
LISP AND SYMBOLIC COMPUTATION: An International Journal, 5, 343—375, 1993
© 1993 Kluwer Academic Publishers – Manufactured in The Netherlands

First-Class Extents*

SHINN-DER LEE (sdlee@cs.indiana.edu)

DANIEL P. FRIEDMAN (dfried@cs.indiana.edu)

Computer Science Department
Indiana University
Bloomington, IN 47405, USA

Keywords: Identifier, Variable, Location, Scope, Extent, State

Abstract. Adding environments as first-class entities to a language can greatly enhance
its expressiveness. But first-class environments rely on identifiers, the syntax of variables,
and thus do not mesh well with lexically-scoped languages. We present first-class extents
as an alternative. First-class extents are founded upon lexical variables with dynamic
extent. They are defined directly on the variables themselves rather than on their syntax.
They therefore do not cause variable name capturing problems that plague first-class
environments. Moreover, distinguishing variables from locations allows first-class extents
to be orthogonal to imperative and control features.

1. Introduction

Environments are maps from identifiers, variable names, to locations that
hold the values of the variables. They can be used to model various pro-
gramming mechanisms and concepts such as closures, structures, abstract
data types, classes, and inheritance. Adding environments as first-class
entities to a language therefore can greatly enhance its expressiveness, as
exemplified by MIT Scheme [1, 13], Symmetric Lisp [7], Rascal [9], and
reflective languages such as 3-Lisp [15], IR [10], and Refci [14].

First-class environments, however, can easily lead to context anomalies
due to inadvertent variable name capturing. In particular, they do not
go well with lexical scoping where variable renaming is a crucial meaning-
preserving program transformation. Indeed, lexical variables are nameless
in nature, which is why they can be renamed. Such environments also cause
problems for macros and optimization techniques such as unfolding. In fact,
any program transformation that involves the renaming, introduction, or
elimination of variables could potentially alter the domains of environment
maps and therefore would interfere with first-class environments.

*This work was partially supported by the National Science Foundation under grants
CCR 87-02117, CCR 89-01919, and CCR 90-00597.

344 LEE AND FRIEDMAN

First-class environments are founded on identifiers, the syntax of vari-
ables. They are the source of their expressiveness, but are also the cause
of their context anomalies. Our alternative is to trade some flexibility of
first-class environments for the security and modularity of lexical variables.
We opt to rely on the variables themselves rather than rely on their names.
That is, our first-class entities, first-class extents, are maps whose domains
are lexical variables instead of identifiers. The define-use dependency of
lexical variables is a static property. Renaming, introduction, and elimina-
tion of lexical variables thus do not cause inadvertent variable capturing
problems.

First-class extents allow a variable to be defined in more than one extent,
which means that a variable can denote multiple values. The traditional
view of equating a variable with a location, which is the implementation
of the variable, is inappropriate, because there would then be a one-to-
many relation between locations and values. We are therefore prompted
to distinguish variables from locations. Thus, a variable can denote mul-
tiple locations, each holding one of the several values of the variable. The
distinction between variables and locations also makes first-class extents
orthogonal to side effects. We can therefore treat the two mechanisms
independently.

With the distinctions among identifiers, variables, and locations, there
are three stages in determining the value of an identifier. They are modeled
by the following three maps p, e, and B:

Syntax Implementation Contents
of P Variable E of B of

Variable Variable Variable

The map p translates an identifier into the variable it denotes. Next, the
map E transforms the variable into a location. Then, the map 0 retrieves
the contents of the location, which is the value of the variable. Thus,
the composition of e and 0 defines the denotation of a variable. The map p
serves primarily to help visualize the variable; it should not play a dominant
role in determining its semantics.

The map B is traditionally called a store. If a semantic entity always
uses the active store at the point of its definition to determine the contents
of its locations, it is said to have a static store. A semantic entity with a
static store is not sensitive to side effects on its locations by other semantic
entities. Conversely, a semantic entity that uses the active store at the
point of its invocation to determine the contents of its locations is said to
have a dynamic store. An entity with dynamic store is sensitive to side
effects. Thus, stores model the state of locations. Hence we also call them

FIRST-CLASS EXTENTS 345

state maps. The map p is usually called an environment. Analogous to
states, a semantic entity can be associated with either a static environment
or a dynamic environment. With a static environment, an identifier in a
semantic entity always denotes the same variable. With a dynamic envi-
ronment, however, an identifier in an entity can denote different variables
depending on the different active environments at the points the entity is
invoked. Thus, environments model the scope of identifiers. Hence, we also
call them scope maps. The new map e is called an extent. It models the du-
ration during which its locations are accessible. Again, analogous to states
and scopes, a semantic entity can be associated with either a static extent
or a dynamic extent. With a static extent, a variable is always associated
with the same location. With a dynamic extent, however, a variable can
denote different locations in the different active extents at the points the
entity is invoked.

So, our first-class extents can be characterized as having dynamic extent
and state maps, but the scope map is static:

static dynamic dynamic

Identifier
scope > Variable extent stateLocation Value

That is, they are based on statically-scoped variables with dynamic extent.
They enjoy the security and modularity of static scoping and allow dynamic
association of variables with different locations. On the other hand, first-
class environments have dynamic scope and state maps:

dynamic dynamic

Identifier
scope state(Variable Location) > Value

They allow identifiers to be bound to different variables dynamically. There
is no extent map here since variables are equated with locations.

In the next three sections we add first-class extents to Scheme [2]. Scheme
is our choice as the base language to demonstrate the expressiveness of
first-class extents because it is a lexically-scoped language with imperative
features. In addition, it is small, which simplifies our presentation. In
Section 5 we give a formal description of the extension, in the form of a
denotational semantics. Then, based on the formal semantics, we relate
extents to states. In particular, we demonstrate that first-class extents can
be simulated with assignment and shallow binding. On the other hand,
we also show that extents can provide an alternative characterization of
side effects. Section 6 concludes the work. A detailed description of the
simulation of extents, including a complete source listing, can be found in
the appendix.

346 LEE AND FRIEDMAN

2. Simple Extents

To turn extents into a useful programming mechanism, there must be ade-
quate user-level operations. We start with two of them: make-extent and
with-extent. The first creates new extents and the second evaluates an
expression within the effect of a given extent. To be flexible, the second
operation can be nested so that an expression can be evaluated within the
effect of multiple nested extents.

The expression (make-extent (id exp) ...) evaluates to a new extent
in which each pair (id exp) associates the lexical variable denoted by the
identifier id with a fresh location, which contains the value of the expression
exp. We call the extents created by make-extent simple in order to dis-
tinguish them from the composite extents to be defined in the next section.
The expression (with-extent ext exp) evaluates the expression exp with
the simple extent denoted by the expression ext in effect. It returns the
result of the evaluation of exp. For instance, the following with-extent
expression evaluates to the list (1 44), not (33 44) or (22 44).

(let ((x 1) (y 2))
(let ((foo (let ((x 22))

(make-extent (x 33) (y 44)))))
(with-extent foo (list x y))))

Since variables are lexically scoped, foo is equivalent to

(let ((z 22))
(make-extent (z 33) (y 44)))

where x is renamed to z. The expression (list x y) thus refers to the y
defined in foo, but not the x. Instead, it refers to the outer x. Indeed, due
to the stringent scoping constraint on lexical variables, the location of x
defined in foo is inaccessible.

An expression must be evaluated within the effect of an extent that
defines all the variables referenced in that expression. For instance, in the
evaluation of the above with-extent expression, the variable foo must be
defined in an extent that is currently in effect. To make the extension
of Scheme with the first-class extent features transparent, we assume that
every program is evaluated within the effect of a base (simple) extent that
has a definition for every variable (either global or local) needed by the
program. Thus a pure Scheme program, one that uses none of the first-
class extent features, is evaluated only with respect to the base extent.

The next example (Figure 1) defines an abstract data type of registers.
It takes full advantage of lexical scoping to hide the implementation of

FIRST-CLASS EXTENTS 347

(define make-reg '*)
(define fetch '*)
(define assign '*)

(let ((contents '*))
(set! make-reg

(lambda (val)
(make-extent (contents val))))

(set! fetch
(lambda (reg)

(with-extent reg contents)))
(set! assign

(lambda (reg val)
(with-extent reg (set! contents val)))))

Figure 1: Registers — Extent Implementation.

(define make-reg
(lambda (contents)

(lambda (msg)
(case msg

((fetch) (lambda () contents))
((assign) (lambda (val) (set! contents val)))
(else (error 'register "Unknown message - s" msg))))))

(define fetch
(lambda (reg)

((reg 'fetch))))

(define assign
(lambda (reg val)

((reg 'assign) val)))

Figure 2: Registers — Closure Implementation.

348 LEE AND FRIEDMAN

(define rO '*)
(define rl '*)
(define r2 '*)
(define r3'*)
(define continue '*)

(define registers
(make-extent

(rO (make-reg 0))
(rl (make-reg 0))
(r2 (make-reg 0))
(r3 (make-reg 0))
(continue (make-reg'()))))

Figure 3: Machine Registers.

registers. The three operators are make-reg, fetch, and assign. Make-reg
creates registers, fetch reads from registers, and assign writes to registers.
Each register created by make-reg is a new simple extent that associates a
new location with the lexical variable contents. Since contents is accessible
only to the other two operators, it is free from any inadvertent access.
Such a degree of security would not be available if the simple extents were
founded on the identifier contents, reminiscent of first-class environments.
Moreover, renaming contents would not preserve the behavior of registers.
The security of contents can also be achieved using closures. Figure 2 shows
a typical closure implementation. The extent implementation is intuitively
more appealing because the same pair of operators fetch and assign can
apply to all registers directly without resorting to message passing. There
is no need for a dispatch (i.e., case).

Simple extents can be nested. Nested simple extents are expressed with
nested with-extent expressions. For each variable, the location defined in
an inner simple extent shadows the locations in the outer simple extents.
The innermost location, the one that shadows all the others, is the variable's
effective location. It is the location to which references and assignments of
that variable refer. Operationally, nested simple extents form a stack with
the base extent at the bottom; locations defined in simple extents closer to
the top shadow those in simple extents closer to the bottom. The effective
location of a variable is the location that is closest to the top of the stack.

As an example we develop a simple register machine similar to that de-
scribed by Miller and Rozas [131. The machine has five registers: four
general purpose registers rO, r1, r2, r3, and a continue register recording

FIRST-CLASS EXTENTS 349

(define goto '*)
(define branch '*)
(define call '*)
(define return '*)

(define instructions
(make-extent

(fetch fetch)
(assign assign)
(goto (lambda (label) (label)))
(branch (lambda (test then-label else-label)

(goto (if test then-label else-label))))
(call (lambda (entry-label return-label)

(assign continue
(cons return-label (fetch continue)))

(goto entry-label)))
(return (lambda ()

(let ((return-label (car (fetch continue))))
(assign continue (cdr (fetch continue)))
(goto return-label))))))

Figure 4: Machine Instructions.

the return points of subroutine calls. The registers form a simple extent
registers as shown in Figure 3. In addition to the standard arithmetic and
logic operators, there are six instructions used by the machine: the two
register operators fetch and assign, the unconditional goto, the conditional
branch, the subroutine call instruction call, and the subroutine return in-
struction return. The instructions also form a simple extent instructions;
see Figure 4.

A routine of the machine is also a simple extent. Each of its variables is
associated with a label, in the form of a thunk, that is the entry point of
a non-empty sequence of instructions. By invoking such a label, control is
transferred to the first instruction in the sequence. In order to ensure that
routines are in iterative form [12], each sequence of instructions consists of
a number of assign and fetch instructions followed by one of the other four
control transferring instructions: goto, branch, call, or return. For instance,
Figure 5 shows a routine gcd2 that computes the greatest common divisor
(GCD) of the two numbers found in registers rO and rl. It returns the
answer through register rO. So, to compute the greatest common divisor of
two numbers, the routine is first set up by nesting the three simple extents

350 LEE AND FRIEDMAN

(define gcd2 '*)

(define gcd2
(let ((next '*) (done '*))

(make-extent
(gcd2 (lambda ()

(branch (zero? (fetch rl)) done next)))
(next (lambda ()

(assign r3 (remainder (fetch rO) (fetch rl)))
(assign rO (fetch rl))
(assign r1 (fetch r3))
(goto gcd2)))

(done (lambda ()
(return))))))

Figure 5: GCD Subroutine Of Two Numbers.

(define gcd3 '*)

(define gcd3
(let ((next '*) (done '*))

(make-extent
(gcd3 (lambda ()

(call gcd2 next)))
(next (lambda ()

(assign rl (fetch r2))
(call gcd2 done)))

(done (lambda ()
(return))))))

Figure 6: GCD Subroutine Of Three Numbers.

FIRST-CLASS EXTENTS 351

instructions, registers, and gcd2. Next, the two numbers are loaded into
registers rO and r1 and then a subroutine call to the label gcd2 is issued
with a returning label that reads the answer out of register rO:

(define gcd2-proc
(lambda (a b)

(with-extent instructions
(with-extent registers

(with-extent gcd2
(begin

(assign rO a)
(assign r1 b)
(call gcd2 (lambda () (fetch rO)))))))))

Continuing the example, we define on top of gcd2 a subroutine gcd3 that
computes the greatest common divisor of the three numbers in registers rO,
rl, and r2; see Figure 6. Its procedural abstraction is

(define gcd3-proc
(lambda (a b c)

(with-extent instructions
(with-extent registers

(with-extent gcd2
(with-extent gcd3

(begin
(assign rO a)
(assign rl b)
(assign r2 c)
(call gcd3 (lambda () (fetch r0))))))))))

The same identifiers next and done are used in both subroutines gcd2 and
gcd3. But because they are local lexical variables, they associate different
labels in different subroutines and are therefore inaccessible to the other.
There is thus no accidental entry due to inadvertent name capturing, which
would happen if the labels were based on identifiers, again, reminiscent of
first-class environments.

3. Composite Extents

In the previous section we defined a mechanism to build and use simple
extents. In this section we generalize it to composite extents. A composite
extent is a sequence of nested simple extents.

During the evaluation of an expression, the nested simple extents in ef-
fect, including the base extent, constitute the effective extent at that point.

352 LEE AND FRIEDMAN

It completely determines the effective locations of every free variable ref-
erence in the expression. In the following we provide a mechanism to reify
effective extents into first-class entities as the means of constructing com-
posite extents. With first-class effective extents available, we can specify
the effective extent in which semantic entities like procedures and continua-
tions are evaluated. Thus, we can define procedures and continuations with
static variable-location bindings, as well as with dynamic variable-location
bindings.

We introduce three operations on effective extents. The first two are get-
extent and with-extent. Invoking the zero argument procedure get-extent
during a computation returns the current effective extent, excluding the
base extent, as a reified composite extent value. The exclusion of the base
extent allows for the "compositionality" of the reified extents, which we
will demonstrate later in this section. The expression (with-extent ext
exp) evaluates the expression ext to a composite extent (a reified effective
extent); nests its simple extents within the effective extent of the with-
extent expression; evaluates the expression exp within the new effective
extent to a value v; and then returns v after reinstalling the original ef-
fective extent. Simply put, we have generalized with-extent to work on
sequences of nested simple extents rather than individual simple extents.
To simplify the system, we also generalize make-extent accordingly to
construct composite extents that happen to consist only of a single sim-
ple extent. With these generalizations, every extent is considered to be a
composite extent from now on unless stated otherwise.

For instance, the following is another way of defining a procedural ab-
straction of the register machine running the gcd2 routine presented at the
end of the previous section.

(define gcd2-machine
(with-extent instructions

(with-extent registers
(with-extent gcd2

(get-extent)))))

(define gcd2-proc
(lambda (a b)

(with-extent gcd2-machine
(begin

(assign rO a)
(assign r1 b)
(call gcd2 (lambda () (fetch r0)))))))

The invocation of get-extent within the three required extents returns the

FIRST-CLASS EXTENTS 353

composition of the three extents as the composite extent gcd2-machine.
This composite extent is then used in the procedure gcd2-proc.

Like simple extents, composite extents returned by get-extent can be
composed, through nesting, to form new composite extents. For instance,
a machine running the gcd3 routine (cf. Section 2) can be defined as a
composite extent as follows:

(define gcd3-machine
(with-extent gcd2-machine

(with-extent gcd3
(get-extent))))

The extent gcd3 is established within gcd2-machine and the composition is
obtained by a call to get-extent. The same behavior can also be obtained
by the following definition:

(define gcd3-machine
(with-extent gcd3

(with-extent gcd2-machine
(get-extent))))

That is, the nesting orders have no effect on the outcome because the ex-
tents gcd2-machine and gcd3 are mutually exclusive with respect to their
defined variables. This example demonstrates why the reified effective ex-
tent obtained by get-extent, gcd2-machine in this case, does not include
the base extent. If it did, since the base extent has a location for every
variable used in a program, its locations would shadow those of gcd3 and
therefore the alternate definition of gcd3-machine would behave the same
as gcd2-machine.

The third operation on effective extents provides a means to "escape"
the effect of the effective extent. The expression (abort-extent exp) tem-
porarily disables the effect of the effective extent of the expression; evaluates
the expression exp only within the base extent to some value v; reinstalls
the disabled effective extent; and then returns v as the result. For instance,
the expression

(with-extent gcd3
(abort-extent

(with-extent gcd2-machine
(get-extent))))

evaluates to a composite extent that is equivalent to gcd2-machine, not
gcd3-machine. The effect of the extent gcd3 is temporarily ignored by the

354 LEE AND FRIEDMAN

(extend-syntax (lambda/composable-extent)
((lambda/composable-extent args exp)
(with ((ext (gensym)))

(let ((ext (get-extent)))
(lambda args

(with-extent ext exp))))))

(extend-syntax (lambda/non-composable-extent)
((lambda/non-composable-extent args exp)

(with ((ext (gensym)))
(let ((ext (get-extent)))

(lambda args
(abort-extent

(with-extent ext exp)))))))

Figure 7: Procedures With Static Extents.

(define call/cc/composable-extent
(lambda (f)

(let ((ext (get-extent)))
(call/cc

(lambda (k)
(f (lambda (v)

(with-extent ext (k v)))))))))

(define call/cc/non-composable-extent
(lambda (f)

(let ((ext (get-extent)))
(call/cc

(lambda (k)
(f (lambda (v)

(abort-extent
(with-extent ext (k v))))))))))

Figure 8: Continuations With Static Extents.

FIRST-CLASS EXTENTS 355

abort-extent operation. Thus only gcd2-machine is in effect during the
invocation of get-extent.

The effect of the extent ext is fluid with respect to the expression exp
in the evaluation of (with-extent ext exp). That is, ext is in effect only
during the evaluation of exp. As soon as exp returns a value v, the effect
of ext is removed. Free variables in v thus no longer refer to the locations
defined in ext. For instance, the expression

(let ((x 1))
(let ((bar (with-extent (make-extent (x 3))

(lambda 0 x))))
(bar)))

evaluates to 1, not 3. Once the with-extent expression returns the pro-
cedure (lambda () x), the location of x whose value is 3 is no longer in
effect. Thus, when bar is called, it refers to the location whose value is 1.

With the effective extent mechanism being orthogonal to procedures and
continuations, we can define procedures and continuations with static ex-
tents, i.e., with static variable-location bindings. Figure 7 shows two ways
to define procedures with static extents.' The lambda/composable-
extent form constructs a procedure that captures the composable effective
extent ext when it is defined. This captured effective extent is established
on top of the effective extent when the procedure is invoked. That is, the
effective extent during the evaluation of the procedure's body expression
is the composition of ext and the procedure's invocation-time effective ex-
tent. The lambda/non-composable-extent form is similar except that
it ignores the procedure's invocation-time effective extent. In other words,
it is equivalent to capturing a non-composable definition-time effective ex-
tent. Similarly, we can define two kinds of continuations with composable
and non-composable static extents. They are shown in Figure 8 without
comment.

Continuing the register machine example of Section 2 we implement a
break point mechanism to keep track of the number of subroutine calls
occurring in the execution of a program. Figure 9 shows the needed facil-
ity. The call instruction is extended with a call/cc/non-composable-extent
jump to a debugger before transferring control to the entry label of the
called subroutine. So, each time a subroutine is called, the machine trans-
fers control to the debugger. The procedural abstraction gcd2-proc is then
defined with lambda/non-composable-extent to capture the composi-
tion of the extent gcd2-machine and the debugger-call-instruction extent
that defines the extended call instruction. The debugger is a procedure

1
Here we use the extend-syntax syntactic extension system of Chez Scheme [6].

356 LEE AND FRIEDMAN

(define debugger-call-instruction
(make-extent

(call (lambda (entry-label return-label)
(call/cc/non-composable-extent debugger)
((with-extent gcd2-machine call)
entry-label return-label)))))

(define gcd2-proc
(with-extent gcd2-machine

(with-extent debugger-call-instruction
(lambda/non-composable-extent (a b)

(begin
(assign rO a)
(assign rl b)
(call gcd2 (lambda () (fetch r0))))))))

(define debugger
(with-extent instructions

(with-extent debugger-registers
(lambda/non-composable-extent (break-point)

(begin
(assign rO (+ (fetch rO) 1))
(break-point "unspecified"))))))

Figure 9: Break Point Facility.

with a non-composable static extent consisting of the machine instructions
and a separate set of registers debugger-registers. It takes a break point, in
the form of a continuation, increments its own version of the rO register,
and resumes the break point.

4. Unshadowing Locations

Nesting of extents induces a shadowing semantics on locations. When a
variable is defined in nested extents, its location defined in the inner (more
recent) extent shadows the locations in the outer (less recent) extents. The
outer locations are therefore inaccessible. Such a constraint limits the flex-
ibility of nesting as a general means of composing extents. For instance, let
variables x and y be defined in both extents foo and bar. Then there is no
way to compose the two extents so that the effective locations of x and y
are those in foo and bar, respectively. Neither order of nesting the extents

FIRST-CLASS EXTENTS 357

works. We need a mechanism to reverse the effect of shadowing. Moreover,
the way call is extended in the previous section (cf. Figure 9) requires that
the to-be-extended call instruction, the one in gcd2-machine, be identified
explicitly. The extension thus does not apply to any other extent that also
defines call.

The dual of shadowing is an operation that undoes the effect of some
with-extent on a variable. It makes a variable's most recently shadowed
effective location its new effective location. We call such an operation
unshadowing and define its syntax as (with-shadowed id exp). During
the evaluation of the expression exp, the most recently shadowed effective
location of id temporarily becomes the effective location. Inductively, when
two unshadowing operations of the same variable are nested, the next most
recently shadowed effective location becomes the new effective location, and
so forth. Given this semantics, it is an error when there is no shadowed
location. Hence we also provide a predicate to decide whether that is the
case. The expression (shadowed? id) is true if the effective location of
the variable denoted by the identifier id shadows another location of id; it
is false otherwise.

Using with-shadowed, we can devise the following solution to combine
the foo and bar extents mentioned above:

(with-extent foo
(with-extent bar

(with-shadowed x
(get-extent))))

In the resulting extent, the effective location of y is the location in bar. As
for x, its effective location is the location in foo, since the location in bar has
been unshadowed by the with-shadowed operation. We can accomplish
the extension of the call instruction in Figure 9 using with-shadowed as
follows:

(define debugger-call-instruction
(make-extent

(call (lambda (entry-label return-label)
(call/cc/non-composable-extent debugger)
(with-shadowed call

(call entry-label return-label))))))

The unshadowing uncovers whatever call instruction that is shadowed by
the one defined in the debugger-call-instruction extent. This solution is
more appealing because debugger-call-instruction is defined without the
knowledge of gcd2-machine and therefore can be used to extend the call
instruction of any extent.

358 LEE AND FRIEDMAN

The use of unshadowing to extend the behavior of a procedure like call is
reminiscent of a method extension in ob ject-oriented programming. Indeed,
based on first-class extents, we can build an object-oriented programming
paradigm on top of a lexically-scoped language. An extent is thought of
as an object. Its variables are the object's methods and instance variables.
Extent nesting is object inheritance and with-shadowed corresponds to
the super pseudo-variable. Evaluating an expression within the effect of
an extent is equivalent to sending a message to an object. The message
will always refer to the object ' s most specific method and instance variable
definitions because of the shadowing semantics of nested extents. Thus self-
reference in object inheritance is achieved without resorting to any explicit
mechanism like the self pseudo-variable. Drescher's Object Scheme [3],
which we reconstructed with first-class extents [11], is such a Scheme-based
object system.

5. Interpreting First-Class Extents

In this section we provide a denotational description [16] of the first-class
extent features introduced in the last three sections. In addition, using
shallow binding, we show that these features can be interpreted with as-
signment.

Before presenting the formal semantics, we replace the non-tail-recursive
with-extent, with-shadowed, and abort-extent with their tail-recursive
counterparts: use-extent, use-shadowed, and remove-extent. The expres-
sion (use-extent ext) installs the composite extent denoted by the expres-
sion ext on top of the current effective extent in the subsequent computa-
tion. Similarly, the expression (use-shadowed id) updates the effective
extent so that the most recently shadowed location of id becomes the new
effective location in the subsequent computation. The expression (remove-
extent) replaces the effective extent with the base extent only.

The non-tail-recursive operations can be defined as syntactic extensions
in terms of their tail-recursive counterparts (Figure 10). For with-extent,
the effective extent is saved in old-eff. It is then extended with the given
composite extent ext. Next, the body expression exp is evaluated within the
new effective extent to obtain the result val. Then the saved extent old-eff
is reinstalled as the effective extent before the value val is returned as the
result of the entire with-extent expression. The other two operations are
defined similarly.

So, the core first-class extent constructs are the procedures get-extent,
remove-extent, and use-extent, and the special forms make-extent, use-
shadowed, and shadowed?. Figure 11 defines the abstract syntax of
the language whose formal semantics is given in this section. In order to

FIRST-CLASS EXTENTS 359

(define non-tr
(lambda (setup-new-eff body)

(let ((old-eff (get-extent)))
(setup-new-eff)
(let ((val (body)))

(remove-extent)
(use-extent old-eff)
val))))

(extend-syntax (with-extent)
((with-extent ext exp)
(non-tr

(lambda () (use-extent ext))
(lambda () exp))))

(extend-syntax (with-shadowed)
((with-shadowed id exp)
(non-tr

(lambda () (use-shadowed id))
(lambda () exp))))

(extend-syntax (abort-extent)
((abort-extent exp)
(non-tr

(lambda () (remove-extent))
(lambda O exp))))

Figure 10: Non-Tail-Recursive Extent Operations.

i E Ide (Identifier)
e E Exp (Expression)

e :: = i ~ (set! i e) ~ (lambda (i) e) ~ (e e) ~ (call/cc e)
(make-extent i e) I (get-extent)
(use-extent e) ~ (remove-extent)
(use-shadowed i) ~ (shadowed? i)

Figure 11: Abstract Syntax.

360 LEE AND FRIEDMAN

a E Var (Variable)
1 E Loc (Location)

Env Ide Varp E = (Environment)
E E SExt = Var --e4 Loc (Simple Extent)
8 E Sta = Loc -.94 Val (State)
n E Nat = {0,1,2,...} (Natural Number)
U E Uns=Var —*Nat (Unshadowing)
E E CExt = (SExt x Uns)* (Composite Extent)

E Con=Val-*CExt ~Sta-*Val (Continuation)
p E Pro = Val —> CExt —> Sta -4 Con —~ Val (Procedure)
V E Val = CExt + {true, false} +{?}+••• (Value)

Figure 12: Semantic Domains.

simplify the presentation, only constructs whose semantics are relevant to
extents are included. They are variable references, assignments, procedures,
procedure invocations, and first-class continuations •2

5.1. Formal Semantics

Without unshadowing, a composite extent would merely be a sequence
of nested simple extents. With unshadowing, however, a composite extent
must also keep track of the unshadowings of every variable. Moreover,
when two composite extents are composed, their unshadowings must also
be composed coherently. The detailed formal description of the first-class
extent features is the subject of this section.

Figure 12 defines the necessary semantic domains. A simple extent E

is a finite function {a l 1 1i ... , an H In }, where n > 0, that associates
variable a i with location l i . Without unshadowing, a composite extent E

would simply be a sequence of concatenated simple extents E n ® • • • ®El,
where n > 0, with En being the most recently established simple extent.
The inclusion of unshadowing, however, requires a composite extent to
acquire an additional map u to record for each variable the number of
unshadowings in effect. Such a map u is thus called an unshadowing map.
Since all composite extents are initially created by make-extent, they start
out as a pair (E, u) of a simple extent e and an unshadowing map u. Later,
their compositions can be obtained by get-extent. Thus, a composite extent
cis a sequence of (E, u)-pairs: (en, un)e • • ®(el, ul). Each u i serves as the
unshadowing map of the sub-extent (E i , ui) • • •®(El, u l). It associates with

2 For simplicity, the semantics only describes single argument procedures and single
variable make-extent.

FIRST-CLASS EXTENTS 361

: Var —* CExt — (Loc + {undefined})

Oac = (,oa0E

cp : Var —* Nat —* CExt --). (Loc + {undefined})

cpan((E,u)®c) = ba(n+(ua))EE
()can() = undefined

: Var —* Nat —* SExt — CExt —* (Loc + {undefined})

OaOEE = a E Dom(E) --> Ea,cpa0c
7/' a(n+ 1)E€ = a E Dom(E) -~ cpanc, cpa(n+ 1)€

Figure 13: Effective Location Lookup.

each variable the number of unshadowing operations issued while Ei is the
most recently established simple extent. With this setting, the composition
of composite extents q and E2 is simply their concatenation e l ® E2. An
effective extent is a composite extent whose least recently established simple
extent is the base extent. That is, if c ® (E, u) is an effective extent, E is the
base extent.

The effective location of a variable a in a composite extent (E n , un)
® (E1, u l) is defined by the function shown in Figure 13. Intuitively,

the variable's number of unshadowings is kept in an accumulator n that
is initially set to zero. Then before each simple extent Ei is examined for
a definition of the variable, the number of unshadowings recorded in u i is
added to the accumulator. If the variable is not defined in the simple ex-
tent, the process is repeated for the sub-extent (Ei_1, uz_ 1) ED . • • e (El, u 1).
Otherwise, the location found in E i is the effective location of the variable
provided the accumulator reads zero, which means there is no more un-
shadowing. If not, the accumulator is decremented by one and the process
continues with the sub-extent (Ea_ 1 i ui_1) ® . . . ® (E 1 , u 1). In the abnormal
case, if there are no more simple extents, that is i = 0, the variable does
not have an effective location in the composite extent.

Let (En, un) ®• • ® (E2 , u 2) ® (E l , u 1) be the effective extent during the
computation of an expression. The first-class extent constructs other than
make-extent are interpreted as follows. The expression (get-extent) re-
turns the prefix (En, un) ®• • • ® (E 2 , u2) as a reified value. The expression
(remove-extent) passes (E l , u 1) as the new effective extent to the subsequent
computation. The expression (use-extent e), where e denotes a composite
extent e', forms the new effective extent c'®€ and passes it to the subsequent
computation. For the expression (shadowed? i), where i denotes the vari-

362 LEE AND FRIEDMAN

able a, the unshadowing count of a in um is incremented by one to form the
new unshadowing map un = un[a l— (um a) + 1] and an attempt to look up
the variable a within the new effective extent (en, u'n)®• •®(E l , ul) is made.
If the result indicates that the search is successful, the variable is shadowed;
otherwise it is not. The denotation of the expression (use-shadowed i)
is similar except that it passes the new effective extent to the subsequent
computation.

The interpretation of the expression (make-extent i e), where i denotes
the variable a, is as follows. The expression e is first evaluated to a value
v. Next, a new location 1 is allocated and v is stored in it. Then, a simple
extent {a H l} and a constant unshadowing map A a . 0 that associates
every variable with a count of zero unshadowings are formed. The result of

the make-extent expression is then a composite extent of a single element,
the pair ({a 1->. l}, A a . 0).

The valuation function [] is given in Figure 14. The notation used is
summarized in the following. The notation ? denotes an unspecified value.
It is the return value of constructs that are used only for their side-effect
behavior. The notation f [d H r] denotes the function g, an extension of the
function f , with

g(d,) I r ifd'=d

f(d') otherwise.

In order to make the continuation-passing-style semantics easier to read,

[e]] pcO(AvcO.E)

is written as
klet (v, E, 0) = Qe~ p E 9 in

E

5.2. Simulating Extents With States

We demonstrate that via an embedding [8] states can simulate first-
class extents. In particular, we show that every basic extent construct
can be defined by an equivalent Scheme expression that gives meaning to
the construct. The embedding is derived from the denotational semantics
given above. The semantics employs deep binding: each reference to a
variable recomputes its effective location based on the effective extent. Yet
each variable in Scheme is associated with exactly one location, its shallow
location. As a result the success of the embedding is governed by the
simulation of a variable's multiple locations with a single shallow location,
i.e., the simulation of deep binding with shallow binding [4]. A complete
description of the embedding is deferred to the appendix.

FIRST-CLASS EXTENTS 363

[: Exp-p Env-~CExtt-~Sta- Con — Val

[2]~ p E 9 K = ~c (9(0 (p i) E)) E 0

[(set! i e)l pE9ic =

klet (v, 9) _ [e l p E 0 in
K?E' B[c(pi)E v]

[(lambda (i) e)l p e e K , = K p E 9
where p is Av(E (E, u))0K.

[el (p[i a]) (E ® (E[a l
],

u
)) (0[11-4 v]) Ic

with a being a fresh variable and 1 being a fresh location

Rep ez)I p E 9 K =
klet (p, E, 9) = [epI p E 9 in

klet (v, €, 9) = Pp]] pEB in
pvEOK

[(call/cc e)I p E 0 K =
klet (p, E, 9) = [el p E 9 in

p(AVE0K f . KVE0)E0K

[(make-extent i e)l p E 9 Ic=
klet (v, E, 0) = [el p E 9 in

~c ({pi g --> l}, A a . 0) E (0[11--÷ v])
where 1 is a fresh location

[(get-extent)] p (E ®(e, u)) 0 1C = K E (E ® (E, u)) 9

[(use-extent e)l p E 0 K =
klet (E ' , E, 9) = [el p E 0 in

K?(E' E)9

(remove-extent)Jf p (E ® (E, u)) 9 K = K ? (E, u) 9

[(use-shadowed i)] p ((E, u) E) 0 K =

K?((E,u[pi1-'u(pi)+1])®E)9

[(shadowed? i)I p ((E, u) €) 0 IC =
(0 (pi) ((E, u[p i H u (pi) + 1]) ® E)) = undefined -~

#cfalse ((E,u) E)9,
lctrue ((E,u)®E)9

Figure 14: Valuation Function.

364 LEE AND FRIEDMAN

Briefly, the embedding is a generalization of the following state-based
implementation of the fluid binding operation fluid-let [1, pages 324–325]
that is found in many Scheme dialects.

(extend-syntax (fluid-let)
((fluid-let ((id exp)) body)
(with ((old-val (gensym)) (ans (gensym)))

(let ((old-val id))
(set! id exp)
(let ((ans body))

(set! id old-val)
ans)))))

The variable id assumes the value of the expression exp during the evalua-
tion of the expression body. After that, id resumes its original value old-val
before the result of body is returned. In other words, fluid-let creates a
variable-location binding like make-extent and uses it fluidly like with-
extent to affect the evaluation of an expression. But the binding is not a
first-class value; it therefore cannot be saved and used later. Indeed, the
behavior of fluid-let can be expressed with first-class extents as follows:

(extend-syntax (fluid-let)
((fluid-let ((id exp)) body)

(with-extent (make-extent (id exp))
body)))

A sound implementation of the fluid binding operation should wrap
a dynamic-wind operation [5] around the fluid-let expression to guard
against transfers of control in and out of the expression. Since extents
are independent of control features and effective extents are available as
first-class values, the mechanism can be easily implemented with first-class
extents. Thus, the decision to implement such a mechanism becomes a
user-level issue. In summary, the distinction that makes first-class ex-
tents a more appealing programming mechanism than fluid binding is that
variable-location bindings are first-class values and there are flexible means
to manipulate them.

We have shown that states can simulate extents, as indicated by the as-
signments used in the implementation of fluid-let. On the other hand,
extents also provide side effects, although the effects are performed on vari-
ables rather than locations. For instance, (use-extent (make-extent (id
exp))) installs a new effective location and therefore a new value for the
variable id. Thus, in the subsequent computation, references to id denote
the new value, reminiscent of (set! id exp). In fact, modeling side effects
with extents provides an additional degree of flexibility that is not found

FIRST-CLASS EXTENTS 365

with traditional assignments alone. Besides being able to specify proce-
dures (and continuations) with dynamic extents, e.g. lambda, we can also
define procedures with static extents, e.g. lambda/composable-extent
and lambda/non-composable-extent. The former are sensitive to the
change of effective locations, but not the latter.

6. Conclusions

We do not want our programs to depend on the name of a variable. But
first-class environments are too expressive to be completely written off just
because they violate that constraint. To avoid the dependency, we distin-
guish a variable from its syntax and implementation, and create an inter-
mediate map, extent, between scope and state:

scope extent stateIdentifier Variable -> Location -+ Value

Subsequently, we define first-class extents that are founded on variables
with static scopes but dynamic extents, contrasting the dynamic scopes of
first-class environments. Unlike first-class environments, first-class extents
do not cause inadvertent name capturing anomalies. They are secure and
modular.

There are situations, however, where first-class extents cannot replace
first-class environments. Such situations occur when the system is inca-
pable of figuring out the variable associated with an identifier. For instance,
program module interfaces, the interconnections between separately com-
pilable program units, must rely on some protocol that ultimately must be
expressed at the symbolic level. The identifiers of first-class environments
best serve this purpose.

Clearly first-class environments and extents both have their advantages
and limitations. They should coexist. The interesting question is: "Which
to use when?"

Acknowledgements

We owe much to Gary Drescher, whose Object Scheme inspired this work.
We thank Matthias Felleisen, Julia Lawall, Anurag Mendhekar, John Sim-
mons, and an anonymous referee for their insightful comments. The pro-
grams were typeset using the system provided by Carl Bruggeman.

366 LEE AND FRIEDMAN

References

1. H. Abelson and G. J. Sussman with J. Sussman. Structure and Inter-
pretation of Computer Programs. MIT Press, 1985.

2. W. Clinger and J. Rees (editors). Revised 4 report on the algorithmic
language Scheme. Lisp Pointers, 4(3):1-55, 1991.

3. G. L. Drescher. Object Scheme: Object inheritance as fluid binding.
Thinking Machines Corporation, 1990.

4. B. F. Duba, M. Felleisen, and D. P. Friedman. Dynamic identifiers can
be neat. Technical Report 220, Computer Science Department, Indiana
University, April 1987.

5. R. K. Dybvig. The Scheme Programming Language. Prentice Hall,
1987.

6. R. K. Dybvig. Chez Scheme System Manual Revision 2.2. Cadence
Research Systems, 1992.

7. D. Gelernter, S. Jagannathan, and T. London. Environments as first
class objects. In Proceedings of the Fourteenth ACM Symposium on
Principles of Programming Languages, pages 98-110, 1987.

8. C. T. Haynes and D. P. Friedman. Embedding continuations in pro-
cedural objects. ACM Transaction on Programming Languages and
Systems, 9(4):582-598, October 1987.

9. S. Jagannathan. Reflective building blocks for modular systems. In
Proceedings of the International Workshop on New Models for Software
Architecture '92: Reflection and Meta-Level Architecture, pages 61-68,
1992.

10. S. Jefferson and D. P. Friedman. A simple reflective interpreter. In
Proceedings of the International Workshop on New Models for Software
Architecture '92: Reflection and Meta-Level Architecture, pages 48-55,
1992.

11. S.-D. Lee and D. P. Friedman. First-class extents. Technical Report
350, Computer Science Department, Indiana University, March 1992.

12. J. McCarthy. Towards a mathematical science of computation. In
Proceedings of IFIP Congress 63, pages 21-28. North-Holland, 1963.

13. J. S. Miller and G. J. Rozas. Free variables and first-class environments.
Lisp and Symbolic Computation, 4(2):107-141, 1991.

FIRST-CLASS EXTENTS 367

14. J. W. Simmons and D. P. Friedman. A reflective system is as extensible
as its internal representations: An illustration. Technical Report 366,
Computer Science Department, Indiana University, October 1992.

15. B. C. Smith. Reflection and semantics in Lisp. In Proceedings of the
Eleventh ACM Symposium on Principles of Programming Languages,
pages 23-35, 1984.

16. J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, 1981.

Appendix
We demonstrate that first-class extents can be fully embedded [8] into

Scheme. That is, every basic extent construct can be defined by an equiva-
lent Scheme expression that gives meaning to the construct. The embedding
is derived from the denotational semantics given in Section 5.1. There are
two major tasks involved. First, composite extents must be made first-class
values. Second, the semantics developed in that section uses deep binding:
each variable reference recomputes its effective location based on the cur-
rent effective extent. Yet each variable in Scheme has only one location, its
shallow location, associated with it. As a result we need to simulate deep
binding with shallow binding, i.e., simulate a variable's multiple locations
with a single shallow location.

A complete source listing of the embedding written in Chez Scheme [6]
is given in Section E. It uses two non-standard features, namely the error-
handling procedure parameter error-handler and the syntactic extension
facility extend-syntax with the uninterned-symbol generator gensym to
support hygiene. ,

A. Simulating Composite Extents

We simulate the lexical variable associated with an identifier id by an
accessor-setter pair of procedures generated by the following id->var syn-
tactic extension:

(extend-syntax (id->var)
((id->var id)

(with ((v (gensym)))
(cons (lambda () id) (lambda (v) (set! id v))))))

Subsequently, to determine if two such pairs varl and var2 denote the same
variable, we employ the following var..? predicate:

368 LEE AND FRIEDMAN

(define var=?
(let ((unique "unique"))

(lambda (varl var2)
(let ((saved ((car varl))))

((cdr varl) unique)
(let ((val ((car var2))))

((cdr varl) saved)
(eq? val unique))))))

The shallow location of the variable varl is temporarily assigned a uniquely
identifiable value after its original value is saved. Then the value of the
shallow location of the variable var2 is read. If it is the uniquely identifiable
value, the two variables are the same since they denote the same shallow
location. Otherwise they are not.

A variable-location binding is represented with a cons cell. The cell's car
field holds the variable and the cdr field serves as its location. A simple
extent is simulated by a tagged list of variable-location bindings. An un-
shadowing map is defined as a procedure that takes a variable and returns
a non-negative integer. It uses the var=? predicate to compare variables. A
composite extent is represented as a list of a simple extent and an unshad-
owing map pairs. Composite extent composition (nesting) is list append.
The semantic function is easily translated directly into Scheme.

The base extent, denoted by the variable base, is initially empty. When-
ever a variable is mentioned in a make-extent operation for the first time,
a variable-location binding for the variable is incrementally added to base.
In this way base will always appear to have a binding for every variable
that has multiple locations. The simple extent base is the only one in the
system that is extensible. The effective extent during a computation is a
composite extent. It is denoted by a variable called eff that is consulted
whenever the effective location of a variable is requested. The extent base
is always the last element of eff.

With such representations of composite and effective extents, the op-
erations get-extent and make-extent have straightforward interpretation.
The get-extent operation simply makes a copy of the current effective extent
eff without the base extent. That is, it duplicates the list in eff excluding
its last element. The make-extent operation builds a composite extent
consisting of a pair of a simple extent and an unshadowing map. It is a
syntactic extension defined as follows:

FIRST-CLASS EXTENTS 369

(extend-syntax (make-extent)
((make-extent (id exp) ...)
(cond

((and (defined? id) ...)
(extend-base (id->var id) ...)
(list

(cons
(list 'simple-extent (cons (id->var id) exp) ...)
(lambda (vac) 0))))

(else (error 'make-extent "" s" '(id . . .))))))
First we check that each of the identifiers id . . . mentioned is defined, i.e., it
denotes some variable. This is done by the defined? syntactic extension of
Section D. Next, the extend-base procedure adds to base variable-location
bindings of the variables (id->var id) ... that are not yet defined in base.
Then, we build a simple extent that associates the variables to new lo-
cations and an unshadowing map that indicates none of the variables is
unshadowed. Finally, a composite extent consisting of the simple extent
and the unshadowing map is returned.

B. Simulating Deep Binding

Because of shallow binding, every variable's shallow location is equated with
its effective location. Thus, each time a variable is associated with a new
effective location, its contents in the old effective extent and the shallow
location must be updated accordingly. That is, the old effective location's
up-to-date value, which is in the shallow location, must be saved. Then
the new effective location's value must be written to the shallow location.
We call this value switching process switch-vals. There are three basic
constructs, described below, that can change a variable's effective location:
use-extent, use-shadowed, and remove-extent. The shadowed? predicate
also needs to determine if a variable's effective location can be altered.

The remove-extent procedure resets the effective extent eff to consist of
only the base extent base, which is the new effective extent. But before that,
it switches values between the new and old effective locations, with respect
to the new and old effective extents, of every variable defined in base. The
behavior of (use-extent ext) is similar. It switches values between effective
locations of the current effective extent eff and the new effective extent
that is the composition of the given composite extent ext and the current
effective extent. Then it sets eff to the new effective extent.

The predicate (shadowed? id) is interpreted as follows. Shadowing ex-
ists only if the identifier id denotes a variable. This is made certain by the
(defined? id) operation of Section D. Next, a new effective extent with

370 LEE AND FRIEDMAN

the unshadowing count of the variable (id->var id) incremented by one is
obtained. Then an attempt is made to look up the variable's effective loca-
tion in the new effective extent. If such a location is available, the variable
can be unshadowed; otherwise, its effective location does not shadow any
other location. The interpretation of use-shadowed is similar to that of
shadowed?. The current and new effective extents are searched for the
variable's effective location. If either search fails, the unshadowing cannot
take place. Otherwise the values in the two effective locations are switched
and the new effective extent is installed.

C. Robustness

The shallow binding embedding described in this appendix is complete,
but not robust. There is no way to guarantee that at any point during
a computation, the values of the effective locations, with respect to the
effective extent eff, will be the same as those of the shallow locations. Thus
the next best solution is to guarantee that whenever the computation stops,
either normally or abnormally, consistency is maintained. There are many
reasons a computation can stop abnormally. Interrupts, errors, debuggers,
to name a few, can all suspend the computation of a program. Since none of
them is part of standard Scheme [2], we cannot provide a portable solution
to the problem.

Yet it is possible on a case-by-case basis if an appropriate hook is avail-
able. For instance in Chez Scheme [6] there is a current error-handling
procedure that is invoked when an error is detected. With the provision of
such a mechanism, we can maintain the desired consistency by extending
the definition of the error-handling procedure as follows:

(let ((old-handler (error-handler)))
(let ((new-handler

(lambda args
(use-extent (get-extent))
(apply old-handler args))))

(error-handler new-handler)))

The original error handler is saved and the new error handler is installed.
When the new error handler is invoked, the effective extent is obtained and
reinstalled immediately. Thus the effective extent is not changed; instead
only the effective locations are forced to save their values from the shallow
locations. This maintains consistency.

FIRST-CLASS EXTENTS 371

D. Unbound Identifier References

The basic first-class extent constructs having to do with variable reference,
namely make-extent, shadowed?, and use-shadowed all could refer to
an undefined identifier. In Chez Scheme such a reference causes an error
because the identifier is considered "unbound." This is not acceptable
in particular for shadowed? since a predicate should only evaluate to a
boolean value. To remedy the problem in the embedding, we provide the
following defined? syntax to detect whether an identifier is bound.

(extend-syntax (defined?)
((defined? id)
(let ((old-handler (error-handler))

(accessor (lambda () id)))
(let ((ans (call/cc

(lambda (return)
(error-handler (lambda x (return #f)))
(accessor)
#t))))

(error-handler old-handler)
ans))))

Operationally, a continuation that restores the old error handler and then
returns to the continuation of the defined? expression is saved in return.
The error-handling procedure is temporarily replaced by a procedure that
returns to the program point return with a false value. Thus if the identifier
is unbound the new error handler is invoked and therefore the defined?
expression is false. Otherwise the value associated with the variable is
ignored and a true value is returned.

372 LEE AND FRIEDMAN

E. Program Listing

;;; private declarations

(define base (list 'simple-extent))
(define eff (list (cons base (lambda (var) 0))))

(define var=?
(let ((unique "unique "))

(lambda (varl var2)
(let ((saved ((car varl))))

((cdr varl) unique)
(let ((val ((car var2))))

((cdr varl) saved)
(eq? val unique))))))

(define switch-vals
(lambda (old-bnd new-bnd)

(let ((var (car old-bnd)))
(set-cdr! old-bnd ((car var)))
((cdr var) (cdr new-bnd)))))

(define lookup-bnds
(lambda (var bnds)

(cond
((null? bnds) 'unbound)
((var=? (caar bnds) var) (car bnds))
(else (lookup-bnds var (cdr bnds))))))

(define lookup-ext
(lambda (var n sext ext)

(let ((bnd (lookup-bnds var (cdr sext))))
(cond

((eq? bnd 'unbound)
(if (null? ext)

'unbound
(lookup-ext var (+ n ((cdar ext) var))

(caar ext) (cdr ext))))
((= n 0) bnd)
((null? ext) 'unbound)
(else (lookup-ext var (+ (— n 1) ((cdar ext) var))

(caar ext) (cdr ext)))))))

FIRST-CLASS EXTENTS 373

(define lookup
(lambda (var e.g

.
)

(let ((n ((cdar e.g.) var)))
(lookup-ext var n (caar eff) (cdr eff)))))

(define unshadow
(lambda (var eff)

(let ((old-uns (cdar eft)))
(let ((new-uns

(lambda (x)
(if (var=? x var)

(+ (old-uns x) 1)
(old-uns x)))))

(cons (cons (caar eff) new-uns) (cdr eff))))))

(define extend-base
(lambda vars

(cond
((null? vars) 'done)
((eq? (lookup-bnds (car vars) (cdr base)) 'unbound)
(set-cdr! base

(cons (cons (car vars) ((caar vars))) (cdr base)))
(apply extend-base (cdr vars)))

(else (apply extend-base (cdr vars))))))

(extend-syntax (id->var)
((id->var id)
(with ((v (gensym)))

(cons (lambda () id) (lambda (v) (set! id v))))))

(extend-syntax (defined?)
((defined? id)
(let ((old-handler (error-handler))

(accessor (lambda () id)))
(let ((ans (call/cc

(lambda (return)
(error-handler (lambda x (return #f)))
(accessor)
#t))))

(error-handler old-handler)
ans))))

374 LEE AND FRIEDMAN

;;; end of private declarations

(define get-extent
(letrec ((loop

(lambda (ext)
(if (null? (cdr ext))

'()
(cons (car ext) (loop (cdr ext)))))))

(lambda 0 (loop eff))))

(define remove-extent
(lambda ()

(for-each
(lambda (bnd)

(switch-vals (lookup (car bnd) eff) bnd))
(cdr base))

(set! eff (list (cons base (lambda (var) 0))))))

(define use-extent
(lambda (ext)

(let ((new-eff (append ext eff)))
(for-each

(lambda (bnd)
(switch-vals

(lookup (car bnd) eff)
(lookup (car bnd) new-eff)))

(cdr base))
(set! eff new-eff))))

(extend-syntax (make-extent)
((make-extent (id exp) ...)
(andmap symbol? '(id ...))
(cond

((and (defined? id) ...)
(extend-base (id->var id) ...)
(list

(cons
(list 'simple-extent (cons (id->var id) exp)
(lambda (var) 0))))

(else (error 'make-extent " - s" '(id ...))))))

.)

FIRST-CLASS EXTENTS 375

(extend-syntax (shadowed?)
((shadowed? id)
(and (defined? id)

(let ((var (id->var id)))
(let ((bnd (lookup var (unshadow var eff))))

(not (eq? bnd 'unbound)))))))

(extend-syntax (use-shadowed)
((use-shadowed id)
(if (defined? id)

(let ((var (id->var id)))
(let ((new-eff (unshadow var eft)))

(let ((old (lookup var eff))
(new (lookup var new-eff)))

(cond
((or (eq? old 'unbound) (eq? new 'unbound))
(error 'unshadowing " -s" 'id))

(else (switch-vals old new)
(set! eff new-eff))))))

(error 'unshadowing " - s" 'id))))

(let ((old-handler (error-handler)))
(let ((new-handler

(lambda args
(use-extent (get-extent))
(apply old-handler args))))

(error-handler new-handler)))

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33

