Graphics Hardware (2007)
Timo Aila and Mark Segal (Editors)

Scan Primitives for GPU Computing

Shubhabrata Sengupta, Mark Harris*, Yao Zhang, and John D. Owens

University of California, Davis

*NVIDIA Corporation

Abstract

The scan primitives are powerful, general-purpose data-parallel primitives that are building blocks for a broad
range of applications. We describe GPU implementations of these primitives, specifically an efficient formulation
and implementation of segmented scan, on NVIDIA GPUs using the CUDA API. Using the scan primitives, we
show novel GPU implementations of quicksort and sparse matrix-vector multiply, and analyze the performance
of the scan primitives, several sort algorithms that use the scan primitives, and a graphical shallow-water fluid
simulation using the scan framework for a tridiagonal matrix solver.

1. Introduction and Moetivation

By the end of 2007, the most advanced processors will sur-
pass one billion transistors on a single chip. This wealth of
computational resources has yielded GPUs that can sustain
hundreds of GFLOPS on not just graphics applications but
also a wide variety of computationally demanding general-
purpose problems.

The primary reason that GPUs deliver such high per-
formance is that the GPU is a highly parallel machine.
NVIDIA’s latest flagship GPU, for instance, boasts 128 pro-
cessors. GPUs keep these processors busy by juggling thou-
sands of parallel computational threads. Graphics workloads
are perfectly suited to delivering large amounts of fine-
grained parallel work. The programmable parts of the graph-
ics pipeline operate on primitives (vertices and fragments),
with hundreds of thousands to millions of each type of prim-
itive in a typical frame. These primitive programs spawn a
thread for each primitive to keep the parallel processors full.

It is instructive to look at the graphics programming
model as the GPU becomes more general purpose. Let us
consider fragment processing as a representative example.
In both the OpenGL and DirectX APIs, fragment processing
is completely data-parallel. The fragment processors iterate
over each input fragment, producing a fixed number of out-
puts per fragment that depend only on the incoming frag-
ment (Lefohn et al. call this access pattern a “single-access
iterator” [LKS™06]). It is this explicit data parallelism that
enables the effective use of so many parallel processors in
recent GPUs.

This explicit parallelism, in turn, is well suited for a

Copyright (© 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for com-
mercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
GH 2007, San Diego, California, August 04 - 05, 2007

© 2007 ACM 978-1-59593-625-7/07/0008 $ 5.00

stream programming model in which a single program (a
kernel) operates in parallel on each input element, pro-
ducing one output element for each input element. The
programmable fragment and vertex parts of the graphics
pipeline precisely match this strict stream programming
model. The stream model extends nicely to problems where
each output element is a function not just of a single in-
put but of a small, bounded neighborhood of inputs (a
“neighborhood-access iterator””). Most general-purpose ap-
plications that have been mapped efficiently to GPUs fit
nicely into this more general stream programming model
(for instance, particle systems, image processing, grid-based
fluid simulations, and dense matrix algebra).

1.1. More Complex Operations are Needed

Consider a fragment program that operates on n fragments.
With a single-access iterator, each output fragment must ac-
cess a single input fragment; with a neighborhood-access it-
erator, each output fragment must access a small bounded
number of input fragments. The total number of accesses
necessary to compute all fragments is O(n).

Many interesting problems, however, have more complex
access requirements than we can support with a single- or
neighborhood-access iterator. It is these problems that we
address in this paper. A common algorithmic pattern that
arises in many parallel applications with complex access re-
quirements is the prefix-sum algorithm. The input to prefix-
sum is an array of values. The output is an equally sized array
in which each element is the sum of all values that preceded
it in the input array:

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

in: 317 0 4 1 6 3
out: 0 3 4 11 11 14 16 22
How do we compute the value of the last element in the
output (22)? That value is a function of every value in the
input stream. With a serial processor, such a computation is
trivial, but with a parallel processor, it is more difficult. The
naive way to compute each output in parallel is for every el-
ement in the output stream to sum all preceding values from
the input stream. This approach requires O(nz) total memory
accesses and addition operations. This cost is too high.

1.2. Scan: An Efficient Parallel Primitive

We are interested in finding efficient solutions to parallel
problems in which each output requires global knowledge of
the inputs. We attack these problems using a family of algo-
rithms called the scan primitives. Our scan implementation
has a serial work complexity of O(n). While the standard
scan primitive was introduced to the GPU by Horn [Hor05],
in this paper we introduce the segmented scan primitive to
the GPU, and present new approaches to implementing sev-
eral classic applications using the scan primitives.

2. Primitives

We chose NVIDIA’s CUDA GPU Computing environ-
ment [NVIO7] for our implementation. CUDA provides a
direct, general-purpose C language interface to the pro-
grammable processors on NVIDIA’s 8-series GPUs, elim-
inating much of the complexity of writing GPGPU appli-
cations using graphics APIs such as OpenGL. Furthermore,
CUDA exposes some important new hardware features that
have large benefits to the performance of data-parallel com-
putations:

General Load-Store Memory Architecture CUDA al-
lows arbitrary gather and scatter memory access from
GPU programs.

On-chip Shared Memory Each multiprocessor on the
GPU contains a fast on-chip memory (16 kB on NVIDIA
8-series GPUs). All threads running on a multiprocessor
can load and store data from this memory.

Thread Synchronization A barrier instruction is provided
to synchronize between all threads active on a GPU mul-
tiprocessor. Together with shared memory, this feature al-
lows threads to cooperatively compute results.

NVIDIA’s 8-series GPUs feature multiple physical multi-
processors, each with a shared memory and multiple scalar
processors (for example, the NVIDIA GeForce 8800 GTX
has 16 multiprocessors with eight processors each). CUDA
structures GPU programs into parallel thread blocks of up to
512 SIMD-parallel threads. Programmers specify the num-
ber of thread blocks and threads per block, and the hardware
and drivers map thread blocks to parallel multiprocessors on
the GPU. Within a thread block, threads can communicate
through shared memory and cooperate by combining shared
memory with thread synchronization.

Efficient CUDA programs exploit both thread parallelism
within a thread block and coarser block parallelism across
thread blocks. Because only threads within the same block
can cooperate via shared memory and thread synchroniza-
tion, programmers must partition computation into multi-
ple blocks. While this adds complexity to the programming
model compared to using a single partition (such as with
pixel shaders in the graphics API), the potential performance
benefits are large. For instance, we previously compared
our optimized OpenGL unsegmented scan implementation
against our CUDA implementation on the same GPU and
found a 7x speedup for large scans [HSOO07].

2.1. Scan

Scan, first proposed as part of APL [Ive62], was popular-
ized by Blelloch as a fundamental primitive on the Con-
nection Machine [B1e90]. On the GPU, scan was first used
by Horn for “non-uniform stream compaction” [Hor05] as
part of a collision-detection application. Hensley et al. im-
proved Horn’s implementation in their summed-area-table
work [HSC*05], but the serial work complexity of both Horn
and Hensley’s algorithms was O(nlogn). The next year Sen-
gupta et al. and GreB et al. demonstrated the first O(n) GPU-
based scan implementations [SLO06, GGKO06].

The inputs to a scan operation are a vector of data ele-
ments and an associative binary function @ with an iden-
tity element it If the input is [ag,a;,az,a3,...], an exclu-
sive scan produces the output [, ag, a9 Day, a0 Da; Day,.. |,
while an inclusive scan produces the output [ag, ag ®ay,ag H
a1 Day,a0®a; Pay Pas,...]. Note that the scan output re-
quires global knowledge of all inputs, as we discussed in
Section 1; the output at the last element is a function of all
inputs. In this paper, we implement an exclusive sum-scan
as our fundamental primitive and generate inclusive scan by
adding the input vector to the exclusive output vector. We
also support backward scans by reversing the input elements
at the beginning of the scan (typically when they are read
from GPU main memory).

We briefly outline the details of the O(n) unsegmented
CUDA scan implementation we use in this paper, which is
more fully described in our previous work [HSOO7]. The
implementation logically follows the work-efficient formu-
lation of Blelloch [Ble90] and the GPU implementation of
Sengupta et al. [SLOO06], but is adapted for efficiency on
CUDA. Our work-efficient scan of n elements requires two
passes over the array, called reduce and down-sweep, shown
in Algorithm 1 and 2, respectively, and depicted in Figure 1.
Each of these two passes requires logn parallel steps. The
amount of work is cut in half at each step, resulting in an
overall work complexity of O(n).

T Typical binary functions are plus [with identity 0], min, max, log-
ical and, and logical or.

(© Association for Computing Machinery, Inc. 2007.

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

threads —>

O(1(2|3|4|5|6|7]| -+

30NpoJ

2nd-level

segmented
scan

sdais

doamsumop

Figure 1: Multi-block segmented scan communication. Cells
with the same shading belong to the same block. The exam-
ple above processes 4 threads per block and requires three
steps: 2 blocks running in parallel for the reduce step, 1
block to combine the results from the reduce step and pre-
pare for the downsweep, and 2 blocks running in parallel
in the downsweep. Letters refer to the discussion in Sec-
tion 2.2.1.

Each thread processes two elements; if the number of el-
ements exceeds the maximum number that a single thread
block can process, the array is divided across multiple thread
blocks and the partial sum tree results are used as input to a
second-level recursive scan. Each element of the output of
this scan is then added to all elements of the corresponding
block in the first-level scan. This recursion continues as nec-
essary for scans of very large arrays.

I xjn—1]«0

2: for d =log,n—1 down to O do

3. forallk=0ton—1by2¢"" in parallel do
4: t—x[k+2¢—1]

5: xlk+29 —1] — x[k+2¢1 — 1]

6: x[k 4291 — 1] — 14 xk+ 2911 — 1]

1: ford =0tolog,n—1do
2: forallk=0ton—1by 29+ in parallel do
3: x[k+29T1 1] — xk+29 — 1] 4 x[k+ 2971 — 1]

Algorithm 1: The reduce (up-sweep) phase of a work-
efficient parallel unsegmented scan algorithm.

(© Association for Computing Machinery, Inc. 2007.

Algorithm 2: The down-sweep phase of a work-efficient
parallel unsegmented scan algorithm.

2.2. Segmented Scan

The major contribution of this paper is the introduction of
the segmented scan primitive [Sch80] to the GPU. Seg-
mented scan generalizes the scan primitive by allowing par-
allel scans on arbitrary partitions (“segments”) of the in-
put vector. Segments are demarcated by flags, where a set
flag marks the first element of a segment. Our segmented
scan implementation has the same O(n) complexity as scan
and is only three times slower than scan. Segmented scan
is useful as a building block for a broad variety of applica-
tions [Ble90] that have not previously been efficiently im-
plemented on GPUs.

2.2.1. Work-efficient segmented scan algorithm

Our work-efficient segmented scan implementation follows
the high-level structure of our work-efficient implementation
of scan [HSOO7], shown in Figure 1. Squares that have the
same color (light gray or white) represent threads that be-
long to the same block. The arrows show data movement.
Two arrows entering the same square signify a binary op-
eration, which can be a copy, a binary scan operation, or a
logical OR. In the discussion below, we use sum as the bi-
nary scan operation, but the algorithm works for any other
binary associative operator.

Our contribution is to extend the reduce and down-sweep
phases of the unsegmented scan algorithm to efficiently im-
plement segmented scan on the GPU. Though Schwartz first
presented the concept of segmented scans [Sch80], he did
not describe how segmented scan can be implemented using
scan’s balanced-tree approach. Chatterjee et al.’s implemen-
tation of segmented scan [CBZ90] was closely tied to the
Cray-MP architecture. They used the wide vector registers
to carve up large input arrays into smaller chunks. Within
each block the segmented scan ran serially. The flags were
stored in vector mask registers of the Cray-MP which made
accessing them quite efficient using the merge operation.

We also show how to factor the algorithm into chunks,
which is necessary when the input vector is too long to be
processed in shared memory by a single thread block. The
simple parallelization structure of unsegmented scan is not
directly applicable to segmented scan.

Just as in scan, the segmented reduce phase traverses a
binary tree with n leaves and d = log, n levels with 24 nodes
each. Reduce traverses up the tree from the leaves to the root

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

computing partial-sum results at each internal node of the
tree. For example, in Figure 1, a is the sum of the values in
threads 2 and 3. Segmented scan must compute intermediate
results for both the data and the head flags. The partial OR
flag is simply the logical OR of two input head flags. The
partial data sums are computed just as in unsegmented scan
unless the right parent’s head flag is set, in which case the
right parent’s data element is taken unmodified. Pseudocode
for the reduce phase is shown in Algorithm 3.

1: ford =1tolog,n—1do
2. forallk=0ton—1by 29" in parallel do

3: if f[k+2%"! — 1] is not set then
4 x[k+29 1] — x[k+29 — 1]+ xfk+29T1 —1]
5: Flk+27 1] fle+29 1] | fle+29T —1]

Algorithm 3: The reduce (up-sweep) phase of a segmented
scan algorithm. x denotes the partial sums and f denotes the
partial OR flags.

As in scan, the down-sweep phase traverses back down
the tree from the root using the partial sums from the reduce
phase. The key difference from the unsegmented scan algo-
rithm is that the right child (z in Figure 1) is not always set
to the sum of its parent’s value (x) and the former value of its
left sibling (w). The right child (z) of x is set to O (the iden-
tity element) if the flag in the position to the right of x is set
in the input flag vector. Otherwise, if the partial OR stored
in the same position in the tree is set, the right child (z) is set
to the original value of its left sibling (w). If neither flag is
set, the right child (z) receives the sum of its parent (x) and
the original value of its left sibling (w). The pseudocode for
the down-sweep phase is shown in Algorithm 4.

I: x[p—1] <0
2: for d =log,n—1down to 0 do
3. forallk=0ton—1by 29" in parallel do

4: t e xlk+27—1]

s: xlk42¢9 — 1] — x[k+2¢1 — 1]

6: if f;[k+27] is set then

7: x[k+291 1] —0

8: else if f[k+2¢ — 1] is set then

9: x[k4+24T1 — 1] —1¢

10: else

11: x[k 4291 — 1) — 4 x[k+ 2941 — 1]
12: Unset flag f[k +2¢ — 1]

Algorithm 4: The down-sweep phase of a segmented scan
algorithm.

2.2.2. Segmented scan implementation

Besides the algorithmic difference, our segmented scan im-
plementation differs from our scan implementation [HSO07]
in two major ways: the representation and storage of flags
and the merging of results for multi-block segmented scans.

Head flag representation and API In our implementation,
segments are denoted by a head flag vector that has the same
length as the input vector. If an element in the input vector
is the first element of a segment, the corresponding entry in
the head flag is set to 1. All other entries in the head flag
vector are set to 0. Even though head flags appear on rop
of elements in this case, it is conceptually easier to think of
head flags as situated between two elements, the first element
of the current segment and the last element of the previous
segment (going from left to right). This distinction becomes
important in the case of backward segmented scan where
simply flipping the flags is conceptually different from doing
the segmented scan from right to left. In this case, the flags
must be shifted right by one.

flag: 00 01 0 00O
data: 1 2 3 456 7 8

flip-flag: 0 0 0 0 1 0 0 0
flip-data: 8 76 54 3 2 1

We see that flipping the flag and the data isn’t the same
as walking from right to left since the segment should start
from 3 but instead starts from 4. Hence the flags need to be
shifted one position to the right after flipping. Now we can
use the segmented scan algorithm to do backward segmented
scan by flipping the final result at the end.

Efficient storage of flags Since flags are Boolean values, it
is space-inefficient to store them as 4-byte words. We orig-
inally intended to pack 32 flags into a single integer. How-
ever, the read-modify-write semantics of parallel threads in
CUDA preclude this approach (Section 5).

[folf3olfealfos| [filf33lfes]forl f311f63] fos] f127
——

word 0 word 1 word 31

Instead, we store one flag per byte as shown in the figure
above. To reduce shared memory bank conflicts, we allocate
flags in chunks of 32 contiguous 4-byte words with four flags
per word. Our choice of 32 reflects the 32-thread SIMD warp
size in NVIDIA 8-Series GPUs. We stripe the flags across
the 32 words in a chunk with a spacing of four bytes between
consecutive flags, wrapping to the beginning of the chunk
every 32 flags.

Our implementation may benefit from other head flag rep-
resentations. Blelloch proposes two [Ble90]: a vector of seg-
ment lengths and a vector of head pointers (similar to row-
Ptr in Section 4.2). Head flags have two advantages over
these representations; first, they are associated directly with
each element rather than being stored in a separate data
structure; second, these separate data structures have a dif-
ferent size from the vector of data elements and are thus
harder to parallelize across thread blocks. Nonetheless, the
difficulties we had with storing and computing head flags
motivate continued investigation into alternate segmented
representations.

(© Association for Computing Machinery, Inc. 2007.

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

Multi-block segmented scan In contrast to unsegmented
scan, segmented scan results cannot be propagated across
blocks by a uniform add. For segmented scan, the add op-
eration operates on only the first segment of each block. To
make this work, we implement segmented scan using sepa-
rate reduce and down-sweep CUDA kernels.

At the end of the reduce step, we write the partial sum
tree and the partial OR tree to global memory. This saves
the state so that the down-sweep step can be started later. At
this point we do a second-level segmented scan. The inputs
to the second-level segmented scan are the flags and data
from the last element of the partial sum and partial OR tree
of each block. In addition, the second-level segmented scan
takes as a third input the first element of the flag vector of
each block®. Thus if we have B blocks, each input vector is
B elements long. This multi-block data movement is shown
in Figure 1 by the arrows leading out of i and j, which are the
last elements of their respective blocks.

The down-sweep phase of the top-level segmented scan
is run upon completion of the second-level segmented scan.
The state that was saved at the end of the reduce phase
is reloaded from global memory. Instead of assigning O to
the last element of each block (as in unsegmented scan), it
is assigned the corresponding element from the output of
the second-level segmented scan. For example, the last el-
ement of the third block is set to the third element of the
output of the second-level segmented scan. This data move-
ment is shown by the arrows leading out of the second-level
segmented scan stage into x and k, which are the last ele-
ments of their respective blocks. We now proceed with the
down-sweep as in the single-block case. The multi-block
segmented scan algorithm is summarized in Algorithm 5.

: Perform reduce on all blocks in parallel

: Save partial sum and partial OR trees to global memory

: Do second-level segmented scans with final sums

: Load partial sum and partial OR trees from global mem-

ory to shared memory

5: Set last element of each block to corresponding element
in the output of second-level segmented scan

6: Perform down-sweep on all blocks in parallel

W =

Algorithm 5: A multi-block segmented scan algorithm.

2.3. Primitives Built Atop Scan

The scan primitives are used to implement several higher-
level primitives that are well-suited as building blocks for
general-purpose tasks [Ble90]. Below, we outline the prim-
itives that we have implemented for use in the applications
we describe in Section 4.

1 Note that the second-level segmented scan takes three inputs in-
stead of the usual two. The third input is a partial OR tree repre-
sented as a vector. For the top-level segmented scan, the flag vector
and partial OR tree are identical so the third input is implicit.

(© Association for Computing Machinery, Inc. 2007.

2.3.1. Enumerate

Enumerate’s inputs are a vector and a true/false value per el-
ement in the vector. Enumerate can be used with either seg-
mented or non-segmented inputs. The output for each input
element is a count of the number of true elements to the left
of that element:

enumerate([t £ £ t £ t t]) = [0 1 1 1 2 2 3]

We implement enumerate by setting a 1 for each true el-
ement and a O for each false element in a temporary vector,
then (exclusive) scanning that vector.

Enumerate is useful in pack (compact) operations, where
we only wish to keep elements marked as true. For each true
element, the output of enumerate is the address to which the
output must be scattered [Hor0S5].

2.3.2. Distribute (copy)

Like enumerate, distribute can be used with either segmented
or non-segmented inputs; it can also be performed in either a
forward or backward direction. Distribute copies the element
at the head (or tail) of the segment to all other elements in
that segment:

distribute([a b c][d e]) = [a a al][d d]

For segmented inputs, we implement distribute by setting
all non-head elements to O in a temporary vector and per-
forming a segmented inclusive scan on that vector. For non-
segmented inputs, it is more efficient for one thread to write
the head element into shared memory and all other threads
to read that shared element.

2.3.3. Split and split-and-segment

Like enumerate, split takes two inputs: a vector of elements
and a vector of true/false values. Split divides the input vec-
tor into two pieces, with all the elements marked false on
the left side of the output vector and all the elements marked
true on the right. Split-and-segment operates on segmented
inputs and performs a stable independent split on each seg-
ment, additionally dividing each segment into two segments,
one for the falses and one for the trues:

split-and-segment ([at bf ct] [df et ff]) =
[bf] [at ct] [df f£] [et]

Blelloch implements split with two enumerates (requiring
two scans), one for the falses going forward, and another for
the trues going backward. (Note the first half of the algo-
rithm is essentially just like pack.) To minimize the number
of scans, we instead reduce that to one enumerate and per-
form additional computation to derive the true addresses as
follows?.

§ Split-and-segment requires an additional scan to copy the number
of falses in each segment to all elements in that segment. We use a
similar technique to reduce Blelloch’s 3-scan split-and-segment to
our 2-scan split-and-segment.

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

[t £ £f £t f] # in
0101101] #e =set 1 in false elts.
011 3 3] # £ = enumerate with false=1
4 # add two last elts. in e, f
== total # of falses
set as shared variable NF
[01 23 45 6] # each thread knows its id
[4 55666 7] #t =1d - £ + NF
[4 05126 3] #addr =e ? £ : t
[f £ £ ft t t] # outladdr] = in (scatter)

3. Experimental Methodology

For our results, we used an NVIDIA GeForce 8800 GTX
GPU connected via PCI Express 16x to an Intel Xeon
3.0 GHz CPU. Our applications ran atop Windows XP with
NVIDIA driver version 97.73 and the beta release of the
CUDA Toolkit (version dated 14 February 2007).

Unless otherwise noted, timing information is specified
for GPU computation only and does not include transfer time
to or from the GPU. We feel this best reflects the use of the
primitives we describe here, which we expect will be used as
components in larger GPU-based computations and would
rarely stand alone. To amortize startup costs, we typically
run each computation serially many times and present an av-
erage runtime for each computation.

3.1. Impact of G80 Hardware

NVIDIA 8-Series GPUs deliver new hardware functionality
that adds new capabilities to the GPGPU toolbox. From the
perspective of this work, the two most important are the ad-
dition of 16 kB of shared memory per multiprocessor and the
support of generalized scatter within the GPU programmable
units.

Shared memory The addition of shared memory enables
more efficient data sharing between threads and improves
overall performance by eliminating memory traffic to
main GPU memory. However, shared memory does not
introduce any new functionality that was not available on
previous hardware.

Scatter Scatter, on the other hand, does introduce function-
ality not present on older NVIDIA GPUs. While the scan
and segmented scan primitives could be implemented on
older hardware, scatter enables higher performance and
storage efficiency. Scatter is efficient but not necessary
for such operations as pack; when the vector of scanned
data items is ordered, as in the enumerate operation
used by pack, Horn’s gather-search operation [Hor0O5] em-
ulates scatter at the cost of logn passes. Buck summa-
rizes other methods for implementing scatter on older
GPUs [Buc05].

Scatter functionality is available in the R520 and R600
families of AMD GPUs [PSG06]. Thus we expect that the
techniques we describe are also directly applicable to AMD
GPUs.

[5 3 7 4 6] # initial input

[5 55 5 5] # distribute pivot across segment
[f £t £ t] # input > pivot?

[5 3 4][7 6] # split-and-segment

[5 5 5]1[7 7] # distribute pivot across segment
[t £ £] [t £] # input >= pivot?

[3 4 5]1[6 7] # split-and-segment, done!

Figure 2: This quicksort example requires two passes, with
three segmented scans per pass (one for the pivot distribute,
two within split-and-segment).

4. Applications
4.1. Quicksort

Quicksort is a popular, efficient primitive for sorting on se-
rial machines. Its control complexity and irregular paral-
lelism have prevented previous implementations on GPUs,
but the segmented scan primitive leads to an elegant formu-
lation credited to Blelloch [Ble90].

Our algorithm runs in parallel over all segments in the in-
put. All communication between elements (threads) in the
algorithm is within a single segment, so the segmented scan
primitives are an ideal fit. We begin by choosing a pivot el-
ement in each segment (we choose the first element in the
segment) and then distributing that pivot across the segment.
We then compare the input element to the pivot. On alternat-
ing passes through the algorithm we compare either greater-
than or greater-than-or-equal. The comparison produces a
segmented vector of trues and falses, which we use to split-
and-segment the input; smaller elements move to the head
of the vector and larger elements to the end. Each segment
splits into twoT. We begin with a single segment that spans
the entire input and finish when the output is sorted, which
we check with a global reduction after each step. Figure 2
shows a small example.

4.2. Sparse Matrix-Vector Multiply

Matrix-based numerical computations are a good match for
the GPU for two reasons: first, they are computationally in-
tense, and second, they exhibit substantial parallelism. Rep-
resentative GPGPU efforts focusing on matrix computations
include Larsen and McAllister’s 2001 dense-matrix multipli-
cation study [LMO1], Moravdnszky’s dense matrix represen-
tation [Mor02], or Kriiger and Westermann’s general linear
algebra framework [KWO03].

Sparse matrices are key components of many important
numerical computing algorithms, including singular value

9 Instead of alternating comparisons and a 2-way split, Blelloch
always uses the same comparison and uses a 3-way split instead.
We found the additional control complexity of a 3-way split, and
the additional number of segmented scans it required, did not justify
its fewer number of passes overall.

(© Association for Computing Machinery, Inc. 2007.

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

decomposition, conjugate gradient, and multigrid. The ap-
peal of a sparse matrix representation is less storage and
computation than its dense cousin. The ideal sparse ma-
trix representation only stores the non-zero elements and re-
quires neither padding (which requires extra storage space)
nor sorting (which requires additional computation). How-
ever, the irregularity of sparse matrices makes parallelizing
operations on them difficult.

The most notable current work in this area on the GPU
is from Bolz et al. [BFGSO03]. Their “jagged diagonal” for-
mulation for sparse matrices [AS89] is simpler to parallelize
than a truly sparse representation, but requires a sort of its
rows to place them in descending order by length. Krtiger
and Westermann render a separate point for every four non-
zero entries in a row [KWO03]. Brook’s spMatrixVec test
uses a compressed sparse row format but runs in parallel
on rows, so the runtime on each row is proportional to the
largest number of elements in any row [BHO3].

We choose the compressed sparse row (CSR) format for
our sparse matrices. CSR requires neither preprocessing nor
padding and is one of the representations of choice in the nu-
merical computing community. Our CSR representation and
sparse-matrix-vector multiplication algorithm both roughly
follow that of Blelloch et al. [BHZ93].

We represent an n X n CSR sparse matrix containing e
non-zero elements (entries) with the following three data
structures:

1. The e-element value vector contains all e non-zero el-
ements (entries) in the matrix, read in scan order (left to
right, top to bottom). We store this as a float vector.

2. The e-element index vector contains an integer identi-
fying the column for each element in the value vector.

3. The n-element rowPtr vector contains an integer index
into value that points to the first element in each row.

The matrix consists of these three data structures. We
multiply it by a vector x of length n and add the result to
a vector y of length n. With these data structures in main
GPU memory, and additional £lag and product tempo-
rary data structures with e entries each, matrix multiplication
then proceeds in four steps. We show an example in Figure 3.

1. The first kernel runs over all entries. For each entry, it
sets the corresponding £lag to 0 and performs a mul-
tiplication on each entry: product = x[index] =«
value.

2. The next kernel runs over all rows and sets the head flag
to 1 for each rowPtr in £lag through a scatter. This
creates one segment per row.

3. We then perform a backward segmented inclusive sum
scan on the e elements in product with head flags in
flag.

4. To finish, we run our final kernel over all rows, adding the
value in y to the gathered value from products [1dx].

(© Association for Computing Machinery, Inc. 2007.

Y0 a 0 b X0
y1 + = C d e X1
V2 0 0 f X2
value = [a,b,c,d,e, f]
index = [0,2,0,1,2,2]

rowPtr = [0,2,5]

product = [xpa,x2b,x0c,x1d,x2€,%> f] @)
[xoa,x2b][xoc,x1d,x2€][x2 f]])
[[xoa +x2b, x2b]

[xoc +x1d +x2e,x1d + x2e,x0¢][x2f]] (3)
y = y+[loa+x2b,xoc+xid +xex2f] (4)

Figure 3: Segmented scan can be used to perform sparse-
matrix vector multiplication. Our goal is to solve the top
equation; we represent the sparse matrix with the three
vectors value, index, and rowPtr. The four computa-
tion steps at bottom, described in Section 4.2, compute the
sparse-matrix-vector product. Our formulation is more effi-
cient than previous methods, which required either sorting
value by rows [BFGS03] or wasting work when rows were
not of uniform length [BHO3].

4.3. Tridiagonal Matrix Solvers and Fluid Simulation

The reduce/downsweep structure of the scan primitive can
also be applied to other problems, including the solution of
tridiagonal systems y = T'x, where the tridiagonal matrix 7
has entries only along the main diagonal and the adjacent di-
agonals. Kass and Miller demonstrated the use of tridiagonal
systems for fluid simulation using a shallow-water assump-
tion [KM90], and Kass et al. later used a similar computa-
tion for real-time depth-of-field [KLOO06]. The latter work
was the first to use the technique of cyclic reduction to solve
tridiagonal systems on the GPU. Here we implement a GPU-
based fluid simulation algorithm using the method of Kass
and Miller with a GPU scan-based tridiagonal solver. This
inexpensive, physically accurate method for shallow fluid
simulation is a viable alternative to other PDE solution meth-
ods [KWO03]. Our implementation leverages our scan frame-
work for the related problem of cyclic reduction and demon-
strates that our CUDA-based code can be easily integrated
into a graphics application.

Following the treatment of Kass and Miller, in our wa-
ter simulation (Plate 1), we describe the water surface as an
n x m 2D array of heights. We use the alternating direction
method to first solve a tridiagonal system for each of n rows
in parallel, then for each of m columns in parallel. Figure 4
shows the difference in the reduce step communication pat-
tern between scan and the tridiagonal solver. Because the
tridiagonal solver requires more communication, it is more

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

threads ——>

Of1(2|3|4]|5]|6]|7

steps : :]: : :]:

Figure 4: The communication pattern between threads in the
reduce step of a tridiagonal solver is similar to scan. Black
arrows show communication used by both scan and tridi-
agonal solve; gray arrows show additional communication
needed for tridiagonal solve. The down-sweep communica-
tion requirements are also more complex for the tridiagonal
solver.

difficult to divide across blocks. Our implementation can
process grids of up to 512 x 512 elements with each line
of the grid processed in shared memory by a single thread
block. For larger simulations, we divide each line of the in-
put across multiple thread blocks and use global memory
rather than shared memory to communicate between threads.

5. Results and Analysis

Scan vs. Segmented Scan For IM elements, with 128
threads (256 elements) per thread block and using the same
formulation for all scans, a forward unsegmented scan takes
0.79 ms, a backward unsegmented scan takes 0.88 ms, a for-
ward segmented scan takes 2.61 ms, and a backward seg-
mented scan takes 4.29 ms. The runtime cost is linear start-
ing at roughly 4k elements, which corresponds to 16 active
thread blocks (the GeForce 8800 GTX has 16 multiproces-
sors). Figure 5 shows performance results for four scan vari-
ants up to 8M elements.

One of the most difficult aspects of our segment imple-
mentation is the representation of segment head flags. Allo-
cating more than a bit per flag is storage-inefficient, but the
lack of atomic read-modify-write shared memory instruc-
tions in CUDA preclude optimal packing. It could be im-
plemented at additional cost with a per-warp parallel reduc-
tion, which we plan to try in the future. Hardware support
for a packed flag representation in general would also solve
this problem. Another possible hardware solution, albeit one
that is fairly special-purpose, is associating an extra hard-
ware bit with each register (essentially a 33-bit wide data
path), which may have applications beyond segmented scan.
Chatterjee et al.’s results on the Cray Y-MP show that effi-

_|—8— Backward Segmented Scan
_|-©- Segmented Scan
10 o

3--A- Scan A

- -+ Fast Scan

] Rhs
A
A

Elapsed Time (ms)

o
=

T T T T T T T T T T T T T T
210 211 212 213 214 215 216 217 218 219 220 221 222 223

Number of Elements

Figure 5: Performance results for four types of scan. The
most meaningful comparison between the types is between
scan and the two segmented scans, the “fast” scan processes
eight elements per thread rather than two and is provided for
reference [HSOO7].

cient hardware support for flags makes their segmented scan
implementations “only marginally more expensive than the
unsegmented versions” [CBZ90].

Large segmented scans are about three times slower than
large unsegmented scans for two reasons. First, segmented
scan does more I/O from global memory than scan. The flag
vector and the partial OR tree are read twice from global
memory, once at the beginning of the reduce phase and again
at the beginning of the down-sweep phase. Both are also
written when the state is saved at the end of the reduce
phase. Segmented scan also does more computation than
scan. In the reduce phase the flags are logically ORed, and in
the down-sweep phase segmented scan has an if-then-elseif
construct. The segmented scan implementation does signif-
icantly more address calculation to pack and unpack flags
from the striped compact representation.

Backward segmented scans are about two times slower
than forward segmented scans. This is because of uncoa-
lesced reads and writes of the flag vector and the partial OR
tree from global memory. To implement backward scan, we
read the data in reverse order from shared memory. How-
ever, this violates coalesced 1/O restrictions imposed by the
GPU since threads access memory in decreasing order. In the
future we will coalesce the I/O of flags by reading them in
increasing order from global memory and reversing them in
shared memory. This will result in similar performance for
backward and forward segmented scan, which will in turn
improve the performance of sparse matrix-vector multiply.

Sparse Matrix-Vector Multiply Our sparse matrix-vector
multiply performance approaches, but does not yet meet,
the throughput of a best-of-breed CPU implementation.
For evaluation we tested the medium-sized “raefsky2” ma-

(© Association for Computing Machinery, Inc. 2007.

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

trix [Dav94], a 3242x3242, 294,276-element sparse ma-
trix that represents incompressible flow in a pressure-
driven pipe. Using standard accounting for this operation,
we achieve 215 MFLOPS on matrix-vector multiplication
(365 matrix-vector multiplies per second), compared to the
highly-optimized, self-tuning “oski” CPU implementation’s
December 2006 results of 522 MFLOPS on a Pentium 4 and
294 MFLOPS on an AMD Opteron [Gah06]. Most of our
runtime is spent in the backward segmented scan operation
and we are hopeful that continued improvements in our im-
plementation will yield further performance gains.

Comparison to previous results is difficult because they
were implemented on older hardware, but as a comparison,
Bolz et al.’s 2003 implementation on a 500 MHz NVIDIA
GeForce FX (15 GFLOPS, 12.8 GB/s bandwidth) achieved
120 matrix-vector multiplies per second (not including the
sort time) on a 37k-entry sparse matrix [BFGS03], a factor of
24 slower than our implementation on newer (345 GFLOPS,
86 GB/s) hardware.

Sort We compared 5 sort implementations: split-based
radix sort per block, followed by a parallel merge sort of
blocks [HSOO07]; quicksort per block, followed by the paral-
lel merge; a (global) split-based radix sort across all inputs
(no merge necessary); and 2 CPU-based sorts using STL’s
sort and C’s quicksort routines. For a sort of 4M 32-bit inte-
gers, runtimes follow.

Test Runtime (ms)

GPU global radix 165.0 ms
GPU radix/merge 317.8 ms
CPU STL sort 571.7ms

CPU quicksort 908.8 ms

GPU quicksort/merge 2050.3 ms

These results parallel existing literature; Govindaraju et
al. concluded that GPU sorts were appreciably but not mas-
sively faster than CPU-based sorts [GGKMO06], and Blelloch
finds “the most practical parallel sorting algorithm” (bitonic
sort) and split-based radix sort had similar performance on
the Connection Machine [Ble90]. Our interest in this paper
is more oriented to demonstrating a new GPU-based sort-
ing algorithm, namely quicksort. Quicksort has an excellent
expected complexity of O(nlogn). On scalar CPUs, quick-
sort is in theory and in practice superior to bitonic sort’s
O(rzlog2 n) and in practice nearly always better than radix
sort’s O(b) passes. On the GPU, however, quicksort is a poor
performer for several reasons.

High-performance sorts are typically bound by band-
width, not compute, but our quicksort implementation is
very definitely bound by compute. In particular, the book-
keeping instructions to manage multiple active regions in
shared memory and the staging of regions to and from the
bank-conflict-free representations used by the segmented
scan together result in both lengthy programs and a large
number of active registers. Long programs are slow, and us-
ing many registers reduces the occupancy of the program

(© Association for Computing Machinery, Inc. 2007.

in the multiprocessors (according to the profiler, the occu-
pancy is only 1/6). In the long term, as compute costs be-
come cheaper compared to communication costs, complex
programs with large register usage may become more attrac-
tive.

We would like to extend our sort implementations to sup-
port key-value sorts for better comparison with previous
GPU sorts. The bitonic sort in the NVIDIA CUDA SDK is
single-block only and was thus not suitable for comparison.

Tridiagonal Solver Our tridiagonal solver has little diffi-
culty maintaining real-time performance for shallow water
simulation. For the 128 x 128 simulation pictured in the mid-
dle row of Plate 1, we measure 1207 simulation steps per
second for compute only. The compute time is consider-
ably less than the overhead of mapping and unmapping the
vertex buffer(roughly 4:1 overhead:compute). We also com-
pared our 512x512 solver against a CPU cyclic reduction
solver (which is not the serially optimal CPU solver). Run-
ning from GPU main memory, the CUDA implementation
was 3 times faster than the CPU, and using shared memory,
12 times faster (2.3 ms vs. 27.6 ms).

6. Conclusion

One of the difficulties with GPGPU programming has been
the vertical nature of GPGPU program development. With
few exceptions, most applications are developed by a single
team from the API interface to the hardware up to the appli-
cation itself, with little to no code reuse from other projects.
The field would benefit from a more horizontal model of pro-
gram development with libraries of GPGPU primitives avail-
able for use by GPGPU applications allowing code reuse and
factorization by GPGPU developers.

What should those primitives be? This is a broad and im-
portant question facing the GPGPU community. For a highly
parallel machine such as the GPU, we believe it is impor-
tant not just to consider traditional scalar primitives but also
primitives that were designed for parallel programming en-
vironments and machines. The scan primitives are not par-
ticularly well suited for scalar machines, but they are an ex-
cellent match for a broad set of problems on parallel hard-
ware generally and, we believe, specifically the GPU. We
expect that continued investigation of a wide range of po-
tential parallel primitives, and optimized implementations of
these primitives, will provide insight for future hardware and
software for GPGPU and provide more productive GPGPU
programming environments for future developers.

Acknowledgements

Many thanks to Jim Ahrens, Guy Blelloch, Jeff Inman, and
Pat McCormick for thoughtful discussions about our scan
implementation and its applications. Richard Vuduc helped
with oski results, David Luebke and Ian Buck provided ex-
cellent support of the CUDA tools, and Jeff Bolz helped
compare our sparse-matrix results to his previous work. Eric

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

Lengyel generated the images for the shallow water simula-
tion using his C4 game engine.

This work was supported by the Department of En-
ergy (Early Career Principal Investigator Award DE-FGO02-
04ER25609, the SciDAC Institute for Ultrascale Visualiza-
tion, and Los Alamos National Laboratory) and by the Na-
tional Science Foundation (grant 0541448), as well as gen-
erous hardware donations from NVIDIA.

References

[AS89] ANDERSON E., SAAD Y.: Solving sparse triangu-
lar systems on parallel computers. International Journal
of High Speed Computing 1, 1 (May 1989), 73-95.

[BFGS03] BoLz J., FARMER 1., GRINSPUN E.,
SCHRODER P.: Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2003) 22, 3
(July 2003), 917-924.

[BHO3] Buck I., HANRAHAN P.: Data Parallel Com-
putation on Graphics Hardware. Tech. Rep. 2003-03,
Stanford University Computer Science Department, Dec.
2003.

[BHZ93] BLELLOCH G. E., HEROUX M. A., ZAGHA
M.: Segmented Operations for Sparse Matrix Computa-
tion on Vector Multiprocessors. Tech. Rep. CMU-CS-93-
173, School of Computer Science, Carnegie Mellon Uni-
versity, Aug. 1993.

[B1e90] BLELLOCH G.: Vector Models for Data-Parallel
Computing. MIT Press, 1990.

[BucO5] Buck I.: Taking the plunge into GPU computing.
In GPU Gems 2, Pharr M., (Ed.). Addison Wesley, Mar.
2005, ch. 32, pp. 509-519.

[CBZ90] CHATTERIEE S., BLELLOCH G. E., ZAGHA
M.: Scan primitives for vector computers. In Super-
computing ’90: Proceedings of the 1990 Conference on
Supercomputing (1990), pp. 666-675.

[Dav94] Davis T. A.: The University of Florida
sparse matrix collection. NA Digest 92, 42 (16 Oct.
1994). http://www.cise.ufl.edu/research/
sparse/matrices.

[Gah06] GAHVARI H. B.: Benchmarking Sparse Matrix-
Vector Multiply. Master’s thesis, University of California,
Berkeley, Dec. 2006.

[GGKO6] GRESS A., GUTHE M., KLEIN R.: GPU-based
collision detection for deformable parameterized surfaces.
Computer Graphics Forum 25, 3 (Sept. 2006), 497-506.

[GGKMO06] GOVINDARAJU N. K., GRAY J., KUMAR
R., MANOCHA D.: GPUTeraSort: High performance
graphics coprocessor sorting for large database manage-
ment. In Proceedings of the 2006 ACM SIGMOD Inter-
national Conference on Management of Data (June 2006),
pp. 325-336.

[Hor05] HORN D.: Stream reduction operations for
GPGPU applications. In GPU Gems 2, Pharr M., (Ed.).
Addison Wesley, Mar. 2005, ch. 36, pp. 573-589.

[HSC*05] HENSLEY J., SCHEUERMANN T., COOMBE
G., SINGH M., LASTRA A.: Fast summed-area table
generation and its applications. Computer Graphics Fo-
rum 24, 3 (Sept. 2005), 547-555.

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Par-
allel prefix sum (scan) with CUDA. In GPU Gems 3,
Nguyen H., (Ed.). Addison Wesley, Aug. 2007, ch. 31.

[Ive62] IVERSON K. E.: A Programming Language. Wi-
ley, New York, 1962.

[KLO06] KASS M., LEFOHN A., OWENS J.: Inter-
active Depth of Field Using Simulated Diffusion on
a GPU. Tech. Rep. #06-01, Pixar Animation Stu-
dios, Jan. 2006. http://graphics.pixar.com/
DepthOfField/.

[KM90] KAss M., MILLER G.: Rapid, stable fluid dy-
namics for computer graphics. In Computer Graphics
(Proceedings of SIGGRAPH 90) (Aug. 1990), pp. 49-57.

[KWO03] KRUGER J., WESTERMANN R.: Linear alge-
bra operators for GPU implementation of numerical algo-
rithms. ACM Transactions on Graphics 22,3 (July 2003),
908-916.

[LKS*06] LEFOHN A. E., KNISS J., STRZODKA R.,
SENGUPTA S., OWENS J. D.: Glift: Generic, efficient,
random-access GPU data structures. ACM Transactions
on Graphics 26, 1 (Jan. 2006), 60-99.

[LMO1] LARSEN E. S., MCALLISTER D.: Fast matrix
multiplies using graphics hardware. In Proceedings of the
2001 ACM/IEEE Conference on Supercomputing (Nov.
2001), p. 55.

[Mor02] MORAVANSZKY A.: Dense matrix algebra on
the GPU. In ShaderX2: Shader Programming Tips and
Tricks with DirectX 9.0, Engel W. E., (Ed.). Wordware
Publishing, 2002, pp. 352-380.

[NVIO7] NVIDIA CORPORATION: NVIDIA CUDA
compute unified device architecture programming guide.
http://developer.nvidia.com/cuda, Jan.
2007.

[PSGO6] PEERCY M., SEGAL M., GERSTMANN D.: A
performance-oriented data parallel virtual machine for
GPUs. In ACM SIGGRAPH 2006 Conference Abstracts
and Applications (Aug. 2006).

[Sch80] ScHWARTZJ. T.: Ultracomputers. ACM Transac-
tions on Programming Languages and Systems 2, 4 (Oct.
1980), 484-521.

[SLO0O6] SENGUPTA S., LEFOHN A. E., OWENS J. D.:
A work-efficient step-efficient prefix sum algorithm. In
Proceedings of the Workshop on Edge Computing Using
New Commodity Architectures (May 2006), pp. D-26-27.

(© Association for Computing Machinery, Inc. 2007.

Sengupta, Harris, Zhang, and Owens / Scan Primitives for GPU Computing

Plate 1: The pictures above are frames from rendering our shallow-water simulation, which uses our GPU-based tridiagonal
matrix solver. Each row displays several frames from a different simulation, with the starting point of the simulation at the left.
The top row simulates a 256x256 grid, the middle row a 128 x 128 grid, and the bottom row a 64x64 grid. Thanks to Eric
Lengyel for generating these images using his C4 game engine.

(© Association for Computing Machinery, Inc. 2007.

