i

The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems
Monterey, California, December 1997

SPAND: Shared Passive Network Performance Discovery

Srinivasan Seshan
IBM T.J. Watson Research Center
Mark Stemm, Randy H. Katz
University of California at Berkeley

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

SPAND: Shared Passive Network Performance Discovery

Srinivasan Seshan Mark Stemm, Randy H. Katz
srini@watson.ibm.com {stemm,randy}@cs.berkeley.edu

IBM T.J. Watson Research Center ~ Computer Science Division
Yorktown Heights, NY 10598 University of California at Berkeley
Berkeley, CA 94720

Abstract between a pair of Internet hosts will be. This capability
is missing in today’s suite of Internet services, and many

In the Internet today, users and applications must ofteapplications could benefit from such a service:
make decisions based on the performance they expect lo
receive from other Internet hosts. For example, users
can often view many Web pages in low-bandwidth or
high-bandwidth versions, while other pages present
users with long lists of mirror sites to chose from. Cur-
rent techniques to perform these decisions are often ad
hoc or poorly designed. The most common solution
used today is to require the user to manually make deci-
sions based on their own experience and whatever infor-
mation is provided by the application. Previous efforts
to automate this decision-making process have relied on Web clients that have a choice of contéaelity to
isolated, activenetwork probes from a host. Unfortu- download from a Web server, e.g., a full graphics
nately, this method of making measurements has several representation for high-bandwidth connectivity or a
problems. Active probing introduces unnecessary net- text-only representation for low-bandwidth connec-
work traffic that can quickly become a significant part of tivity. Today, the user must manually select the fidel-
the total traffic handled by busy Web servers. Probing ity of the content that they wish to view, sometimes
from a single host results in less accurate information making overaggressive decisions such as viewing no
and more redundant network probes than a system that images at all.
shares information with nearby hosts. In this paper, we
propose a system called SPANBhéredPassive Net-
work Performancéiscovery) that determines network
characteristics by makirghared passivemeasurements
from a collection of hosts. In this paper, we show why
using passive measurements from a collection of hosts
has advantages over using active measurements from a
single host. We also show that sharing measuremenBach of these applications needs the ability to determine
can significantly increase the accuracy and timeliness of advance the expected network performance between a
predictions. In addition, we present a initial prototypepair of Internet hosts. Previous work in this area has
design of SPAND, the current implementation status ofelied onisolated, activanetwork probing from a single
our system, and initial performance results that show thbost to determine network performance characteristics.
potential benefits of SPAND. There are two major problems with this approach:

Applications that are presented with a choice of
hosts that replicate the same service. Specific exam-
ples of this are FTP and Web mirror sites and Har-
vest caches that contact the “closest” peer cache.
Today, these applications rely on statistics such as
hop count/routing metrics [9], round-trip latency [7],
or geographic location [10]. However, each of these
techniques has significant weaknesses, as we show
in Section 2.

Applications that provide feedback to the user that
indicates the expected performance to a distant site.
For example, Web browsers could insert an informa-
tive icon next to a hyperlink indicating the expected
available bandwidth to the remote site referred to by
the hyperlink.

) ¢ Active probing requires the introduction of unneces-
1. Introduction sary traffic into the network. Clearly, an approach

advance what the network performance (e.g., available Mum of unnecessary traffic is more desirable. We

bandwidth, latency, and packet loss probability) —also show later that this unnecessary traffic can
quickly grow to become a non-negligible part of the

traffic reaching busy Web servers, reducing their effisender.

ciency and sometimes their scalability. If the routers in the network do not implement fair queu-

* Probing from a single host prevents a client froming, the minimum of many such measurements is likely
using the past information of nearby clients to preto be close to the raw link bandwidth, as assumed in
dict future performance. Recent studies [2][20] haveother work ([4][6][19]). Pathchar [19] combines this
shown that network performance from a client to atechnique with tracerouf@2] to measure the link band-
server is often stable for many minutes and very simwidth and latency of each hop along the path from one
ilar to the performance observed by other nearby cli{nternet host to another. Packet Bunch Mode (PBM)
ents, so there are potential benefits of sharing20] extends this technique by analyzing various sized
information between hosts. In Section 3.2, we showgroups of packets inserted into the network back-to-
examples where using shared rather than isolatedack. This allows PBM to handle multi-channel links
information increases the likelihood that previously(i.e. ISDN connections, muiti-link Point-to-Point Proto-
collected network characteristics are valid. col (PPP) links, etc.) as well as improve the accuracy of

We are developing a system called SPAISBaredPas- the resulting measurements.

sive Network Performanc®iscovery) that overcomes If routers in the network implement fair queuing, then
the above problems of isolated active probing by colthe bandwidth indicated by the back-to-back packet
lecting network performance informatipassivelffrom probes is an accurate estimate of the “fair share” of the
a collection of hosts;achingit for some time andhar- bottleneck link’s bandwidth [13]. Another fair share
ing this information between them. This allows a groupbandwidth estimator, cprobe [6], sends a short sequence
of hosts to obtain timely and accurate network perforof echo packets from one host to another as a simulated
mance information in a manner that does not introduceonnection (without minimal flow control and no con-
unnecessary network traffic. gestion control). By assuming that “almost-fair’ queu-
. . . ing occurs over the short sequence of packets, cprobe
The rest of this paper is organized as follows. In

.) . . rovides an estimate for the available bandwidth along
Section 2, we describe related work in more detail. | . o

ot}e path from one host to another. Combined with infor-

Section 3, we point out the advantages and challenges ; .
. . . mation from bprobes, cprobes can estimate the compet-
using passive shared measurements over isolated active

measurements. In Section 4, we present a detailedd traffic along the bottleneck link. However, it is

d o - L
design of SPAND. In Section 5, we describe the Imple_unclear how often this “almost fa!r assumption is cor
. L rect and how accurate the resulting measurements are.
mentation status of SPAND and initial performance :
. . . TReno [15] also uses ICMP echo packets as a simulated
results, and in Section 6, we conclude and describe ; .
future work connection, but uses flow control and congestion control

algorithms equivalent to that used by TCP.

2. Related Work The problem with these methods is that they can intro-
duce significant amounts of traffic that is not useful to
In this section, we describe in more detail previous worlgny application. For example, pathchar sends at least
in network probing algorithms and server selection systens of kilobytes of probe traffic per hop, and a cprobe
tems. sends 6 kilobytes of traffic per probe. This amount of
probe traffic is a significant fraction (approximately
20%) of the mean transfer size for many Web connec-
A common technique to estimate expected performandéons ([1], [2]) as well as a significant fraction of the
is to test the network by introducing probe packets. Thénean transfer size for many Web sessions. We discuss in
objective of these probes is to measure the round tripmore detail the limitations of active probing in
latency, peak bandwidth or available “fair-share” band-Section 3.3.
width along the path from one host to another

2.1 Probing Algorithms

) 2.2 Server Selection Systems
Probes to measure round-trip latency and peak band-

width are typically done by sending groups of back-toMany server selection systems use network probing
back packets to a server which echoes them back to tifdgorithms to identify the closest or best connected
sender. These probes are referred to as NetDyn probesS@rver. For example, Carter et al. at Boston University
[4], packet pair in [13], and bprobes in [6]. As pointed [5] use cprobes and bprobes to classify the connectivity
out in earlier work on TCP dynamics [12], the spacingOf a group of candidate mirror sites. Harvest [7] uses
between these packets at the bottleneck link is preservé@und-trip latency to identify the best peer cache from
on higher-bandwidth links and can be measured at thwhich to retrieve a Web page. Requests are initiated to

What measured/
used to identify Additional traffic Where
System performance introduced Notes Deployed
Bprobes, Cprobes Peak and Available | Significant (~10K) Cprobes uses no floy/Client Side
Bottleneck Bandwidth congestion control
Packet Pair Available Bandwidth Little (~1K) Assumes per-flow | Client Side
fair queuing
Pathchar Hop-by-hop link Significant (>10K) No congestion con- | Client Side
bandwidth, latency trol
Packet Bunch Peak Bottleneck Significant (~10K) Client Side
Modes Bandwidth
Treno Available Bandwidth Significant (>10K) Uses TCP Flow/CqgnClient Side
gestion Control

IPV6 Anycast Routing Metric Little (routing data and Internal Network

queries)
Harvest Latency Little (~1K) Server Side
HOPS Routing Metric Little (routing data and Internal Network

queries)
DistributedDirector| Routing Metric Little (routing data anf Server Side and

remote queries) Internal Network

Available
Bandwidth,
Packet Loss Little (local reports
SPAND Probability and queries) Client Side

TABLE 1. Summary of Previous Work compared to SPAND

each peer cache, and the first to begin responding withthe information about the distance between the replica
positive answer is selected and the other connections asée and the client.

closed. Other proposals [10] rely on geographic locatio
for selecting the best cache location when push-cachi
Web documents.

Fhe problem with many of these approaches is that one-
r‘\%ay latency, geographic location, and hop count are
often poor estimates of actual completion time. Other
There are also preliminary designs for network-baseavork [5][17] shows that hop count is poorly correlated
services to aid in server selection. IPV6’s Anycastwith available bandwidth, and one-way latency does not
[11][18] service provides a mechanism that directs a clitake available bandwidth into account at all. Even those
ent’'s packets to any one of a number of hosts that repreystems that provide better performance metrics [5] rely
sent the same IP addresses. This service uses routing each end host independently measuring network per-
metrics as the criteria for server selection. The Hostormance.

Proximity Service (HOPS) [9] uses routing metrics suc
as hop counts to select the closest one of a number

hﬁ{lother design choice to consider is where the system
candidate mirror sites.

ust be deployed. A system that is deployed only at the
endpoints of the network is easier to maintain and
Cisco’s DistributedDirector [8] product relies on mea-deploy than a system that must be deployed inside the
surements from Director Response Protocol (DRP)nternal infrastructure, and a system that is deployed
servers to perform efficient wide area server selectiononly at the client side is easier to deploy than a system
The DRP servers collect Border Gateway Protocothat relies on client and server side components.

(BGP) and Interior Gateway Protocol (IGP) routing rapie 1 summarizes the previous work in this area. The

table metrics between distributed servers and C”emssignificant shortcomings of existing network perfor-
When a client connects to a server, DistributedDirectananCe discovery and server selection systems are:

contacts the DRP server for each replica site to retrieve

¢ Introduction of new traffic into the network that can
quickly become significant when compared to “use-
ful” traffic.

/sec)

* Reliance on measurements from a single host, which £
are more often redundant and inaccurate than mea-2
surements from a collection of hosts. =

0]

* Use of metrics such as hop count, latency, and geo-
graphic location as imprecise estimates of available
bandwidth.

We discuss these shortcomings further in the next sec-
tion.

hput (k

roug

%> 4 6 8
Elapsed Time (Thousands of Seconds)

10 12 14 16 18 20

Th

3. Passive and Cooperative Measurements Figure 1. Throughput from UC Berkeley to IBM

The goal of our work is to provide a unified repository during a 5 hour daytime period

of actual end-to-end performance information for appli-

. . . 1
cations to consult when they wish to determine the net- >, 4
work performance to distant Internet hosts. Our = 0.8
approach addresses the shortcomings of previous work-% 0'7
in 2 ways: (1) relying solely on passive rather than g '

. O 06
active measurements of the network, and (2) sharingy 05
measurement information between all hosts in a local g 0'4
network region. In this section we show the potential é 0'3
benefits and challenges of using shared, passive mea-"-jcs 0'2
surements to predict network performance instead of £ 0'1
using isolated, active measurements. 8 .0

50 100 150 200 250 300 350 400 450

3.1 Network Performance Stability Throughput (kilobits/sec)

In order for past transfers observed by hosts in a region _.

to accurately predict future performance, the network ' '9ure 2. CDF of throughput from UC Berkeley to
. . IBM: initial 30 minutes

performance between hosts must remain relatively sta-

bI(_a for pe_riods_gf tir_ne on the order of minutes. Without,:igure 1 shows the raw throughput measurements as a
this predictability, it would be impossible for shared fnction of time over the 5 hour period. We see that in
passive measurements of the network to be meaningfuhe first 30 minutes of the trace, one group of measure-
Past work has shown evidence that this is true for somgens is clustered around 350 kilobits/sec (presumably
Internet hosts [2][20]. We wanted to verify these result§pe available bandwidth on the path between UC Berke-
in a different scenario. ley and IBM). A smaller group of measurements has
To understand more closely the dynamics of networkower throughputs, at 200 kilobits/sec and lower. This
characteristics to a distant host, we performed a corsecond group of connections presumably experiences
trolled set of network measurements. This consisted gine or more packet losses. This clustering is more
repeated HTTP transfers between UC Berkeley ang@learly shown in Figure 2, the cumulative distribution
IBM Watson. For a 5 hour daytime period (from 9amfunction (CDF) of throughputs during the first 30 min-
PDT to 2pm PDT), a Web client at UC Berkeley period-utes of the trace. As the day progresses, two things
ically downloaded an image object from a Web serveghange. The available bandwidth decreases as the day
running at IBM Watson. Although this measurement isprogresses, and a larger fraction of transfers experience
clearly not representative of the variety of connectivityone or more packet losses. This effect is shown in
and access patterns that exist between Internet hostsFitgure 3, the cumulative distribution function of
allowed us to focus on the short-term changes in nethroughputs for the entire 5 hour period. More samples
work characteristics that could occur between a pair ofre clustered around lower throughput values and there
well-connected Internet hosts separated by a large nuris more variation in the available bandwidth. However,
ber of Internet hops. there is still a noticeable separation between the two
groups of throughput measurements.

1 % 1
2 09 @ 0.9
5 08 S 08 Without Sharing
C .
O o6
3 0 0.6
0.5 o
() L 05
= 04 o .
T 03 a 04 With
—_— (V- .
2 02 © 03 Sharing
S 01 5 02 —
O , 5 0.1
0 50 100 150 200 250 300 350 400 450 &
L] 10100 1000 10000 100000

Throughput (kilobits/sec) Time between network changes

Figure 3. CDF of throughput from UC Berkele
g to IBM: full Sthur period y Figure 4. The benefit of sharing. Figure shows the

fraction of network probes that are necessary as a

This distribution of performance suggests that althoughfunCtlon of the time between network state changes

the distribution of throughputs changes as the day. 5ssume that the time between significant network

progresses, a system like SPAND could still providechanges is a fixed valde then if f,,-t>A, then the cli-
meaningful performance predictions. Although the per- !

S ent must make a probe to determine the new network
formance distribution of the early part of the day and the,, - .- aristics. If.,-t<A, then no probe is necessary.

Igte.r part of the day are quite different, they each havg ¢ . antioned previously [2][20], an appropriate value
lifetimes of tens of minutes or more. Even when aggres . a'is on the order of tens of minutes

gating all the different performance measurements for

the entire 5 hour period, approximately 65% of theFigure 4 shows the results of this analysis for a particu-
throughput samples are within a factor of 2 of thelar client-side trace consisting of 404780 connections
median throughput. from approximately 600 users over an 80 hour time

period [23]. The x-axis represents the tilibetween

3.2 Shared Measurements: Benefits and Challenges network changes, and the y-axis represents the fraction
V\% network probes that are necessary. There are two
gurves in the figure. The upper curve represents the
umber of probes that are necessary if no sharing
etween clients is performed, and the lower curve repre-
ents the number of probes that are necessary if clients
hare information between them. The upper curve

Using shared rather than isolated measurements allo
us to eliminate redundant network probes. If two host
are nearby each other in terms of network topology, it i
likely that they share the same bottleneck link to a
remote site. As a result, the available bandwidth the

measure to this site is likely to be very similar [2]. . -~ u S
Therefore, it is unnecessary and undesirable for each 8189".]8 af=3D10 ;econds bepause of the "sessionizing” of
these hosts to independently probe to find this informa|_nd|V|duaI connections described above. We see that the
tion--they can learn from each other. number qf probe; thgt are necessary when chents: s_hare
network information is dramatically reduced. This is
To quantify how often this information can be sharedevidence that a collection of hosts can eliminate many

between nearby hosts, we examined Internet usage pagdundant network probes by sharing information.

terns by analyzing client-side Web traces. From thesg

traces, we determined how often a client would need t he use of shared measurements is no_t without Chal'
enges, however. Measurements from arbitrary hosts in a

probe the network to determine the network perfor- =") L
mance to a particular Web server when shared inform egion cannot be combined. Fpr_example, itis necessary
tion was and was not available. o} separateT modem users W_|th|n a local domain from
LAN users in the same domain, because the two sets of
More formally, for a single Web server, we can represengsers may not share the same bottleneck link. Similarly,
the list of arrival times from a single client (or a sharedhosts in a local domain may use different TCP imple-
collection of clients) as a sequencg ...,). If the mentations that result in widely varying performance.
difference between,t; and f is extremely small (less The challenge is that it is often difficult to determine
than ten seconds), we merge the events together intosgho the set of “similarly connected” hosts within an
single Web browsing “session.” Clearly, the first arrival jocal domain are. We can use the topology of the local
always requires a probe of the network. In addition, ifdomain along with post-processing on past measure-

o

g number of requests per second that such a system can
8 90 . support as a function of the number of mirror sites for
o»n 800 ’ two systems: one without probe traffic, and one with
o 700t \Without probe traffic 7 probe traffic. We see _that the system with_out probe traf-
Q 600 7/ fic scales perfectly with the number of mirrors. For the
8 \ 7 system with probe traffic, however, for each Web
= 500 7 . . .

'8 s request that is handled by a single mirror, a network
g 409 7 probe must be sent to all of the other mirrors. On the
< 300 - server side, this means that for each Web request a par-
0 q p
D 200) . ticular mirror site handles, it must also handle a probe
Q 100 With probe traffic request from clients being serviced at every other mirror
g 0 location. As the number of mirrors increases, the num-
0'd 0 2 4 6 8 10 12 14 16 ber of requests served per second becomes limited by

. . the additional probe traffic.
Number of mirror sites P

There are challenges in using passive network measure-
Figure 5. The effect of probe traffic on scalability. ments, however. Using passive rather than active mea-
Figure shows requests/second that mirrors can serve surements is difficult for several reasons:

as a function of the number of mirror sites))
* Passive measurements are uncontrolled experiments,

ments to determine which network subnets exhibit sig- and it can be difficult to separate network events
nificantly different performance. The system can then from those occurring at the endpoints, such as a rate-
coalesce these subnets together into classes of equiva- limited transmission or a slow or unreachable server.

lent connectivity and avoid aggregating measurementg Passive measurements are only collected when a

from dissimilar hosts. host contacts a remote site. In order to have timely
measurements, hosts in a local domain must visit

_ _ _ distant hosts often enough to obtain timely informa-
The use of passive measurements avoids the introduc- tjon. If this is not true, the client may obtain either

tion of useless probe traffic into the network. This gut-of-date information or no information at all.
advantage over active probing systems comes at tf

3.3 Passive Measurements: Benefits and Challenges

expense of making the job of measuring available ban otr our pur;:oseks, therte 'S 30 nged_tct) d'St'?gu:fSh
width more difficult. However, this advantage is critical N w::-en.tne_wor evehn ts;lan En point even s.t' 'ta
since probe traffic can sometimes become a measura jgmote site IS unreachable or has poor connectivity
fraction of the traffic handled by busy Web servers. Fo ecause it is down or overloaded, that information is just

example, consider the scenario of mirror sites that repli"EIS useful. It is important to d|st|ngu.|sh between rate-
cate the same content. In an active probing system, a ¢ ontrolled and bulk transfer connections so the perfor-
ent must first contact each of the mirror sites tomance numbers from one are not used to estimate per-

determine which mirror is the “best” This slows down formance for the other. We can distinguish between rate-

servers with probe-only traffic and limits the scalability cor(;tralll:()ag andtbulk trt::msfer trgr;imssm?_s th usmlg TCP
of such a system. an port numbers an e application classes

described in Section 4.

The following thought experiment shows why. Consider.

a Web server with a variable number of mirror sites:r0 identify if passive measurements can provide timely

Assume that each mirror site is connected to the Interné@format'on’ we must analyze typical Internet usage pat-

via a 45 Mbit/second T3 link and assume that the meeﬁ’?rnS and determine how often passive techniques lead

transfer size is 100 kbytes and the mean probe size isf[% out-of-date information. We can use the results shown

kbytes. These are optimistic estimates; most Web trand? Fligure 4 to see this. We can model the arrival pattern
f clients as a sequence of times. {,) as before. In the

fers are shorter than 100 kbytes and many of the nef! Cll€ . .
work probing algorithms discussed in Section 2.1Passive case, whep {-ti>4, instead of saying that an

introduce more than 6 kbytes. From a network perspe ictive probe is necessary, we say that the passively col-

tive, an estimate of the number of requests per seco tgctedf |tpf0rrrt1r?tltCJn hast.becomg: O.Ut of date. SO. the fratcl:-
that the collection of mirrors can support is the aggre—Ion ottime that an active probe 1S necessary 1S exactly

gate bandwidth of the mirrors’ Internet links divided bythe same as the fraction of time that passive measure-

the sum of the average Web transfer size and any assofjents become out of date. As mentioned earlier, the

ated probe traffic for the transfer. Figure 5 shows theapproprlate value foh is on the order of tens of min-

Client

@ | Internet
Gateway to
Packet Local Domain
Capture Host
—p =
Performance 3D Data
=3D Performance
Reports
--------- » =3D Performance
Client Requests
Figure 6. Design of SPAND

utes. We see that even a relatively small collection of
hosts can obtain timely network information when shar 15 16 31
ing information between them. If we assume that net; Version Type Transport Pr.| App.Class
work conditions change approximately every 15 Source IP Address
minutes, then the passive measurements collected from
this relatively small collection of 600 hosts will be accu- Source Port Dest Port
rate approximately 78% of the time. For larger collec- Dest IP Address
tions of hosts (such as domain-wide passive : :
measurements), the availability of timely information NTP Timestamp, most sig word

will be even greater, as shown in Section 5.3. NTP Timestamp, least sig word

4. Design of the SPAND System Length of Sample in octets
In this section, we describe the design for SPAND Duration of Sample in ms
including steps for incremental deployment in existing Total Packets Received

networks.

Total Packets Lost

Figure 6 shows a diagram of the components of

SPAND. SPAND is comprised @lients, Performance Packet Size in octets
Servers, and Packet Capture Hostdients have modi-)
fied network stacks that transnierformance Reports Figure 7. Format of a Performance Report

to Performance Servers. These reports contain inform%- lications use transport connections in the same wa
tion about the performance of the network path betwee pp P Y-

the client and distant hosts. The format of a Performanc%ome applications (such a; Weh browsers and FTP pro-
rams) use TCP connections for bulk transfers and

R rt is shown in Figure 7, and incl rameter .
eport 1S Sho gure 7, and includes paramete epend on the reliability, flow control, and congestion

such as connection bandwidth and packet loss statistic:cs(.)ntrol abstractions that TCP connections provide
The Transport Protocol field indicates the type of trans- P '

port connection (UDP or TCP) used by the initiator 0prpllcatlons such as telnet primarily use TCP connec-

. . o . . _tions for reliability and not for flow or congestion con-

the connection. The optional Application Class field is C o 2
. . . o . rol. Other applications such as RealAudio in TCP mode
hint as to the way in which the application is using the) .
. o . use TCP connections for different reasons such as the
transport connection. If an Application Class is not pro-_ ...
: ability to traverse firewalls. The transport level network
vided, the Performance Server can use the Port Number

and Transport Protocol fields to make a guess for thgerforr_nance reporfced from different applications may
o vary widely depending on the way the transport connec-
application class.

tion is used, and we want to separate these performance
The Application Class field is desirable because not alteports into distinct classes.

0 15 16 31 generate performance reports, especially since many cli-

Version Type Protocol App. Class ents may nee(_j modifications to their protocol gtacks to
make the statistics necessary for SPAND available. To
Request IP Address quickly capture performance from a large number of end
clients, a Packet Capture Host can be deployed that uses
Figure 8. Format of a Performance Request a tool such as BPF [16] to observe all transfers to and
from the clients. The Packet Capture Host determines
0 . 15 16 31 the network performance from its observations and
Version Type Protocol |App. Class sends reports to the Performance Server on behalf of the

Response IP Address clients. This allows a large number of Performance
Reports to be collected while end clients are slowly
upgraded. The weakness of this approach is that a num-

Expected Available Bandwidth (kbits/sec)

Std Dev of Available Bandwidth (kbits/sec) per of heqristics rr_1ust be _emplo_yed to recreate ap_plica—
— tion-level information that is available at the end client.
Expected Packet Loss Probability Section 5.2 describes these heuristics in more detail.

Std Dev of Expected Loss Probability 4.2 Example Scenario

Figure 9. Format of a Performance Response This example scenario using Figure 6 illustrates the way
in which the agents that make up SPAND coordinate.
) : L Assume that a user is browsing the Web. As the user is
change the way in which a conqect|on IS u§ed. I:OBrowsing, the user’s application generates Performance
example,_a passive FTP connection may SV\."tCh fronheports and sends them to the local Performance Server
transporting control information to transferring bulk)g1 in the figure). Also, a Packet Capture Host deployed

(rj]ata. 3;mlltar1]rlyka pe.rs(;stenr: HTIhP 11 canlleclil_on mta at the gateway from the local domain to the Internet gen-
ave idle Inink® periods where the USer 1S looking at &y 4105 performance Reports on behalf of the hosts in the
Web page as well as bulk transfer periods. To properl

L o Yomain (2 in the figure). Later, some other user reaches
account for all these variations, we need applications t

tak tinth ; i our t page where she must select between mirror locations.
axe part in the pertormance reporting process. DUritook., » \yep prowser makes a Performance Query to the
kit provides an API which enables applications to start

focal Performance Server and gets a response (3 in the

measurement period on a connection as well as end ttf'i%ure) The Web browser uses the Performance

ImealsFl)Jrefment andsautomaucally send a report to thﬁesponse to automatically contact the mirror site with
ocal Performance Server. the best connectivity.

A Performance Server receives reports from all clients

in a local area and must incorporate them into its perforg Implementation Status and Performance
mance estimates. The server maintains different esti-

mates for different classes of applications as well adn this section, we describe the current implementation
different classes of connectivity within its domain. In Status of SPAND and present initial performance mea-
addition, the Performance Server can also identifysurements from a working SPAND prototype.

reports that have possibly inaccurate information an
discard them. Clients may later query the information in™
the server by sending it a Performance Request contai&PAND is organized as a C++ toolkit that provides
ing an (Address, Application Class) pair. The servewobject abstractions for the agents described above.
responds to it by returning a Performance Response f@pplication writers can create objects for agents such as
that pair, if one exists. This response includes the PeRerformanceReporter(), PerformanceReportee(), Perfor-
formance Server’s estimates of available bandwidth anthanceRequestor(), and PerformanceRequestee() and
packet loss probability from the local domain to theuse these objects to make, send or receive reports, or
specified foreign host. The request and response formatsake queries about network performance. We also have
are shown in Figures 8 and 9. partial implementations of the toolkit in Java and Perl.

In addition, many applications may intermittently

1 Implementation Details

Using the SPAND toolkit, we have implemented the
Packet Capture Host, Performance Server and a simple
The system described in the previous section is an ideg@dxt-based SPAND Client. We have also written several
endpoint we would like to reach. In practice, it may beclient applications that use the SPAND toolkit to make
difficult to immediately modify all client applications to yse of Performance Reports. We have written a HTTP

4.1 Mechanisms for Incremental Deployment

proxy using the Perl libwww [14] library and the 70

SPAND toolkit that modifies HTML pages to include % %

informative icons that indicate the network performanceS 60 Reports———» 30 T
to a distant site mentioned in a hyperlink. This is not th%’ 50 25 %
first application of this type; others have been develope Q
at IBM [3] and at Boston University [5]. However, our 40 20 @
application uses actual observed network performanc@ 30 Hosts! 115 g
from local hosts to make decisions about the icon tor(% 20 10 =
insert in the HTML page. 3 S
We have also written a Java-based application th 10 5 %

allows the user to qbtaln an overview of th_e conn_ect|_/|ty 00 T 5 3 4 5 6 7 8 o 100

from a local domain to distant hosts. This application .

shows the number of performance reports collected for Elapsed Time (Thousands of

all hosts as well as the details about the reported net- Seconds)

work statistics for a given host. This tool was used toFigure 10. Cumulative number of reports generated
generate the graphs in Section 3.1. and hosts reported about as a function of time

5.2 Packet Capture Host Policies
1. How long does it take before the system can ser-

Because our Packet Capture Host is not located at end vice the bulk of Performance Requests?

clients, it does not have perfect information about the
way in which applications use TCP connections. This 2. In the steady-state, what percentage of Perfor-
can lead to inaccurate measurements of network charac- mance Requests does the system service?
teristics such as bandwidth. For example, if a Web
browser uses persistent or keep-alive connections to
make many HTTP requests over a single TCP connedo test the performance of our system, we deployed a
tion, then simply measuring the observed bandwidtiPacket Capture Host at the connection between IBM
over the TCP connection will include the gaps betweerResearch and its Internet service provider. Hosts within
HTTP requests in the total time of the connection, leadlBM communicate with the Internet through the use of a
ing to a reduction in reported bandwidth. To account foSOCKSv4 firewall [21]. This firewall forces all internal
this effect, we modified the Packet Capture Host to us8osts to use TCP and to initiate transfers (i.e. servers can
heuristics to detect these idle periods in connectiongiot be inside the firewall). The packet capture host mon-
When the Packet Capture Host detects an idle period, itored all traffic between the SOCKS firewall at IBM
makes two reports: one for the part of the connectioiResearch and servers outside IBM’s internal domain.
before the idle period, and another for the part of thd he measurements we present here are from a 3 hour
connection after the idle period. The ratio measurementiong weekday period. During this period, 62,781 perfor-

in Section 5.3 include systems with and without the usénance reports were generated by the packet capture host
of these heuristics. Another example is when Commoffior 3,008 external hosts. At the end of this period, the
Gateway Interface (CGI) programs are executed as paRerformance Server maintained a database of approxi-
of HTTP requests. The idle time when the server is exenately 60 megabytes of Performance Reports. Figure 10
cuting the CGI program leads to an artificially low shows the cumulative number of reports generated and
reported bandwidth and does not reflect the performandegosts reported about as a function of time.We see that
of other HTTP requests to the same server. Ideally, thabout 10 reports are generated per second, which results
Packet Capture Host would treat these connections asaa network overhead of approximately 5 kilobits per
different Application class. For the purposes of thesesecond. We also see that while initially a large number
measurements, however, the Packet Capture Hosf reports are about a relatively small number of hosts
excluded the idle periods and generated multiple Perfofthe upward curve and leveling off of the curve), as time

3. How accurate are the performance predictions?

mance Reports as above. progresses, a significant number of new hosts are
reported about as time progresses. This indicates that the
5.3 Performance “working set” of hosts includes a set of hosts who are

freported about a small number of times. This finding is
reinforced in Figure 11, which shows a histogram of the
number of reports received for each host over the trace.
We see that a large majority of hosts receive only a few

There are several important metrics by which we ca
measure the performance of the SPAND system:

8 g
$:
% :('B‘ 14 O 0.8
252 7
> § 12 Gé_g 0.6
5 S s
S O 6 X ¢ 04
o 4 el ¥p)
9 2 [}
L o 0.2
0 10 T T0° T g'
Host Number I 0
10 15 20
Figure 11. Histogram of number of Performance Performance Reports (Thousands)

Reports received per host. The x axis is on a log scale.
Figure 12. Probability that a Performance Request

] .] can be Serviced as a function of the number of
reports, while a small fraction of hosts receive most of Performance Reports.

the reports. The mean number of reports received per
host was 23.67 and the median number of reports 1
received per host was 7.

Without App
08 Heuristics= =— =
To test the accuracy of the system, we had to generate) With App

sequence of Performance Reports and Performance_cés Heuristics
Requests to test the system. Since there are no applica@ 0.6
tions running at IBM that currently use the SPAND sys- 0‘
tem, we assumed that each client host would make a>
single Performance Request to the Performance Servet
for a distant host before connecting to that host, and a=
single Performance Report to the Performance Servers
after completing a connection. In actual practice, appli- O 0 164 1/16 1/4 1 4 16 64
cations using SPAND would probably request the per- Ratio of Expected to Actual Throughput
formance for many hosts and then make a connection to
only one of them. The performance of the SPAND sys- Figure 13. CDF of ratio of expected throughput
tem on this workload is summarized in Figures 12 and (as generated by the Performance Server) to
13. actual throughput (as reported by the client). The

X axis is on a log scale
Berformance Server is first brought up, there is enough
locality in client access patterns that it can quickly ser-
vice the bulk of the Performance Requests sent to it.

ility

0.4

0.2

When a Performance Server is first started, it has n
information about prior network performance and can-
not respond to many of the requests made to it. As the
server begins to receive performance reports, it is able to
respond to a greater percentage of requests. Determinifi@ measure the accuracy of Performance Responses, for
the exact “warmup” time before the Performance Serveeach connection we computed the ratio of the through-
can service most requests is important. Figure 12 showaut returned by the Performance Server for that connec-
the probability that a Performance Request can be sefion’s host with the throughput actually reported by the
viced by the Performance Server as a function of th&acket Capture Host for that connection. Figure 13 plots
number of reports since the “cold start” time. We saythe cumulative distribution function of these ratios. The
that a request can be serviced if there is at least one ppe-axis is plotted on a log scale to equally show ratios
viously collected Performance Report for that host irthat are less than and greater than one. Table 2 shows the
the Performance Server’s database. As we can see frgprobability that a Performance Response is within a fac-
the graph, the Performance Server is able to service 70%r of 2 and 4 of the actual observed throughput. We see
of the requests within the first 300 reports (less than that Performance Responses are often close to the actual
minute), and the Performance Server reaches a steadyeserved throughput. Obviously, different applications
state service rate of 95% at around 10,000 reportwill have different requirements as to the error that they
(approximately 20 minutes). This indicates that when &an tolerate. Factors of 2 and 4 are shown only as repre-

1.
% within % within
System factor of 2 factor of 4
Base System 59.08% 84.05% 2
Base System +
App Heuristics 68.84% 90.18%

TABLE 2. Accuracy of Performance
Responses

sentative data points.

Closer examination of transfers that result in very large
or small ratios indicate a few important sources of error
in the predictions. Some servers have a mixture of small

and large transfers made to them. As a result of TCP 3.

protocol behavior, the larger transfers tend to be limited
by the available bandwidth to the server whereas the
smaller transfers tend to limited by the round trip time to
the server. We plan to incorporate round trip measure-
ments into a future version of the SPAND Performance
Server to address this problem. In addition, the heuris-

tics used to recreate end client information are effective 4.

but not always accurate. Many poor estimates are a
result of pauses in the application protocol. This source
of inaccuracy will vanish as more end clients participate

in the SPAND system and less reliance is made on the
Packet Capture Host's heuristics.

6. Conclusions and Future Work

There are many classes of Internet applications that
need the ability to predict in advance the network per-
formance between a pair of Internet hosts. Previous
work providing this information has depended on iso-
lated, active measurements from a single host. This does
not scale to many users and does not provide the most
accurate and timely information possible. In this paper,
we have proposed a system called SPAND (Shared Pas-
sive Network Performance Discovery) that uses passive
measurements from a collection of hosts to determine
wide-area network characteristics. We have justified the
design decisions behind SPAND and presented a
detailed design of SPAND and mechanisms for incre-
mental deployment.

Initial measurements of a SPAND prototype show that it
can quickly provide performance estimates for approxi-
mately 95% of transfers from a site. These measure-
ments also show that 69% of these estimates are within a
factor of 2 of the actual performance and 90% are within
a factor of 4.

We believe that a number of techniques will improve the
accuracy of SPAND’s performance estimates.

6.

As clients are modified to transmit their own Per-
formance Reports, the accuracy of the reports will
improve. This will in turn improve the quality of
the estimates that the Performance Server provides.

. The Performance Server currently returns the

median of all past measurements as an estimate of
future performance. The measurements presented
in this paper were made over a relatively short time
scale. As shown in Section 3.1, the distribution of
network performance changes as time passes. To
provide better estimates, the Performance Server
must give newer Performance Reports greater
importance and discard information from older
reports.

The performance of many transfers is limited by
the round trip time to the server instead of the
available bandwidth. We can improve the quality of
SPAND'’s performance estimates by providing
round trip estimates as part of the service and using
both throughput and round trip times to predict the
duration of a transfer.

The Performance Server currently combines the
reports of all clients within its domain. It makes no
attempt to eliminate poorly configured or misbe-
having hosts. Preventing these hosts from impact-
ing the estimates of network performance should
reduce persistent sources of error.

. The Performance Server estimates performance to

all IP addresses outside its domain independently.
However, network performance to many remote
hosts is identical since communications to these
hosts share the same bottlenecks. For example, the
performance of most connections between the
United States and Europe is probably limited by a
shared transatlantic bottleneck link. We plan to add
Aggregation Experimentto the Performance
Server that allow it to analyze the distribution of
reports to remote hosts over time and combine dis-
tant hosts into classes of equivalent connectivity.
The server can then use reports from one of the
hosts in a class to make or update estimates about
the connectivity of other hosts in the same class.

Currently, the Packet Capture Host only generates
Performance Reports for the bulk transfer Applica-

tion Class. We plan to modify the Packet Capture

Host to generate Performance Reports for other
Application Classes such as telnet and server pro-
gram execution (CGI programs).

7. Acknowledgments [11]

Thanks to Vincent Cina and Nick Trio for providing the
access necessary to install SPAND at IBM. Hari Bal{12]
akrishnan, Steve Gribble, Todd Hodes, and Venkata
Padmanabhan provided many useful comments on egr3)
lier versions of this paper that helped improve the pre-
sentation. This work is supported by DARPA contract
DAAB07-95-C-D154 and grants from the California [14]
MICRO Program, Hughes Aircraft Corporation,
Ericcson, and IBM. Mark is supported by an IBM fel- [15]
lowship.

8. References

[1] MArlitt and C.L. Williamson. Web Server
Workload Characterization: The Search for In-
variants. InProc. ACM SIGMETRICS '96Vay
1996.

[2] H.Balakrishnan, S. Seshan, M. Stemm, and R.H[17]
Katz. Analyzing Stability in Wide-Area Network
Performance. IrProc. ACM SIGMETRICS '97

(16]

June 1997. [18]
[3] R.Barrett, P. Maglio, and D. Kellem. How to
Personalize the Web. Proc. CHI '97, 1997. [19]

[4] J.CBolot. End-to-End Packet Delay and Loss Be-
havior in the Internet. Iifroc. ACM SIGCOMM [20]
'93, San Francisco, CA, Sept 1993.

[5] R.L. Carter and M. E. Crovella. Dynamic server
selection using bandwidth probing in wide-area[21]
networks. Technical Report BU-CS-96-007,
Computer Science Department, Boston Universi-
ty, March 1996. [22]

[6] R.L. Carter and M. E. Crovella. Measuring bot-
tleneck-link speed in packet switched networks.
Technical Report BU-CS-96-006, Computer Sci-
ence Department, Boston University, March
1996.

[71 A.Chankhunthod, P. Danzig, C. Neerdaels, M.F.
Schwartz, and K.J. Worrell. A Hierarchical Inter-
net Object Cache. IRroceedings 1996 USENIX
SymposiumSan Diego, CA, Jan 1996.

[8] Cisco Distributed Director Web Page. http://
www.cisco.com/warp/public/751/distdir/in-
dex.html, 1997.

[9] P. Francis. http://www.ingrid.org/hops/wp.html
1997.

J. Gwertzman and M. Seltzer. The Case for Geo-
graphical Push-Caching. IRroc. Fifth IEEE
Workshop on Hot Topics in Operating Systems
May 1995.

(23]

[10]

R. Hinden and S. Deering? Version 6 Address-
ing Architecture RFC, Dec 1995. RFC-1884.

V. Jacobson. Congestion Avoidance and Control.
In Proc. ACM SIGCOMM 88August 1988.

S. Keshav. Packet-Pair Flow Conti&EE/ACM
Transactions on Networkingebruary 1995.

libwww-perl-5 home page. http://www.linpro.bo/
lwp, 1997.

M. Mathis and J. Mahdavi. Diagnosing Internet
Congestion with a Transport Layer Performance
Tool . InProc. INET '96 Montreal, Canada, June
1996.

S. McCanne and V. Jacobson. The BSD Packet
Filter: A New Architecture for User-Level Packet
Capture. InProc. Winter '93 USENIX Confer-
ence San Diego, CA, January 1993.

J. C. Mogul. Network Behavior of a Busy Web
Server and its Clients. Technical Report 95/5,
Digital Western Research Lab, October 1995.

C. Partridge, T. Mendez, and W. Millikehlost
Anycasting ServicdRFC, Nov 1993. RFC-1546.

pathchar — A Tool to Infer Characteristics of In-
ternet Paths. ftp://ee.lbl.gov/pathchar, 1997.

V. Paxson.Measurements and Analysis of End-
to-End Internet Dynamic®hD thesis, U. C. Ber-
keley, May 1996.

Socks Home Page. http://www.socks.nec.com,
1997.

W. R. StevensTCP/IP lllustrated, Volume .1
Addison-Wesley, Reading, MA, Nov 1994.

UC Berkeley Annex WWW Traces. http:/
www.cs.berkeley.edu/ gribble/traces/index.html,
1997.

