
Self-Organization and Functional Role of LateralConnections and Multisize Receptive Fields in thePrimary Visual Cortex �Joseph Sirosh and Risto MiikkulainenDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712{1188 USAemail: sirosh,risto@cs.utexas.eduAbstractCells in the visual cortex are selective not only to ocular dominance and orientation of the input,but also to its size and spatial frequency. The simulations reported in this paper show how sizeselectivity could develop through Hebbian self-organization, and how receptive �elds of di�erentsizes could organize into columns like those for orientation and ocular dominance. The lateralconnections in the network self-organize cooperatively and simultaneously with the receptive �eldsizes, and produce patterns of lateral connectivity that closely follow the receptive �eld organization.Together with our previous work on ocular dominance and orientation selectivity, these resultssuggest that a single Hebbian self-organizing process can give rise to all the major receptive �eldproperties in the visual cortex, and also to structured patterns of lateral interactions, some of whichhave been veri�ed experimentally and others predicted by the model. The model also suggests afunctional role for the self-organized structures: The a�erent receptive �elds develop a sparse codingof the visual input, and the recurrent lateral interactions eliminate redundancies in cortical activitypatterns, allowing the cortex to e�ciently process massive amounts of visual information.1 IntroductionIn their �rst recordings from the primary visual cortex of the cat, Hubel and Wiesel reported thatcortical cells were more selective to the width of patterns than were retinal cells [11; 12]. Theynoted that cortical cells would give no response to a bar covering the whole receptive �eld (RF),whereas in the retina and the LGN, cells would typically respond to such patterns. Subsequently,detailed studies by Campbell et al. [5], De Valois et al. [7], and others showed that cortical cells arenarrowly tuned to the spatial frequency of inputs, and had typical bandpass responses, respondingonly to inputs in a speci�c frequency range. A continuum of spatial frequencies from low to highwere represented in the cortex [21], and cells in each range of spatial frequency were organized intodistinct spatial frequency columns [26; 27]. In essence, cortical cells exhibited an organization ofspatial frequency selectivity similar to ocular dominance (OD) and orientation (OR) columns.Several computational models have been built to demonstrate how other RF properties such asOR preference, OD, and retinotopy can emerge from simple self-organizing processes (e.g. [10; 19;�Neural Processing Letters, in press, 1996.



20; 29]). However, to date, only one computational model has included the development of spatialfrequency selectivity. In this so-called Miller's model [18], OR preference and spatial frequencyselectivity develop together, and perhaps because of the interactions between these two domains,does not produce a clear columnar organization of spatial frequency selectivity. Although theabove models replicate the self-organization of a�erent structures quite well, they are based on thesimpli�cation that the neuronal response properties are primarily determined by the organization ofa�erent synapses. Lateral interactions between neurons are approximated by simple mathematicalfunctions (e.g. Gaussians) and assumed to be uniform throughout the network; the structuredlateral connectivity of the cortex is not explicitly taken into account. Such models do not explicitlyreplicate the activity dynamics of the visual cortex, and therefore can make only limited predictionsabout interactions between receptive �elds and cortical function.Recent experiments have shown that lateral connection patterns closely follow the neuronalresponse properties [9; 17]. For example, in the normal visual cortex, long-range lateral connec-tions link areas with similar OR preference [9]. Like neuronal response properties, the connectivitypattern is highly plastic in early development and can be altered by experience [13]. Such pat-terned lateral connections develop at approximately the same time as the cortical columns [4;13]. Together, these observations suggest that the same experience-dependent process drives thedevelopment of both neuronal response properties and lateral connectivity.Previously, we have shown that a single Hebbian self-organizing process can account for thedevelopment of patterned lateral connections, a�erent receptive �elds, topographic maps and ODcolumns in the cortex (the Laterally Interconnected Synergetically Self-Organizing Map (LISSOM);[24; 25]). The same algorithm was also shown to explain the organization of orientation maps andthe patterns of lateral connections within them [23]. However, we have not studied the selectivityto di�erent-sized stimuli with LISSOM before, although it is a major component of cortical orga-nization. This article investigates whether the same self-organizing process can give rise to RFsselective to di�erent stimulus sizes. Because size selectivity is closely related to spatial frequencyselectivity, such self-organization should account for spatial frequency columns as well.Several new results are reported in this article. It is shown how a�erent RFs of di�erent sizesdevelop from simple retinal images and organize across the network in a systematic fashion. Inaddition, lateral connections self-organize cooperatively and simultaneously with the size selectivityproperties, producing patterns that follow the receptive �eld organization. In combination withour previous work, these results suggest that a single uni�ed self-organizing process can give rise tonot only all the major receptive �eld properties in the visual cortex, but also the patterns of lateralinteractions. The model also suggests a functional role for the lateral interactions: they reduceredundancies in cortical activity and form an e�cient sparse coding of the visual input.2 The Receptive Field LISSOM (RF-LISSOM) modelThe LISSOM network is a sheet of interconnected neurons (�gure 1). Through a�erent connections,each neuron receives input from a \retina". In addition, each neuron has reciprocal excitatory andinhibitory lateral connections with other neurons. Lateral excitatory connections are short-range,connecting only close neighbors. Lateral inhibitory connections run for long distances, and mayeven implement full connectivity between neurons in the network.Neurons receive a�erent connections from broad overlapping patches on the retina called anatom-ical RFs. The N �N network is projected on to the retina of R � R receptors, and each neuron2



Long range 
inhibitory 
connections

Afferent connections

Short range
excitatory
connections

NxN "Neurons"

RRReeeccceeeppp ttt iii vvveee    SSSuuu rrr fff aaaccceee

AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA

AA

NNNeee tttwwwooo rrr kkk

s x s Anatomical 
Receptive Field

RxR "Receptors"Figure 1: The Receptive-Field LISSOM architecture. The a�erent and lateral connections ofa single neuron in the LISSOM network are shown. The a�erents form a local anatomical receptive�eld on the retina.is connected to receptors in a square area of side s around the projections. Thus, neurons receivea�erents from corresponding regions of the retina. Depending on the location of the projection, thenumber of a�erents to a neuron from the retina could vary from 12s � 12s (at the corners) to s � s(at the center).The input to the model consists of gaussian spots of \light" on the retina:�a;b = exp(�(a� xi)2 + (b� yi)2u2 ) (1)where �a;b is the activation of receptor (a; b), u2 determines the width of the spot, and (xi,yi):0 � xi; yi < R its center. Without normalization, larger-sized spots would produce strongeractivation. Therefore, the retinal activity vector is normalized to constant length. The width u ischosen uniformly randomly in a given range, so that inputs of a variety of sizes are presented tothe network.The external and lateral weights are organized through an unsupervised learning process. Ateach training step, neurons start out with zero activity. The initial response �ij of neuron (i; j) isbased on the scalar product �ij = �0@Xa;b �ab�ij;ab1A ; (2)where �ab is the activation of retinal receptor (a; b) within the anatomical RF of the neuron, �ij;ab isthe corresponding a�erent weight, and � is a piecewise linear approximation of the familiar sigmoidactivation function. The response evolves over time through lateral interaction. At each time step,the neuron combines the above a�erent activation P �� with lateral excitation and inhibition:�ij(t) = �0@X ��+ 
eXk;l Eij;kl�kl(t� 1)� 
iXk;l Iij;kl�kl(t� 1)1A ; (3)where Eij;kl is the excitatory lateral connection weight on the connection from neuron (k; l) toneuron (i; j), Iij;kl is the inhibitory connection weight, and �kl(t � 1) is the activity of neuron3
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20(b) Large RF: neuron (69; 124)Figure 2: Self-organized receptive �elds. The a�erent weights of neurons at two di�erentlocations in a 192 � 192 network are shown after self-organization. Initially the weights are com-pletely random, but after self-organization, a smooth hill-shaped weight pro�le develops. Thoughthe anatomical RFs are the same, the a�erent weights are organized into a variety of sizes fromnarrow, highly peaked receptive �elds to large and broad ones.(k; l) during the previous time step. The constants 
e and 
i determine the relative strengths ofexcitatory and inhibitory lateral interactions. The activity pattern starts out di�use and spreadover a substantial part of the map, and converges iteratively into stable focused patches of activity,or activity bubbles. After the activity has settled, typically in a few iterations of equation 3, theconnection weights of each neuron are modi�ed. Both a�erent and lateral weights adapt accordingto the same mechanism: the Hebb rule, normalized so that the sum of the weights is constant:wij;mn(t+ �t) = wij;mn(t) + ��ijXmnPmn [wij;mn(t) + ��ijXmn] ; (4)where �ij stands for the activity of neuron (i; j) in the �nal activity bubble, wij;mn is the a�erentor lateral connection weight (�, E or I), � is the learning rate for each type of connection (�a fora�erent weights, �E for excitatory, and �I for inhibitory) and Xmn is the presynaptic activity (�for a�erent, � for lateral).Both inhibitory and excitatory lateral connections follow the same Hebbian learning processand strengthen by correlated activity. At long-distances, very few neurons have correlated activ-ity and therefore most long-range connections eventually become weak. Such weak connectionsare eliminated periodically, and through weight normalization, inhibition concentrates in a closerneighborhood of each neuron. The radius of the lateral excitatory interactions starts out large,but as self-organization progresses, it is decreased until it covers only the nearest neighbors (c.f.Self-Organizing Map; [14; 15]). Such pruning of lateral connections produces activity bubbles thatare focused and local. As a result, weights change in smaller neighborhoods, and receptive �eldsbecome better tuned to local areas of the retina.3 Self-OrganizationSimulations were carried out on a network of 192� 192 neurons, with inputs coming from a 24� 24retina. The anatomical RF size was chosen to be 11�11, and all the connections were initialized torandom weights. A total of 25; 000 training steps were used. At each step, a random-size Gaussian4
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ected in the weights. The connections also are strongest in the immediate vicinity of theneuron (at center) and become weaker with distance. The large areas of zero weights stand for theconnections that have been pruned away during self-organization.spot was presented on the retina as input. The lateral excitatory radius of each neuron started outas 19, but as training progressed, it was gradually decreased to 1. The lateral inhibitory connectionshad a radius of 47, and weak connections were pruned at intervals of 10; 000 iterations.The self-organization of a�erents results in smooth, hill-shaped RFs. A variety of RFs of di�er-ent sizes are produced, some narrow and tuned to small stimuli, others large and most responsiveto large stimuli (�gure 2). Simultaneously with the RFs, each neuron's lateral connections evolve,and by the Hebbian mechanism, are distributed according to how well the neuron's activity cor-relates with the activities of the other neurons (�gure 3). Because neurons tuned to similar sizesare frequently active at the same time, the resulting connection strengths are strongest betweensuch neurons and weakest to neurons with very di�erent preferences. The global organization ofsize preferences and lateral connections can be visualized by labeling each neuron with a color thatindicates the width of its RF, and plotting the patterns of lateral connections on top. As �gure 3shows, the RF organization has the form of connected, intertwined patches, similar to OD columns(see e.g. [24]), and the lateral connections of neurons connect to regions of the same size preference.The columnar organization does not develop in small networks. Simulations show that, for agiven variance of the stimuli size, the ratio of neurons in the network to receptors in the retina (themagni�cation factor) has to be greater than a threshold value for a stable columnar organizationto appear. Below the threshold, smooth RFs and an ordered topographic map develop, but all theRFs tend to have the same size, corresponding to the average width of the input stimulus. Abovethe threshold, symmetry breaking occurs, producing a variety of RF sizes. Such symmetry breakingis similar to that of the Self-Organizing Map [14; 15], where an input feature is represented in thenetwork only if its variance is greater than a threshold proportional to the magni�cation factor5



[20].It is not known whether the long-range lateral connections in the cortex are organized accordingto size or spatial frequency selectivity. So far, the lateral connection patterns have only beenstudied in relation to the organization of OD and OR preference [9; 16; 17]. However, considerablepsychophysical and neurobiological evidence indicates selective lateral interactions between neuronstuned to di�erent spatial frequencies [3; 6]. As in the RF-LISSOM model, these interactions are alsoknown to be largely inhibitory [6; 28]. The model suggests that the long-range lateral connectionscould be the anatomical substrate for inhibition between spatial frequency channels. The modelfurther predicts that the patterns of lateral connections in the cortex would be in
uenced not onlyby OD and OR preference, but also by selectivity to spatial frequency.4 Functional role of the self-organized lateral connections and RFsCombined with our previous work on OD and OR maps and lateral connections, the new resultssuggest that a single Hebbian mechanism produces the receptive �elds and lateral interactions inthe primary visual cortex. If so, what could be the functional role of these self-organized structuresin visual processing?Through Hebbian self-organization, the lateral connections learn correlations between the fea-ture detectors in the network|the stronger the correlation between two cells, the larger the con-nection strength between them. However, these long-range connections are inhibitory. Therefore,the strongly correlated regions of the network inhibit each other|in other words, the lateral con-nections decorrelate [1; 2].Decorrelation is useful in producing e�cient representations. If the connection between two cellsis strong, then the response of one can be predicted to a large extent by knowing the response of theother. Therefore, the activity of the second cell is redundant, and a more e�cient representation(in an information-theoretic sense) can be formed by eliminating the redundancy. Decorrelation�lters out the learned redundancies and produces an e�cient encoding of the visual input. Thus, thevisual knowledge that lateral connections learn is used to �lter out the already-known correlationsbetween cortical cells, leaving only novel information to be passed on to higher levels of processing.Our neural network architecture demonstrates how decorrelation mechanisms could be implementedin the primary visual cortex.The information processing role of the a�erent RFs is best seen by analogy with Self-OrganizingMaps [14]. The a�erent connections self-organize in a similar fashion in both models [22]. Whenpresented with high-dimensional inputs, the self-organizing map selects the set of feature dimensionsalong which inputs vary the most and represents them along the dimensions of the map [15]. Forexample, if the inputs lie mostly along the diagonal plane of a hypercube, the self-organized map(and hence the RFs) will spread out along this diagonal. If there is some input variance in thedimension perpendicular to this diagonal, receptive �elds will be distributed along this directionas well, and the map will \fold" in that direction. If there are many such feature dimensions, asubset of them will be represented by the folds of the map in the order of their input variance[20]. The images in the visual world could be varying the most along the dimensions of oculardominance, orientation preference and spatial frequency, and if so, the self-organized RFs willrepresent these dimensions. During visual processing, the cortex projects incoming visual inputsonto these dimensions. As shown by Field [8], such a projection produces a sparse coding of the6



input. Projecting onto the dimensions of maximum variance1 also achieves minimal distortion andminimal spurious conjunctions of features.In sum, the RF-LISSOM model predicts that the cortex performs two di�erent computationsduring sensory processing: First, the inputs are projected onto the principal feature dimensionsrepresented by the a�erent receptive �eld structure. Then, the redundancies are �ltered out byrecurrent lateral interactions. The result is an e�cient, redundancy-reduced sparse coding of thevisual input which is then passed on to higher processing levels. This prediction can be veri�edexperimentally by using information theory to analyze the optical images of cortical activity pat-terns produced in response to simple retinal images. If con�rmed, it would constitute a major stepin understanding the function of the observed primary visual cortex structures.5 ConclusionThe RF-LISSOM model shows how a columnar organization of multisize receptive �elds can developand how lateral connection patterns follow this organization. Combined with our previous work,these results show how a single local and unsupervised self-organizing process can be responsible forthe development of both the a�erent and lateral connection structures in the primary visual cortex.The model suggests that a�erent receptive �elds develop a sparse coding of the visual input, andthat recurrent lateral interactions eliminate redundancies in cortical activity patterns. In essence,the knowledge learned by the lateral connections is used as a negative �lter that allows the cortexto e�ciently process the massive amounts of visual information presented by the environment.AcknowledgmentsThis research was supported in part by National Science Foundation under grant #IRI-9309273.Computer time for the simulations was provided by the Pittsburgh Supercomputing Center undergrants IRI930005P and TRA940029P.References[1] H.B. Barlow. Single units and sensation: A neuron doctrine for perceptual psychology? Per-ception, 1:371{394, 1972.[2] H.B. Barlow. Unsupervised learning. Neural Computation, 1:295{311, 1989.[3] L.A. Bauman and A.B. Bonds. Inhibitory re�nement of spatial frequency selectivity in singlecells of the cat striate cortex. Vision Research, 31(6):933{944, 1991.[4] A. Burkhalter, K. L. Bernardo, and V. Charles. Development of local circuits in human visualcortex. Journal of Neuroscience, 13:1916{1931, May 1993.[5] F.W. Campbell, G.F. Cooper, and C. Enroth-Cugell. The spatial selectivity of the visual cellsof the cat. Journal of Physiology (London), 203:223{235, 1969.[6] K.K. De Valois and R.B.H. Tootell. Spatial-frequency-speci�c inhibition in cat striate cortexcells. Journal of Physiology (London), 336:359{376, 1983.1The dimensions of maximum variance are not necessarily those given by linear principal component analysis ofthe input, as shown by Field [8]. 7
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