The Design and Performance Evaluation of the
DI-multicomputer *

Lynn Choi Andrew A. Chien
Center for Supercomputing R & D Department of Computer Science
University of Illinois University of Illinois
Urbana, IL. 61801-1351 Urbana, IL. 61801
lehoi@csrd.uiuc.edu achien@cs.uiue.edu
(217)333-0969 (217)333-6844
(217)244-1351 (fax) (217)244-6500 (fax)
Abstract

In this paper, we propose a new multicomputer node architecture, the DI-multicomputer which
uses packet routing on a uniform point-to-point interconnect for both local memory access and intern-
ode communication. This is achieved by integrating a router onto each processor chip and eliminat-
ing the memory bus interface. Since communication resources such as pins and wires are allocated
dynamzically via packet routing, the DI-multicomputer s able to maximize the available communica-
tion resources, providing much higher performance for both intra-node and internode communzication.
Multi-packet handling mechanisms are used to implement a high performance memory interface based
on packet routing. The DI-multicomputer network interface provides efficient communication for both
short and long messages, decoupling the processor from the transmission overhead for long messages
while achieving a minimum latency for short messages. Trace-driven simulations based on a suite
of message passing applications show that the communication mechanisms of the DI-multicomputer
can achieve up to four times speedup when compared to existing architectures.

1 Introduction

Parallel computer systems contain processors, memory modules, and interconnection networks which tie
them together. While many parallel systems have impressive peak processing rates, they cannot approach
maximum performance on application programs unless computation and communication performance
are balanced. In many cases, the imbalance between computation and communication performance
is not due to poor performance of the core network, but rather a poor coupling of the network and
the processing node. In this paper, we address design issues of a multicomputer node architecture,
particularly the network interface and its interaction with the local memory hierarchy. The goal of
a multicomputer node architecture is to support high performance in both message passing and local
computation.

Two major varieties of multicomputer node architecture have emerged (see Figure 1). The first inter-
faces the network to a local bus, allowing network-memory data transfers and preserving microprocessor
interface compatibility. We term this approach the medium-grained approach, and it is exemplified by
commercial machines such as the Intel Paragon XP/S [25], Thinking Machine CM-5 [34], and Fujitsu
AP1000 [22]. Using a stock microprocessor as a building block typically produces poor coupling of
processor and network, increasing the software overhead for communication. For example, in the Intel
Paragon XP/S, the average hardware network latency is less than one us, yet the minimum process to

*A preliminary version of some of this work appears in [10].

process communication delay is over 15 us. Such high communication delay confines the machine to
the exploitation of medium-grained parallelism, limiting the application scope and scalability of these
machines. In addition, medium-grained machines exhibit other critical problems. First, sharing a bus
between local memory access and internode communication limits the available bandwidth for both ac-
tivities. Second, the medium-grained machines typically transfer incoming messages into the memory
and then to the processor, producing long response times for short messages.

Medium-grained Node Fine—grained Node
MEMORY MEMORY
| J——
/ \
— | Router—— P+ P+
Cache Cache

Figure 1: Medium-grained and Fine-grained Node Organizations.

The second approach, termed the fine-grained approach, addresses the problems of the medium-
grained architectures by providing a more tightly coupled network interface. By integrating the router
onto the processor chip and deeply into the processing core, fine-grained architectures can dramatically
reduce communication overhead. However a fine-grained approach requires changes to the microprocessor
interface, and significant redesign of the processor. The fine-grained approach, is exemplified by the MIT
J-machine [15, 16], Intel iWARP [29], and Inmos Transputer [35].

Fine-grained architectures also have several critical performance problems. First, by integrating a
router on the processor, they statically partition the processor pin bandwidth between local memory
access and internode communication. For each of the fine-grained designs mentioned, this reduces
local memory performance and therefore limits local computation speed. Second, most fine-grained
architectures map messages into the register address space, providing rapid response to short messages.
However, this register-based message handling forces the processor to execute instructions to send and
receive long messages and copy them through memory hierarchy. This increases memory hierarchy
traffic, producing significant runtime overhead for long messages.

We propose a new multicomputer node architecture, the DI-multicomputer, which addresses the prob-
lems of the existing architectures by integrating the node memory hierarchy and the routing network.
The basic idea is to use packet interfaces for both the local memory access and interprocessor commu-
nication, joining the node seamlessly with the interprocessor interconnection network. The packets are
routed on a dense regular pattern of point-to-point interconnects which is chosen to saturate the wiring
media. To make efficient use of pin bandwidth, the memory access by node processor uses mechanisms
for multi-packet send and receive. This realizes a local processor memory hierarchy which matches or
outperforms existing bus-based interfaces. Figure 2 illustrates a DI-multicomputer node organization on
a two dimensional mesh network.

While using packet routing exclusively changes the processor interface dramatically, merging the
memory hierarchy with network in multicomputers can produce significant benefits. For example, the
combined interface can use all the pins and wires for one communication task, increasing the peak
bandwidth available for both local memory access and the routing network. In addition, with the
uniform interconnect the packet-based memory interface is now powerful enough to handle interprocessor
messages. Local to remote block transfers as well as remote memory access can be done in the same
way as local memory operation with no additional cost. With the powerful packet-based interface,

DI-micro Node architecture

=z |
\

\ \ \
IMEMHMEHIMEM -

| | — | |
P+ | P+
-1 M [|ICache | M 1 M [|Cache | M =
\ \ [\ \
foMfo:foMfo
\ \ [\ \ \
Node
Boundary

Figure 2: A DI-multicomputer node.

the DI-multicomputer network interface directs different types of messages to different levels of the
memory hierarchy under software control, achieving both low-latency response for short messages and
high-bandwidth transfers for long messages.

In this paper, we describe the design of the DI-multicomputer, an architecture based on dynamic in-
terconnection and compare its performance to several existing multicomputer architectures. To evaluate
the memory hierarchy performance of a node based on DI, we compare the bus interface of an existing
microprocessor to the packet-based memory interface of the DI-multicomputer processor. Also, we eval-
uate the communication performance of the DI-multicomputer by running a trace driven simulation on
existing message passing applications. Qur results indicate that a node architecture based on dynamic
interconnection has significant performance advantages in the areas of processor memory bandwidth and
both short and long message passing.

Overview The rest of paper is organized as follows. In Section 2, we discuss some critical performance
limitations of existing architectures that motivate the design of a new communication architecture. Sec-
tion 3 introduces the basic ideas behind the DI-multicomputer and describes the register file architecture
of its processor. Section 4 and 5 present the novel mechanisms which allow the DI-multicomputer to
support both a high-performance local memory hierarchy and low-latency interprocessor communica-
tion. In Section 6, we compare the performance of a DI-multicomputer node to that of traditional
bus-based nodes, showing that the DI-multicomputer attains much higher performance in both the
memory hierarchy and message-passing operations. Section 7 discusses the key implementation issues
for a DI-multicomputer node. Finally, Section 8 and 9 discuss related work and summarize the research
results.

2 Motivation for A New Communication Structure

The relentless increase in computing performance of microprocessors continues to raise their input/output
requirements. Latency hiding and avoidance techniques such as prefetching and multithreading further
increase input/output requirements, making communication resources such as pins and wires a per-
formance critical bottleneck. As a result, the communication structure which interconnects hardware
modules has an increasingly significant contribution to overall system performance. In this section, we
discuss two critical problems of traditional interconnection structures and present dynamic interconnec-
tion as an alternative structure for future multicomputers.

2.1 Static Interconnection

Computer systems today rely primarily on static interconnection — outputs are wired directly to all of
the inputs they drive. These static and direct connections form an electrical network that is typically
dedicated to a single use such as a column-address strobe, an address line, or even a bus line. However,
static interconnection has two clear sources of inefficiency which limit the processor performance in a
multicomputer node.

1. Partitioning communication resources between router and memory interface prevents efficient uti-
lization of available pin bandwidth.

2. Trregular or multi-tap interconnects (buses) increase capacitive loading and signal reflections, lim-
iting the maximum switching speed [18, 31, 20] and reducing available pin bandwidth.

Table I demonstrates the problem of static pin allocation in existing microprocessors. First, in off-the-
shelf microprocessors such as Intel i860XP and DEC Alpha, only about 40% of signal pins are allocated
for data transfer due to address and control signals. This static pin allocation limits the peak memory
bandwidth of a machine substantially. Second, the percentage of data pins is further reduced to 10%
to 30% in custom multicomputer processors due to signal pin partition between the memory interface
and the network interface. An unavoidable consequence is that it impossible to support both high
performance network and memory interfaces in multicomputer building blocks such as the iWARP [29]
and MDP [16]. They all compromise, yielding mediocre network or memory system performance. The
difference signalling rates of buses versus point to point interconnects is well documented and typically
a factor of 3 or 4 in clock rate [18, 31].

Table I: Pin allocation and input/output performance. The multicomputer chips (iWarp and MDP)
have low memory bandwidth and only moderate communication bandwidth.

| | i860XP | DEC Alpha | iWarp | MDP |
Package pins 262 431 271 168
Signal Pins 154 291 217 119
Address/Data Pins | 29/64 29/128 24/64 11/12
Network Pins n.a. n.a. 112 90
% Data Pins 41.5% 43.9% 29.5% 10.1%
(Memory BW) (400 MB/s) | (1.2 GB/s) | (160 MB/s) | (24 MB/s)
% Network Pins n.a. n.a. 51.6% 75.6%
(Network BW) (320 MB/s) | (192 MB/s)

2.2 Dynamic Interconnection

We propose a new communication architecture, dynamic interconnection, which avoids the problems of
the conventional interconnection structures. Dynamic interconnection systems exhibit the following key
characteristics at a low-level of hardware interconnection.

1. Use regular point-to-point interconnections to saturate the wiring media.

2. Share communication resources (pins and wires) amongst a variety of communication tasks using
low-latency packet routing.

Dynamic interconnection (DI) addresses the key problems with static interconnection systems. Reg-
ular point-to-point interconnects maximize signalling speeds by minimizing the capacitive and the in-
ductive loads of each wire. Packet routing allows communication resources to be shared efficiently.

Advances in packet routers allow them to attain channel utilizations in excess of 90% [14] and extremely
low latency [33]. These characteristics enable dynamic interconnection systems to achieve comparable
communication latencies and much higher bandwidth.

Dynamic interconnection systems have two major advantages. First, pooling communication re-
sources among several tasks eliminates the resource idle time in the static interconnection system. This
allows the entire bandwidth to be focused on either the memory or network interface, giving both much
higher peak performance. Second, though using regular, point-to-point interconnection requires commu-
nications to be routed dynamically, incurring additional delay, dynamic interconnection not only allows
the wiring media to be saturated, maximizing the wire bisection, it also allows the wires to be switched
at maximum speed, maximizing the bandwidth of each wire. Together, these two features maximize the
communication capacity of the system.

3 A Multicomputer Node Architecture based on Dynamic In-
terconnection

Using dynamic interconnection requires modification to the input/output interface of each multicomputer
node. A DI-multicomputer node consists of three elements: a processor, memory units, and routers.
However, rather than connecting the elements via a shared node bus, each element is embedded in
a low-latency packet routing network, requiring a small router! per element. In addition to message
passing, all local memory operations such as cache refills are achieved by sending and receiving packets
(see Figure 7).

3.1 Design Concepts

The DI-multicomputer processor, called the DI-microprocessor, is a RISC processor extended with a
network interface, router and a number of memory packet send and receive buffers, replacing the bus-
based memory interface. The DI-microprocessor uses a DEC Alpha microprocessor architecture [19] as
its base RISC processor. The DI-microprocessor instruction set architecture uses a subset of the DEC
Alpha microprocessor instruction set augmented with instruction support for message passing, address
translation and synchronization. 2

The high-level organization of the DI-microprocessor is shown in Figure 3. The specialized memory-
packet send and receive buffers allow the memory interface to handle multiple memory packets simultane-
ously, enabling the full utilization of the processor chip bandwidth. The network interface distinguishes
memory packets with communication packets and is also responsible for flow control between router and
both memory and network interfaces.

e Memory interface: Multi-packet Handling To build a high performance memory hierarchy,
it 1s critical to utilize all the pin bandwidth at the processor chip boundary. The multi-packet
handling of the DI-microprocessor’s memory interface enables efficient use of the pin bandwidth
with a simple hardware.

¢ Network Interface: Distinct Mechanisms for Short and Long Messages The DI-multicomputer’s
parallel interconnect allows messages to be routed directly to an appropriate level of the memory
hierarchy, supporting high performance for both short and long messages. In particular, short mes-
sages are routed directly onto the processor chip, allowing them to be handled with low latency.
Long messages are routed directly from local memory to remote memory under software control.

1 As a variety of designs have shown [17], a router need not require a large amount of hardware. For example, the three
dimensional router used in the J-machine [15] requires only 29,000 transistors.
2The instruction set design and the memory and message packet formats of the DI-microprocessor are described in

Appendix A and B.

Processor Core

,,,,,,,,,,,,,,,,,,,, 1

|

Functional }

Units |

|

Cache TLB

y f 3 }

Register = }
File

= |

|

|

9
Ll _ijm

Message emory emory ‘

Receive Packet Packet |

Buffers Receive Format |

Buffers Buffers |

|

\

|

\

J

[}
Network Interface MeM)M Packet Interface
\ v [11] VU

Router |

7444444447‘ |— —
\
|
\
\
|

I/O Interface

Figure 3: The processor chip of a DI-multicomputer (not to scale).

Details of the memory and network interfaces are described in Sections 4 and 5. Implementation
issues for the DI-multicomputer are discussed in Section 7.

3.2 DI-microprocessor Architecture Overview

RISC Architecture The DI-microprocessor is a RISC architecture that is designed with particular
emphasis on support for building massively parallel systems.

Support for Message Passing Current message passing machines are optimized either for short
messages or for long messages. Register-based message transmission used in custom multicomputer
processors such as the MDP of the MIT J-Machine reduces startup cost for short messages but may
incur significant processor overhead for long messages in which each word must be handled explicitly.
On the other hand, DM A-based message passing used in most commercial multicomputers are usually
effective for long messages but may have large startup overheads due to operating system interfaces.
This is especially significant for short messages.

The DI-microprocessor solves this problem by having distinct mechanisms both for short and long
messages. Its message handling instructions allow high performance communication for both long and
short messages without DMA or any system call to message passing library routines. Long messages
are transferred from local memory to remote memory by executing a MOVE instruction at the source
node, which initiates the transfer. This eliminates the costly transmission and reception overhead in case
of a long message. In contrast, short messages are transferred directly from the local processor to the
remote processor without interacting with the memory system. Generation, transmission and reception
of short messages are based on the register file. This approach not only minimizes the startup cost and
reception overhead for short messages but also allows fast message formation using the register file as a
scratch-pad message buffer.

Naming and Translation Every module? in the network is addressed linearly from 0 to the maximum
number of modules allowed. Therefore, memory module addresses are in the same address space as

3 A module refers a node in the interconnection network.

processor module addresses. Figure 4 shows the address formats for virtual and physical addresses.
As usual, virtual address consists of page number and the offset within the page. Unlike conventional
machines, the physical page number consists of the memory module address and the page number within
the module.* As in traditional multicomputers, each processor has a private virtual address space. Local
memory is accessed via 64 bit virtual addresses. A translation look aside buffer (TLB) supports virtual
to physical address translation for local memory.

Protection and virtual memory support for blocked message transfer (MOVE instruction) are enforced
by memory access mechanisms. For example, a page fault for the message transfer is treated as same as
the page fault for any memory operation. Based on the address of the local memory and the size of the
block, TLB entry should be checked on the memory operation before the message transfer. The TLB
miss or a page fault should be handled by the operating system. Therefore, the page fault should not
occur during the message transfer.

63 1211 0

Virtual Address Virtual Page Number | Offset |

Physical Page Number

63 3231 1211 210

Physical Address Memory Node Number |[Page Number | Offset | |

Interieave
Number

Figure 4: Virtual and physical address format

There is no global virtual address space supported by hardware. In other words, there is no hardware
support for global TLB coherence. Software schemes for a global TLB coherence can be used to provide
a global virtual address space. On the other hand, unlike conventional machines, the DI-multicomputer
provides a global physical address space. Because address translations are not shared, the address
translation for the remote node is performed by short message transfers between the local node and the
remote node.

Maintaining global cache coherence is possible but an orthogonal issue for the DI-based systems,
although each node has locally coherent caches. ® Either hardware directory-based coherence protocols
[2, 26] or software coherence schemes [7, 11] can be used to provide a cache coherent shared address
space.

Internode Synchronization A node can communicate with other nodes with message passing. In
DI-multicomputer, short and long messages use different mechanisms for synchronization as they are dif-
ferently handled for message passing. While a short message creates a handler thread at the destination,
a long message sent to remote memory needs to be synchronized with the receiving thread at the des-
tination processor. On long message arrival, remote memory nodes generate acknowledgment messages
to the destination processor node. And these messages are handled by memory interface at the destina-
tion processor as acknowledgment messages for a previously issued store operation. DI-microprocessor
provides memory instructions to detect the long message arrival without accessing off-chip memory (see
section 5.2).

Block Multithreaded Architecture The DI-microprocessor is a block multithreaded architecture
which has multiple hardware contexts to facilitate fast context switching and trap handling. A similar

4For interleaved memory organization (see Section 4), the low order bits are used to denote memory interleave module.
5To maintain cache coherence locally on DMA access, an I/O processor should send messages to both memory and
cache modules.

design we know is the processor architecture of the MIT Alewife [1], which is based on the SPARC
architecture. The DI-microprocessor architecture is based on the DEC Alpha processor core. The only
modification to the Alpha architecture is its DI-based memory interface and the addition of the multiple
hardware contexts. Multiple hardware contexts and the register-file based message handling are chosen
to minimize the message handling overhead at the lowest level. It is designed to support message passing
operations at the same efficiency as local memory operations.

An incoming message is received into an empty context, creating a new thread at the destination. By
receiving messages into hardware contexts, we eliminate both the time to copy messages into memory
and the time to load the messages (contexts) from the memory. Note that this is done with no instruction
overhead for the DI-multicomputer by copying the messages into hardware contexts directly from network
with cycle stealing of register file access ports. This significantly alleviates the overhead of message
reception in the conventional message passing machines since the message reception does not involve the
context save and restore of the currently running context. Moreover, it allows the computation to overlap
with message reception. This message driven reception mechanism is similar to that of J-machine [15].
However, it differs from J-machine in that the reception is based on the register file rather than memory,
8o 1t’s not necessary to load the messages from memory except in the special cases. A dedicated hardware
context moves the incoming messages into memory for message overflow cases. Additional contexts are
used to buffer incoming messages or to increase processor utilization. Context switching can occur on a
cache miss; incoming message overflow or at a thread completion.

3.2.1 Register File Architecture

The visible state of the processor is an extension to the microprocessor core of the DEC Alpha processor
with the following modification to the register file architecture.

Context State The register file is partitioned into multiple contexts. Figure 5 shows the register file
organization of DI-microprocessor. Each hardware context has thirty two 64-bit registers that can be
used as local scratch-pad registers as well as message buffers. The registers are grouped into sets of 4
contiguous registers (row registers). Also, the on-chip cache is also organized as an array of 4-word rows.
Row mode load-store operations allow 4 contiguous words of data to be transferred at a time between
memory and the register file. These operations allow high bandwidth cache access; which is useful both
for fast context save and restore and for fast message buffering for message overflow.

On a short message reception, the message is deposited directly onto an empty context by the network
interface hardware. The first word of a message always contains the instruction address of the context
that will be created. After copying an entire message, the context becomes active and can be scheduled
by the scheduling mechanism. A new thread starts with a jump RO instruction. Each context has a
special register called PSR (Program Status Register).

e Program Status Register (PSR) The PSR contains the local state of the corresponding context.
In addition to its existing information such as thread state, thread id and pointer to data storage
in memory, 1t also contains other state information specific to the architecture. The interrupt
enable bit, e, shows the interruptability of the context on a exceptional case such as message
reception. Resetting this flag disables all exceptional cases which require the handling of the trap
context. Therefore on such exceptional cases, context switching does not occur and the thread
continues its execution until a cache miss occurs. And the schedule bit, s, shows whether the
thread is ready or blocked®. This state details the thread state information. If this flag is not set,
it can not be dispatched to the processor until the blocking condition is resolved. The register
is memory-mapped to system address space and can be accessed by system thread using memory
access operations.

6on a cache miss or on a long message reception

Contextl ‘ ‘ ‘ PSR

Incoming
Message

=AM e

Context3 PSR
Row Buffer
Reception Handler Context PSR
RSR
. Receive Buffer 0
Receive Receive Buffer 1

Buffers Receive Buffer 2
Receive Buffer 3

Figure 5: Register file organization

s : schedule bit

63 1110 4 3 2 1 o e:interruptenable
PSR | Existing Fields | s | e | r : runnable contexts
i=Zi0VilVvi2Vvi3

63 1514 8 7 6 5 4 3 2 1 (0 I0:messageincoming forreceive buffer0

i1: message incoming for receive bufferl

RSR | Unused | PCO‘ ECO| r ‘ m | i3 ‘ i | i1 | 0 ‘ f | i2: message incoming for receive buffer2
i3: message incoming for receive buffer3

m : message in memory

f : free context

ECO : empty context offset

PCO : previous context offset

Figure 6: Special registers

Trap Handler Context A hardware context is dedicated to the trap handler thread, allowing fast
message reception for special cases. This context includes message receive buffers for incoming messages,
enabling the handler to utilize row mode operations to transfer the incoming messages between the cache
and the receive buffers. Since the network interface may receive up to 4 messages simultaneously, four
receive buffers are statically allocated for message reception. Each receive buffer is a row of 4 contiguous
registers.

¢ Reception Status Register (RSR) The RSR shows the message reception status of the proces-
sor. When the runnable context bit, r, is 0, there is no ready context in the register file. It implies
all the hardware contexts are waiting on memory access or waiting for the reception of a long
message transfer. The incoming message bits, 10, 11, 12, 13, specify whether there are incoming
messages in the four corresponding receive buffers. The message in memory bit, m, is set when
there are unprocessed messages in the message overflow area in memory. The free context bit, f,
shows whether there is an empty context which can receive a short message. The empty context
offset (ECO) field contains the offset of an empty context in the register file. The field is controlled
by the scheduling hardware. The previous context offset (PCO) field specifies the offset of the
previously running context by which STT_ROW instruction (refer Appendix B) can identify the

source row register. Like ECO field, it is controlled by the scheduling hardware. The RSR can be
read as a source integer operand but can not be changed by any instruction. The RSR is used by
the trap handler to identify the trap condition as well as to determine the location of an empty
context. Like PSR, the RSR is memory-mapped to system address space.

Scheduling A thread can be created by message send or by system. Since the DI-microprocessor has
multiple hardware contexts, the context switching does not always imply the context save and restore.
A context switching to other thread can occur on a cache miss; message overflow trap, I/O or at a thread
completion. However, except the I/O, the context switching will not incur the context save and restore
of the previously running context. Once a thread is scheduled in the hardware context, it will hold the
context until the I/O occurs.

4 The Memory Interface

Memory hierarchy performance is a critical factor in local processing performance. The DI-microprocessor
uses a specialized memory interface to generate and process packets for memory operations, synthesizing
a high-performance memory hierarchy from the packet routing network. For the purposes of discussion,
we assume a 2-D mesh topology and memory banks interleaved in sets of four. These choices are not
essential to the architecture and may differ between implementations.

INTERLEAVE 1 INTERLEAVE 2

INTERLEAVE 0 : INTERLEAVE 3
|
RAM |—— RAM |1 RAM
|
S i i S |
I |
RAM -] DI-micro H{ RAM
T
| | —_—
READ REQUEST
[S w | A Q
I - REPLY
RAM = "RAM— =] RAM
|
|
|

Figure 7: Memory operation example in DI-multicomputer node.

While previous fine-grained multicomputer chips could use packet routing to extend their memory
hierarchies, the DI-microprocessor is unique in that it can send and receive multiple memory packets
simultaneously. This hardware support is critical in synthesizing a memory hierarchy which makes
efficient use of pin bandwidth. Specifically, the DI-microprocessor can 1) compose and send multiple
packets and 2) receive and destructure multiple packets. Hardware support for the memory interface
includes multi-packet formatting, multi-packet reception, and an extension to the TLB to identify the
multiple memory node numbers.”

A sample memory transaction is shown in Figure 7. When a cache miss occurs, the processor loads
a new line by sending request packets to a set of memory modules and storing the replies in the cache.
To minimize reload time, four read request packets are sent simultaneously, saturating its four network
channels. When the memory modules receive a read request, they respond with read reply packets
which are destructured at the processor’s packet interface and their data written into the cache. Write

"In addition, the router must have multiple source ports to accept and route multiple packets from/to the processor.

10

operations are performed in a simlar fashion, with all write requests being acknowledged by a write
reply so the processor can detect write completion.

TLB
Virtual Addr
Virtual | Page Virtual | Node | Node | Node | Node | Phys
Paget# | Off Page #| AddrO | Addrl | Addr2 | Addr3 | Page#
I I I I I I
| | | | | |
| I I I I I
| | | | | |
| | | | | |
| Message y ¥ ¥ bl |
I Formatting [Tsic ¥ ¥ ' I
| Buffers Addr I
s YU ke gonfig.
Size T=—— €gs
Offset (Src Addr,
Tag Line Size,
Type Tag, RIW)
Node | Node | Node | Node
Addr0 | Addrl | Addr2 | Addr3

N S

Network Interface

Figure 8: Multi-packet generation on a cache miss

Multi-Packet Send Hardware (Cache Refill Request) Figure 8 shows the hardware required
for memory packet generation on a read miss. The node address, type, tag, offset, and size fields
determine memory node, packet format, memory interleave number, memory request number®, and line
size respectively. The physical address field determines the memory location at the destination memory
node. And the source address is used as a return address for the reply packets.

While forming and sending four arbitrary messages simultaneously would be difficult, a cache reload
only requires the generation of four packets with basically the same content. The fields of the read
request messages are derived from the instruction which caused the cache fault, configuration registers®,
and the translation look aside buffer (TLB) entry corresponding to the faulting address. Memory-packet
generation requires a set of memory packet send buffers, and added fields in each TLB entry to address
the appropriate memory nodes as shown in Figure 8. Our hardware design can format and launch the
request messages within one CPU cycle following a cache miss. This high speed is possible based on the
following optimizations: 1) TLB access is overlapped with the cache access and 2) tags, offsets, cache
line size can all be written in advance. If the evicted cache line is dirty, a write-back operation will be
initiated immediately following transmission of the read request packets, overlapping the writeback and
read operations.

Multi-Packet Reception Hardware (Cache Refill Response) Each memory operation produces
four reply messages which are identified, destructured, and sorted for presentation to the cache. Since
there can be several outstanding memory requests; the reception hardware strips off the header and
sorts packets by their tag and offset. Together, these two fields specify a unique location in the memory
packet buffers as shown in Figure 9. All of the responses for a particular memory operation are mapped
into a single row. Full rows can be written to the cache. The reception hardware uses a complete 4 by
16 interconnection to process any four memory packets simultaneously.

8 The memory interface supports multiple outstanding memory requests. And this number identifies which outstanding
memory request it is in order to match replies to requests.
9 These define source node address, cache line size, etc.

11

Cache

word0 wordl wordZ2 word3

Memory Packet Buffers

Request #

) Decoders]
4 x 16 Crossbar Switch &

Counters

From Router Outputs

Figure 9: Multi-packet reception hardware

Though several fine-grained machines [16, 29] incorporate on-chip network interfaces, they typi-
cally lack high performance memory interfaces. Without multi-packet mechanisms the communication
bandwidth of a single router channel is far less than a typical bus-based memory interface, providing
insufficient bandwidth to compete with a bus-based memory hierarchy. For example, a router channel
in the iWarp is 40 MB/s, far below the 400 MB/s memory bus bandwidth of its contemporary micro-
processor (the i860XP). In such systems, packet routing provides insufficient bandwidth to supplant a
bus-based memory hierarchy.

5 Message-passing Interface

Messages in the DI-multicomputer system can be classified into three different types: processor-to-
memory messages, memory-to-memory messages and processor-to-processor messages, based on the
source and destination of the messages. The processor-to-memory messages are transferred between
a processor node and a memory node. These messages are called memory messages and handled by the
memory interface of a processor or by the packet interface of a memory node. The creation, transmission
and reception of the messages are entirely handled by hardware and hidden from a user. The other two
types are used for interprocessor communication and synchronization. These are called interprocessor
messages. The second type of messages are used to transfer a long message from local memory to remote
memory. These are initiated by the user but handled by the packet interface of source and destination
memory nodes. They are called long messages. The third type of messages are used to transfer a short
message from source processor to destination processor. These messages are handled by the network
interface and they are the only messages accessible at user level. Those are called short messages.

This section details how the creation, transmission and reception of interprocessor messages are
handled by the message operations specified in Appendix B.

Effect of Computation Grain Size on Communication Communication among processors in
multicomputers can occur at different levels of memory hierarchy, the choice of which affects the latency
of communication and impact on local computation. In fact, the level of memory hierarchy at which the
communication occurs determines the granularity of concurrency which can be exploited.

12

Fine-grained concurrency requires both low overhead and rapid response to short messages. To
achieve such efficient interaction, short messages should be injected at a high level of the memory
hierarchy such as on-chip registers or caches. Otherwise, the memory hierarchy traffic will increase the
startup cost as well as the response time for the messages.

Medium and coarse-grained concurrency requires high bandwidth for long messages and overlapped
computation and communication. To achieve a good performance, long message handling should be
decoupled from the processor, transferring messages directly into memory. Sending and receiving long
messages at the register level is inappropriate as it incurs transmission overhead and produces memory
hierarchy traffic to move data up and down the memory hierarchy, increasing processing overhead.
Moreover, long messages received directly by processor causes cache pollution, slowing the ongoing
computation.

Existing machines do not address this memory hierarchy traffic overhead problem as they each attach
the network to only one level of the memory hierarchy. The DI-multicomputer addresses this problem
by allowing interprocessor messages to be directed to different levels of the memory hierarchy under
software control. Thus, the DI-multicomputer can achieve both low-latency response for short messages
and high-bandwidth transfers for long messages without cache pollution.

5.1 Short Messages

Message Transmission The DI-microprocessor uses its general purpose registers to form, send and
receive messages. This approach allows low overhead message passing by eliminating memory operations
moving with the memory hierarchy. To send a message, the processor issues a SEND instruction which
specifies the register containing the first word and size of the message. The message should be contiguous
in the local context as shown in Fig 10. For example, SEND R4, #5 transmits a five word message in
registers R4, R5, R6, R7 and R8. The message size of short messages is limited by the size of the local
context.

SEND R4, #5 ; Send a Five Word Message in Registers 4, 5, 6, 7, 8
Row0 RO R1 Register File
szi &\\\\\ R15
|
Y
Message | e | d | c | b | a | =3 ROUTER

Figure 10: Multi-send vs. send operation

Message Reception There are two types of messages coming into a processor node in the DI-
multicomputer system: memory messages and short messages. On a message reception, the destination
node address is stripped off by the router, and the network interface decodes the packet type of the
incoming message, distinguishing two different message types.'® If the incoming message is identified
as a short message type, the message is deposited directly into an empty context (register set) by the
network interface. After the entire message is copied, the context can be scheduled by the hardware.
Since the first word of the short message contains the instruction address of a context, when the context
is scheduled, the message will be executed by jumping to that address. Memory messages are directed
to memory receive buffers and handled by memory interface instead.

10The detail message packet types and formats used in the DI-multicomputer systems are described in Appendix A.

13

Trap Handling There are two exceptional cases which require special treatment. The first case occurs
when there are incoming messages but no empty context in the register file (i0, il,i2, or i3 = 1 and f =
0). Tt requires the trap handler to copy the messages from the receive buffers to the message overflow
area in memory. This is called a reception trap. The second case occurs when all the active threads are
blocked and there is an available context which can hold an unprocessed message in memory (r = 0 and
m = 1 and f = 1). Instead of idling the processor, the trap handler is invoked to load an unprocessed
message from memory to an empty context in the register file. This trap 1s called a reload trap. The
loaded message can be scheduled by the scheduling hardware as the ordinary messages arrived from the
network. These trap handling makes the message buffering for message overflow cases transparent to
the scheduling mechanism.

Table II: Exception conditions and the corresponding state bits. The character X denotes the don’t care
condition. 1 denotes 10 or i1l or 12 or 13

state bits exception case description
fli [m[r |

0|1 | X | X || noempty context during message reception

1 X |1 0 no runnable contexts and unprocessed message in memory

The network interface handles these exceptional cases through a fast software trap mechanism. Since
this trap handler is resident at one of the hardware contexts, we can achieve fast trap handling in the
case of an exception, and the overhead of this software trap is just flushing the pipeline, which requires
only a couple of CPU cycles.

Reception Trap If there is no available context in the register file, the incoming short message is
copied into the corresponding receive buffer row by row by the network interface. After the first four
words of the message is copied into the receive buffer, the message incoming bit associated with the
receive buffer is set by the interface. At the same time, the message reception trap occurs and context
switches to the trap handler context. These messages are called overflow messages and copied into
message overflow area in memory by the trap handler as shown in Figure 11. The trap handler checks
the status of message reception and stores the message into memory row by row. The trap handler
includes the four receive buffers as part of its local context (row 4, 5, 6, 7) so that it can use ST_.ROW
instruction to buffer the incoming messages in memory. The message incoming bit remains set if there is
a remaining part of the message or more incoming messages. The trap handling continues until there is
no more incoming message, which is indicated by the message incoming bits. Each time more than one
messages can be received by the trap handler. The message incoming bits are cleared by the network
interface when there are no more incoming messages. At this time, the trap handling stops and context
switches to the previously running context. The reception trap handler only needs to check the message
incoming bits to stop the trap handling. In addition to the message incoming bit, each receive buffer has
an additional full-empty bit to provide flow control for reception. When the network interface copies a
row of message from router into a receive buffer, it sets the full-empty bit of the corresponding receive
buffer. And ST_ROW operation from the receive buffer clears this bit. In other words, reads or writes
to these receive buffers has additional semantics for flow control. Read from empty receive buffers will
block until the buffer is full, writes to full buffers will block until a read occurs.

The Figure 11 illustrates the reception handling for the reception trap. In the example code shown
in Figure 11, the handler manages the message overflow area as a circular buffer''. The handler checks
the message incoming bit for each receive buffer and copies the message if one is present.

11 The codes for boundary checking is not included in the example

14

MEMORY

HEAD
Buffered Messages

TAIL
MESSAGE OVERFLOW AREA

/* Reception Trap Code */

RECEIVEO: BLBS R15, CREATE ;if =1, then handle 'reload trap’
SRA R15, 1, R14

LOOPO: BLBC R14, RECEIVE1 ; check receive buffer0 (if i0 = 1)
ST_ROW ROW4, R3 ; MEM[TAIL++] <—- receive buffer0
ADD R3, 4, R3 ; R3isa TAIL
BR LOOPO ; continue reception from receive buffer0

RECEIVE1l: SRA R15, 1, R14

LOOP1: BLBC R14, RECEIVE2 ; check receive bufferl(if il = 1)
ST_ROW ROWS, R3 ; MEM[TAIL++] <—- receive bufferl
ADD R3, 4, R3
BR LOOP1

RECEIVE2:

RECEIVE3: SRA R15, 1, R14

LOOP3: BLBC R14, RECEIVE ; check receive buffer3(if i3 = 0)
ST_ROW ROWS5, R3
ADD R3, 4, R3
BR LOOP3

/* Reload Trap Code */

CREATE: BLBC R15, DONE ;if f =0, then DONE
LDQ R5, 1(R2) ; load the message size, R2 is a HEAD
LDT_ROW ROWO, R2 ; load the message into an empty context
ADD R5, 4, RS ; R5 = message size
BLT R5, DONE ; if message size <= 4, then DONE
ADD R2, 4, R2
LDT_ROW ROW1, R2
ADD R5, 4, R5
BLT R5, DONE ; if message size <= 8, then DONE
DONE:

Figure 11: Handler codes for both reception trap and reload trap

Since an incoming message can create a new thread even if there are unprocessed messages in memory,
messages are not executed in the order in which they arrive. However, this reduces the frequency of the
message buffering, resulting in faster message reception.

Reload Trap On the second exceptional case, the trap handler loads a message from memory into the
register, executing them just as if they had come directly from the network. The trap handler should
be able to specify the registers of other contexts to copy a message into an empty context directly. A
special row mode operation called LDT_ROW is used for this purpose, i.e. to load a row of words in
memory into an empty context. Instead of using the local context offset, the instruction uses the ECO
(empty context offset) in RSR for row operand. The trap handler routine shown in Figure 11 loads a
message from memory into an empty context and creates a new thread.

5.2 Long Messages

The packet-based memory interface of the DI-multicomputer supports the PUT/GET primitives of
shared-memory libraries [12] directly in hardware. This allows a high-bandwidth and low overhead

15

— Long message handling in existing systems with DMA message passing—

MEMORY MEMORY
A |

Addr_| | Interrupt

Router |— - Data

RAM L > Data

— DATA

Local Addr /‘\/‘\M‘ —— ADDR

Remote Addr liu

Figure 12: Long message transfer in the DI-multicomputer versus traditional multicomputer architec-
tures. For clarity, the buffer request messages in the traditional architectures are not shown.

communication for long messages for both internode (PUT/GET) and intra-node (local memory-to-
memory copy) communication.

Figure 12 contrasts the data movement (PUT) for a long message transfer in the DI-multicomputer
with those of other multicomputer node architectures. The primary drawbacks of both bus-based archi-
tectures are unnecessary data movement in the memory hierarchy, the use of only one network channel,
and the data transfer across the bus once or several times at both the source and destination nodes.
These characteristics reduce message passing and local computation performance. In contrast, the
DI-multicomputer transfers messages from local to remote memory in parallel with computation. The
packet-based memory interfaces allow direct inter-memory transfer and the parallel interconnect provides
parallel communication paths, enabling higher bandwidth transmission.

Transmission of a long message is achieved in two steps: 1) allocation of a buffer at the remote node
and 2) a parallel block transfer into that buffer. Buffer allocation is achieved using short messages, and
block transfers are achieved using a MOVE instruction.

Address Translation and Buffer Allocation Since address translations are not shared and the
source node has no information about the availability and the location of memory space at the destination
node, before sending a long message, the source processor needs to request the buffer allocation as well
as the physical address for the buffer. It is accomplished by sending a short message called translation
request message to the destination processor.

The code sequences for long message transmission is illustrated with message contents in Figure 13.
To initiate a long block transfer, first, the sending thread initiates a translation request message including
the virtual address for the remote node and the size of the block transferred. To send a long message, a
source node first sends a short message, requesting a buffer at the destination node, which returns the
physical buffer address (four addresses, one for each interleave) as a reply. The buffer allocation is used
for flow control for large messages, and it also allows the sender to achieve direct long message transfer

16

by writing data into the receiver node’s memory.

SOURCE NODE DESTINATION NODE

SEND R4,9 ; send translation request message

1
|
1
Sending Thread at Local Node :
|
1
|
1

T TR
=~

Message Transmitted

& \

Message Handler at Remote Node
TLX R3, ROW2 ; TLB miss cause virtual memory manager

ADD R6,0, R14
SEND R4, 11 ; send reply for the sender
STV R3 ; allocate a dummy cache line

M Received -; TTen T . omais 3
essagq: eceive :\\‘%\\\“&\\\\&\\%\\X\%\\\ R RS @k&z
M Transmitted = :‘“‘-“ o 3 \\\\\\\Q\\\\\§\\\}\\\\\\\\\\\\§&*\§\\\\\\\

Reply Hnadler at Local Node | I 2 ——
ADD R3, 0, R12 | f 1

ADD R4,0, R13
ADD R5, 0, R14
ADD R6, 0, R15
MOVE R9, ROWS3, R2, #size ; start long message transfer

Al reply size (10) remote physical
Message PC node addr | addr 0
f physical physical physical remote
Received addr 1 addr 2 addr 3 virtual addr
block local
y| size virtual addr

—=———r
Long Message \ =

Transmitted > Receiving Thread at Remote Node

before reception
TEST local_buffer_addr
after reception

Figure 13: Handler codes for long message transmission

At the destination, it creates a handler thread, which allocates the buffer space for the message if it
has not been allocated and replies with the physical address of the buffer at the destination. The address
translation at the remote node is done by using TLX instruction (see Appendix B). Since the memory
is 4-way interleaved, TLB returns multiple physical addresses for the 4 interleaved memory nodes. The
virtual memory manager needs to guarantee that the the remote memory buffer will not span two sets
of memory nodes so that a single memory to memory transfer will suffice.

Synchronization of Long Message Reception When the remote node handles the translation, it
also allocates a dummy cache line using the virtual store operation, STV, to receive the acknowledgments
from memory for later long message reception. The receiving thread at the destination can check the
status of the long message reception by polling the status of the cache line using a TEST operation for
the remote buffer address. If the cache line contains all the acknowledgments from its local memory
nodes, the message reception i1s done and the receiving thread can access the block. Otherwise, the
instruction will return a failure signal (cache miss) until all the acknowledgments arrive.

17

Block Transfer Request Packet Transmission On reception of this translation reply message, the
reply handler performs a MOVE instruction, which transmits four MOVE requests to the four local
memory nodes. The TLB provides the local memory addresses and the row operand in the MOVE
instruction provides the remote memory addresses for the MOVE request packets. The instruction
initiates the TLB translation for the local address and generates the physical memory addresses which
contain the four memory node numbers. Similar to the memory request message generation on a cache
miss, the memory interface generates four memory MOVE request packets using the memory packet
generation buffers. Instead of using the source node address as a return address, the MOVE message
includes the destination processor number and remote memory address as the return address.

Intermemory Block Transfer On receiving the MOVE request, each memory node generates a write
request packet with appropriate data and sends it to the appropriate remote memory node directly. This
is like a parallel DMA transfer. Because of the parallel memory banks and interconnect, a four-fold
speedup is possible. On remote memory nodes, the incoming data are stored and write acknowledgment
messages are sent to the destination remote processor.

The synchronization of acknowledgment packets is achieved with the dummy cache line that is al-
located at the time of buffer allocation. On the reception of four acknowledgments from the memory
nodes, a destination node thread blocked on a TEST operation can resume execution.

The DI-multicomputer’s long message transmission mechanism has several advantages. First, one
MOVE instruction causes four memory banks to transmit at the full network rate, exploiting the par-
allel interconnect with minimal instruction execution overhead. Second, the long message transmission
mechanism does not complicate the memory nodes as the MOVE request packets are handled identically
to local memory access packets'?. Finally, the synchronization of long message arrival occurs in the
receiving processor’s on-chip cache not in the off-chip memory, minimizing the synchronization latency.

6 Performance Evaluation

In this section, we study the performance of the DI-multicomputer’s memory hierarchy and communica-
tion subsystem, comparing them to existing message passing machines. The goal is to explore if the DI-
multicomputer’s novel memory communication primitives translate into better application performance.
By comparing cache reload times, we show that the superior bandwidth of dynamic interconnection
can produce a higher performance memory hierarchy than a bus-based approach. By using trace-driven
simulation, we compare execution time and message handling overhead on the DI-multicomputer to sev-
eral existing multicomputer architectures. These studies show that the DI-multicomputer’s mechanisms
produce significant performance benefits, even on modest size problems and machines.

6.1 Memory Interface Performance

A memory hierarchy based on dynamic interconnection can match and in some cases outperform bus-
based approaches. As a case study, we compare the bus-based memory interface of the Intel 1 860XP
[24] to our DI-microprocessor memory interface. To make the comparison fair, we assume the processors
have the same internals, with single level on-chip cache and approximately the same number of 1/O pins
(see Figure 14). The i860XP’s memory interface uses 139 pins: 64 data lines, 29 address lines, and 46
lines for parity and bus control. The DI-microprocessor uses a 152 pins: four 38 line channels with 32-bit
bidirectional data links, and six control lines for parity and control each.

To evaluate memory interface performance, we compare cache refill times over a range of line sizes.
The performance numbers assumed for the calculation are shown in Table III and they are derived from
our hardware design studies [4] including SPICE simulations of multi-tap bus lines. We further assume

12The only difference lies in that the destination addresses for reply packets become remote memory nodes instead of
the local processor.

18

Intel Memory - Memory | ____
i860XP H H H

|| Memory

/ Memory

Memoryl | pi-micro |—| Memory

Address (29)
+ Data (64)
+ Control (46)

Memory

Memory

Data(32)
+ Control(6)

Figure 14: Bus-based (i860XP) and DI-based systems.

that the DI-microprocessor reloads its cache lines from its four nearest neighbors, minimizing the routing
delay. The higher network clock rate for the DI-microprocessor memory interface is due to the electrical
advantages of point-to-point interconnects over multi-tap bus lines [31, 18]. Router delay is based on a
number of published implementation studies [17, 32] and our own designs [4, 8]. The actions required
to complete a cache line reload in each system are illustrated in Figure 15.

Table III: Memory and interconnect performance numbers assumed for the evaluation.

| Architecture component | Characteristics || Performance number assumed |
Memory Module Access Time 20 ns
Network Switching speed 200 MHz (5 ns cycle time)
Routing Delay 20 ns (4 cycles per hop)
Bus Switching Speed 50 MHz (20 ns cycle time)

The memory node processes a request packet in six network cycles: two to strip the header and
extract the the physical address, four to access the memory and form a reply. '3 Slower memories affect
only the memory access time. For example, with 60 ns memory access time the reload times for both
the DI-microprocessor and the i860XP would increase by 40 ns.

The DI-based memory interface has a larger cache refill time for a small cache line (32 bytes) due to

13 Off-chip secondary caches can be implemented by SRAM memory modules in organization similar to Figure 14.

Table IV: Cache reload times for the bus-based and DI-based systems.

Line size | DI-micro(32bit links) | i860XP(64bit bus) | i860XP(128bit bus) | i860XP(256bit bus)
Cycles | Time(ns) | Cycles | Time(ns) | Cycles | Time(ns) | Cycles | Time(ns)

32 bytes 29 145 6 120 4 80 3 60
64 bytes 31 155 10 200 6 120 4 80
128 bytes 35 175 18 360 10 200 6 120
256 bytes 43 215 34 680 18 360 10 200

19

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105110 115 120 125 130 135 140 145(nsec)

— T T T ChannelBusy Channel Busy Data received
. . . In Parallel
N Routin Receive [Memory Access/ \N Routin Setup S Receive
B g Address |Form Reply Packet &\ 9 Crossbar Data
L» From message format buffer L» From memory L» From router buffer
To router buffer packet buffer To receive buffer

To router buffer

Network Link Activity during a DI-Micro Cache Reload

0 20 40 60 80 100(nsec) 120

| Address I algr%tﬁr?e:gge/ss I Datal | Data2 | Data3 | Data4 |

Bus Activity during a i860XP Cache Reload

Figure 15: Cache line reload for DI-based and bus-based systems.

its increased routing delay. But for large cache lines, the higher data bandwidth of the DI-based memory
interface masks the latency incurred by packet routing, and outperforms the i860XP bus (see Table TV).
Doubling the data bus width of the i860XP would make the i1860XP competitive for larger line sizes,
but doing so requires dramatically larger numbers of pins, often expensive resources.

Table V: Bandwidth of two memory interfaces. The signal pins for i860XP include only memory interface
pins.

DI-microprocessor 1860XP

(32-bit channels) | (64-bit bus)

of Signal pins (data) 152 (128) 139 (64)

Clock rate 200 Mhz 50 Mhz

Signal pin bandwidth 3.8 GB/s 0.87 GB/s

Data/Signal ratio 84.2 % 46 %
Peak memory bandwidth

32 byte lines 0.91 GB/s 0.32 GB/s

256 byte lines 2.44 GB/s 0.39 GB/s

The major performance benefit of a DI-based interface is the increased bandwidth derived from higher
signalling speeds and flexible pin allocation. In Table V, we compare the available pin bandwidth and
utilization for memory transfers. The DI-microprocessor’s data rates are two to six times those of the bus-
based system. The peak memory transfer rates in Table V show the highest data rates achievable with
overlapped transfers of the specified line size (addressing and header overhead deducted). An excess
of memory bandwidth allows memory hierarchies to be managed aggressively: making the advanced
memory system techniques such as data prefetching and multithreading more attractive.

20

6.2 Parallel Computer Performance

In this section, we compare the message passing performance of the DI-multicomputer to the existing fine-
grained and coarse-grained multicomputer architectures. Trace-driven simulation using iPSC/2 traces
[23] are used to address the following questions: (1) How much do the DI-multicomputer communication
primitives speed up applications?, (2) How much performance improvement do the distinct mechanisms
for short and long messages give?, and (3) How do machine size (number of processors) and application
granularity affect these tradeoffs? Our results show that by eliminating most of message handling
overhead, the DI-multicomputer increases overall application performance by 7% to 485%. Distinct
message passing mechanisms for short and long messages reduce memory hierarchy traffic, improving
application performance by 5% to 77% compared to register based message handling. These results argue
for network interfaces that can direct messages either to the processor or to the memory as appropriate.
Such distinct mechanisms allow a multicomputer node to give good performance for both coarse and
fine-grained applications. The DI-multicomputer’s mechanisms also give more robust performance for a
variety of system size and data sets.

Experimentation Methodology The trace driven simulation is chosen as an experimentation method
since it allows the simulation under real work load. Based on the machine dependent parameters such
as processor speed, network implementation and message passing cost, etc., the simulator can simu-
late different distributed memory machines and provides an experimentation framework that allows the
comparative evaluation of the DI-multicomputer to existing distributed memory machines.

The performance impacts of the DI-multicomputer mechanisms depend on several factors such as
target machine architectures, communication characteristics of the applications, and the grain sizes of
the data sets used. To validate this experimentation, traces are collected both for different machine sizes
and for different data sets. Also, two existing target coarse-grained multicomputer architectures, Intel
iPSC/2 and Delta, as well as a fine-grained multicomputer architecture similar to the J-Machine are
compared to the DI-multicomputer.

The performance evaluation focuses on the performance comparison of communication architectures
of different multicomputer organizations. Neither the implementation technology nor relative computa-
tion speeds are considered for the comparison. To achieve this, we performed the simulation as follows.
First, the message passing traces consist of message send/receive events and computation times in-
between, all of which are directly measured by the application runs from the iPSC/2. By taking the
computation time directly from the traces, all multicomputer architectures assume the same compu-
tation performance. Therefore, the local memory system performance is also not considered for the
performance comparison. Second, to factor out the impact of different implementation technology used
in different multicomputer architectures, the simulations of DI-multicomputer architectures assume the
same network implementation (the same network bandwidth and the same routing latency per hop) as
the target machine architectures such as the iPSC/2 or Touchstone Delta.

Simulation Model The execution time of parallel programs can be divided into computation time,
communication time and idle time due to the synchronization. Even though the machine can support
ideal communication performance (zero overhead and zero latency communication), there is an idle time
due to the synchronization among the multiple processes running on the different nodes in the machine.

In the simulation, the computation time i1s derived from the traces while the software and hardware
latencies of the communication and the idle time due to the synchronization are modeled by the simulator.
In the current simulation, network load is assumed to be zero, i.e. no network traffic 1s modeled.

Applications The communication traces are collected from the following seven parallel applications
(2 VLSI CAD applications, 4 numerical applications and 1 event-driven simulator). The applications
are described in Table VI. The traces are derived from [23].

21

Table VI: The description of parallel applications that are used for simulation.

| Application || Description
Fast Fourier Transform (FFT) Parallel implementation of discrete fourier transform
Standard Cell Placement (PLACE) Cell placement program based on simulated annealing
QR Factorization (QR) Parallel version of QR factorization algorithm
Gaussian Elimination (GAUSS) Parallel gaussian elimination based on tree broadcasting
Hypercube Router (ROUTER) Parallel event-driven simulation of hypercube
VLSI Circuit Extraction (EXTRACT) || Circuit extraction based on two phase data distribution
Eigenvalue Computation (TRED) Generated by semi-automatic parallelizing technique,

ignoring communication cost

Table VII: Grain size and message passing overhead for different applications. The data is collected from
a trace-driven simulation of a 16-node iPSC/2. The programs FFT and QR are simulated with two data
sets: 212 (1) and 28 (s) for FFT, and 128 x 128 (1) and 64 x 64 (s) for QR.

Applications # of Avg. Total | Instructions Comm. Traffic Processor

Comm. | Msg. Size | Msg. Vol. | Per Message | (Byte/1K Instr.) | Utilization
FFT (1) 800 2048 | 1638.4KB 70950 28.87 88.4%
FFT (s) 800 128 102.4KB 4088 31.31 58.0%
PLACE 15889 87 | 1382.3KB 2533 34.35 7.5%
EXTRACT 1626 5656 | 9196.7TKB 154982 36.49 70.4%
TRED 11165 120 | 1339.8KB 469 255.86 9.5%
ROUTER 10537 10 105.4KB 623 16.05 26.4%
GAUSS 1869 210 392.5KB 3060 68.63 44.7%
QR (1) 2032 1026 | 2084.8KB 7067 145.18 53.5%
QR (s) 504 514 259.1KB 3730 137.8 40.9%

Table VII summarizes the communication characteristics of the above applications. Number of com-
munications shows the total number of messages sent and received, counting each send or receive as a
separate communication event. Instructions per message presents the number of user-level instructions
per message, showing the grain size of the application traces. Communication traffic shows the message
volume transmitted or received per a thousand user-level instructions, showing the communication to
computation ratio. And the last column, processor utilization, shows the ratio of computation time to
total execution time in the iPSC/2.

Speedup over iPSC/2 and Touchstone Delta We present simulation results comparing the DI-
multicomputer to the iPSC/2 and the Touchstone Delta, showing the speedup due to the DI-multicomputer
communication mechanisms. Figures 16 and 17 compare the simulation results for a 16-node DI-
multicomputer to the iPSC/2 and the Touchstone Delta. 14 The Ideal architecture is a point of reference
which denotes the minimum communication time, assuming zero overhead and zero latency communica-
tion. It corresponds to the maximum performance improvement possible by improving communication
performance.

14 Our DI-multicomputer uses a mesh-based packet-routing network, but the iPSC/2 uses a circuit-switched hypercube
network. To minimize the impact of network topology, a mesh-based packet routing network is used for simulation of
both systems. But, we use the same network bandwidth and the same routing latency per hop as the original iPSC/2
network for the mesh network. For a fair comparison, we also assume a conservative communication distance (twice the
communication distance of the original trace) for the mesh network.

22

Execution Results for the iPSC/2

0
ﬁ 120
o
Fij
9
8 100
g O III
g
S 80 B Transmission Time
9
59 (| [
A Startup Time
B o
60
g @ L] .
- [1dle Time
pij
5
0 40 M computation Time
%
<]
ki
N 20
u Hi=
o
E ‘
o
9 0
2
TN T TR) T @ ww) 3 9 7
ged sgy 88 vl 288 yaid §FB
] 4 M H o od g = g g 8 B 5 5 R
N B -;‘ﬁg a8 & 98 g o & 2 5 9 S5 q
@ g 4 & N H @ ~ = R e Y a
a S e s N a o Ll N a a9 a 3
b=} o H @ - 8 3 N A & i
o A o H) H & 3 =
4 H " - a H
a b
Applications

Figure 16: Execution results for 16 nodes iPSC/2

In the figures, application execution time is divided into computation and communication time. The
communication time consists of both processing overhead for message passing (fixed startup overhead
plus transmission time) and idle time due to synchronization and load imbalance. In the simulation,
the computation times are derived from the traces while the message passing overhead and idle time are
measured by simulation.

For each application, the DI-multicomputer eliminates almost all processing overhead for commu-
nication. This 1s because the DI-multicomputer’s communication mechanisms eliminate or decouple
message handling overhead from the processor. Short messages are handled on-chip with small pro-
cessing overhead. Long messages incur little processing overhead as they are transferred memory to
memory directly. In FFT, EXTRACT, QR, GAUSS and TRED which deal with only long messages, the
DI-multicomputer completely eliminates the messaging overhead. However, because its communication
latency 1s still non-zero, the DI-multicomputer still spends more time idling in QR, GAUSS and TRED
than the Ideal architecture. For FFT, PLACE and EXTRACT, idle time is approximately constant
across the different architectures. This idle time is dominated by load imbalance, not communication
latency.

Overall, the DI-multicomputer achieves a 7% to 79% reduction in total execution time, a 1.1 to 4.9
times speedup due to its improved message-passing performance. In most of the applications, the DI-
multicomputer nearly matches the performance of the Ideal architecture. In general, the speedup over
the target architecture is more pronounced when the application is communication-intensive (ROUTER
and TRED; see Table VII) or when the application is tightly synchronized (QR and GAUSS).

To further evaluate the DI-multicomputer’s communication mechanisms, we performed a trace-driven
simulation of a second target machine, the Touchstone Delta. Although this machine has a much faster

23

Normalized Execution Time Compared to the Delta

Execution Results for the Delta

120

100 A
HyEE. I

80 W Transmission Time

A startup Time
60
[1die Time
40 A . u .Computation Time

N

o

1
[]
]
[]

Him
0
Fdf §3F T3IT "ELA 2% % ® 8%% "6@
g gy teg sEbE G2 d §id FB
3 H o4 M - g 5 o g m 8 3 3 £ 8 £
uz@ ' CRCHEC O - 2o & 8 @ 5 o
< q L=} - <o =)
04 S8 wwyg 0% rag ogi7 §%1
2ey % & g 8 3°4 2@
& H a
Applications

Figure 17: Execution results for 16 nodes Touchstone Delta

CPU than the iPSC/2, its ratio of computation to communication performance is approximately the
same. Figure 17 shows the execution results for the Delta and the DI-multicomputer assuming the
same computation speed and the network implementation. The execution time distribution as well as
the relative speedup of the DI-multicomputer over the target machine gives almost identical as in the
iPSC/2 simulation. Overall, applications become slightly more communication intensive, reflecting the
fact that the architecture’s ratio of computation to communication performance has increased slightly.

Speedup versus Register Based Message Handling To study the performance impact of the
memory hierarchy traffic overhead of the register based message handling, we simulate an another ar-
chitecture, called Short architecture, which is similar to several fine-grained architectures [15, 29] and
has user level message handling based on the register file. And we compare its result to that of the
DI-multicomputer. In this experiment, since message passing is performed at user level in both archi-
tectures, we eliminate the effect of the software startup cost and are able to factor out the memory
hierarchy traffic overhead of the register based message handling. Figure 18 shows the simulation result
of the Short architecture compared to that of the DI-multicomputer. In the Figure 18, we count in-
struction execution overhead for message load, message store and message transmission as transmission
overhead. Therefore, the differences in transmission time between both architectures accounts for added
memory hierarchy overhead of the Short architecture. Even though register-file based message passing
can reduce the startup overhead of message passing, it increases the instruction execution overhead due
to transmission and memory hierarchy traffic. As a result, especially for the applications with large
amounts of communication traffic (QR, TRED and ROUTER, see Figure VII), processing overhead for
the memory hierarchy traffic becomes more significant in the Short architecture. On the other hand, the

24

Memory Hierarchy Traffic Overhead

180 -+
160 +

140 +

120 +
W Transmission Time

100+ .Startup Time

80 Oidle Time

multicomputer

.Computation Time
60 A

40

20 A

Normalized Execution Time Compared to the DI-

Short (££t)

DI (fft)

Short (extract)
DI (extract)
Short (place)
DI (place)
Short (gr)

DI (gr)

Short (gauss)
DI (gauss)
Short (router)
DI (router)
Short (tred)
DI (tred)

Applications

Figure 18: Effect of memory hierarchy traffic overhead. Comparison to a fine-grained Architecture

DI-multicomputer can eliminate this overhead completely for long messages since they are transferred
directly from memory to memory. Note that the applications PLACE and TRED mostly deal with short
messages. Since both architectures handle short messages based on the register file, the performance
difference is minimal. For those two applications, the DI-multicomputer still performs better due to
its higher bandwidth communication. For applications GAUSS and TRED, note that the memory hi-
erarchy traffic also increases the idle time, further increasing the communication overhead. However,
by mapping messages to an appropriate level of memory hierarchy, the DI-multicomputer can reduce
the total execution time of the applications by 5% to 77% relative to the Short architecture which uses
register-file based message handling exclusively. Considering the poor memory bandwidth of existing
fine-grained architectures due to the pin limitation problem (see Section 2), the performance difference
between the two architectures is even more pronounced.

Effect of Machine Size and Application Granularity Scalable performance is a major goal of
multicomputer design. In this section, we examine how communication performance affect application
and machine scalability. Figure 19 shows the distribution of total execution time for three different
applications for smaller data sets. The smaller data set makes the applications more communication
intensive, increasing the importance of efficient communication mechanisms. This is reflected in the
increasing speedup of the DI-multicomputer over the iPSC/2.

Another way to examine the same issue 1s to fix the application data set size and scale the number
of processors. Figure 20 shows the relative speedup achieved by the DI-multicomputer and iPSC/2
(normalized to 4-node iPSC/2 performance) for three applications as machine size is increased. Increasing
machine size usually increases communication overhead, expanding the performance gap between the DI-

25

Effect of Data Set Size

120 —

. Transmission Time
] Startup Time

Oidie Time

| | Computation Time

Normalized Execution Time Compared to the iPSc/2

Y 3 4) a3 O -
PE g g 2 BB B E 99
qa g g ¢ q g g d d g E
Lo Do T Pl Tl Pl
el] £ 3 [} [
g 4 4 8 & &) ¢ 8 g 4
4 e H < P - ~ -~ o - 3 o
y 8 8 & g A g 8 & & CIC
a 7] 3] H
] o 8 & o A g A
el -] o o @ a
4 &
-
Applications

Figure 19: Execution time versus data sizes for applications FFT, QR and PLACE. Two data sets are
shown for each application, showing the smaller data set to the right.

multicomputer and the iPSC/2. With low overhead communication mechanisms, the DI-multicomputer
improves the scalability of the applications and approaches the performance of the Ideal architectures.
In particular, when running GAUSS, the 16-node iPSC/2 shows poor performance as communication
overhead starts to dominate the advantages gained by parallelism. Unfortunately, because the traces are
only for 16 processors, we currently cannot extend our studies beyond this point.

7 Implementation Issues

All of the processor extensions discussed in this paper have been designed and simulated at the gate or
transistor level. Integration of the processor core with a network interface and router has been explored
in the iIWARP [29] and MDP [16]. We are currently exploring a variety of implementation approaches
(gate-array, standard cell, and full custom VLSI). In this section, we briefly discuss the additional
hardware requirements and likely speed of these implementations.

Memory Packet Interface The send hardware requires eight 64-bit registers, less than 100 simple
gates for control, and an extension of the TLB. The multi-packet receive hardware includes a 4 by 16
crossbar which sorts the replies, sixteen 64 bit registers, and some control logic. Because the control
information arrives one network cycle before the data, the crossbar can be set up in time to allow the
data word to flow through to the appropriate register in a single cycle. Based on our design studies, the
additional hardware required for both the multi-packet send and reception hardware is approximately

26

6.5000—

6.0000—)

o

5000~

- iPSC/2 Communication
A DI Communication
G ldeal Communication

a
3
8
S
8

1

»
@
g
s
38

1

4.00004

Relative Speedup Compared to 4 Node iPSC/2

3.50004—

3.00004—

2.50004—

2.00004—

15000 1~

1.0000

0.5000 4~

| | | | | | | I
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

Number of Nodes

Effect of Increasing System Size

Figure 20: Effect of increasing system size for application FFT, QR and GAUSS

26,000 transistors, representing a2 0.6% of the transistor count in a modern microprocessor.

Message Passing interface The short message handling mechanism requires hardware support to
copy short messages to and from the register file. Since much of the packet reception hardware such as
the crossbar switch and control for path setup is shared with the memory packet reception units, the
hardware required for short message handling is only message buffers plus control logic in the network
interface. And we expect the implementation of the message passing interface to be simpler than
that used in conventional bus-based systems since the uniform interconnect of dynamic interconnection
obviates the manipulation of complex bus protocols. We expect the hardware overhead of the network
interface to be less than that for the memory packet receive hardware, representing less than 0.5% of
the processor chip die area. Long message passing does not require any significant additional hardware
since the mechanism is embedded in the memory subsystem.

Packet Router Dynamicinterconnection demands routers with three characteristics: First, they must
exhibit extremely low latency. Our implementation studies and others [4, 8, 17, 33] show that router
latencies in the 5-10 nanosecond range are feasible if chip crossing costs are reduced with advanced
packaging. Second, it must have multiple input and output ports, supplying or absorbing several packets
at a time. Network implementation studies have shown that wormhole routers can be augmented with
additional input and output ports with modest increases in complexity. Third, it must be possible
to inject messages into several dimensions. For example, if the network used dimension-order routing,
all packets would have to route in X first, making it impossible to inject in the Y dimension. Recent
advances in the design of simple adaptive routers indicates that such networks overhead likely to be
modest [4, 8]. A comparable router design we completed required only 18 MA2, &~ 1% of a modern
microprocessor’s die area. Also, our design study of three adaptive routing schemes [5, 9, 28] shows that

27

they all require less than 10,000 gates for 2-dimensional network [8]. Finally, they must use bidirectional
channels. This allows all of the processor pins to be utilized for dynamic interconnections. A number of
routers which use bidirectional signalling have already been constructed [5, 17].

R/W]| | Refresh Control
From Router _
i 1 2 A R
D
E
C
v o RAM
Dt Array
E
Control R
W
| Row Buffer]
W
[Column Multiplexer/Demultiplexer |

Basic DRAM Core

[[ooft Thum] Sze] o [0 fope Jsouree | —=_ o ver

Figure 21: Memory node packet interface in dynamic interconnection

Memory Nodes Dynamicinterconnection memory nodes require a router and packet processing hard-
ware. This hardware can be added to individual dynamic RAM chips, or the cost can be amortized over
a number of chips. A block diagram of a memory node design is shown in Figure 21. Self-refresh capa-
bility is built in. Other designs [30, 20] have shown that the latency due to packet processing is small
compared to memory access latency.

8 Discussion and Related Work

Dynamic allocation of communication resources is not a new idea. Several systems use dynamic allo-
cation of communication resources when their efficient utilization is at a premium [6, 27]. Applying
network-based dynamic interconnection to low-level interconnection has been discussed in the fine-grain
multicomputer community for some time. Seitz was the first to describe the dynamic interconnection
idea in print and observe some of its advantages such as the higher signaling speed and the capability
of parallel transactions of point-to-point direct networks [33]. However, he introduces the possibility of
DI-based systems without discussing memory hierarchy and network interface issues.

The Tera architecture [3] also implements its memory subsystem with interleaved memory units
interconnected by a packet-switched interconnection network. However, the Tera architecture is quite
different in that there is neither a cache nor local memory; all accesses are mapped to a global shared
memory and no message passing is supported. In addition, rather than building a high-performance
memory subsystem, they try to hide the long memory latency caused by packet routing with cycle-by-
cycle context switching.

A number of new processor memory interfaces have been proposed which address memory band-
width limitations. The Rambus uses a 9-bit data channel which runs at 250 Mhz and achieves rates
of 500MByte/s [30]. Dynamic interconnection is distinguished from Rambus primarily by the use of a
general point-to-point interconnect and packet routing and the support for multiple masters and sharing

28

of memory modules. The Scalable Coherent Interface (IEEE P1596) also uses point-to-point links to
achieve high speed signaling [20], but the ring topology used in SCI increases memory access latency.

The J-machine [16] addresses message handling overhead with hardware support, by putting the
network interface on chip and providing hardware to queue incoming messages. Processor-network
interface studies for the *T project [21] have addressed the issue of how to couple processors with the
network. However, like existing fine-grained architectures, their register-file based message handling
suffers from the memory hierarchy traffic overhead. The Fujitsu AP1000 [22] includes hardware support
for two different message classes. However, its line send mechanism for short messages is based on a
hardware managed queue in memory, not an on-chip FIFO as in the DI-multicomputer. This means
that incoming short messages still need to be fetched from memory, increasing the latency.

The issue of implementing global cache coherence is an orthogonal issue to the DI-based systems.
Either hardware directory-based coherence protocols [2, 26] or software-based approaches [7, 11] can be
implemented on top of the DI-based systems to support the cache coherence.

9 Summary

The DI-multicomputer uses dynamic interconnection and novel message handling mechanisms to increase
in memory bandwidth and reduce message passing overhead. Dynamic interconnection increases chip
input/output bandwidth significantly by sharing pins and using point-to-point interconnects to achieve
faster signalling. Our performance comparisons show that DI systems are competitive with conventional
memory hierarchies at small cache line sizes (32 bytes) and superior for larger line sizes.

The DI-multicomputer provides distinct mechanisms for short and long messages, achieving a signif-
icant reduction in communication overhead. For short messages, register based short message handling
eliminates startup costs. For long messages, the parallel memory-to-memory block transfer produces
high bandwidth, low latency communication. Using two distinct message passing mechanisms allows
messages to be handled at an appropriate level of the memory hierarchy, reducing cache perturbation
and avoiding unnecessary data transfers.

Our simulation results show that the novel message passing mechanisms of the DI-multicomputer
can achieve up to 4 times speedup. Also, by sending messages to appropriate level of memory hierarchy,
the DI-multicomputer can eliminate most of the memory hierarchy traffic overhead, which is inevitable
in register based message handling. The two level message passing mechanisms can give up to a 77
% increase in performance compared to register based message passing. The robust communication
performance of the DI-multicomputer on enables it to excel existing multicomputer architectures on both
fine-grained and coarse-grained applications. QOur studies confirm that the DI-multicomputer achieves
more robust scalable performance for larger machine sizes than the target architectures.

We have only begun to explore the possibilities of dynamic interconnection-based systems. There are
a number of obvious optimizations: express cubes [13] can reduce the routing penalty in the dynamic
interconnection and the network/memory hierarchy interference, and extremely large messages can be
broken into several MOVE instructions to exploit greater communication parallelism, etc. The global
physical address space can support a variety of additional functionality. For example, memory can be
pooled amongst processors, providing some advantages of shared memory machines. Alternatively, the
free association between memory and processors can be used to build a variable grain-size machine. One
major issue that remains is the evaluation of the contention memory and communication traffic and its
impact on the performance. We are currently performing a detail simulation of the DI-multicomputer
memory hierarchy based on application memory traces to address this question.

Acknowledgements The research described in this paper was supported in part by NSF grants CCR-
9209336 and MIP-92-23732, ONR grants N00014-92-J-1961 and N00014-93-1-1086 and NASA grant NAG
1-613. Additional support has been provided by the National Science Foundation under Grant No. MIP
89-20891 and MIP 93-07910 and by a generous special-purpose grant from the AT&T Foundation. We

29

would like to thank the reviewers for their valuable comments and suggestions. We also wish to thank
Michael Peercy at IBM Almaden and Jim Hsu at HP Laboratory for their guidance on the trace-driven
simulation, and Professor Prith Banerjee at Coordinated Science Laboratory for providing us the traces.
Our warmest thanks to Professor Pen-Chung Yew at University of Minnesota for his encouragement and
supports.

References

(1]

[18]

[19]

AGcAarwaL, A., LiMm, B.-H., KrRanz, D., AND KuBiaTowicz, J. April: a processor architecture for multipro-
cessing. In Proceedings of the 17th Annual International Symposium on Computer Architecture, pp. 104-114,
May 1990.

AGARWAL, A.) AND ET AL. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor.
In Proceedings of Workshop on Scalable Shared Memory Multiprocessors, 1991.

ALVERSON, G., ALVERSON, R., CALLAHAN, D., KoBLENZ, B., PORTERFIELD, A., AND SMITH, B. Exploit-
ing heterogeneous parallelism on a multithreaded multiprocessor. In Proceedings of the 6th ACM Interational
Conference on Supercomputing, 1992.

AovamA, K. The cost of adaptivity and virtual lanes in a wormhole router. In Journal of VLSI Design,
1994.

BeErmAN, P., GravaNO, L., PIFARRE, G.;, AND SaNzZ, J. Adaptive deadlock and livelock free routing

with all minimal paths in torus networks. In Proceedings of the Symposium on Parallel Algorithms and
Architectures, 1992.

CERF, V., AND KAHN, R. A protocol for packet network interconnection. IFEFE Transactions on Commu-
nications, 1974.

CHEONG, H. Life Span Strategy - A Compiler-Based Approach to Cache Coherence. In Proceedings of the
International Conference on Supercomputing, 1992.

CHIEN, A. A. A cost and speed model for k-ary n-cube wormhole routers. multiprocessors. In Proceedings
of the Hot Interconnects, 1993.

CHIEN, A. A, AND KM, J. H. Planar-adaptive routing: Low-cost adaptive networks for multiprocessors.
In Proceedings of the International Symposium on Computer Architecture, pp. 268-77, May 1992.

CHol, L., AND CHIEN, A. Integrating networks and memory hierarchies in a multicomputer node architec-
ture. In Proceedings of the International Parallel Processing Symposium, April 1994.

CHor, L., aAND YEw, P. C. A Compiler-Directed Cache Coherence Scheme with Improved Intertask Locality.
In Proceedings of the ACM/IEEFE Supercomputing, pp. 773-782, November 1994.

CrAY REsEARcH INc. SHMEM User’s Guide. 1994.

DarLry, W. J. Express cubes: Improving the performance of k-ary n-cube interconnection networks. [FEF
Transactions on Computers, 40(9):1016-1023, 1991.

Darry, W. J. Virtual channel flow control. IFEE Transactions on Parallel and Distributed Systems,
3(2):194-205, 1992.

Darry, W. J., CHIEN, A., FisKke, S., HorwaT, W., KEEN, J., LArRIVEE, M., LETHIN, R., NUTH, P.,
WiLLs, S.; CARRICK, P.; AND FYLER, G. The J-Machine: A fine-grain concurrent computer. In Information
Processing 89, Proceedings of the IFIP Congress, pp. 1147-1153, August 1989.

Darry, W. J., Fiskg, J. A. S., KeeN, J. S., LETHIN, R. A., Noakes, M. D., NutH, P. R., DAVISON,
R. E., AND FYLER, G A. The message-driven processor. IEFFE Micro, April 1992.

DarLry, W. J., AND SONG, P. Design of a self-timed vlsi multicomputer communication controller. In
Proceedings of the International Conference on Computer Design, pp. 230-4. IEEE Computer Society,
1987.

DavipsoN, E. E. Electrical design of a high speed computer packaging system. [IEFFE Transactions on
Components, Hybrids and Manufacturing Technology, CHMT-6(3):272-282, 1983.

Digrrar, EQUIPMENT CORPORATION. Alpha Architecture Handbook, 1992.

30

[20]

[21]

[22]

[23]

A
B

GusTavsoN, D. B. The scalable coherent interface and related standards projects. IEEE Micro, 12(1), Feb.
1992.

Henry, D. S., aAND JorErG, C. F. A tightly-coupled processor-network interface. In Proceedings of the
Fifth International Conference on Architectural Support for Programming Languages an Operating Systems,
pp. 111-122, 1992.

Horie, T., ET AL. AP1000 architecture and performance of LU decomposition. In International Conference
on Parallel Processing, 1991.

Hsu, J. M. Performance measurement and hardware support for message passing distributed memory
multiprocessors. Technical Report UILC-ENG-91-2209, University of Illinois, Center for Reliable and High-
Performance Computing, 1991.

INTEL CORPORATION. 860 XP Microprocessor Data Book, 1991.
INTEL CORPORATION. Paragon XP/S Product Overview, 1991.

D., Laubon, J., GHARACHORLOO, K., GupTA, A., AND HENNESSY, J. The Directory-Based Cache Co-
herence Protocol for the DASH Computer. In Proceedings of the 17th Annual International Symposium on
Computer Architecture, pp. 148-159, May 1990.

MEeTcaLre, R., AND BoaaGs, D. FEthernet: Distributed packet-switching for local computer networks.
Communications of the Association for Computing Machinery, 19(7):395-404, 1976.

N1, L., AND GLAss, C. The turn model for adaptive routing. In Proceedings of the International Symposium
on Computer Architecture, 1992.

PETERSON, C., SUTTON, J., AND WILEY, P. iWarp: a 100-MOPS LIW microprocessor for multicomputers.
IEEE Micro, June 1991.

RamBUs CORPORATION. Rambus architectural overview. Product Literature, 1992.

Matrsur, N., SaToH, H., AND OKADA, K. Analysis of high-speed bus lines in printed circuit boards. In
IEEE/CHMT Japan IEMT Symposium, pp. 156-167. IEEE, 1989.

SEITZ, C.; AND SU, W. A family of routing and communication chips based on the Mosaic. In Proceedings
of the Unwversity of Washington Symposium on Integrated Systems, 1993.

SEITZ, C. L. Let’s route packets instead of wires. In W. J. Dally, editor, Proceedings of the 6th MIT
Conference on Advanced Research in VLSI, pp. 133-37. MIT Press, 1990.

THINKING MACHINES CORPORATION, CAMBRIDGE, MASSACHUSETTS. CM-5 Technical Summary, October
1991.

WHITBY-STREVENS, C. The transputer. In Proceedings of 12th International Symposium on Computer
Architecture, 1985.

Packet Formats

Instruction Set Architecture

The DI-microprocessor has a basic RISC instruction set augmented with special communication, syn-

chronization and translation instructions. All registers are addressed relative to a context offset (CO) in

the
set

process status register. In this section, only the new instructions added to DEC Alpha instruction
will be described.

All the new instructions are described using a simple format which can be implemented by any

instruction format of a modern RISC microprocessor. The operand types of the format are shown in
Table VIII. The detail field specification of the operand types is assumed to be specified according to

the

DEC Alpha instruction format shown in Figure 24.

31

MEMORY READ REQUEST PACKET

Header

Header | Memory Node [TypdTag|Off [Size Physical Addr Processor Node
Addr (24) BIEN D [[5 (30) Addr (24)
MEMORY REPLY PACKET
Processor Node [TypdTag|Off [Size] Physical Addr
Addr (24) & @@ | @ (30)
Data Words

MEMORY WRITE REQUEST PACKET

Header Memory Node [TypgTag | Off [Bize Physical Addr Processor Node
addr 24)]3| @ [@ . aaar (2
Data Words

MEMORY WRITE REPLY PACKET

Processor Node
Header | "aqgr (24 RliE

&l

Siz{ Physical Addr
(2 (30)

Figure 22: Memory packet formats in dynamic Interconnection

SHORT MESSAGE PACKET

Destination

Processor Addr

SHORT

PC

Size Data Words

MOVE REQUE

Destination

Memory Addr

MOvVE | Size

Memory Addr | Processor Addr

Remote Remote

ST PACKET from processor to source memory node

Figure 23: Packet formats used in message handling

B.1 Extended Memory Operations

Row mode memory operations are added to the usual load store operations of the DEC Alpha. Table IX
shows the row mode memory operations which move data between a row register and memory. All the
row mode memory operations (LD_ROW, ST_ROW, LDT_ROW) use the Memory Instruction Format
of DEC Alpha. The virtual address is computed by adding register Rb to the sign-extended 16 bit

displacement.

LD _ROW: Load a Memory Block into a Row Register

e Format LD_ROW ROWd, Srec (Memory Instruction Format)

Table VIII: Operand Field Description

| Mnemonic || Description |
Rs, Rd Register Operands
ROWs, ROWd || Row Operands
Src, Dst Memory Operands

#Size, #Dest

Immediate Operands

32

Memory Instruction Format

| Opcode |Ra | Rb | Memory_disp |

Memory Instruction Format with a Function Code

| Opcode |Ra | Rb | Function |

Branch Instruction Format

| Opcode |Ra | Branch_disp |

Operate Instruction Fortmat

| Opcode |Ra | Rb |SBZ |0|Function | Rc |

| Opcode | Ra | LIT |]|Function | Rc |

Floating—Point Instruction Format

| Opcode | Fa | Fb | Function | Fc |

PALcode Instruction Format

| Opcode | PALcode Function |

Figure 24: DEC Alpha Instruction Formats

e Operation ROWd — MEM_BLOCK][Src]

e Description The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source memory block is fetched from memory and written to row register

ROWd.

ST _ROW: Store a Row Register into Memory
e Format ST_.ROW ROWs, Dst (Memory Instruction Format)
e Operation MEM_BLOCK][Src] — ROWs

e Description The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The ROWSs operand is written to memory at this address.

LDT _ROW: Load a Memory Block into a Row Register in Empty Context
e Format LDT_ROW ROWd, Src (Memory Instruction Format)
e Operation (ROWd in empty context) — MEM_BLOCK][Src]

e Description The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source memory block is fetched from memory and written to row register
ROWUd. Instead of local register sets, the target row register is from an empty context which is
specified by the empty context offset in RSR. This is a privileged operation. The trap context only
can perform the operation.

STT_ROW: Store a Row Register in Previous Context into Memory
e Format STT_ROW ROWs, Dst (Memory Instruction Format)

33

e Operation MEM_BLOCK[Dst] — (ROWs in previous context)

e Description The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The ROWs operand is written to memory at the specified address. Instead of local
register sets, the source row register is from the previously running context which is specified by
the previous context offset in RSR. This is also a privileged operation. The trap context only can
perform the operation.

There are two additional memory operations used for long message transfer. One (STV) is used
for reception of a long message and the other (TEST) is used for synchronization. Executing an STV
instruction allocates a dummy cache line which will hold the acknowledgments from the memory. There
is no source operand specified. Therefore, the specified target memory word will remain unchanged by
executing this virtual store instruction. The TEST instruction checks whether the location contains all
the acknowledgments from the memory nodes. If not, the thread executing the instruction will block
until the acknowledgments arrive. This instruction allows synchronization between the receiving thread
and message reception at destination node.

STV: Store a Register Data into Memory Virtually
e Format STV Dst (Memory Instruction Format)

e Operation allocate CACHE_BLOCK|[Dst]

e Description The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. A cache block is allocated for the target address but the instruction will not affect
the corresponding memory block. The source register operand field is not used.

TEST: Test memory location
e Format TEST Src (Memory Instruction Format)

¢ Operation if CACHE_BLOCK][Src] = ‘ACK’ then {test succeeds and returns} else block

e Description The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The register operand field is not used.

B.2 Message Operations

Table IX also shows the message send instructions in DI-microprocessor. SEND is used for short message
transfers while MOVE is used for long block transfers. The source operand Rs in the SEND instruction
specifies the first register of the transmitted messages in the register file, and the size field specifies the
length of the message. All the message handling instructions use the Operate Instruction Format of
DEC Alpha. All the immediate fields use the literal field of the instruction format. The source address
should be local and the destination memory address should be remote in the MOVE instruction. Since
the MOVE instruction needs more than 2 source register operands, it may need another cycle to decode
and fetch all the register operands specified depending on the implementation.

SEND: Send a short message
e Format SEND Rs, #5ize (Operate Instruction Format)

e Operation Router — Message in

Rsa Rs+1a ~~Rs+size—1

e Description The message should be contiguous in the specified registers. The message is copied
into router port by the network interface.

34

Table IX: Extended Instruction Set for DI-microprocessor

| Mnemonic | Operation
LD_ROW ROWd, Src Load a line of words in memory into a row register
ST_ROW ROWs, Dst Store a row register into memory
LDT_ROW ROWd, Src Load a line of words in memory into empty context
(Supervisor mode load for reception context)
STT_ROW ROWs, Dst Store a row register in the previous context into memory
STV Rs, Dst Virtual store operation for the reception
and synchronization of long messages
TEST Src Test long message arrival
SEND Rs, #Size, Rd Send a short message from the specified registers
MOVE Rs1, ROWs, #Size, Rs2 || Initiate a long block transfer
from local memory (Rsl1) to remote memory (Rs2)
with destination processor in (Rs3)
TLX Rs, ROWd virtual (Rs) to physical (ROWd) address translation
using TLB

MOVE: Move a long message from local memory to remote memory
e Format MOVE Rsl, ROWs, #Size, Rs2 (Operate Instruction Format)

¢ Operation MEM_BLOCK[ROWS] at remote processor Rs2 — MEM_BLOCK|[Rs1] where BLOCK_SIZE
= #Size

e Description The virtual address for local memory is specified by the register field Ra. And the
Function field 1s used to specify the row register ROWs which contains the physical addresses for
remote memory. The Size field uses the literal field of the format. And the remote processor is
specified by the register field Rc in the operate instruction format. The memory interface generates
the corresponding move requests to memory.

B.3 TLB Manipulation Operations: TLX

To handle address translation request by software, DI-microprocessor provides a TLB manipulation
operation as shown in Table IX. It uses the Operate Instruction Format of DEC Alpha. The instruction
accesses the TLB and gives the physical memory address (four memory node addresses) corresponding
to the virtual address specified.

TLX: Translate a virtual address into a physical address
e Format TLX Rs, ROWd (Operate Instruction Format)
e Operation ROWd — TLB[Rs]

e Description The virtual address is specified by the register field Ra and destination row register
is specified by the register field Rc. TLB entry corresponding to the address is fetched from TLB
and written into the row register specified. Since there are four physical addresses corresponding
to the virtual address, each physical address is written into a register in the specified row register.

35

Biography

LYNN CHOI is a Ph.D candidate in the Department of Computer Science and a research assis-
tant in the Center for Supercomputing Research and Development of University of Illinois at Urbana-
Champaign. He received his B.S. and M.S. degree both in computer engineering in 1986 and and in 1988
respectively from Seoul National University, Seoul Korea. After the study, he worked at Korea Telecom
Research Center as a technical staff until 1990. His current research interests include architecture and
compilation issues in high performance computer systems, specifically cache and memory system design
in large-scale parallel systems. He 1s a student member of both IEEE and ACM.

ANDREW A. CHIEN received his B.S. degree in Electrical Engineering (1984) and his M.S. (1987)
and Ph.D. (1990) degrees in Computer Science all from the Massachusetts Institute of Technology. He
is currently an Associate Professor in the Department of Computer Science at the University of Illinois
where he leads the Concurrent Systems Architecture Group. His research interests involve the interaction
of architecture, system software, compilers, and programming languages in high-performance parallel
systems. Andrew Chien has authored numerous research papers in those areas and recently published
Concurrent Aggregates: Supporting Modularity in Massively-Parallel Programs with MIT Press. Andrew
Chien is a member of both IEEE and ACM.

36

