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Abstract

In the Internet today, users and applications must often
make decisions based on the performance they expect to
receive from other Internet hosts. For example, users
can often view many Web pages in low-bandwidth or
high-bandwidth versions, while other pages present
users with long lists of mirror sites to chose from. Cur-
rent techniques to perform these decisions are often ad
hoc or poorly designed. The most common solution
used today is to require the user to manually make deci-
sions based on their own experience and whatever infor-
mation is provided by the application. Previous efforts
to automate this decision-making process have relied on
isolated, active network probes from a host. Unfortu-
nately, this method of making measurements has several
problems. Active probing introduces unnecessary net-
work traffic that can quickly become a significant part of
the total traffic handled by busy Web servers. Probing
from a single host results in less accurate information
and more redundant network probes than a system that
shares information with nearby hosts. In this paper, we
propose a system called SPAND (SharedPassiveNet-
work PerformanceDiscovery) that determines network
characteristics by makingshared, passive measurements
from a collection of hosts. In this paper, we show why
using passive measurements from a collection of hosts
has advantages over using active measurements from a
single host. We also show that sharing measurements
can significantly increase the accuracy and timeliness of
predictions. In addition, we present a initial prototype
design of SPAND, the current implementation status of
our system, and initial performance results that show the
potential benefits of SPAND.

1. Introduction

In today’s Internet, it is impossible to determine in
advance what the network performance (e.g., available
bandwidth, latency, and packet loss probability)

between a pair of Internet hosts will be. This capability
is missing in today’s suite of Internet services, and many
applications could benefit from such a service:

• Applications that are presented with a choice of
hosts that replicate the same service. Specific exam-
ples of this are FTP and Web mirror sites and Har-
vest caches that contact the “closest” peer cache.
Today, these applications rely on statistics such as
hop count/routing metrics [9], round-trip latency [7],
or geographic location [10]. However, each of these
techniques has significant weaknesses, as we show
in Section 2.

• Web clients that have a choice of contentfidelity to
download from a Web server, e.g., a full graphics
representation for high-bandwidth connectivity or a
text-only representation for low-bandwidth connec-
tivity. Today, the user must manually select the fidel-
ity of the content that they wish to view, sometimes
making overaggressive decisions such as viewing no
images at all.

• Applications that provide feedback to the user that
indicates the expected performance to a distant site.
For example, Web browsers could insert an informa-
tive icon next to a hyperlink indicating the expected
available bandwidth to the remote site referred to by
the hyperlink.

Each of these applications needs the ability to determine
in advance the expected network performance between a
pair of Internet hosts. Previous work in this area has
relied onisolated, activenetwork probing from a single
host to determine network performance characteristics.
There are two major problems with this approach:

• Active probing requires the introduction of unneces-
sary traffic into the network. Clearly, an approach
that determines the same information with a mini-
mum of unnecessary traffic is more desirable. We
also show later that this unnecessary traffic can
quickly grow to become a non-negligible part of the



traffic reaching busy Web servers, reducing their effi-
ciency and sometimes their scalability.

• Probing from a single host prevents a client from
using the past information of nearby clients to pre-
dict future performance. Recent studies [2][20] have
shown that network performance from a client to a
server is often stable for many minutes and very sim-
ilar to the performance observed by other nearby cli-
ents, so there are potential benefits of sharing
information between hosts. In Section 3.2, we show
examples where using shared rather than isolated
information increases the likelihood that previously
collected network characteristics are valid.

We are developing a system called SPAND (SharedPas-
siveNetwork PerformanceDiscovery) that overcomes
the above problems of isolated active probing by col-
lecting network performance informationpassively from
a collection of hosts,caching it for some time andshar-
ing this information between them. This allows a group
of hosts to obtain timely and accurate network perfor-
mance information in a manner that does not introduce
unnecessary network traffic.

The rest of this paper is organized as follows. In
Section 2, we describe related work in more detail. In
Section 3, we point out the advantages and challenges of
using passive shared measurements over isolated active
measurements. In Section 4, we present a detailed
design of SPAND. In Section 5, we describe the imple-
mentation status of SPAND and initial performance
results, and in Section 6, we conclude and describe
future work.

2. Related Work

In this section, we describe in more detail previous work
in network probing algorithms and server selection sys-
tems.

2.1  Probing Algorithms

A common technique to estimate expected performance
is to test the network by introducing probe packets. The
objective of these probes is to measure the round trip
latency, peak bandwidth or available “fair-share” band-
width along the path from one host to another

Probes to measure round-trip latency and peak band-
width are typically done by sending groups of back-to-
back packets to a server which echoes them back to the
sender. These probes are referred to as NetDyn probes in
[4], packet pair in [13], and bprobes in [6]. As pointed
out in earlier work on TCP dynamics [12], the spacing
between these packets at the bottleneck link is preserved
on higher-bandwidth links and can be measured at the

sender.

If the routers in the network do not implement fair queu-
ing, the minimum of many such measurements is likely
to be close to the raw link bandwidth, as assumed in
other work ([4][6][19]). Pathchar [19] combines this
technique with traceroute[22] to measure the link band-
width and latency of each hop along the path from one
Internet host to another. Packet Bunch Mode (PBM)
[20] extends this technique by analyzing various sized
groups of packets inserted into the network back-to-
back. This allows PBM to handle multi-channel links
(i.e. ISDN connections, muiti-link Point-to-Point Proto-
col (PPP) links, etc.) as well as improve the accuracy of
the resulting measurements.

If routers in the network implement fair queuing, then
the bandwidth indicated by the back-to-back packet
probes is an accurate estimate of the “fair share” of the
bottleneck link’s bandwidth [13]. Another fair share
bandwidth estimator, cprobe [6], sends a short sequence
of echo packets from one host to another as a simulated
connection (without minimal flow control and no con-
gestion control). By assuming that “almost-fair” queu-
ing occurs over the short sequence of packets, cprobe
provides an estimate for the available bandwidth along
the path from one host to another. Combined with infor-
mation from bprobes, cprobes can estimate the compet-
ing traffic along the bottleneck link. However, it is
unclear how often this “almost-fair” assumption is cor-
rect and how accurate the resulting measurements are.
TReno [15] also uses ICMP echo packets as a simulated
connection, but uses flow control and congestion control
algorithms equivalent to that used by TCP.

The problem with these methods is that they can intro-
duce significant amounts of traffic that is not useful to
any application. For example, pathchar sends at least
tens of kilobytes of probe traffic per hop, and a cprobe
sends 6 kilobytes of traffic per probe. This amount of
probe traffic is a significant fraction (approximately
20%) of the mean transfer size for many Web connec-
tions ([1], [2]) as well as a significant fraction of the
mean transfer size for many Web sessions. We discuss in
more detail the l imitations of active probing in
Section 3.3.

2.2  Server Selection Systems

Many server selection systems use network probing
algorithms to identify the closest or best connected
server. For example, Carter et al. at Boston University
[5] use cprobes and bprobes to classify the connectivity
of a group of candidate mirror sites. Harvest [7] uses
round-trip latency to identify the best peer cache from
which to retrieve a Web page. Requests are initiated to



each peer cache, and the first to begin responding with a
positive answer is selected and the other connections are
closed. Other proposals [10] rely on geographic location
for selecting the best cache location when push-caching
Web documents.

There are also preliminary designs for network-based
services to aid in server selection. IPV6’s Anycast
[11][18] service provides a mechanism that directs a cli-
ent’s packets to any one of a number of hosts that repre-
sent the same IP addresses. This service uses routing
metrics as the criteria for server selection. The Host
Proximity Service (HOPS) [9] uses routing metrics such
as hop counts to select the closest one of a number of
candidate mirror sites.

Cisco’s DistributedDirector [8] product relies on mea-
surements from Director Response Protocol (DRP)
servers to perform efficient wide area server selection.
The DRP servers collect Border Gateway Protocol
(BGP) and Interior Gateway Protocol (IGP) routing
table metrics between distributed servers and clients.
When a client connects to a server, DistributedDirector
contacts the DRP server for each replica site to retrieve

the information about the distance between the replica
site and the client.

The problem with many of these approaches is that one-
way latency, geographic location, and hop count are
often poor estimates of actual completion time. Other
work [5][17] shows that hop count is poorly correlated
with available bandwidth, and one-way latency does not
take available bandwidth into account at all. Even those
systems that provide better performance metrics [5] rely
on each end host independently measuring network per-
formance.

Another design choice to consider is where the system
must be deployed. A system that is deployed only at the
endpoints of the network is easier to maintain and
deploy than a system that must be deployed inside the
internal infrastructure, and a system that is deployed
only at the client side is easier to deploy than a system
that relies on client and server side components.

Table 1 summarizes the previous work in this area. The
significant shortcomings of existing network perfor-
mance discovery and server selection systems are:

System

What measured/
used to identify
performance

Additional traffic
introduced Notes

Where
Deployed

Bprobes, Cprobes Peak and Available
Bottleneck Bandwidth

Significant (~10K) Cprobes uses no flow/
congestion control

Client Side

Packet Pair Available Bandwidth Little (~1K) Assumes per-flow
fair queuing

Client Side

Pathchar Hop-by-hop link
bandwidth, latency

Significant (>10K) No congestion con-
trol

Client Side

Packet Bunch
Modes

Peak Bottleneck
Bandwidth

Significant (~10K) Client Side

Treno Available Bandwidth Significant (>10K) Uses TCP Flow/Con-
gestion Control

Client Side

IPV6 Anycast Routing Metric Little (routing data and
queries)

Internal Network

Harvest Latency Little (~1K) Server Side

HOPS Routing Metric Little (routing data and
queries)

Internal Network

DistributedDirector Routing Metric Little (routing data and
remote queries)

Server Side and
Internal Network

SPAND

Available
Bandwidth,
Packet Loss
Probability

Little (local reports
and queries) Client Side

TABLE 1. Summary of Previous Work compared to SPAND



• Introduction of new traffic into the network that can
quickly become significant when compared to “use-
ful” traffic.

• Reliance on measurements from a single host, which
are more often redundant and inaccurate than mea-
surements from a collection of hosts.

• Use of metrics such as hop count, latency, and geo-
graphic location as imprecise estimates of available
bandwidth.

We discuss these shortcomings further in the next sec-
tion.

3. Passive and Cooperative Measurements

The goal of our work is to provide a unified repository
of actual end-to-end performance information for appli-
cations to consult when they wish to determine the net-
work performance to distant Internet hosts. Our
approach addresses the shortcomings of previous work
in 2 ways: (1) relying solely on passive rather than
active measurements of the network, and (2) sharing
measurement information between all hosts in a local
network region. In this section we show the potential
benefits and challenges of using shared, passive mea-
surements to predict network performance instead of
using isolated, active measurements.

3.1  Network Performance Stability

In order for past transfers observed by hosts in a region
to accurately predict future performance, the network
performance between hosts must remain relatively sta-
ble for periods of time on the order of minutes. Without
this predictability, it would be impossible for shared
passive measurements of the network to be meaningful.
Past work has shown evidence that this is true for some
Internet hosts [2][20]. We wanted to verify these results
in a different scenario.

To understand more closely the dynamics of network
characteristics to a distant host, we performed a con-
trolled set of network measurements. This consisted of
repeated HTTP transfers between UC Berkeley and
IBM Watson. For a 5 hour daytime period (from 9am
PDT to 2pm PDT), a Web client at UC Berkeley period-
ically downloaded an image object from a Web server
running at IBM Watson. Although this measurement is
clearly not representative of the variety of connectivity
and access patterns that exist between Internet hosts, it
allowed us to focus on the short-term changes in net-
work characteristics that could occur between a pair of
well-connected Internet hosts separated by a large num-
ber of Internet hops.

Figure 1 shows the raw throughput measurements as a
function of time over the 5 hour period. We see that in
the first 30 minutes of the trace, one group of measure-
ments is clustered around 350 kilobits/sec (presumably
the available bandwidth on the path between UC Berke-
ley and IBM). A smaller group of measurements has
lower throughputs, at 200 kilobits/sec and lower. This
second group of connections presumably experiences
one or more packet losses. This clustering is more
clearly shown in Figure 2, the cumulative distribution
function (CDF) of throughputs during the first 30 min-
utes of the trace. As the day progresses, two things
change. The available bandwidth decreases as the day
progresses, and a larger fraction of transfers experience
one or more packet losses. This effect is shown in
Figure 3, the cumulative distribution function of
throughputs for the entire 5 hour period. More samples
are clustered around lower throughput values and there
is more variation in the available bandwidth. However,
there is still a noticeable separation between the two
groups of throughput measurements.
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This distribution of performance suggests that although
the distribution of throughputs changes as the day
progresses, a system like SPAND could still provide
meaningful performance predictions. Although the per-
formance distribution of the early part of the day and the
later part of the day are quite different, they each have
lifetimes of tens of minutes or more. Even when aggre-
gating all the different performance measurements for
the entire 5 hour period, approximately 65% of the
throughput samples are within a factor of 2 of the
median throughput.

3.2  Shared Measurements: Benefits and Challenges

Using shared rather than isolated measurements allows
us to eliminate redundant network probes. If two hosts
are nearby each other in terms of network topology, it is
likely that they share the same bottleneck link to a
remote site. As a result, the available bandwidth they
measure to this site is likely to be very similar [2].
Therefore, it is unnecessary and undesirable for each of
these hosts to independently probe to find this informa-
tion--they can learn from each other.

To quantify how often this information can be shared
between nearby hosts, we examined Internet usage pat-
terns by analyzing client-side Web traces. From these
traces, we determined how often a client would need to
probe the network to determine the network perfor-
mance to a particular Web server when shared informa-
tion was and was not available.

More formally, for a single Web server, we can represent
the list of arrival times from a single client (or a shared
collection of clients) as a sequence (t1, t2,..., tn). If the
difference between ti+1 and ti is extremely small (less
than ten seconds), we merge the events together into a
single Web browsing “session.” Clearly, the first arrival
always requires a probe of the network. In addition, if

we assume that the time between significant network
changes is a fixed value∆, then if ti+1-ti>∆, then the cli-
ent must make a probe to determine the new network
characteristics. If ti+1-ti<∆, then no probe is necessary.
As mentioned previously [2][20], an appropriate value
for ∆ is on the order of tens of minutes.

Figure 4 shows the results of this analysis for a particu-
lar client-side trace consisting of 404780 connections
from approximately 600 users over an 80 hour time
period [23]. The x-axis represents the time∆ between
network changes, and the y-axis represents the fraction
of network probes that are necessary. There are two
curves in the figure. The upper curve represents the
number of probes that are necessary if no sharing
between clients is performed, and the lower curve repre-
sents the number of probes that are necessary if clients
share information between them. The upper curve
begins at∆=3D10 seconds because of the “sessionizing” of
individual connections described above. We see that the
number of probes that are necessary when clients share
network information is dramatically reduced. This is
evidence that a collection of hosts can eliminate many
redundant network probes by sharing information.

The use of shared measurements is not without chal-
lenges, however. Measurements from arbitrary hosts in a
region cannot be combined. For example, it is necessary
to separate modem users within a local domain from
LAN users in the same domain, because the two sets of
users may not share the same bottleneck link. Similarly,
hosts in a local domain may use different TCP imple-
mentations that result in widely varying performance.
The challenge is that it is often difficult to determine
who the set of “similarly connected” hosts within an
local domain are. We can use the topology of the local
domain along with post-processing on past measure-
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ments to determine which network subnets exhibit sig-
nificantly different performance. The system can then
coalesce these subnets together into classes of equiva-
lent connectivity and avoid aggregating measurements
from dissimilar hosts.

3.3  Passive Measurements: Benefits and Challenges

The use of passive measurements avoids the introduc-
tion of useless probe traffic into the network. This
advantage over active probing systems comes at the
expense of making the job of measuring available band-
width more difficult. However, this advantage is critical
since probe traffic can sometimes become a measurable
fraction of the traffic handled by busy Web servers. For
example, consider the scenario of mirror sites that repli-
cate the same content. In an active probing system, a cli-
ent must first contact each of the mirror sites to
determine which mirror is the “best.” This slows down
servers with probe-only traffic and limits the scalability
of such a system.

The following thought experiment shows why. Consider
a Web server with a variable number of mirror sites.
Assume that each mirror site is connected to the Internet
via a 45 Mbit/second T3 link and assume that the mean
transfer size is 100 kbytes and the mean probe size is 6
kbytes. These are optimistic estimates; most Web trans-
fers are shorter than 100 kbytes and many of the net-
work probing algorithms discussed in Section 2.1
introduce more than 6 kbytes. From a network perspec-
tive, an estimate of the number of requests per second
that the collection of mirrors can support is the aggre-
gate bandwidth of the mirrors’ Internet links divided by
the sum of the average Web transfer size and any associ-
ated probe traffic for the transfer. Figure 5 shows the

number of requests per second that such a system can
support as a function of the number of mirror sites for
two systems: one without probe traffic, and one with
probe traffic. We see that the system without probe traf-
fic scales perfectly with the number of mirrors. For the
system with probe traffic, however, for each Web
request that is handled by a single mirror, a network
probe must be sent to all of the other mirrors. On the
server side, this means that for each Web request a par-
ticular mirror site handles, it must also handle a probe
request from clients being serviced at every other mirror
location. As the number of mirrors increases, the num-
ber of requests served per second becomes limited by
the additional probe traffic.

There are challenges in using passive network measure-
ments, however. Using passive rather than active mea-
surements is difficult for several reasons:

• Passive measurements are uncontrolled experiments,
and it can be difficult to separate network events
from those occurring at the endpoints, such as a rate-
limited transmission or a slow or unreachable server.

• Passive measurements are only collected when a
host contacts a remote site. In order to have timely
measurements, hosts in a local domain must visit
distant hosts often enough to obtain timely informa-
tion. If this is not true, the client may obtain either
out-of-date information or no information at all.

For our purposes, there is no need to distinguish
between network events and endpoint events. If a
remote site is unreachable or has poor connectivity
because it is down or overloaded, that information is just
as useful. It is important to distinguish between rate-
controlled and bulk transfer connections so the perfor-
mance numbers from one are not used to estimate per-
formance for the other. We can distinguish between rate-
controlled and bulk transfer transmissions by using TCP
and UDP port numbers and the application classes
described in Section 4.

To identify if passive measurements can provide timely
information, we must analyze typical Internet usage pat-
terns and determine how often passive techniques lead
to out-of-date information. We can use the results shown
in Figure 4 to see this. We can model the arrival pattern
of clients as a sequence of times (t1...tn) as before. In the
passive case, when ti+1-ti>∆, instead of saying that an
active probe is necessary, we say that the passively col-
lected information has become out of date. So the frac-
tion of time that an active probe is necessary is exactly
the same as the fraction of time that passive measure-
ments become out of date. As mentioned earlier, the
appropriate value for∆ is on the order of tens of min-
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utes. We see that even a relatively small collection of
hosts can obtain timely network information when shar-
ing information between them. If we assume that net-
work conditions change approximately every 15
minutes, then the passive measurements collected from
this relatively small collection of 600 hosts will be accu-
rate approximately 78% of the time. For larger collec-
t ions o f  hosts  (such as domain-wide pass ive
measurements), the availability of timely information
will be even greater, as shown in Section 5.3.

4. Design of the SPAND System

In this section, we describe the design for SPAND,
including steps for incremental deployment in existing
networks.

Figure 6 shows a diagram of the components of
SPAND. SPAND is comprised ofClients, Performance
Servers, and Packet Capture Hosts. Clients have modi-
fied network stacks that transmitPerformance Reports
to Performance Servers. These reports contain informa-
tion about the performance of the network path between
the client and distant hosts. The format of a Performance
Report is shown in Figure 7, and includes parameters
such as connection bandwidth and packet loss statistics.
The Transport Protocol field indicates the type of trans-
port connection (UDP or TCP) used by the initiator of
the connection. The optional Application Class field is a
hint as to the way in which the application is using the
transport connection. If an Application Class is not pro-
vided, the Performance Server can use the Port Number
and Transport Protocol fields to make a guess for the
application class.

The Application Class field is desirable because not all

applications use transport connections in the same way.
Some applications (such as Web browsers and FTP pro-
grams) use TCP connections for bulk transfers and
depend on the reliability, flow control, and congestion
control abstractions that TCP connections provide.
Applications such as telnet primarily use TCP connec-
tions for reliability and not for flow or congestion con-
trol. Other applications such as RealAudio in TCP mode
use TCP connections for different reasons such as the
ability to traverse firewalls. The transport level network
performance reported from different applications may
vary widely depending on the way the transport connec-
tion is used, and we want to separate these performance
reports into distinct classes.

Client
Internet

Performance

Client

Gateway to
Local Domain

=3D Data
=3D Performance

=3D Performance
Reports

Capture Host
Packet

 Server

Figure 6. Design of SPAND
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In addition, many applications may intermittently
change the way in which a connection is used. For
example, a passive FTP connection may switch from
transporting control information to transferring bulk
data. Similarly, a persistent HTTP 1.1 connection may
have idle “think” periods where the user is looking at a
Web page as well as bulk transfer periods. To properly
account for all these variations, we need applications to
take part in the performance reporting process. Our tool-
kit provides an API which enables applications to start a
measurement period on a connection as well as end the
measurement and automatically send a report to the
local Performance Server.

A Performance Server receives reports from all clients
in a local area and must incorporate them into its perfor-
mance estimates. The server maintains different esti-
mates for different classes of applications as well as
different classes of connectivity within its domain. In
addition, the Performance Server can also identify
reports that have possibly inaccurate information and
discard them. Clients may later query the information in
the server by sending it a Performance Request contain-
ing an (Address, Application Class) pair. The server
responds to it by returning a Performance Response for
that pair, if one exists. This response includes the Per-
formance Server’s estimates of available bandwidth and
packet loss probability from the local domain to the
specified foreign host. The request and response formats
are shown in Figures 8 and 9.

4.1  Mechanisms for Incremental Deployment

The system described in the previous section is an ideal
endpoint we would like to reach. In practice, it may be
difficult to immediately modify all client applications to

generate performance reports, especially since many cli-
ents may need modifications to their protocol stacks to
make the statistics necessary for SPAND available. To
quickly capture performance from a large number of end
clients, a Packet Capture Host can be deployed that uses
a tool such as BPF [16] to observe all transfers to and
from the clients. The Packet Capture Host determines
the network performance from its observations and
sends reports to the Performance Server on behalf of the
clients. This allows a large number of Performance
Reports to be collected while end clients are slowly
upgraded. The weakness of this approach is that a num-
ber of heuristics must be employed to recreate applica-
tion-level information that is available at the end client.
Section 5.2 describes these heuristics in more detail.

4.2  Example Scenario

This example scenario using Figure 6 illustrates the way
in which the agents that make up SPAND coordinate.
Assume that a user is browsing the Web. As the user is
browsing, the user’s application generates Performance
Reports and sends them to the local Performance Server
(1 in the figure). Also, a Packet Capture Host deployed
at the gateway from the local domain to the Internet gen-
erates Performance Reports on behalf of the hosts in the
domain (2 in the figure). Later, some other user reaches
a page where she must select between mirror locations.
The Web browser makes a Performance Query to the
local Performance Server and gets a response (3 in the
figure). The Web browser uses the Performance
Response to automatically contact the mirror site with
the best connectivity.

5. Implementation Status and Performance

In this section, we describe the current implementation
status of SPAND and present initial performance mea-
surements from a working SPAND prototype.

5.1  Implementation Details

SPAND is organized as a C++ toolkit that provides
object abstractions for the agents described above.
Application writers can create objects for agents such as
PerformanceReporter(), PerformanceReportee(), Perfor-
manceRequestor(), and PerformanceRequestee() and
use these objects to make, send or receive reports, or
make queries about network performance. We also have
partial implementations of the toolkit in Java and Perl.

Using the SPAND toolkit, we have implemented the
Packet Capture Host, Performance Server and a simple
text-based SPAND Client. We have also written several
client applications that use the SPAND toolkit to make
use of Performance Reports. We have written a HTTP

Figure 8. Format of a Performance Request

0 3115 16
App. ClassVersion Type Protocol

Request IP Address

Figure 9. Format of a Performance Response

0 3115 16
App. Class

Expected Available Bandwidth (kbits/sec)

Std Dev of Available Bandwidth (kbits/sec)

Expected Packet Loss Probability

Std Dev of Expected Loss Probability

Version Type Protocol

Response IP Address



proxy using the Perl libwww [14] library and the
SPAND toolkit that modifies HTML pages to include
informative icons that indicate the network performance
to a distant site mentioned in a hyperlink. This is not the
first application of this type; others have been developed
at IBM [3] and at Boston University [5]. However, our
application uses actual observed network performance
from local hosts to make decisions about the icon to
insert in the HTML page.

We have also written a Java-based application that
allows the user to obtain an overview of the connectivity
from a local domain to distant hosts. This application
shows the number of performance reports collected for
all hosts as well as the details about the reported net-
work statistics for a given host. This tool was used to
generate the graphs in Section 3.1.

5.2  Packet Capture Host Policies

Because our Packet Capture Host is not located at end
clients, it does not have perfect information about the
way in which applications use TCP connections. This
can lead to inaccurate measurements of network charac-
teristics such as bandwidth. For example, if a Web
browser uses persistent or keep-alive connections to
make many HTTP requests over a single TCP connec-
tion, then simply measuring the observed bandwidth
over the TCP connection will include the gaps between
HTTP requests in the total time of the connection, lead-
ing to a reduction in reported bandwidth. To account for
this effect, we modified the Packet Capture Host to use
heuristics to detect these idle periods in connections.
When the Packet Capture Host detects an idle period, it
makes two reports: one for the part of the connection
before the idle period, and another for the part of the
connection after the idle period. The ratio measurements
in Section 5.3 include systems with and without the use
of these heuristics. Another example is when Common
Gateway Interface (CGI) programs are executed as part
of HTTP requests. The idle time when the server is exe-
cuting the CGI program leads to an artificially low
reported bandwidth and does not reflect the performance
of other HTTP requests to the same server. Ideally, the
Packet Capture Host would treat these connections as a
different Application class. For the purposes of these
measurements, however, the Packet Capture Host
excluded the idle periods and generated multiple Perfor-
mance Reports as above.

5.3  Performance

There are several important metrics by which we can
measure the performance of the SPAND system:

1. How long does it take before the system can ser-
vice the bulk of Performance Requests?

2. In the steady-state, what percentage of Perfor-
mance Requests does the system service?

3. How accurate are the performance predictions?

To test the performance of our system, we deployed a
Packet Capture Host at the connection between IBM
Research and its Internet service provider. Hosts within
IBM communicate with the Internet through the use of a
SOCKSv4 firewall [21]. This firewall forces all internal
hosts to use TCP and to initiate transfers (i.e. servers can
not be inside the firewall). The packet capture host mon-
itored all traffic between the SOCKS firewall at IBM
Research and servers outside IBM’s internal domain.
The measurements we present here are from a 3 hour
long weekday period. During this period, 62,781 perfor-
mance reports were generated by the packet capture host
for 3,008 external hosts. At the end of this period, the
Performance Server maintained a database of approxi-
mately 60 megabytes of Performance Reports. Figure 10
shows the cumulative number of reports generated and
hosts reported about as a function of time.We see that
about 10 reports are generated per second, which results
in a network overhead of approximately 5 kilobits per
second. We also see that while initially a large number
of reports are about a relatively small number of hosts
(the upward curve and leveling off of the curve), as time
progresses, a significant number of new hosts are
reported about as time progresses. This indicates that the
“working set” of hosts includes a set of hosts who are
reported about a small number of times. This finding is
reinforced in Figure 11, which shows a histogram of the
number of reports received for each host over the trace.
We see that a large majority of hosts receive only a few
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reports, while a small fraction of hosts receive most of
the reports. The mean number of reports received per
host was 23.67 and the median number of reports
received per host was 7.

To test the accuracy of the system, we had to generate a
sequence of Performance Reports and Performance
Requests to test the system. Since there are no applica-
tions running at IBM that currently use the SPAND sys-
tem, we assumed that each client host would make a
single Performance Request to the Performance Server
for a distant host before connecting to that host, and a
single Performance Report to the Performance Server
after completing a connection. In actual practice, appli-
cations using SPAND would probably request the per-
formance for many hosts and then make a connection to
only one of them. The performance of the SPAND sys-
tem on this workload is summarized in Figures 12 and
13.

When a Performance Server is first started, it has no
information about prior network performance and can-
not respond to many of the requests made to it. As the
server begins to receive performance reports, it is able to
respond to a greater percentage of requests. Determining
the exact “warmup” time before the Performance Server
can service most requests is important. Figure 12 shows
the probability that a Performance Request can be ser-
viced by the Performance Server as a function of the
number of reports since the “cold start” time. We say
that a request can be serviced if there is at least one pre-
viously collected Performance Report for that host in
the Performance Server’s database. As we can see from
the graph, the Performance Server is able to service 70%
of the requests within the first 300 reports (less than 1
minute), and the Performance Server reaches a steady-
state service rate of 95% at around 10,000 reports
(approximately 20 minutes). This indicates that when a

Performance Server is first brought up, there is enough
locality in client access patterns that it can quickly ser-
vice the bulk of the Performance Requests sent to it.

To measure the accuracy of Performance Responses, for
each connection we computed the ratio of the through-
put returned by the Performance Server for that connec-
tion’s host with the throughput actually reported by the
Packet Capture Host for that connection. Figure 13 plots
the cumulative distribution function of these ratios. The
x axis is plotted on a log scale to equally show ratios
that are less than and greater than one. Table 2 shows the
probability that a Performance Response is within a fac-
tor of 2 and 4 of the actual observed throughput. We see
that Performance Responses are often close to the actual
observed throughput. Obviously, different applications
will have different requirements as to the error that they
can tolerate. Factors of 2 and 4 are shown only as repre-
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sentative data points.

Closer examination of transfers that result in very large
or small ratios indicate a few important sources of error
in the predictions. Some servers have a mixture of small
and large transfers made to them. As a result of TCP
protocol behavior, the larger transfers tend to be limited
by the available bandwidth to the server whereas the
smaller transfers tend to limited by the round trip time to
the server. We plan to incorporate round trip measure-
ments into a future version of the SPAND Performance
Server to address this problem. In addition, the heuris-
tics used to recreate end client information are effective
but not always accurate. Many poor estimates are a
result of pauses in the application protocol. This source
of inaccuracy will vanish as more end clients participate
in the SPAND system and less reliance is made on the
Packet Capture Host’s heuristics.

6. Conclusions and Future Work

There are many classes of Internet applications that
need the ability to predict in advance the network per-
formance between a pair of Internet hosts. Previous
work providing this information has depended on iso-
lated, active measurements from a single host. This does
not scale to many users and does not provide the most
accurate and timely information possible. In this paper,
we have proposed a system called SPAND (Shared Pas-
sive Network Performance Discovery) that uses passive
measurements from a collection of hosts to determine
wide-area network characteristics. We have justified the
design decisions behind SPAND and presented a
detailed design of SPAND and mechanisms for incre-
mental deployment.

Initial measurements of a SPAND prototype show that it
can quickly provide performance estimates for approxi-
mately 95% of transfers from a site. These measure-
ments also show that 69% of these estimates are within a
factor of 2 of the actual performance and 90% are within
a factor of 4.

We believe that a number of techniques will improve the
accuracy of SPAND’s performance estimates.

1. As clients are modified to transmit their own Per-
formance Reports, the accuracy of the reports will
improve. This will in turn improve the quality of
the estimates that the Performance Server provides.

2. The Performance Server currently returns the
median of all past measurements as an estimate of
future performance. The measurements presented
in this paper were made over a relatively short time
scale. As shown in Section 3.1, the distribution of
network performance changes as time passes. To
provide better estimates, the Performance Server
must give newer Performance Reports greater
importance and discard information from older
reports.

3. The performance of many transfers is limited by
the round trip time to the server instead of the
available bandwidth. We can improve the quality of
SPAND’s performance estimates by providing
round trip estimates as part of the service and using
both throughput and round trip times to predict the
duration of a transfer.

4. The Performance Server currently combines the
reports of all clients within its domain. It makes no
attempt to eliminate poorly configured or misbe-
having hosts. Preventing these hosts from impact-
ing the estimates of network performance should
reduce persistent sources of error.

5. The Performance Server estimates performance to
all IP addresses outside its domain independently.
However, network performance to many remote
hosts is identical since communications to these
hosts share the same bottlenecks. For example, the
performance of most connections between the
United States and Europe is probably limited by a
shared transatlantic bottleneck link. We plan to add
Aggregation Experiments to the Performance
Server that allow it to analyze the distribution of
reports to remote hosts over time and combine dis-
tant hosts into classes of equivalent connectivity.
The server can then use reports from one of the
hosts in a class to make or update estimates about
the connectivity of other hosts in the same class.

6. Currently, the Packet Capture Host only generates
Performance Reports for the bulk transfer Applica-
tion Class. We plan to modify the Packet Capture
Host to generate Performance Reports for other
Application Classes such as telnet and server pro-
gram execution (CGI programs).

System
% within
factor of 2

% within
factor of 4

Base System 59.08% 84.05%

Base System +
App Heuristics 68.84% 90.18%

TABLE 2. Accuracy of Performance
Responses
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