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The ability to recognize humans and their activities by vision
is key for a machine to interact intelligently and effortlessly with a
human-inhabited environment. Because of many potentially impor-
tant applications, “looking at people” is currently one of the most
active application domains in computer vision. This survey identi-
fies a number of promising applications and provides an overview
of recent developments in this domain. The scope of this survey is
limited to work on whole-body or hand motion; it does not include
work on human faces. The emphasis is on discussing the various
methodologies; they are grouped in 2-D approaches with or without
explicit shape models and 3-D approaches. Where appropriate, sys-
tems are reviewed. We conclude with some thoughts about future
directions. c© 1999 Academic Press
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A new application domain of computer vision has emerg
over the past few years dealing with the analysis of images
volving humans. This domain (sometimes called “looking
people”) covers, among others, face recognition, hand ges
recognition, and whole-body tracking. The strong interest in t
domain has been motivated by the desire for improved m
machine interaction for which there are many promising ap
cations.

One of the general goals of artificial intelligence has be
to design machines which act more intelligently or human-li
Natural language understanding, large knowledge bases, an
phisticated reasoning have all made contributions toward rea
ing this goal, as embodied by the Turing test. Yet, they p
vide only a partial solution; for a machine to be truly intellige
and useful, it requires the ability to perceive the environmen
which it is embedded. It needs to be able to extract informat
from its environment independently, rather than rely on inform
tion supplied to it externally by keyboard input (as in the origin
conception of the Turing test). Perhaps the most relevant in
mation to be retrieved for interaction is where and who are
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such a capability is that it makes communication with machi
easier for humans, allowing input modalities such as gestur

Traditionally, there has been keen interest in human mo
ment from a wide variety of disciplines. In psychology, the
have been the classic studies on human perception by Joha
[39]. His experiments with moving light displays (MLD) a
tached to body parts showed that human observers can al
instantly recognize biological motion patterns even when p
sented with only few of these moving dots. This raised the qu
tion whether recognition of moving parts could be achiev
directly from motion, without structure recovery. In the ha
gesture area, there have been many studies on how human
and interpret gestures; see for example work by McNeill [5
Quek [66] has put this in the context of vision-based hum
computer interfaces.

In kinesiology (i.e., biomechanics) the goal has been to
velop models of the human body that explain how it functio
mechanically and how one might increase its movement
ciency. A typical procedure involves obtaining 3-D joint da
performing kinematic analysis, and computing the correspo
ing forces and torques for a movement of interest [12]. 3-D d
is typically obtained in an intrusive manner, e.g., by plac
markers on the human body.

In choreography, there has been long-term interest in de
ing high-level descriptions of human movement for the notat
of dance, ballet, and theatre. Some of the more popular n
tions have been the Labanotation, the Ekshol–Wachmann,
the effort–shape notation. Across the variety of notation s
tems there has been little consensus, though, what these ge
purpose descriptions should be. Badler and Smoliar [6] prov
a good discussion of these issues.

Computer graphics has dealt with the synthesis of hum
movement. This has involved devising realistic models of
man bodies for applications in crash simultations, workpl
assessment, and entertainment. Some of the issues have
how to specify spatial interactions and high-level tasks for
human models; see [5, 6, 50].

The recent interest in vision in the looking at people dom
is hardly surprising. From a technical point of view, this doma
is rich and challenging because of the need to segment rap
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changing scenes in natural environments involving nonrigid
tion and (self ) occlusion. A number of potentially important a
plications exist; see the next section. Additional momentum
been provided by recent technological advances, chief am
them the introduction of real-time capture, transfer, and p
cessing of images on standard hardware systems (e.g.,
The extensive coverage in the vision literature is apparent f
the many special workshops devoted to this topic: the Look
at People workshop in Chambery (1994), the Motion of N
Rigid and Articulated Objects workshop in Austin (1994), a
the two Automatic Face and Gesture Recognition workshop
Zürich (1995) and Killington (1996). Some of the material h
now also reached the popular scientific press [63].

This paper surveys the work on visual analysis of gestures
whole-body movement. These are discussed together be
of obvious similarities (i.e., both involve articulated structure
Section 2 discusses promising application scenarios of the l
ing at people domain in some detail. Many criteria could be u
to classify previous work; for example, the type of models u
(e.g., stick figure-based, volumetric, statistical), the dimens
ality of the tracking space (2-D vs 3-D), sensor modality (e
visible light, infra-red, range), sensor multiplicity (monocular
stereo), sensor placement (centralized vs distributed), and
sor mobility (stationary vs moving). This survey is based on
first two criteria; it distinguishes

• 2-D approaches without explicit shape models (Section
• 2-D approaches with explicit shape models (Section 4),
• 3-D approaches (Section 5).

These classes do have some overlap. For example, som
approaches use explicit shape models but also contain som
ements of learning or self-adaptation. Nevertheless, this ge
classification provides a good framework for discussion throu
out this survey.

Section 6 provides an overview of techniques for human
tion recognition; it takes a bottom-up view which assumes
all relevant features have been extracted from the images a
point, i.e., using one of the approaches of the last three sect
A general discussion of past work is given in Section 7 toge
with some thoughts about future directions. The conclusions
listed in Section 8.

Face analysis (head pose estimation, face recognition, f
expressions, lip reading) is not covered by this survey; see
stead [83]. Earlier reviews on nonrigid motion, motion-bas
recognition, and gesture interpretation were given by Aggar
et al. [1], Cedras and Shah [14], and Pavlovic, Sharma,
Huang [61], respectively.

2. APPLICATIONS

There are a number of promising applications in the look
at people area in computer vision in addition to the general
of designing a machine capable of interacting intelligently a

effortlessly with a human-inhabited environment; for a summa
see Table 1.
HUMAN MOVEMENT 83

o-
p-
has
ong
ro-
Cs).
om
ing
n-
d

s in
as

and
ause
s).
ok-
ed
ed
on-
g.,
s

sen-
he

3),
nd

2-D
e el-
eral
gh-

ac-
hat
this

ons.
her
are

cial
in-

ed
wal
nd

ng
oal
nd

TABLE 1
Applications of “Looking at People”

General domain Specific area

Virtual reality —Interactive virtual worlds
—Games
—Virtual studios
—Character animation
—Teleconferencing

(e.g., film, advertising, home-use)

“Smart” surveillance systems —Access control
—Parking lots
—Supermarkets, department stores
—Vending machines, ATMs
—Traffic

Advanced user interfaces —Social interfaces
—Sign-language translation
—Gesture driven control
—Signaling in high-noise environments

(airports, factories)

Motion analysis —Content-based indexing of sports vide
footage

—Personalized training in golf, tennis, etc
—Choreography of dance and ballet
—Clinical studies of orthopedic patients

Model-based coding —Very low bit-rate video compression

An important application domain is smart surveillance. He
“smart” describes a system that does more than motion de
tion, a straightforward task prone to false alarms (there mi
be animals wandering around, wind blowing, etc.). A first c
pability would be to sense if a human is indeed present. T
might be followed by face recognition for the purpose of a
cess control and person tracking across multiple cameras
other applications, one needs to determine what a person in
scene is doing, rather than simply signaling human presenc
a parking lot setting, one might want to signal suspicious
havior such as wandering around and repeatedly looking
cars. Other surveillance settings involve supermarket or dep
ment stores, vending machines, ATMs, and traffic. The bene
of such surveillance applications need in some cases to be
anced with possible drawbacks, e.g., regarding privacy.

Another application domain is virtual reality. In order to cr
ate a presence in a virtual space one needs to first recove
body pose in the physical space. Application areas lie in in
active virtual worlds, with the internet as a possible mediu
The development of interactive spaces on the internet is sti
its infancy; it is in the form of “chat rooms” where users na
igate with icons in 2-D spaces while communicating by te
A more enriched form of interaction with other participants
objects will be possible by adding gestures, head pose, an
cial expressions as cues. Other applications in this domain
games, virtual studios, motion capture for character anima
(synthetic actors), and teleconferencing.

ry In the user-interface application domain, vision is useful to
complement speech recognition and natural language under-
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standing for a natural and intelligent dialogue between hu
and machine. The contribution of vision to a speech-guided
alogue can be manifold. One can simply determine if a us
present to decide whether to initiate a dialogue or not. M
detailed cues can be obtained by recognizing who the us
observing facial expressions and gestures as the dialogue
gresses, and perhaps recalling some of the past interactio
would certainly be useful to determine who is talking to wh
in case of multiple participants. Vision can also provide spe
recognition with a more accurate input in a noisy environmen
focusing the attention to the spatial location of the user [80]. T
is achieved either by a postfiltering step when using a ph
array of microphones or, more actively, by directing a parab
microphone to the intended source. Finally, vision can also p
helpful for phoneme disambiguation, i.e., lip reading.

An important application area in the user interface dom
involves social interfaces. Social interfaces deal with compu
generated characters, with human-like behaviors, who att
to interact with users in a more personable way [80]. Alterna
application areas in the user interface domain are sign-lang
translation, gesture driven control of graphical objects or ap
cances, and signaling in high-noise environments such as f
ries or airports.

In the motion analysis domain, a possible application is c
tent-based indexing of sports video footage; in a tennis con
one may want to query a large video archive with “give me
the cases where playerX came to the net and volleyed.” Th
would eliminate the need for a human to browse through a l
data set. Other applications lie in personalized training sys
for various sports; these systems would observe the skil
the pupils and make suggestions for improvement. Vision-b
human motion analysis is also useful for choreography of da
and ballet, and furthermore, for clinical studies in orthoped

One final application domain is that of model-based im
coding, with activity centered around the forthcoming MPEG
standard. In a video phone setting, one can track faces in im
and code them in more detail than the background. More a
tiously, one might try to recover a 3-D head model initially a
code only the pose and deformation parameters subsequen
is unclear whether these applications will materialize; the

head tracking application provides modest compression gains
and is spec

to describe the state of movement at timet . Polana and Nelson
), Yamamoto
ific to scenes with human faces; the 3-D head (or[65] used the sum of the normal flow (see Fig. 1
FIG. 1. Detection of periodic activity using low-level m
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body) tracking application has not been solved satisfacto
yet. See Aizawa and Huang [2] for a good overview.

In all the applications discussed above, a nonintrusive sen
method based on vision is preferable over a (in some cases
even feasible) method that relies on markers attached to
bodies of the human subjects or a method which is base
active sensing.

3. 2-D APPROACHES WITHOUT EXPLICIT
SHAPE MODELS

One general approach to the analysis of human movemen
been to bypass a pose recovery step altogether and to descri
man movement in terms of simple low-level, 2-D features fr
a region of interest. Polana and Nelson [65] refered to “get
your man without finding his body parts.” Models for hum
action are then described in statistical terms derived from th
low-level features or by simple heuristics. The approach with
explicit shape models has been especially popular for app
tions of hand pose estimation in sign language recognition
gesture-based dialogue management.

For applications involving the human hand, the region of
terest is typically obtained by background image subtrac
or skin color detection. This is followed by morphological o
erations to remove noise. The extracted features are bas
hand shape, movement, and/or location of the interest reg
For shape, Freemanet al. [24] usedx–y image moments an
orientation histograms and Hunteret al. [38] used rotationally
invariant Zernike moments. Others [16, 20, 77, 79] conside
the motion trajectories of the hand centroids. Quek [66] propo
using shape and motion features alternatively for the interpr
tion of hand gestures. According to Quek, when the hand
gross motion, the movements of the individual fingers are un
portant for gesture interpretation. On the other hand, gestur
which fingers move with respect to each other will be perform
with little hand motion.

A similar technique to derive low-level features is to super
pose a grid on the interest region, after a possible normaliza
of its extent. In each tile of the grid a simple feature is compu
and these features are combined to form aK × K feature vector
otion features (from Polana and Nelson [65],c© 1994 IEEE).
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FIG. 2. Detecting frontal and rear views of pedestrians. (a) The features: vertical, horizontal, and corner wavelet coefficients; (b) the detection resultsusing the
SVM classifier (from Orenet al. [59], c© 1997 IEEE).
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et al. [86] used the number of foreground pixels, and Takaha
et al. [78] defined an average edge vector for each tile. B
Darell and Pentland [19] and Kjeldsen and Kender [44] used
image pixels directly as input. The work by Darell and Pentla
[19] aims to build view models automatically by adding view
to the model set whenever correlation with the existing vie
falls below a certain threshold.

For the above systems, action classification is based on h
coded decision trees [16, 20, 79], nearest neighbor criteria
65], or on general pattern matching techniques for time-vary
data, as described in Section 6. Some additional constrain
actions can be imposed using a dialogue structure where
current state limits the possible actions that can be expected

Orenet al. [59] performed object detection in static image
They used (Haar) wavelet coefficients as low-level intensity f
tures; these coefficients are obtained by applying a differen
operator at various locations, scales, and orientations on the
age grid of interest. Many coefficients can be part of this r
resentation. In a training stage, however, one selects a s
subset of coefficients to represent a desired object, base
considerations regarding relative strength and positional sp
over the images of the training set. Once it has been establi
which wavelet coefficients to use as features, a support ve
machine (SVM) classifier is applied to the training set. Dur
the detection stage, one shifts windows of various sizes o
the image, extracts the selected features, and applies the
classifier to verify whether the desired object is present or
Orenet al. applied this technique to detecting frontal and re
views of pedestrians; see Fig. 2.

Another line of research involves statistical shape model
detect and track the contours of hands or persons. The wor
Cooteset al. [18] uses active shape models for this purpo
these are models derived from a training stage where exam
shapes are described in terms of known feature point locati
Cooteset al. performed principal component analysis on t
feature locations to describe the example shapes using a red
parameter set. With this compact representation one obt
in addition to efficiency, some degree of generalization o

the training set. This can be useful when tracking deforma
shapes; using the new representation one allows, in esse
shi
th
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only those deformations which are consistent with the train
set. Cooteset al.showed some examples of tracking hands. T
followed method also has some drawbacks. Features nee
be present at all times (no occlusions). At initialization, a go
initial estimate must be available for the method to conve
properly. And finally, the chosen parameterization might inclu
states which have implausible physical interpretations.

Baumberg and Hogg [8] applied active shape models to
tracking of pedestrians. They used a somewhat different sh
representation, based on B-splines; see Fig. 3. By assumi
stationary camera, tracking is initialized on the foreground
gion; the latter is obtained by background subtraction. Spa
temporal control is achieved using a Kalman filter formulatio
similar to work by Blakeet al. [9].

Recent work by Frankeet al. [23] applied principal com-
ponent analysis on a grid representation of pedestrians.
training set is obtained by blurring binary images which c
respond to pedestrian silhouettes. Principal component ana
results, as before, in a compact representation of the trai
set in terms of various eigenvectors which span a linear s
space. See Fig. 4: the main variation is captured by the first
eigenvectors (corresponding to the largest eigenvalues), the
eigenvector already contains mostly noise. Pedestrian dete
involves shifting windows of various sizes over the image, n
malizing for gradient energy within the window, and determini
ble
nce,

FIG. 3. Principal component analysis on a data set of pedestrians represented
by B-splines; shown is the shape variation along the principal component (from
Baumberg and Hogg [8],c© 1994 IEEE).
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FIG. 4. Principal component analysis on a data set of pedestrians repres
by images of size 30 by 50 pixels; shown are eigenvectors 0 (mean), 1, 2
25, in order of decreasing eigenvalues (from Frankeet al. [23]).

the “distance” between the normalized (gradient) data enclo
by the window and the linear subspace corresponding to
training set. One of the advantages of using grid representa
(e.g., [23, 59]) is that dealing with partial occlusion is relative
straightforward.

General-purpose motion-based segmentation and trac
techniques have also been used for applications such as p
tracking. Shio and Sklansky [75] aimed to recover the aver
2-D image velocity of pedestrians in a traffic setting. They obt
a motion field based on correlation techniques over succes
frames. The motion field is smoothed both spatially and tem
rally to reduce the effects of nonrigid motion and measurem
errors. A quantization of the field is then followed by an ite
tive merging step which results in regions with similar moti
direction. Segen and Pingali [73] group partially overlapp
feature tracks over time in a real-time implementation. Heis
et al. [32] used groups of pixels as basic units for trackin
Pixels are grouped by clustering techniques in combined c
(R, G, B) and spatial (x, y) dimensions; the motivation for thi
is that adding spatial information makes clustering more sta
than using only color information. The obtained pixel grou
are adapted iteratively from one image to the next image u
ak-means clustering algorithm. Because of the fixed numbe
pixel groups and the enforced one-to-one correspondence
time, tracking these units is straightforward. Of course, th
is no guarantee that units will remained locked onto the sa

physical entity during tracking, but initial results on tracking
pedestrians appe

the large dark–light differences. The recognition of body parts
nd trunk following the
ar promising; see Fig. 5. proceeds in the order legs, head, arms, a
FIG. 5. Tracking pedestrians with the color cluster fl
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4. 2-D APPROACHES WITH EXPLICIT
SHAPE MODELS

This section discusses work which uses explicit a priori kno
edge of how the human body (or hand) appears in 2-D, tak
essentially a model- and view-based approach to segment, t
and label body parts. Since self-occlusion makes the prob
quite hard for arbitrary movements, many systems assume a
ori knowledge of the type of movement or the viewpoint und
which it is observed. The human figure is typically segmen
by background subtraction, assuming a slowly changing or
tionary background and a fixed camera. The models used
usually stick figures, wrapped around with ribbons or “blob
An example of a ribbon-based 2-D model is illustrated in Fig
The type of the model strongly influences what features are u
for tracking; one can distinguish systems using edges or ribb
“blobs,” and points.

A number of researchers have analyzed scenes involving
man gait parallel to the image plane. Geurtz [27] perform
hierarchical and articulated curve fitting with 2-D ellipsoid
Niyogi and Adelson [56, 57] advocated segmentation over ti
because of robustness; their procedure involves finding hu
silhouettes with deformable contours inX-T space [56] or de-
formable surfaces inX-Y-T space [57]. See Fig. 7. Guoet al.
[30] proposed obtaining a 2-D stick figure by obtaining the ske
ton of the silhouette of the walking human and matching it
a model stick figure. They use a combination of link orien
tions and joint positions of the obtained stick figure as featu
for a subsequent action recognition step. Chang and Huang
detected ribbons corresponding to the arms and feet. Juet al.
[40] used a parameterized motion model to analyze gait c
strained to a plane. The legs are modeled a set of conne
planar patches.

An early attempt to segment and track body parts under m
general conditions was made by Akita [3]. The assumption m
is that the movement of the human is known a priori in the fo
of a set of representative stick figure poses or “key frame
These would be of help when the tracking of body parts fa
The foreground figure and its silhouette are easily obtained g
ow (from Heisele, Kressel, and Ritter [32],c© 1997 IEEE).
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FIG. 6. A 2-D stick-figure model fleshed out with ribbons (from Leung a
Yang [48], c© 1995 IEEE).

assumption that legs are the most stable to detect and the
the least. Unfortunately, a number of unstated simplificati
and procedures make evaluation of this approach difficult.

Without a priori knowledge of the type of movement bei
performed, Long and Yang [49] tracked the limbs of a hum
silhouette by tracking antiparallel lines (apars). They develo
methods to deal with the effects of occlusion, i.e., the app
ance, disappearance, merging, and splitting of apars. The
by Kurakake and Nevatia [47] is similar. Leung and Yang [4
reported progress on the general problem of segmenting, t
ing, and labeling of body parts from a silhouette of the hum
Their basic body model consists of five U-shaped ribbons
a body trunk, various joint and mid points, plus a number
structural constraints, such as support. In addition to the b
2-D model, view-based knowledge is defined for a numbe
generic human postures (e.g., “side view kneeling model,” “s
horse motion”), to aid the interpretation process. The segme
tion of the human silhouette is done by detecting moving ed
See Fig. 8.

Wrenet al.[84] took a region-based approach. Their real-ti
person finder system “Pfinder” models and tracks the hu
body using a set of “blobs”; each blob is described in statist
ar-
an
terms by a spatial (x, y) and color (Y,U,V) Gaussian distribu-
tion over the pixels it consists of (compare with the shape–color

In this section we discuss work that aims to recover 3-D
ticulated pose over time, i.e., joint angles with respect to
FIG. 7. (a) One image of a sequence with walking people (b) various slic
c© 1994 IEEE).
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model used in [32]). The blobs typically correspond to the p
son’s hands, head, feet, shirt, and pants. A statistical mode
also constructed for the background region; here each pixe
described by a Gaussian distribution in terms of color values
initialization, the background model is used to identify a for
ground region with pixel values other than expected given
background model. A model-building process follows whe
blobs are placed over the foreground region. This proces
guided by a 2-D contour shape analysis that attempts to iden
various body parts using heuristics. Tracking involves a loop
predicting the appearance of the person in the new image,
termining for each pixel the likelihood that it is part of one o
the blob models or background model, assigning it to one of
models, and updating the statistical models. See Fig. 9.

Cai and Aggarwal [11] described a system with a simplifi
head–trunk model to track humans across multiple cameras
this work, tracking uses point features derived from the med
axis of the foreground region. Attributes used for tracking a
position and velocity of the points, together with the average
tensity of the local neighborhood of the points. The use of po
features has the advantage that the features can be relatively
ily brought into correspondence across multiple cameras, gi
constraints on epipolar geometry. It remains difficult, though
robustly track points in long sequences when the points do
correspond to stable features on the human body.

Finally, Kahn and Swain [41] described a system which us
multiple cues (intensity, edge, depth, motion) to detect p
ple pointing laterally. Their system architecture is quite gene
and could be described as being “object-oriented”; a numbe
generic objects are defined for a particular application (e.g., p
son, background, floor, lights) and visual routines are provid
to detect these in the images. Once various object prope
have been extracted from the image, the objects become
stantiated” and specialized visual routines apply afterward.

5. 3-D APPROACHES
es in theXY T volume reveal characteristic patterns (from Niyogi and Adelson [57],
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FIG. 8. Original images, ribbon detection, and body part label

object-centered [51] coordinate system. We will not cons
intrusive techniques for motion capture, e.g., techniques w
use markers or active sensing.

The general problem of 3-D motion recovery from 2-D ima
is quite difficult. In the case of 3-D human tracking, howev
one can take advantage of the large available a priori knowl
about the kinematic and shape properties of the human bo
make the problem tractable. Tracking also is well supporte
the use of a 3-D shape model which can predict events su
(self) occlusion and (self) collision.

A general framework for model-based tracking is illustra
in Fig. 10, based on the early work of O’Rourke and Bad
[60]. Four main components are involved: prediction, syn
sis, image analysis, and state estimation. The prediction c
ponent takes into account previous states up to timet to make
a prediction for timet + 1. It is deemed more stable to do t
prediction at a high level (in state space) than at a low leve
image space), allowing an easier way to incorporate sem
knowledge into the tracking process. The synthesis compo
translates the prediction from the state level to the measure
e) level, w
tively focu

er be surface-based
ng cylinders). There
hich allows the image analysis component to
s on a subset of regions and look for a subset of

The representation for the flesh can eith
(e.g., using polygons) or volumetric (e.g., usi
FIG. 9. Detecting and tracking human “blobs” with th
g using the first sight system (from Leung and Yang [48],c© 1995 IEEE).
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features. Finally, the state-estimation component compute
new state using the segmented image. This framework ca
applied to any model-based tracking problem, whether inv
ing a 2-D or 3-D tracking space. Many of the tracking syste
discussed in this section follow this general framework.

Once 3-D tracking is successfully implemented, one has
benefit of being able to use the 3-D joint angles as feat
for subsequent action matching; these have the advanta
being viewpoint independent and directly linked to the bo
pose. Compared to 3-D joint coordinates, joint angles are
sensitive to variations in the size of humans.

5.1. 3-D Body Modeling

3-D graphical models for the human body generally consis
two components: a representation for the skeletal structure
“stick figure”) and a representation for the flesh surrounding
The stick figure is simply a collection of segments and jo
angles with various degree of freedom at the articulation s
Relevant rotations are generally described by their three E
angles [13, 76].
e Pfinder system (work by Wrenet al. [84], c© 1997 IEEE).



       

0

r
o
o

d
a
t

e
r

i
h
T

b

6
n

l
p

con-
ub-
the

, it
mi-
ich
ini-
es
mp-
sed
her
, in
-D

inty
at

on-
the

ter-
ch
(of

n.
le
ints
nter-

for
u-
ng
tial
em-
-
xed
iest
ial
VISUAL ANALYSIS OF

FIG. 10. Model-based tracking (adapted from O’Rourke and Badler [6
c© 1980 IEEE).

is a trade-off between the accuracy of representation and
number of parameters used in the model. Many highly accu
surface models have been used in the field of graphics to m
the human body [5], often containing thousands of polyg
obtained from actual body scans. In vision, where the inve
problem of recovering the 3-D model from the images is mu
harder and less accurate, the use of volumetric primitives
been preferred to “flesh out” the segments because of the lo
number of model parameters involved. After all, human mod
used for computer vision do not have to meet the standar
being highly realistic and natural looking as long as their sh
approximates the real human shape well enough to suppor
age segmentation.

An early example of human modeling is Badler’s “Bubbl
man” [60], where body parts consist of overlapping sphe
Another modeling choice has involved simple cylindrical prim
itives (possibly with ellipticXY-cross-sections) [22, 29, 36, 51
71]. More accurate modeling of body parts is obtained us
superquadrics [7]; these are generalizations of ellipsoids w
have additional “squareness” parameters along each axis.
include such diverse shapes as cylinders, spheres, ellipsoids
hyper-rectangles. Superquadrics improve the modeling accu
for body parts such as the head and torso and for regions c
to articulation sites. Additional flexibility can be achieved
allowing global deformations (e.g., tapering, bending) and
local deformations on the superquadrics [7, 26, 43, 53,
Figure 11 shows an example of human modeling based o
pered superquadrics that was used for 3-D model-based trac
in [25, 26].

5.2. 3-D Pose Recovery and Tracking

We first discuss approaches which use articulated mode
recover 3-D pose from a monocular image sequence. One
sibility is to use a divide-and-conquer technique, where an

ticulated object is decomposed into a number of primitive (rig
or articulated) subparts; one solves for motion and depth of
HUMAN MOVEMENT 89
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subparts and verifies whether the parts satisfy the necessary
straints. Shakunaga [74] identified such a set of primitive s
parts for which he solves the pose recovery problem using
angles between projected line features.

To avoid unfavorable combinatorics at the verification step
is beneficial to propagate constraints from part to part. The pri
tives of O’Rourke and Badler [60] are box-shaped regions wh
represent possible joint locations in 3-D. These regions are
tially constrained by the measurement of joints in the imag
(essentially given to the system) and the orthography assu
tion. A constraint propagation procedure is then applied ba
on the known distances between connected joints. A furt
verification procedure involves an iterative search procedure
which angular and collision constraints are verified using the 3
model. Each step results in a refinement of the 3-D uncerta
regions of joints; the final regions can be used for prediction
the next time iteration.

Other work has used perspective projection models. The c
straint propagation scheme of Chen and Lee [17] starts at
human head and continues via the torso to the limbs. An in
pretation tree is built to account for the spatial ambiguity whi
arises from the fact that there are two possible poses of a link
known length) in 3-D which result in the same 2-D projectio
This interpretation tree is pruned later for physically implausib
poses. Chen and Lee’s assumption of six known feature po
on the head to start the procedure and the overhead of the i
pretation tree makes their approach somewhat unappealing
practical applications. Zhao [87] has a similar problem form
lation but did not maintain the interpretation tree, consideri
instead only one pose at the time. He monitored when spa
ambiguities were encountered and disambiguated them by t
poral coherence. Holtet al. [37] provided a constraint propaga
tion scheme for human gait, where one joint remains at a fi
location. Motion constraints are also incorporated at the earl
stages. The core of their system involves solving a polynom
id
the
FIG. 11. 3-D human models “ELLEN” and “DARIU” using tapered super-
quadrics (from Gavrila and Davis [26],c© 1995 IEEE).
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system of equations. Other approaches have imposed ge
constraints on the articulated motion, such as the “fixed-ax
[82] or “in-plane” [35] assumptions of rotations.

Hel-Or and Werman [33] described a technique for articula
pose recovery based on the fusion of constraints and mea
ments using a Kalman filter framework. Kakadiaris and Meta
[42, 43] used a physics-based approach where various force
on the different parts to align them with the image data; co
straint forces enforce point-to-point connectivity between
parts. They applied this approach to multi-camera tracking a
additionally, dealt with the problem of active camera select
based on body-part visibility and motion observability.

Other approaches to 3-D articulated motion use parameter
models where the articulation constraints are encoded in the
resentation itself. This has the advantage that each represen
state represents a physically valid pose (aside from joint-an
limitations and collisions); thus, the resulting approach takes
vantage as much as possible of prior 3-D knowledge and relie
little as possible on error-prone 2-D image segmentation. On
downside, by considering the (coupled) parameters simulta
ously, one needs to work in a high-dimensional parameter sp

One approach using such parametrized models [21, 29,
70, 81, 85, 87] updated pose by inverse kinematics, a comm
technique in robot control theory [76]. The state space m
onto image space by a nonlinear measurement equation w
takes into account the coordinate transformations at various
ticulation sites and the 3-D to 2-D projection. Inverse kinemat
involves inverting this mapping to obtain changes in state
rameters which minimize the residual between projected mo
and image features. The procedure involves a linearization o
measurement equation, as defined by the Jacobian matrix
a gradient-based optimization scheme. The inverse kinema
approach can also be taken with multiple cameras when no
ture correspondence between cameras is assumed. One s
concatenates the residual from the available camera views
for example [70].

Another approach using parametrized models does no
tempt to invert a nonlinear measurement equation. Instea
uses the measurement equation directly to synthesize the m
and uses a fitting measure between synthesized and observe
tures for feedback; see [22, 26, 36, 46, 58, 64, 71]. Pose-reco
can then be formulated as a search problem which entails fin
the pose parameters of a graphical human model whose syn
sized appearance is most similar to the actual appearance o
real human. Because one need not invert a measurement e
tion, one is quite flexible in choosing an appropriate evaluat
measure between model and scene; typical measures are
on occluding contours or regions. No point correspondences
tween model and scene are required. To find a good fit, O
and Kishino [58] used a global search strategy based on ge
algorithms. Kuch and Huang [46] used a greedy search stra
based on perturbation of individual state parameters. Gav

and Davis [26] used local search based on best-first search.
high-dimensional search space, which results from recover
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whole-body pose, necessitates in the latter work a decompos
technique, in which pose-recovery is done successively for t
(without twist), arms and torso twist, and legs. Some of the co
binatoric pose-recovery approaches have also been applied
multi-camera case, in simulations [58] and with real data [2

Comparing the above greedy gradient-based inverse k
matics approaches with the nongreedy combinatoric search
proaches, one notes that the former have the advantage tha
exploit gradient cues in the vicinity of a minimum and therefo
are computationally more efficient; see for example [69].
the other hand, concern is justified that a gradient-based sch
might get stuck in a local minimum (i.e., to converge to a subo
mal or undesired solution) because the measurement equat
highly nonlinear (composition of various nonlinear rotation m
trices and perspective mapping) and the sampling ratio at w
one obtains image measurement is relatively low for fast mo
ment such as locomotion and gesticulation. Furthermore, m
surements are typically noisy and can be incorrect altoge
e.g., when corresponding features with the wrong body part
nongreedy search method also promises to be more robust
time; if it fails to find a good solution at timet , there is still a
chance that it may recover at timet + 1 if the search area is suf
ficiently wide. A combination of a nongreedy search follow
by a gradient-based technique is probably a good comprom
between robustness and efficiency.

There has also been work on using depth data for articul
pose recovery. Rather than requiring the typical point featu
Azarbayejani and Pentland [4] “triangulated” using blob fe
tures [84]; a 3-D blob (shape, orientation) is recovered from
pair of corresponding 2-D blob features using nonlinear e
mation techniques. In other work, Pentland [62] fit deforma
superquadrics to range data. A maximum-likelihood techni
provides the initial part segmentation based on the object silh
ette. The subsequent fitting procedure deformes superqua
using modal dynamics.

Finally, work by Heap and Hogg [31] involved an examp
based approach to articulated pose recovery. Their metho
volves a principal component analysis of 3-D positional (ha
data and allows shape deformations of a tracked object.
method was mentioned earlier in the 2-D context; see Secti
[8].

5.3. Feature Correspondence

A variety of features can be used to establish correspond
between model and image remains, from low-level to hi
level. Using high-level features (e.g., joint locations) simplifi
pose recovery but places a greater burden on segmentation
proaches [17, 37, 60, 74, 87] used joint locations as features
assumed these are given make strong assumptions. In realit
joints are hard to detect; no characteristic intensity distribut
exists at their location; rather, joints are localized indirectly
segmenting the adjoining body parts. Moreover, relying exc

The
ing
sively on a few correspondences makes the resulting approach
[21, 69] quite sensitive to occlusion.
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FIG. 12. Hand tracking with the DigitEyes system: (a) multi-camera setup
pose of 3-D hand model (from Rehg and Kanade [69],c© 1994 Springer-Verlag

This has led many researchers to consider low- or intermed
level features to establish correspondence between mode
image. Some use occluding contours, where the evaluation m
sure for the model-to-image fit is based on image regions in
neighborhood of the projected model contours. Typical m
sures are correlation on a raw or smoothed LOG-filtered im
[29, 70], perpendicular- [31] and chamfer-distance [26] (fro
projected model edges to image edges) and straight-line
tance metrics [71]. Others have used evaluation measures
rived from the regions corresponding to the projected bo
parts, e.g., based on image intensities [46, 81] or optical fl
[85]. A distinction between low and intermediate features c
be made, as before, based on the segmentation effort invo
to extract the features. Image intensities and optical flow can
considered low-level, and features derived by thresholding
perceptual grouping, intermediate-level.

The best trade-off between segmentation effort and eas
pose recovery is difficult to determine. For example, a meth
which matches model and image edges based on a distance
approach (e.g., perpendicular or chamfer distance) has the
vantage that the evaluation measure tends to be smooth in t
of the pose parameters; the measure is well suited to guid
iterative estimation process. A correlation measure on the
segmented image, on the other hand, typically provides str
peak responses but rapidly declining off-peak responses.
then, no edge segmentation is needed for the latter. What m
be worth considering is using intermediate-level features to p
vide a rough correspondence between model and image,
guiding the fine-tuning with low-level features.

5.4. Experimental Results

This section reviews previous work on 3-D tracking in terms
experimental results on real data. Dorner [21] tracked articula
3-D hand motion (palm motion and finger bending/unbendi
with a single camera. Her system requires colored markers on
joints and cannot handle occlusions. Rehg and Kanade [69
not require markers. Their “DigitEyes” system tracks an 8-DO
partial hand model (movement of palm in a 2-D plane and th
fingers) with one camera and a full 27-DOF hand model w

two cameras in real-time from the hand silhouette. Occlusi
cannot be handled at this point. See Fig. 12. A later vers
(b) motion estimate superimposed on one of the two camera views, (c) corr
.
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of the system [70] does tolerate partial occlusion; a succes
tracking example is shown where one finger moves over
other finger, with the rest of the hand fixed. Heap and Hogg [
showed preliminary tracking results on hand model and h
pose recovery.

In terms of experimental results on whole (or upper bo
movement using a single camera, Hogg [36] and Rohr [71] d
with the restricted movement of gait (parallel to image plan
The movement is essentially in 2-D with no significant tors
twist. Given that gait is modeled a priori, the resulting sea
space is one-dimensional. Downton and Drouet [22] attemp
to track unconstrained upper-body motion but concluded
tracking gets lost due to propagation of errors. Goncalveset al.
[29] tracked one arm while keeping the shoulder fixed a
known position. Other results use multiple cameras. Kakadi
and Metaxas [43] tracked one arm using three orthogonal c
eras. See Fig. 13. Azarbayejani and Pentland [4] obtained
3-D locations of the face and hands by essentially triangu
ing on blobs representing the skin regions in the stereo vie
Perales and Torres [64] described a multi-view camera sys
for whole-body tracking which requires input from a human o
erator. Finally, Gavrila and Davis [25, 26] showed instances
whole-body tracking using four cameras placed in the corn
of a room. See Fig. 14.

In the above approaches working with real data it has o
been difficult to quantify how good the 3-D pose recovery res
are; typically, no ground truth has been established. This prob
is alleviated somewhat in approaches which use multiple cam
views; here one can at least visually verify the recovered p
along the depth dimension.

6. ACTION RECOGNITION

The prevalent view toward action recognition has been to c
sider it simply as a classification problem involving time-varyi
feature data; the feature data is derived from an earlier segm
tation stage, using techniques of the last three sections. Re
nition then consists of matching an unknown test sequence
a library of labeled sequences which represent the prototyp

on
ion
actions. A complementary problem is how to learn the reference
sequences from training examples. Both learning and matching
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FIG. 13. Multi-camera arm tracking: original images, recovered arm mo
and application to a whole-body graphical model (from Kakadiaris and Meta
[43], c© 1996 IEEE).

methods have to be able to deal with small spatial and time s
variations within similar classes of movement patterns.

Polana and Nelson [65] detected periodic activity such
persons walking lateral to the viewing direction using spa
temporal templates. They argued that a template matching t
FIG. 14. Multi-camera whole-body tracking; the current pose of the 3-D mod
is superimposed onto the four camera views (from Gavrila [25]).
VRILA
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nique is effective here because a sufficiently strong normal
tion can be carried out on the region of interest with respec
spatial and time scale variations. For example, for the cas
a stationary camera and a single object of interest, backgro
subtraction and size normalization of the foreground region
sufficient to obtain spatial invariance, if perspective effects
small. Polana and Nelson also described a technique to
with the more complex case of a moving camera and/or multi
(overlapping) objects, based on detecting and tracking indep
dently moving objects. Size changes of the object are hand
by estimating the spatial scale parameters and compensa
for them, assuming the objects have a fixed height through
the sequence. Temporal scale variations are factored out by
tecting the frequency of an activity. After these normalization
spatio-temporal templates are constructed to denote one ge
cycle of activity; a cycle is divided into a fixed number of subi
tervals for which motion features are computed. The featu
of a generic cycle are obtained by averaging corresponding
tion features over multiple cycles. Temporal translation is ha
dled in the matching stage in an exhaustive manner; the
template is matched with the reference template at all poss
temporal translations. Matching uses a nearest centroid a
rithm.

Rangarajanet al.[68] matched motion trajectories of selecte
feature points on a human body (tracked manually). Their t
jectories are described in terms of two one-dimensional sign
speed and direction. These one-dimensional signals are
converted into a two-dimensional representation, the scale-sp
by computing the degree of zero-crossing of the original o
dimensional signal. The resulting representation has the ad
tage ofbeing translationand rotation invariant. Usinga Gauss
convoluted reference scale-image, one can account for a fi
amount of time-offset between reference and test trajectory

Goddard [28] represented activities by scenarios: a seque
of events with enabling conditions and time constraints betw
successive events. Each possible scenario is matched and
a measure of appropriateness, depending on the cumulative
fidence in the scenario, the likelihood that its “next” event h
occurred, and the time constraints. No learning takes plac
the previous two methods.

Campbell and Bobick [13] used a phase–space representa
in which the velocity dimensions are projected out, discard
the time component of the data altogether. This makes the le
ing and matching of patterns simpler and faster, at the poten
cost of an increase in false positives.

Other general techniques for matching time-varying data h
been used as well. Dynamic time warping (DTW) [55] is a we
known technique to match a test pattern with a reference pat
if their time scales are not perfectly aligned but when time
dering constraints do hold. If the sizes of the test pattern a
reference pattern areN and M , an optimal match is found by
dynamic programming inO(N×M2) time (or in O(N×M)
time, if one introduces local continuity constraints, see [55
elBecause of conceptual simplicity and robust performance, dy-
namic time warping was extensively used in the early days of
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speech recognition and more recently in matching human m
ment patterns [10, 19, 25, 78].

More sophisticated matching of time-varing data is poss
by employing hidden Markov models (HMMs) [67]. HMMs ar
nondeterministic state machines which, given an input, m
from state to state according to various transition probabilit
In each state, HMMs generate output symbols probabilistica
these need to be related to image features in an applica
dependent manner. The use of HMMs involves a training an
classification stage. The training stage consists of specifying
number of (hidden) states of a HMM and optimizing the cor
sponding state transition and output probabilities such that g
erated output symbols match the image features observed d
examples of a particular motion class; a HMM is needed for e
motion class. Matching involves the computation of the pro
bility that a particular HMM could have generated the test sy
bol sequence which corresponds to the observed image fea

The ability to learn from training data and to develop intern
representations under a sound mathematical framework m
HMMs attractive when compared to DTW. Another advanta
of HMMs are their ability to deal with unsegmented data, i.
dealing with continuous data streams where the beginnin
a desired data segment is unknown (DTW could be adapte
handle this as well; see continuous dynamic time warping [7

Because of these benefits, HMMs are currently widespread in
speech recogni

ment, which was discussed in this survey. Whether to pursue a
dependent. A 2-D
tion and more recently in matching human move-

TABLE 2
A Selection of Previous Work on the Visual Analysis of Human Movement

2-D approaches without 2-D approaches with
explicit shape models explicit shape models 3-D approaches

Baumberg and Hogg [8] Akita [3] Azarbayejani and Pentland [4]
Bobick and Wilson [10] Cai and Aggarwal [11] Campbell and Bobick [13]
Charayaphan and Marble [16] Chang and Huang [15] Chen and Lee [17]
Cooteset al. [18] Geurtz [27] Dorner [21]
Darell and Pentland [19] Goddard [28] Downton and Drouet [22]
Davis and Shah [20] Guoet al. [30] Gavrila and Davis [25] [26]
Frankeet al. [23] Herman [34] Goncalveset al. [29]
Freemanet al. [24] Juet al. [40] Heap and Hogg [31]
Heiseleet al. [32] Kurakake and Nevatia [47] Hel-Or and Werman [33]
Hunteret al. [38] Leung and Yang [48] Hoffman and Flinchbaugh [35]
Johansson [39] Long and Yang [49] Hogg [36]
Kjeldsen and Kender [44] Niyogi and Adelson [56] [57] Holtet al. [37]
Orenet al. [59] Wrenet al. [84] Kahn and Swain [41]
Polana and Nelson [65] Kakadiaris and Metaxas [42] [43]
Quek [66] Kuch and Huang [46]
Rangarajanet al. [68] Ohya and Kishino [58]
Segen and Pingali [73] O’Rourke and Badler [60]
Shio and Sklansky [75] Pentland [62]
Starner and Pentland [77] Perales and Torres [64]
Takahashiet al. [78] Rehg and Kanade [69] [70]
Tamura and Kawasaki [79] Rohr [71]
Turk [80] Shakunaga [74]
Yamatoet al. [86] Wanget al. [81]

Webb and Aggarwal [82]

2-D or a 3-D approach is largely application-
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ment patterns [77, 86]. A less investigated but equally interes
approach for matching time-varying data is given by neural n
works (NN) [30, 72].

With all the emphasis on matching time-varying data, o
should note that another aspect of human action recognitio
static posture; sometimes it is not the actual movement th
of interest but the final pose (for example, pointing). Herm
[34] described a rule-based system to interpret body pos
given a 2-D stick figure. Although the actual system is appl
on a toy problem (in baseball), it does make the point of us
qualitative pose measures together with other attributes suc
facing direction and contact. It also emphasizes the importa
of contextual information in action recognition.

Finally, work by Kollnig et al. [45] goes beyond the narrow
interpretation of action recognition as a classification proble
They investigated ways of describing scene motion in te
of natural language (“motion verbs”); this is achieved with
a logic-based framework. Their particular application is ve
cle motion in traffic scenes. See also work by Mohnhaupt
Neumann [54].

7. DISCUSSION

Table 2 lists the previous work on the analysis of human mo
Yamamoto and Koshikawa [85]
Zhao [87]
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approach is effective for applications where precise pose
covery is not needed or possible due to low image resolu
(e.g., tracking pedestrians in a surveillance setting). A 2-D
proach also represents the easiest and best solution for ap
tions with a single human involving constrained movement
single viewpoint (e.g., recognizing gait lateral to the cam
recognizing a vocabulary of distinct hand gestures made fa
the camera).

A 3-D approach makes more sense for applications in ind
environments where one desires a high level of discrimina
between various unconstrained and complex (multiple) hu
movements (e.g., humans wandering around, making diffe
gestures while walking and turning, social interactions s
as shaking hands and dancing). It is unlikely that this can
achieved by a purely 2-D approach; a 3-D approach leads
more accurate, compact representation of physical space w
allows a better prediction and handling of occlusion and c
sion. It leads to meaningful features for action recognition, wh
are directly linked to body pose. Furthermore, 3-D recover
often required for virtual reality applications.

2-D approaches have shown some early successes in the
ysis of human movement. In some cases these successe
obtained relatively easily; for example, some work on moti
based recognition involved classification of a few, well sep
ble, motion classes for which a multitude of features and cla
fication methods could have been applied to obtain good res
In other cases, the application involved seemingly complex
tivities [65, 77] with no straightforward recognition solution.
main design choice for 2-D systems has been whether to
prior explicit models or to take a learning approach. It has b
especially important for systems without explicit shape m
els to be able to accurately determine the foreground regio
the image. Techniques based on background subtraction,
spotting, obstacle detection, and independent motion dete
have all been employed to provide this initial segmentation.
other issue for these systems has been the proper normaliz
of the features extracted from this foreground region, with
spect to both the spatial and time dimension. Examples
included the use of scaled image grids and detection of pe
icity. One of the challenges of 2-D systems on the topic of p
recovery is to show that they scale up to unconstrained m
ment.

It is fair to say that the results of vision-based 3-D tra
ing are still limited at this point. Few examples of 3-D po
recovery on real data exist in the literature and most of th
introduce simplifications (e.g., constrained movement, segm
tation) or limitations (e.g., processing speed) that still req
improvement with respect to robustness. Robust 3-D trac
results have been particularly scarce for approaches using
one camera. The benefit of using multiple cameras to ach
tighter 3-D pose recovery has been quite evident [26, 43,
body poses and movements that are ambiguous from one

(by occlusion or depth) can be disambiguated from another vi
The added calibration effort has been worthwhile.
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There are a number of challenges that need to be resolve
fore vision-based 3-D tracking systems can be deployed wid

• The model acquisition issue. Almost all previous work a
sumes that the 3-D model is fully specified a priori and only a
dresses the pose recovery problem. In practice, the 3-D m
is parameterized by various shape parameters that need
estimated from the images. Some work has dealt with this is
by decoupling model acquisition and pose recovery, i.e., req
ing a separate initialization stage where either known poses
or known movements [42] simplify the acquisition of the sha
parameters. Although work in [42] represents a step forw
on this matter, no approach has been provided that can rec
both shape and pose parameters from uncontrolled movem
e.g., the case of a person walking into a room and moving fre
around.
• The occlusion issue. Most systems cannot handle sig

cant (self ) occlusion and do not provide criteria when to s
and restart tracking of body parts. There is no notion of p
ambiguity either.
• The modeling issue. Human models for vision have be

adequately parameterized with respect to shape and articula
but few have incorporated constraints such as joint angle lim
and collision, and even less have considered dynamical pro
ties such as balance. In contrast to graphics applications,
have made little or no use of color and texture cues to cap
appearance. Lacking entirely is the ability to deal with loos
fitting clothes. Finally, there is also a need to model the obje
the human interacts with.
• Using ground truth. A quantitative comparison between

timated and true pose is very important to evaluate and com
systems. For simulations to be realistic, they have to inclu
modeling, calibration, and segmentation errors. Even bette
obtaining ground truth on real data using markers and ac
sensing.
• Using 3-D data. Few systems (e.g., [62]) have used ra

data so far, given sensor-related drawbacks (e.g., high cost
resolution, limited measuring range, safety concerns). Also,
atively few systems (e.g., [4, 41]) have obtained 3-D data
passive sensing techniques (i.e., triangulation) without rely
on markers. Combining the use of 3-D data with some of
monocular techniques described in the previous sections is li
to alleviate a number of problems related to figure–backgro
separation, model acquisition and model fitting.

For both 2-D and 3-D approaches, the issue of tracking v
sus initialization remains open. Most work only deals with i
cremental pose estimation and does not provide ways for b
strapping, either initially or when tracking gets lost. But it
the availability of an easy initialization procedure, which can
started up from a wide range of situations, that makes a sys
robust enough to be deployed in real world settings (e.g., [84

Another desirable extension to past work is the ability to d

ew.tect and track multiple humans in the scene (one might even
try crowds). Naive techniques which rely on background
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TABLE 3
A Sample of Action Verbs

Stand-alone Interactions with Interactions with
actions objects people

Walking Grasping, carrying, Shaking hands
putting down

Running Examining Embracing, kissing
Jumping Transferring (from one Pushing

hand to another)
Turning around Throwing Hitting
Bending over Dropping
Looking around Pushing
Squatting Hitting
Falling Shaking
Sitting (down) Drinking, eating
Standing (up) Writing, typing
Climbing
Pointing
Waving
Clapping

subtraction to obtain a segmented human figure will no lon
be feasible here. Stronger models might be necessary to ha
occlusion and the correspondence problem between feature
body parts.

Action recognition is also an area which could welcome f
ther attention. Particularly interesting is the question of whet
a set of generic human actions can be defined which can b
plied to a variety of applications. These generic actions migh
clude those given in Table 3; a distinction is made between st
alone actions and interactions with objects or other people
indeed such a useful set of generic actions can be defined, w
it be possible to identify corresponding features and match
methods which are, to a large degree, application independ

The classification of various actions also facilitates the int
duction of a symbolic component on top of the image process
in order to reason about the scene. A variety of logic-based
proaches come to mind for implementing this (e.g., conventio
first-order logic, fuzzy logic, temporal logic). The connecti
from the sensory to the symbolic level can be provided by ac
recognizers such as those described in Section 6. The con
tion in the opposite direction, from symbolic to sensory lev
also seems very useful; this would allow controlling what visi
tasks are to be executed. For example in some person-trac
application, one might want to alternate the tracking mode fr
a fine-scale (with each body part tracked) to a coarse scale (
human body considered as a whole), depending on context

Finally, it will be important to test the robustness of any
the resulting systems on large amounts of data, many diffe
users, and in a variety of environments.

8. CONCLUSIONS
The visual analysis of human movement has become a m
application area in computer vision. This development has b
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driven by the many interesting applications that lie ahead
this area and the recent technological advances involving
real-time capture, transfer, and processing of images on wi
available low-cost hardware platforms (e.g., PCs).

A number of promising application scenarios were discus
virtual reality, surveillance systems, advanced user interfa
and motion analysis. The scope of this survey was limited
the analysis of human gesture and whole-body movement; t
main approaches were discussed: 2-D approaches withou
plicit shape models, 2-D approaches with explicit shape mod
and 3-D approaches. It was argued that which of the above
proaches to pursue depends on the application; some ge
guidelines were given. Action recognition was considered in
context of matching time-varying feature data.

Although one appreciates from this survey the large amo
of work that already has been done in this area, many is
are still open, e.g., regarding image segmentation, use of m
els, tracking versus initialization, multiple persons, occlusi
and computational cost. One of the challenges for 2-D syst
is to show that the approaches scale up to allow pose re
ery for a large set of movements from different viewpoints. 3
systems still have to resolve issues dealing with model ac
sition, detail of modeling, and obtaining ground truth. Scen
such as Fig. 15, are far too complex currently. An interes
question is whether a set of generic human actions can b
fined which is useful across applications and if so, what
features of interest would be. Added functionality and per
mance is likely to be gained by adding a symbolic compon
on top of the image processing to reason about the scene
control image tasks. Work on different sensor modalities (ran
infrared, sound) will furthermore lead to systems with combin
strengths.
ajor
een
FIG. 15. Will the Argentine Tango be danced in virtual reality? (from Gavrila
and Davis [26],c© 1996 IEEE).
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By addressing the above issues, vision systems will have
proved capabilities to successfully deal with complex hum
movement. This might transform the “looking at people” d
main into the “understanding people” domain.

ACKNOWLEDGMENTS

The author thanks the past authors who have contributed figures to this
vey. Also, the support of Larry Davis (University of Maryland) and Franz M
(Daimler-Benz, Ulm) is gratefully acknowledged.

REFERENCES

1. J. Aggarwal, Q. Cai, W. Liao, and B. Sabata, Articulated and elastic n
rigid motion: A review, inProc. of IEEE Workshop on Motion of Non-Rigi
and Articulated Objects, Austin, 1994, pp. 2–14.

2. K. Aizawa and T. Huang, Model-based image coding: Advanced vi
coding techniques for very low bit-rate applications,Proc. IEEE83(2),
1995, 259–271.

3. K. Akita, Image sequence analysis of real world human motion,Pattern
Recog.17(1), 1984, 73–83.

4. A. Azarbayejani and A. Pentland, Real-time self-calibrating stereo pe
tracking using 3-D shape estimation from blob features, inProc. of Inter-
national Conference on Pattern Recognition, Vienna, 1996.

5. N. Badler, C. Phillips, and B. Webber,Simulating Humans, Oxford Univ.
Press, Oxford, 1993.

6. N. Badler and S. Smoliar, Digital representations of human movem
ACM Comput. Surveys11(1), 1979, 19–38.

7. A. Barr, Global and local deformations of solid primitives,Comput. Graph-
ics18(3), 1984, 21–30.

8. A. Baumberg and D. Hogg, An efficient method for contour tracking us
active shape models, inProc. of IEEE Workshop on Motion of Non-Rigi
and Articulated Objects, Austin, 1994, pp. 194–199.

9. A. Blake, R. Curwen, and A. Zisserman, A framework for spatiotempo
control in the tracking of visual contours,Int. J. Comput. Vision11(2), 1993,
127–145.

10. A. Bobick and A. Wilson, A state-based technique for the summariza
and recognition of gesture, inProc. of International Conference on Com
puter Vision, Cambridge, 1995, pp. 382–388.

11. Q. Cai and J. Aggarwal, Tracking human motion using multiple came
in Proc. of International Conference on Pattern Recognition, Vienna, 19,
pp. 68–72.

12. T. Calvert and A. Chapman, Analysis and synthesis of human moveme
Handbook of Pattern Recognition and Image Processing: Computer Vi
(T. Young, Ed.), pp. 432–474. Academic Press, San Diego, 1994.

13. L. Campbell and A. Bobick, Recognition of human body motion us
phase space constraints, inProc. of International Conference on Compute
Vision, Cambridge, 1995, pp. 624–630.

14. C. Cedras and M. Shah, Motion-based recognition, a survey,Image Vision
Comput.13(2), 1995, 129–154.

15. I.-C. Chang and C.-L. Huang, Ribbon-based motion analysis of human
movements, inProc. of International Conference on Pattern Recognitio
Vienna, 1996, pp. 436–440.

16. C. Charayaphan and A. Marble, Image processing system for interpr
motion in American Sign Language,J. Biomed. Engrg.14(15), 1992,
419–425.
17. Z. Chen and H. Lee, Knowledge-guided visual perception of 3-D hum
gait from a single image sequence,IEEE Trans. Systems Man Cybernet
22(2), 1992, 336–342.
VRILA

im-
an
-

sur-
y

n-

eo

on

nt,

g

al

ion

as,
6

t, in
ion

g
r

ody
,

ting

18. T. Cootes, C. Taylor, D. Cooper, and J. Graham, Active shape mode
their training and applications,Comput. Vision Image Understanding61,
1995, 38–59.

19. T. Darrell and A. Pentland, Space-time gestures, inProc. of IEEE
Conference on Computer Vision and Pattern Recognition, New York, 1,
pp. 335–340.

20. J. Davis and M. Shah,Gesture Recognition, Technical Report CS-TR-93-
11, University of Central Florida, 1993.

21. B. Dorner, Hand shape identification and tracking for sign langu
interpretation, inLooking at People, International Joint Conference o
Artificial Intelligence, Chambery, 1993.

22. A. Downton and H. Drouet, Model-based image analysis for unconstra
human upper-body motion, inIEE International Conference on Image
Processing and Its Applications, 1992, pp. 274–277.

23. U. Franke, D. Gavrila, S. G¨orzig, F. Lindner, F. P¨atzhold, and C. W¨ohler,
Autonomous driving approaches downtown,submitted.

24. W. Freeman, K. Tanaka, J. Ohta, and K. Kyuma, Computer vision
computer games, inProc. of IEEE International Conference on Automat
Face and Gesture Recognition, Killington, 1996, pp. 100–105.

25. D. Gavrila,Vision-based 3-D Tracking of Humans in Action, Ph.D. thesis,
Department of Computer Science, University of Maryland, 1996.

26. D. Gavrila and L. Davis, 3-D model-based tracking of humans in act
a multi-view approach, inProc. of IEEE Conference on Computer Visio
and Pattern Recognition, San Francisco, 1996, pp. 73–80.

27. A. Geurtz,Model-based Shape Estimation, Ph.D. thesis, Department o
Electrical Engineering, Polytechnic Institute of Lausanne, 1993.

28. N. Goddard, Incremental model-based discrimination of articula
movement direct from motion features, inProc. of IEEE Workshop on
Motion of Non-Rigid and Articulated Objects, Austin, 1994, pp. 89–94.

29. L. Goncalves, E. Di Benardo, E. Ursella, and P. Perona, Monoc
tracking of the human arm in 3-D, inProc. of International Conference on
Computer Vision, Cambridge, 1995, pp. 764–770.

30. Y. Guo, G. Xu, and S. Tsuji, Understanding human motion patterns, inProc.
of International Conference on Pattern Recognition, 1994, pp. 325–329 (B).

31. T. Heap and D. Hogg, Towards 3-D hand tracking using a deforma
model, inProc. of IEEE International Conference on Automatic Face a
Gesture Recognition, Killington, 1996, pp. 140–145.

32. B. Heisele, U. Kressel, and W. Ritter, Tracking non-rigid, moving obje
based on color cluster flow, inProc. of IEEE Conference on Compute
Vision and Pattern Recognition, San Juan, 1997, pp. 257–260.

33. Y. Hel-Or and M. Werman, Constraint fusion for recognition a
localization of articulated objects,Int. J. Comput. Vision19(1), 1996, 5–28.

34. M. Herman,Understanding Body Postures of Human Stick Figure. Ph.D.
thesis, Department of Computer Science, University of Maryland, 197

35. D. Hoffman and B. Flinchbaugh, The interpretation of biological motio
Biol. Cybernet.42, 1982, 195–204.

36. D. Hogg, Model based vision: A program to see a walking person,Image
Vision Comput.1(1), 1983, 5–20.

37. R. Holt, A. Netravali, T. Huang, and R. Qian, Determining articulat
motion from Perspective views: A decomposition approach, inProc. of
IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Aus
1994, pp. 126–137.

38. E. Hunter, J. Schlenzig, and R. Jain, Posture estimation in reduced-m
gesture input systems, inProc. of International Workshop on Automati
Face and Gesture Recognition, Zurich, 1995, pp. 290–295.

39. G. Johansson, Visual perception of biological motion and a model fo
analysis,Perception Psychophys.14(2), 1973, 201–211.
an

.40. S. Ju, M. Black, and Y. Yacoob, Cardboard people: A parametrized model
of articulated image motion, inProc. of IEEE International Conference



    

i

c

b

a

e

.

n

s

r

tion

nd
ort

een
l, in
ts,

in
ts,

ons

ing

res:

icu-
n,

age
ing

om

in,

le in
n,

ition

ous

ges,

ion,
VISUAL ANALYSIS OF

on Automatic Face and Gesture Recognition, Killington, 1996, pp. 38–
44.

41. R. Kahn, M. Swain, P. Prokopowicz, and J. Firby, Gesture recogn
using the persesus architecture, inProc. of IEEE Conference on Compute
Vision and Pattern Recognition, San Francisco, 1996, pp. 734–741.

42. I. Kakadiaris and D. Metaxas, 3-D human body model acquisition fr
multiple views, inProc. of International Conference on Computer Visio
Cambridge, 1995, pp. 618–623.

43. I. Kakadiaris and D. Metaxas, Model-based estimation of 3-D hum
motion with occlusion based on active multi-viewpoint selection, inProc.
of IEEE Conference on Computer Vision and Pattern Recognition,
Francisco, 1996, pp. 81–87.

44. R. Kjeldsen and J. Kender, Toward the use of gesture in traditional
interfaces, inProc. of IEEE International Conference on Automatic Fa
and Gesture Recognition, Killington, 1996, pp. 151–156.

45. H. Kollnig, H.-H. Nagel, and M. Otte, Association of motion ver
with vehicle movements extracted from dense optical flow fields,
Proc. of European Conference on Computer Vision, 1994, pp. 338–
347.

46. J. Kuch and T. Huang, Vision-based hand modeling and tracking
virtual teleconferencing and telecollaboration, inProc. of International
Conference on Computer Vision, Cambridge, 1995, pp. 666–671.

47. S. Kurakake and R. Nevatia, Description and tracking of moving articul
objects, inProc. of IEEE Conference on Computer Vision and Patte
Recognition, The Hague, 1992, pp. 491–495.

48. M. Leung and Y. Yang, First Sight: A human body outline labeling syst
IEEE Trans. Pattern Anal. Mach. Intell.17(4), 1995, 359–377.

49. W. Long and Y. Yang, Log-tracker, an attribute-based approach to trac
human body motion,Int. J. Pattern Recog. Artificial Intell.5(3), 1991,
439–458.

50. N. Magnenat-Thalmann and D. Thalmann, Human modeling and an
tion, in Computer Animation, pp. 129–149. Springer-Verlag, Berlin/New
York, 1990.

51. D. Marr and H. Nishihara, Representation and recognition of the sp
organization of three dimensional shapes,Proc. Royal Soc. London B200,
1978, 269–294.

52. D. McNeill, Hand and Mind—What Gestures Reveal about Thought, The
University of Chicago Press, Chicago/London, 1992.

53. D. Metaxas and D. Terzopoulos, Shape and nonrigid motion estima
through physics-based synthesis,IEEE Trans. Pattern Anal. Mach. Intell
15(6), 1993, 580–591.

54. M. Mohnhaupt and B. Neumann, On the use of motion concepts
top-down control in traffic scenes, inProc. of European Conference o
Computer Vision, Antibes, 1990, pp. 598–600.

55. C. Myers, L. Rabinier, and A. Rosenberg, Performance tradeoff
dynamic time warping algorithms for isolated word recognition,IEEE
Trans. ASSP28(6), 1980, 623–635.

56. S. Niyogi and E. Adelson, Analyzing and recognizing walking figu
in XYT, in Proc. of IEEE Conference on Computer Vision and Patte
Recognition, 1994, pp. 469–474.

57. S. Niyogi and E. Adelson, Analyzing gait with spatiotemporal surfaces
Proc. of IEEE Workshop on Motion of Non-Rigid and Articulated Objec
Austin, 1994, pp. 64–69.

58. J. Ohya and F. Kishino, Human posture estimation from multiple ima
using genetic algorithm, inProc. of International Conference on Patter
Recognition, 1994, pp. 750–753 (A).

59. M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, Pede

detection using wavelet templates, inProc. of IEEE Conference on
Computer Vision and Pattern Recognition, San Juan, 1997, pp. 193–
199.
HUMAN MOVEMENT 97

tion
r

om
n,

an

San

user
e

s
in

for

ted
rn

m,

king

ima-

atial

tion

for

in

es
rn

, in
ts,

ges
n

strian

60. J. O’Rourke and N. Badler, Model-based image analysis of human mo
using constraint propagation,IEEE Trans. Pattern Anal. Mach. Intell.2(6),
1980, 522–536.

61. V. Pavlovic, R. Sharma, and T. Huang, Visual interpretation of ha
gestures for human-computer interaction: A review, Technial Rep
UIUC-BI-AI-RCV-95-10, University of Central Florida, 1995.

62. A. Pentland, Automatic extraction of deformable models,Int. J. Comput.
Vision4, 1990, 107–126.

63. A. Pentland, Smart rooms,Sci. Am.274(4), 1996, 54–62.

64. F. Perales and J. Torres, A system for human motion matching betw
synthetic and real images based on a biomechanic graphical mode
Proc. of IEEE Workshop on Motion of Non-Rigid and Articulated Objec
Austin, 1994, pp. 83–88.

65. R. Polana and R. Nelson, Low level recognition of human motion,
Proc. of IEEE Workshop on Motion of Non-Rigid and Articulated Objec
Austin, 1994, pp. 77–82.

66. F. Quek, Eyes in the interface,Image Vision Comput.13(6), 1995, 511–
525.

67. L. Rabinier, A tutorial on hidden markov models and selected applicati
in speech recognition,Proc. IEEE77(2), 1989, 257–285.

68. K. Rangarajan, W. Allen, and M. Shah, Matching motion trajectories us
scale space,Pattern Recog.26(4), 1993, 595–610.

69. J. Rehg and T. Kanade, Visual tracking of high DOF articulated structu
an application to human hand tracking, inProc. of European Conference
on Computer Vision, Stockholm, 1994, pp. 35–46.

70. J. Rehg and T. Kanade, Model-based tracking of self-occluding art
lated objects, inProc. of International Conference on Computer Visio
Cambridge, 1995, pp. 612–617.

71. K. Rohr, Towards model-based recognition of human movements in im
sequences,Comput. Vision Graphics Image Process. Image Understand
59(1), 1994, 94–115.

72. M. Rosenblum, Y. Yacoob, and L. Davis, Human emotion recognition fr
motion using a Radial Basis Function network architecture, inProc. of
IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Aust
1994, pp. 43–49.

73. J. Segen and S. Pingali, A camera-based system for tracking peop
real-time, inProc. of International Conference on Pattern Recognitio
Vienna, 1996, pp. 63–67.

74. T. Shakunaga, Pose estimation of jointed structures, inIEEE Conf.
Computer Vision and Pattern Recognition, 1991, pp. 566–572.

75. A. Shio and J. Sklansky, Segmentation of people in motion, inIEEE
Workshop on visual Motion, 1991, pp. 325–332.

76. M. Spong and M. Vidyasagar,Robot Dynamics and Control, Wiley, New
York, 1989.

77. T. Starner and A. Pentland, Real-time American Sign Language recogn
from video using hidden markov models, inInternational Symposium on
Computer Vision, Coral Gables, 1995, pp. 265–270.

78. K. Takahashi, S. Seki, H. Kojima, and R. Oka, Recognition of dexter
manipulations from time-varying images, inProc. of IEEE Workshop
on Motion of Non-Rigid and Articulated Objects, Austin, 1994, pp. 23–
28.

79. S. Tamura and S. Kawasaki, Recognition of sign language motion ima
Pattern Recog.21(4), 1988, 343–353.

80. M. Turk, Visual interaction with lifelike characters, inProc. of IEEE
International Conference on Automatic Face and Gesture Recognit
Killington, 1996, pp. 368–373.
81. J. Wang, G. Lorette, and P. Bouthemy, Analysis of human motion: A
model-based approach, in7th Scandinavian Conference on Image Analysis,
Aalborg, 1991.



    

A

te

i
6

n a
d

e-
98 D. M. G

82. J. Webb and J. Aggarwal, Structure from motion of rigid and join
objects,Artificial Intell. 19(1), 1982, 107–130.

83. C. Wilson, C. Barnes, R. Chellappa, and S. Sirohey, Face recogn
technology for law enforcement applications, Technical Report 54
NIST, 1994.
84. C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, Pfinder: Real-tim
tracking of the human body,IEEE Trans. Pattern Anal. Mach. Intell.19(7),
1997, 780–785.
VRILA

d

tion
5,

85. M. Yamamoto and K. Koshikawa, Human motion analysis based o
robot arm model, inProc. of IEEE Conference on Computer Vision an
Pattern Recognition, Maui, 1991, pp. 664–665.

86. J. Yamato, J. Ohya, and K. Ishii, Recognizing human action in tim
sequential images using Hidden Markov Model, inProc. of IEEE Confer-
ence on Computer Vision and Pattern Recognition, 1992, pp. 379–385.
e

87. J. Zhao,Moving Posture Reconstruction from Perspective Projections of
Jointed Figure Motion, Ph.D. thesis, University of Pennsylvania, 1993.


	1. INTRODUCTION
	2. APPLICATIONS
	TABLE 1

	3. 2-D APPROACHES WITHOUT EXPLICITSHAPE MODELS
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	4. 2-D APPROACHES WITH EXPLICITSHAPE MODELS
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.

	5. 3-D APPROACHES
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.

	6. ACTION RECOGNITION
	7. DISCUSSION
	TABLE 2
	TABLE 3

	8. CONCLUSIONS
	FIG. 15.

	ACKNOWLEDGMENTS
	REFERENCES



