using just one modality with the perfor-
mances of ensembles combining classifiers of any two modalities and with the
performance using the ensemble containing all three modalities’ classifiers.
They performed three types of recognition tasks. The first type is verification,
where the system confirms that the identified person is who he or she claims
to be. The second type is closed set identification, where the system can only
classify the inputs as representing one of the known people. The third type is
open set identification, which is similar to closed set identification except that
the system also has the option of rejecting the input if it is not similar enough
to any past example that it has seen. They tested their work on a subset of
the in-car corpus of data collected by the Center for Integrated Acoustic In-
formation Research (CIAIR) [60]. Across all three sets of tests, the ensembles
of the three classifiers outperformed the ensembles with two modalities’ clas-
sifiers. The ensembles with two modalities almost always outperformed the
individual modalities’ classifiers. The only exception was that, for open-set
identification, the audio-only classifier outperformed the ensemble that used
face recognition and driver signals.

User-specific Speech Recognition: So far, the solutions that we have ex-
amined have devised one model (whether an ensemble or not) to classify ev-
eryone. Fierrez-Aguilar, et. al., [34] have used both a global model of this
type but also user-specific models for speech recognition and combined them
with the goal of improving recognition rates [56,33,31,106,32,64,101,84]. 5 In
particular, they developed user-independent and user-dependent versions of
several baseline systems. These baseline systems used either MFCC, phone
sequences, energy contours of speech signals, or word n-grams as inputs and
GMMs, SVMs, or n-gram recognizers as the classifiers. These were then com-
bined in various ways. They found that a combination of user-independent
and user-dependent recognizers performed better than just a combination of
user-independent recognizers. Each user enrolled in the system had a combi-
nation of a user-independent recognizer and that user’s user-dependent recog-
nizer created. It was formed by calculating a convex combination of sufficient
statistics of a user-independent model and that user’s model. All the models
were multivariate Gaussians, so the calculations were relatively simple.

As is the case with ensemble learning in general, ensemble learning applied to
person recognition has largely focused on the inputs and the base classifiers to

5 Obviously, this is best suited for the verification type of recognition problem, as
discussed in the previous paragraph.
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be combined rather than the combining scheme itself 6 or the metric to be op-
timized. The authors of [85] decided to theoretically examine which combiners
do the best job of optimizing the Equal Error Rate (EER), which is the error
rate of a classifier when the false acceptance rate is equal to the false rejec-
tion rate. In particular, they calculated the EER of mean, weighted sum, and
order statistics combiners (maximum, minimum, and median) under the as-
sumption that class-independent scores (scores for clients and impostors) are
normally distributed. They conducted multiple experiments with synthetic
and real datasets in which they combined classifier scores in various ways.
They found that the weighted sum yielded the best improvement in EER over
individual classifiers.

4.3 One vs. All Recognition

4.3.1 Review

One versus all recognition encompasses several different problems. One of them
is anomaly detection, which is the problem of detecting unusual patterns, i.e.,
what does not fit into the set of identified patterns. The opposite problem
is target recognition—finding what fits into an identified pattern. Intrusion
detection is a problem that could be solved both ways—look for one of a set
of known types of attacks (target recognition) or look for anomalies in the
usage patterns (anomaly detection).

Ensemble methods are well-suited to solving one vs. all recognition problems.
In target detection problems, one can easily envision having one model per
possible target and running all the models in parallel and observing if one
model fires or gives a stronger indication of recognition than the others. If
two or more models fire at nearly equal strength, then other steps may need
to be taken to disambiguate among the possible target types. In anomaly
detection, an ensemble may consist of models designed to detect anomalies
under different situations.

As mentioned earlier, the intrusion detection problem can be cast as either
a target detection or anomaly detection problem. When intrusion detection
problems are cast as target detection problems, they are sometimes referred to
as misuse detection. In these problems, models of known attacks are devised,
and if current computer system activity matches that described by any attack
model, then it is assumed that the corresponding type of attack is taking place.
The disadvantage of this method is that it requires knowledge of and data
representing all the types of attacks that one expects. If one does not have this,
then one can expect a large false negative rate because the system will miss

6 Examples of work in this area include [66,112,40].
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attacks of the types that it does not know about. Anomaly detection methods
work by modeling normal system behavior and flagging significant deviations
from normal behavior as examples of attacks. This avoids the problem of
having to model every type of attack; however, anomaly detection systems
are prone to high false alarm rates, since any legitimate activity that is not
modeled may be needlessly flagged as an attack.

We will now survey three examples of ensemble methods applied to network
intrusion detection.

4.3.2 Example Applications

Anomaly detection applied to network intrusion detection, as mentioned above,
has the problem that any legitimate computer system activity that is not mod-
eled may get needlessly flagged as an attack. Part of the problem is that many
of the anomaly detection systems devised in the literature are monolithic mod-
els that are designed to cover all protocols and services offered by the computer
system and network [86,69,29].

Modular Intrusion Detection: In Giacinto et. al, the authors design one
classifier, which they refer to as a module, for each group of protocols or ser-
vices [43]. Each group’s behavior is then easier to model than all the groups’
behaviors simultaneously, and this arrangement also allows each group’s be-
havior module to be tuned separately.

The authors use three different types of unsupervised methods: Parzen Den-
sity Estimators, K-means clustering, and the ν-Support Vector Classifier (ν-
SVC) which is similar to the one-class Support Vector Machine (SVM) [105].
They use three sets of features as inputs to these methods: intrinsic features,
which are extracted from the headers of packets related to individual network
connections; content features, which are extracted from the data portion of
the packets; and traffic features, which are related to statistical measures on
multiple connections related to a particular type of service. They developed
classifiers for four types of services: HTTP, FTP, Mail, and ICMP.

Overall, they found that, when the allowed false alarm rate is set to be low
(e.g., 1%), then the detection rates for their modular approach with one model
per service type outperformed a monolithic model that was trained to detect
attacks in all types of services. At higher false alarm rates (e.g., 4%), the
monolithic models tended to have higher detection rates.

Hierarchical Intrusion Detection: Another approach to intrusion detec-
tion is demonstrated in [21]. They developed a multi-stage classification system
in which each input pattern is tested by a hierarchical sequence of classifiers
to determine whether the pattern is an example of normal traffic or one of
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four different types of attacks (Probe, Denial of Service, Remote to Local, and
User to Root). In particular, their first stage determines whether an input
pattern is part of normal traffic or an attack that is either a Denial of Service
or Probe attack. If the first stage determines that the input is one of these
attacks, then the input is passed to a second stage classifier that determines
which of the two attack types it is. If the first stage does not determine that
the input is of a Denial of Service or Probe attack, then the input pattern is
passed to a different second stage classifier that determines if the attack is of
type User to Root. If it is not, then a third stage classifier determines if the
attack is of type Remote to Local. If the third stage determines that the input
does not represent a Remote to Local attack, then the input is determined to
be normal. All the stages also have tuned reliability thresholds, with the idea
that, if the classification decision has a reliability lower than the threshold,
then the input is rejected and logged for human examination.

They tested this architecture on a subset of the database created by DARPA
as part of the 1998 Intrusion Detection Evaluation Program. They tested vari-
ants on their architecture with their stage 1-3 classifiers swapped in different
ways. They also compared their architecture to Learning Vector Quantiza-
tion (LVQ), a three-layered Multi-Layer Perceptron (MLP), and ensembles of
these. They obtained significant improvements with their original architecture
over the other methods described. They presented results on data from FTP
and HTTP, but state that they tested using data from other network services
and obtained significant improvements with their architecture on these other
services.

Intrusion Detection in Mobile Ad-hoc Networks: The authors of [16,15]
applied ensemble methods to intrusion detection in Mobile Ad-hoc NETworks
(MANETs) [54,123,124]. Examples of MANETs include wireless networks.
MANETs are more difficult to work with than regular computer networks
because the wireless nature of the networks leads to the structure of the net-
work changing regularly, as computers, Personal Digital Assistants (PDAs)
and other devices join the network and leave the network more frequently
than they would with traditional wired networks. Because of this, they de-
vised a hierarchical architecture. The bottom layer consists of nodes, which
represent individual devices connected to the network. The next layer consists
of clusters, which vary as nodes move around within the network. The top
level is the manager. Anomaly indices within the nodes are averaged to form
the anomaly indices at the cluster level, which in turn are averaged to form a
manager-level anomaly index. The authors found that the anomaly indices at
higher levels tended to perform better than those at the lower levels, demon-
strating that the combination of distributed anomaly detectors yields better
results than individual detectors.
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4.4 Medical Applications

4.4.1 Review

There are many examples of medical applications of machine learning. These
examples include many different types of problems, such as analyzing x-ray
images, human genome analysis, and examining sets of medical test data to
look for anomalies. However, the root of all these problems is in assessing
the health of human beings. This root brings about several characteristics
of medical applications that make them particularly difficult problems. In
general, such problems have:

• Limited training and test examples, i.e., few training examples due to the
nature of problem and privacy concerns;

• Imbalanced datasets, ie., very few anomalies or examples of patients with a
disease;

• Too many attributes, i.e., often many more than the number of training and
test examples; and

• different misclassification costs, i.e., false negatives significantly worse than
false positives.

Because the number of training and test examples corresponds to the number
of patients, the number of such examples is typically lower than for most
other application areas. The examples also tend to be relatively imbalanced—
the number of examples of anomalies or patients with diseases is, fortunately,
much lower than the number of examples of normal patients. However, this
can pose difficulties for machine learning algorithms—especially classification
algorithms. With so few positive (e.g., disease present) examples, classification
algorithms will tend to be strongly biased toward predicting that new examples
are negative. However, incorrectly predicting that an example is negative (false
negative) is typically much worse than incorrectly predicting that an example
is positive. The number of attributes also tend to be much higher than the
number of examples in problems such as human genome analysis and image
analysis. This mandates the use of feature selection and/or feature extraction
methods, and the selection of the appropriate such method(s) add significantly
to the challenge of using machine learning for these problems.

We will now discuss a few examples of ensemble methods applied to several
different problems in medicine.

4.4.2 Example Applications

Pharmaceutical Molecule Classification: One particular medical applica-
tion is predicting the biological activity of a pharmaceutical molecule given a
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quantitative description of the molecule [104]. Examples of biological activity
to be predicted are potency against disease targets, toxicity, as well as absorp-
tion, distribution, metabolism, and excretion (ADME). The predicted values
could either be continuous values or categorical values. The pharmaceutical
molecule structure is described by a set of topological descriptors. This prob-
lem is an example of Quantitative Structure-Activity Relationship (QSAR)
modeling [27,49].

The number of samples is exceeded by the number of features, many of which
are irrelevant for the prediction task; therefore, feature selection is necessary.
The authors chose decision trees as the base models for this task over arti-
ficial neural networks, Support Vector Machines, multiple linear regression,
and other methods because decision tree learning algorithms include feature
selection in their operation. They decided to use Random Forests as their
ensemble algorithm with decision trees as the base models. They compared
random forests with two other previously-used popular QSAR methods:—
standard decision trees and partial least squares—as well as SVMs using a
linear kernel and SVMs using a radial basis function (RBF) kernel. They used
six publicly available ADME datasets for their assessment that included both
classification and regression problems. The authors found that random forests
without tuning any parameters (such as the number of tests to try at each
decision tree node) yielded performance at least as good as the other meth-
ods. They attempted to tune the number of variables to test at each decision
tree node and to eliminate irrelevant variables before training, but obtained
very little improvement from that, demonstrating that random forests perform
quite well ”off-the-shelf” for their problem.

MRI Classification: Another problem where feature selection is very impor-
tant is the classification of Magnetic Resonance (MR) spectra [87]. The goal
here is to find subregions of the MR spectra that are informative for classifica-
tion. They used the Random Subspace Method [51]. This method constructs
each base model in an ensemble using a random subset of the original features,
thereby often obtaining diversity in the ensemble. However, rather than only
using the original features, they also attempted to run RSM on the feature
set constructed by PCA. They also experimented with a method that they
devised [78] that uses genetic algorithms to guide a search for the best feature
set to use. They used boxcar functions as the basis set and extracted features
that represent averages of adjacent spectral regions. They referred to these
discovered discriminatory patterns as the Domain Feature (DF) set. RSM
then constructed an ensemble where a random subset of the domain feature
set was chosen for each base classifier. In all their experiments, they used 31
base classifiers and majority voting to combine their results. For base models,
they used either 31 1-Nearest Neighbor classifiers or 31 L2-norm linear SVMs.
They varied the number of features selected for each base classifier from 1 to
10, although they used the same number of features for all base classifiers in
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a given ensemble.

They experimented on three MR datasets of increasing difficulty (decreased
class separability). They found that the domain feature set was always at
least as good as the other methods (PCA and original features), and has the
additional advantage of maintaining interpretability, being that the features
are merely averages of boxcar functions that can be easily visualized. PCA
was only competitive for the first (easy) dataset. Although given that PCA
creates features based on the inputs only and independently of the class labels,
the poor performance of PCA is not surprising.

ECG Classification: Since medical applications often involve detecting is-
sues with individual patients, patient-specific classifiers can be useful just as
user-specific classifiers are with the person recognition systems discussed ear-
lier (e.g., [34]). In [70] the authors used an approach similar to [34], in that
they used both a generic classifier meant to distinguish normal and abnormal
data across people and a user-specific classifier meant to distinguish between
normal and abnormal data for a specific person [70].

Lincoln and Skrzypek address the problem of classifying electrocardiographic
(ECG) signals [70]. An ECG signal represents cardiac activities, which cardi-
ologists use to evaluate the performance of heart function. Automated analysis
of ECG records is necessary because the recording may last for hours, which
makes analysis by doctors excessively time-intensive. Many algorithms such
as self-organizing maps (SOM), learning vector quantization (LVQ), multi-
layer perceptrons (MLPs), neural-fuzzy systems, and Support Vector Machines
(SVMs) have been applied to ECG signals. However, these methods have been
typically applied to distinguish normal signals from abnormal signals across
patients. This is difficult because of the substantial variation in the morpholo-
gies of ECG signals across patients. For this reason, [70] implemented an
ensemble consisting of a standard SVM designed to distinguish normal signals
from abnormal signals across patients and a set of one-class SVMs [95] (one
per patient) to distinguish normal signals for a given patient from all other
signals [70]. The one-class SVMs were trained using only normal signals from
a given patient. Being an anomaly detection algorithm, the one-class SVM
builds a model that classifies the trained data as normal (although it can be
trained to allow a user-determined fraction of the training points as abnor-
mal) and then classifies the data outside the range of normal data as abnormal.
They used decision templates to combine the two SVMs. They calculated one
decision template DTj for each class yj (j ∈ {−1, +1}). DTj is a two-element
vector calculated by selecting the examples in the validation set that are in
class yj and averaging the outputs of the two classifiers on those examples.
New examples are classified by having each of the two base classifiers classify
the examples, putting those together into a vector, and finding the vector DTj

that it is closest to in Euclidian distance. On average, over 22 test sets, the
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ensemble got a balanced classification rate (geometric mean of sensitivity and
specificity) improvement of 13.8% over the global two-class SVM and 3.1%
over the individual one-class SVMs.

5 Discussion and Future Directions

In this paper, we have summarized the most frequently used classifier en-
semble methods, including averaging, bagging, boosting and order statistics
combiners. Each ensemble method has different properties that make it better
suited to particular types of classifiers and applications. We also presented
four broad application domains that have received particular attention from
the classifier ensemble community: remote sensing, person recognition, one vs.
all recognition, and medical/biological applications. In each of these applica-
tions, harnessing a set of reasonable-performing but diverse set of base models
yields a combined classifier that performs better than any individual classifier.
The theory, algorithms, and applications of ensemble learning continue to be
active areas of research. Based on the work surveyed in this article and the
current state of ensemble learning, we anticipate three major research areas
that will receive more attention in the future.

First, the sheer amount of available data is exploding as both data collec-
tion and processing algorithms handle amounts of data that would have been
inconceivable a decade ago. Yet, most of the classification and ensemble algo-
rithms do not address this issue directly. Though several of the applications
have dealt with this problem indirectly (e.g. remote sensing, intrusion detec-
tion), new ensemble methods that use this richness of the data rather than
aim to avoid it are needed. Indeed, were there methods available that could
handle hundreds of classifiers trained on diverse data sets at different times
and at different physical locations, many new application domains would open
up to ensemble methods.

Second, there are many domains that are well-suited to unsupervised learning
algorithms, such as clustering algorithms, that have not benefitted from the
bulk of the classifier ensemble results. The central concept of clustering is that
data points are partitioned into separate clusters so that data points within
a cluster are “close” to each other, while data points from different clusters
are “far” from each other. This concept is of great practical interest in terms
of summarizing data, reaching quick decisions and flagging certain patterns
for further study. In general however, there can be many different clusterings
for the same data, depending on the clustering algorithm used [22,58,62]. The
different clusterings analyze different aspects of the data and result in different
biases in the clustering algorithms, but without a “target” it is difficult to
select a specific clustering. Cluster combining, where multiple clusterings are
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used to reach a consensus clustering would be invaluable in improving the
performance of clustering algorithms. [2,58,59,102].

Third, all the ensemble algorithms discussed in this article are based on “pas-
sive” combining, in that the classification decisions are made based on static
classifier outputs, assuming all the data is available at a centralized location
at the same time. Distributed classifier ensembles using “active” or agent-
based methods can overcome this difficulty by allowing agents to decide on
a final ensemble classification based on multiple factors (e.g., classification,
confidence) [2]. This approach can be viewed as “active” stacking in that a
second layer of decision making is introduced. In addition to providing more
flexibility and incorporating spatially and temporally separated data, such an
approach will allow the infusion of prior information (as a “base” classifier
with set decisions) and be applicable to both supervised and unsupervised
learning.

All three extensions of classifier ensembles highlighted above address the dif-
ferent aspects of the problem arising from the complexity and richness of the
data generated by new applications. In many ways, such applications will not
only provide new domains for ensembles, but also provide the impetus for
developing new ensemble methods. Finally, though we discussed these three
extensions separately, in many domains, all three may be present simulta-
neously. For example, an agent-based, active ensemble method applied to a
distributed clustering problem where terabytes of data are collected from dif-
ferent sources is precisely at the intersection of all these avenues. Research
into such classifier ensembles for such domains offers the promise of new solu-
tions to a multitude of problems including remote sensing, person recognition,
intrusion detection and biological applications.
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