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ABSTRACTAdvan
es in pro
essor, memory and radio te
hnology willenable small and 
heap nodes 
apable of sensing, 
ommuni-
ation and 
omputation. Networks of su
h nodes 
an 
oor-dinate to perform distributed sensing of environmental phe-nomena. In this paper, we explore the dire
ted di�usionparadigm for su
h 
oordination. Dire
ted di�usion is data-
entri
 in that all 
ommuni
ation is for named data. Allnodes in a dire
ted di�usion-based network are appli
ation-aware. This enables di�usion to a
hieve energy savings bysele
ting empiri
ally good paths and by 
a
hing and pro-
essing data in-network. We explore and evaluate the useof dire
ted di�usion for a simple remote-surveillan
e sensornetwork.
1. INTRODUCTIONIn the near future, advan
es in pro
essor, memory and ra-dio te
hnology will enable small and 
heap nodes 
apable ofwireless 
ommuni
ation and signi�
ant 
omputation. Theaddition of sensing 
apability to su
h devi
es will make dis-tributed mi
rosensing|an a
tivity in whi
h a 
olle
tion ofnodes 
oordinate to a
hieve a larger sensing task|possible.Su
h te
hnology 
an revolutionize information gathering andpro
essing in many situations. Large s
ale, dynami
ally
hanging, and robust sensor networks 
an be deployed in in-hospitable physi
al environments su
h as remote geographi
regions or toxi
 urban lo
ations. They will also enable lowmaintenan
e sensing in more benign, but less a

essible, en-vironments: large industrial plants, air
raft interiors et
.To motivate our resear
h, 
onsider this simpli�ed model ofhow su
h a sensor network will work (we re�ne this model in�This work was supported by the Defense Advan
ed Re-sear
h Proje
ts Agen
y under grant DABT63-99-1-0011.Any opinions, �ndings, and 
on
lusions or re
ommendationsexpressed in this material are those of the authors and donot ne
essarily re
e
t the views of the Defense Advan
edResear
h Proje
ts Agen
y.

Se
tion 2). One or more human operators pose, to any nodein the network, questions of the form: \How many pedestri-ans do you observe in the geographi
al region X?", or \Tellme in what dire
tion that vehi
le in region Y is moving".These queries result in sensors within the spe
i�ed region be-ing tasked to start 
olle
ting information (Se
tion 2). On
eindividual nodes dete
t pedestrians or vehi
le movements,they might 
ollaborate with neighboring nodes to disam-biguate pedestrian lo
ation or vehi
le movement dire
tion.One of these nodes might then report the result ba
k to thehuman operator.Motivated by robustness, s
aling, and energy eÆ
ien
y re-quirements, this paper examines a new data disseminationparadigm for su
h sensor networks. This paradigm, whi
hwe 
all dire
ted di�usion1, is data-
entri
. Data generatedby sensor nodes is named by attribute-value pairs. A noderequests data by sending interests for named data. Datamat
hing the interest is then \drawn" down towards thatnode. Intermediate nodes 
an 
a
he, or transform data, andmay dire
t interests based on previously 
a
hed data (Se
-tion 3).Using this 
ommuni
ation paradigm, our example mightbe implemented as follows. The human operator's querywould be transformed into an interest that is di�used to-wards nodes in regions X or Y. When a node in that regionre
eives an interest, it a
tivates its sensors whi
h begin 
ol-le
ting information about pedestrians. When the sensorsreport the presen
e of pedestrians, this information returnsalong the reverse path of interest propagation. Intermediatenodes might aggregate the data, e.g., more a

urately pin-point the pedestrian's lo
ation by 
ombining reports fromseveral sensors. An important feature of dire
ted di�usionis that interest and data propagation and aggregation aredetermined by lo
alized intera
tions (message ex
hanges be-tween neighbors or nodes within some vi
inity).Dire
ted di�usion is signi�
antly di�erent from IP-style 
om-muni
ation where nodes are identi�ed by their end-points,and inter-node 
ommuni
ation is layered on an end-to-enddelivery servi
e provided within the network. In this paper,we des
ribe dire
ted di�usion and illustrate one instantia-tion of this paradigm for sensor query dissemination andpro
essing. We show that using dire
ted di�usion one 
an1Van Ja
obson suggested some of the initial ideas that later led to the design ofdire
ted diffusion.



realize robust multi-path delivery, empiri
ally adapt to asmall subset of network paths, and a
hieve signi�
ant en-ergy savings when intermediate nodes aggregate responsesto queries (Se
tion 4).
2. DISTRIBUTED SENSOR NETWORKSBefore we des
ribe dire
ted di�usion, we must des
ribe theexpe
ted ar
hite
tures of sensor networks. To do this, we�rst des
ribe the expe
ted 
apabilities of sensor nodes. Itis not unreasonable to expe
t the following features in a fu-ture sensor node: A mat
hbox sized form fa
tor, batterypower sour
e, an power-
onserving pro
essor 
lo
ked at sev-eral hundred Mhz, program and data memory amounting toseveral tens of MBytes, a radio modem that employs someform of diversity 
oding [10℄, and an energy eÆ
ient MAClayer based on, for example, TDMA [22℄. As su
h, this nodewould be 
apable of running a possibly stripped-down ver-sion of a modern operating system; examples of su
h oper-ating systems in
lude Windows CE and �CLinux.Su
h a node 
ould have one or more sensors. Examples ofsu
h sensors in
lude seismi
 geophones, infrared dipoles andele
tret mi
rophones for a
ousti
 sensing. The analog-to-digital 
onversion system on su
h nodes might produ
e upto70 ksamples per se
ond, at upto 12 bit resolution. For rea-sons of power 
onservation, some of the 
ommon signal pro-
essing fun
tions may be o�oaded into a low-power ASIC.In this way, the main pro
essor need be woken up only whenevents of interest o

ur. Finally, a sensor node may possessa fully-fun
tional GPS re
eiver.Be
ause of their 
ompa
t form fa
tor and their potentiallow 
ost, it might be possible for a densely|within tens offeet of ea
h other|pa
ked 
luster of su
h sensor nodes tobe deployed, in a possibly unplanned fashion, near the phe-nomena to be sensed|e.g., at busy interse
tions, or in theinterior of large ma
hinery. The advantage of su
h sensornetworks is that, even with relatively 
heap sensors, thesenodes 
an obtain high SNR (given that the signal gener-ated by any physi
al phenomena rapidly attenuates withdistan
e). Furthermore, given the spatial density of thesedeployments, an individual sensor node may not have tofrequently perform multi-target resolution (i.e. distinguishbetween di�erent targets su
h as individuals and vehi
les).Su
h multi-target resolution 
an involve 
omplex de
onvo-lution algorithms requiring non-trivial pro
essing 
apability[21℄.By 
ontrast, today's sensor deployments fall into two 
ate-gories. Large, 
omplex sensor systems are usually deployedvery far away from the phenomena to be sensed, and em-ploy 
omplex signal pro
essing algorithms to separate tar-gets from environmental noise. Alternately, a 
arefully en-gineered network of sensors is deployed in the �eld, but in-dividual sensors do not possess 
omputation 
apability, in-stead transmitting time series of the sensed phenomena toone or more nodes whi
h perform the data redu
tion and�ltering.Should future sensor networks resemble sensor deploymentsof old? In parti
ular, should sensor nodes transmit timeseries of data to some 
entral node whi
h performs the tar-get resolution? One key 
onsideration in sensor networks|

energy eÆ
ien
y|di
tates otherwise. Be
ause sensors arelikely to be battery-powered, and be
ause sensor networkswill be expe
ted to have lifetimes of several days (with possi-bly prolonged lulls in a
tivity), 
onserving battery resour
esis a 
ru
ial requirement. This means that short-range hop-by-hop 
ommuni
ation is preferred over dire
t long-range
ommuni
ation to the destination. Coin
identally, su
h hop-by-hop 
ommuni
ation also provides a form of 
ommuni
a-tion diversity in helping 
ommuni
ate around obsta
les [21℄.Energy eÆ
ien
y also implies that it is infeasible to trans-mit time-series data a
ross the network, even hop-by-hop.As [21℄ shows, performing lo
al 
omputation to redu
e databefore transmission 
an obtain orders of magnitude energysavings.These energy eÆ
ien
y 
onsiderations, 
oupled with the likelyavailability of pro
essing power and 
ommuni
ation 
apa-bility in sensor nodes, argues for a di�erent organizationof a sensor network. In this organization, individual nodesredu
e the sampled waveform generated by a target (e.g.,a pedestrian or a vehi
le) into a relatively 
oarse-grained\event" des
ription. This des
ription usually 
ontains a\
odebook value"|an event 
ode|for the target, a times-tamp, a signal amplitude, and a degree of 
on�den
e in theestimate. Nodes 
an then ex
hange these event des
riptionswith their neighbors|who are also likely to have observedthe target|to re�ne the estimation, transmitting only ashort des
ription ba
k to a human operator.Informally, with su
h an organization, a sensor network be-gins to look like a distributed 
omputing system. What 
om-muni
ation primitives 
an be employed in su
h unattendedsensor networks? While it is not infeasible to design thesesensor networks using IP and ad-ho
 routing, the 
entralthesis of this paper is that a di�erent set of 
ommuni
ationprimitives 
an lead to more eÆ
ient sensor data dissemina-tion.Consider a simple sensor network for remote surveillan
e ofa region. In pra
ti
e, su
h a network might 
onsist of sev-eral hundreds or thousands of sensor nodes deployed withinthat region. In some 
ases, the sensor �eld may be deployedin a regular fashion (e.g. a 2-dimensional latti
e, or a lineararray) within that region. More generally, however, 
ommu-ni
ation and networking proto
ols 
annot assume stru
turedsensor �elds.A user of this remote surveillan
e network would be able to
onta
t (using, perhaps a long-range radio link) one of thesensors in the �eld, and pose the following task : \Every Ims for the next T se
onds, send me a lo
ation estimate ofany four-legged animal in subregion R of the sensor �eld".In general, the network may support a variety of task types.However, sensor networks are task-spe
i�
|unlike generalpurpose 
ommuni
ation networks, the task types are knownat the time the sensor network is deployed2. We leveragethis important observation in our design.Using hop-by-hop wireless 
ommuni
ation and routing me
h-anisms des
ribed in Se
tion 3, this task is 
onveyed to sensornodes in the subregion R of the sensor �eld. Ea
h node then2More a

urately, sensor networks may be reprogrammable and the tasks theysupport may 
hange slowly over time.



tasks its sensors to 
olle
t samples, and mat
hes the sam-pled waveform against a lo
ally-stored library. If the nodedete
ts a waveform typi
al of a four-legged animal, it gen-erates 1/I event des
riptions a millise
ond, ea
h of whi
h
ontains the following items: its own lo
ation, a 
odebookvalue 
orresponding to the animal, the intensity of the sig-nal, and a degree of 
on�den
e in its estimation. Sensorswithin region R may 
oordinate to pi
k the best estimate.This estimate \pa
ket" is then routed ba
k towards the taskoriginator.The fo
us of this paper is the design of dissemination me
h-anisms for tasks and events. We des
ribe this disseminationme
hanism in the 
ontext of the sensor network des
ribedabove, but with support for multiple 
on
urrent task ini-tiations of the type spe
i�ed above. We later argue thatour overall approa
h, dire
ted di�usion, applies more gener-ally to other kinds of distributed sensor 
oordination. Wefa
e several 
hallenges in designing these me
hanisms. First,these me
hanisms must s
ale to several thousands of sensornodes in the sensor �eld. Se
ond, sensor nodes may fail,may lose battery power, or may be temporarily unable to
ommuni
ate due to environmental fa
tors. The dissemina-tion me
hanisms must be robust to su
h failures. Finally,wireless 
ommuni
ation even over relatively short distan
es
onsumes signi�
ant energy. The dissemination me
hanismsmust minimize energy usage.
3. DIRECTED DIFFUSIONDire
ted di�usion 
onsists of several elements. Data is namedusing attribute-value pairs. A sensing task (or a subtaskthereof) is disseminated throughout the sensor network asan interest for named data. This dissemination sets up gra-dients within the network designed to \draw" events (i.e.,data mat
hing the interest). Events start 
owing towardsthe originators of interests along multiple paths. The sensornetwork reinfor
es one, or a small number of these paths.Figure 1 illustrates these elements.In this se
tion, we des
ribe these elements of di�usion withspe
i�
 referen
e to a parti
ular kind of sensor network|one that supports the task des
ribed in Se
tion 2. Su
h anetwork performs lo
ation tra
king. As we shall see, sev-eral design 
hoi
es present themselves even in the 
ontextof this spe
i�
 instantiation of di�usion. We elaborate onthese design 
hoi
es while des
ribing the design of our sen-sor network. Our initial evaluation (Se
tion 4) fo
uses onlya subset of these design 
hoi
es.
3.1 NamingIn dire
ted di�usion, task des
riptions are named by, forexample, a list of attribute-value pairs that des
ribe a task.The animal tra
king task des
ribed in Se
tion 2 might bedes
ribed as (this is a simpli�ed des
ription, see Se
tion 3.2for more details):type = four-legged animal // dete
t animal lo
ationinterval = 20 ms // send ba
k events every 20 msduration = 10 se
onds // .. for the next 10 se
ondsre
t = [-100, 100, 200, 400℄ // from sensors within re
tangleFor ease of exposition, we 
hoose the subregion representa-tion to be a re
tangle de�ned on some 
oordinate system;

in pra
ti
e, this might be based on GPS 
oordinates.Intuitively, the task des
ription spe
i�es an interest for datamat
hing the attributes. For this reason, su
h a task de-s
ription is 
alled an interest. The data sent in responseto interests are also named using a similar naming s
heme.Thus, for example, a sensor that dete
ts an animal mightgenerate the following data (see Se
tion 3.3 for an explana-tion of some of these attributes):type = four-legged animal // type of animal seeninstan
e = elephant // instan
e of this typelo
ation = [125, 220℄ // node lo
ationintensity = 0.6 // signal amplitude measure
onfiden
e = 0.85 // 
onfiden
e in the mat
htimestamp = 01:20:40 // event generation timeGiven a set of tasks supported by a sensor network, then,sele
ting a naming s
heme is the �rst step in designing di-re
ted di�usion for the network. For our sensor network, wehave 
hosen a simple attribute-value based interest and datanaming s
heme. In general, ea
h attribute has an asso
iatedvalue range. For example, the range of the type attribute isthe set of 
odebook values representing mobile obje
ts (vehi-
les, animal, humans). The value of an attribute 
an be anysubset of its range. In our example, the value of the typeattribute in the interest is that 
orresponding to four-leggedanimals.There are other 
hoi
es for attribute value ranges (e.g., hi-erar
hi
al) and other naming s
hemes (su
h as intentionalnames [1℄). To some extent, the 
hoi
e of naming s
heme
an a�e
t the expressivity of tasks, and may impa
t perfor-man
e of a di�usion algorithm. In this paper, our goal isto gain an initial understanding of the di�usion paradigm.For this reason, we defer the exploration of possible namings
hemes to future work.
3.2 Interests and GradientsThe named task des
ription of Se
tion 3.1 
onstitutes aninterest. An interest is usually inje
ted into the network atsome (possibly arbitrary) node in the network. We use theterm sink to denote this node.Given our 
hoi
e of naming s
heme, we now des
ribe howinterests are di�used through the sensor network. Supposethat a task, with a spe
i�ed type and re
t, a durationof 10 minutes and an interval of 10ms, is instantiated ata parti
ular node in the network. The interval parame-ter spe
i�es an event data rate; thus, in our example, thespe
i�ed data rate is 100 events per se
ond. This sink nodere
ords the task; the task state is purged from the node afterthe time indi
ated by the duration attribute.For ea
h a
tive task, the sink periodi
ally broad
asts an in-terest message to ea
h of its neighbors. This initial interest
ontains the spe
i�ed re
t and duration attributes, but
ontains a mu
h larger interval attribute. Intuitively, thisinitial interest may be thought of as exploratory; it triesto determine if there indeed are any sensor nodes that de-te
t the four-legged animal. To do this, the initial interestspe
i�es a low data rate (in our example, 1 event per se
-
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ed pathFigure 1: A simpli�ed s
hemati
 for dire
ted di�usion.ond)3. In Se
tion 3.4, we des
ribe how the desired data rateis a
hieved by reinfor
ement. Then, the initial interest takesthe following form:type = four-legged animalinterval = 1sre
t = [-100, 200, 200, 400℄timestamp = 01:20:40 // hh:mm:ssexpiresAt = 01:30:40Before we des
ribe how interests are pro
essed, we empha-size that the interest is periodi
ally refreshed by the sink.To do this, the sink simply re-sends the same interest witha monotoni
ally in
reasing timestamp attribute. This is ne
-essary be
ause interests are not reliably transmitted through-out the network. The refresh rate is a proto
ol design pa-rameter that trades o� overhead for in
reased robustness tolost interests.Every node maintains an interest 
a
he. Ea
h item in the
a
he 
orresponds to a distin
t interest. Two interests aredistin
t, in our example, if their type attribute di�ers, theirinterval attribute di�ers, or their re
t attributes are (pos-sibly partially) disjoint. Interest entries in the 
a
he donot 
ontain information about the sink. Thus, interest states
ales with the number of distin
t a
tive interests. Our def-inition of distin
t interests also allows interest aggregation.Two interests I1 and I2, with identi
al types, 
ompletelyoverlapping re
t attributes, 
an, in some situations, be rep-resented with a single interest entry.An entry in the interest 
a
he has several �elds. A timestamp�eld indi
ates the timestamp of the last re
eived mat
hinginterest. The interest entry also 
ontains several gradient�elds, up to one per neighbor. Ea
h gradient 
ontains a datarate �eld requested by the spe
i�ed neighbor, derived fromthe interval attribute of the interest. It also 
ontains aduration �eld, derived from the timestamp and expiresAtattributes of the interest, and indi
ating the approximatelifetime of the interest.3This is not the only 
hoi
e, but represents a performan
e tradeoff. Sin
e thelo
ation of the sour
es is not pre
isely known, interests must ne
essarily be dif-fused over a broader se
tion of the sensor network than that 
overed by thepotential sour
es. As a result, if the sink had 
hosen a higher initial data rate, ahigher energy 
onsumption might have resulted from the wider dissemination ofsensor data. However, with a higher initial data rate, the time to a
hieve highfidelity tra
king is redu
ed.

When a node re
eives an interest, it 
he
ks to see if the in-terest exists in the 
a
he. If no mat
hing entry exists (wherea mat
h is determined by the de�nition of distin
t interestsspe
i�ed above), the node 
reates an interest entry. Theparameters of the interest entry are instantiated from there
eived interest. This entry has a single gradient towardsthe neighbor from whi
h the interest was re
eived, with thespe
i�ed event data rate. In our example, a neighbor of thesink will set up an interest entry with a gradient of 1 eventper se
ond towards the sink. For this, it must be possible todistinguish individual neighbors. Any lo
ally unique neigh-bor identi�er may be used for this purpose. Examples ofsu
h identi�ers in
lude 802.11 MAC addresses [7℄, or Blue-tooth [10℄ 
luster addresses. If there exists an interest entry,but no gradient for the sender of the interest, the node addsa gradient with the spe
i�ed value. It also updates the en-try's timestamp and duration �elds appropriately. Finally,if there exists both an entry and a gradient, the node simplyupdates the timestamp and duration �elds.In Se
tion 3.3, we des
ribe how gradients are used. When agradient expires, it is removed from its interest entry. Notall gradients will expire at the same time. For example, iftwo di�erent sinks express indistin
t interests with di�erentexpiration times, some node in the network may have an in-terest entry with di�erent gradient expiration times. Whenall gradients for an interest entry have expired, the interestentry itself is removed from a 
a
he.After re
eiving an interest, a node may de
ide to re-send theinterest to some subset of its neighbors. To its neighbors,this interest appears to originate from the sending node, al-though it might have 
ome from a distant sink. This isan example of a lo
al intera
tion. In this manner, interestsdi�use throughout the network. Not all re
eived interestsare re-sent. A node may suppress a re
eived interest if itre
ently re-sent a mat
hing interest.Generally speaking, there are several possible 
hoi
es forneighbors (Figure 3). The simplest alternative is to re-broad
ast the interest to all neighbors. This is equivalentto 
ooding the interest throughout the network; in the ab-sen
e of information about whi
h sensor nodes are likely tobe able to satisfy the interest, this is the only 
hoi
e. Thisis also the alternative that we simulate in Se
tion 4. In ourexample sensor network, it may also be possible to perform



geographi
 routing, using some of the te
hniques des
ribedin the literature [14℄. This 
an limit the topologi
al s
opefor interest di�usion, thereby resulting in energy savings.Finally, in an immobile sensor network, a node might use
a
hed data (see Se
tion 3.3) to dire
t interests. For exam-ple, if in response to an earlier interest, a node heard fromsome neighbor A data sent by some sensor within the regionspe
i�ed by the re
t attribute, it 
an dire
t this interest toA, rather than broad
asting to all neighbors.Figure 2(a) shows the gradients established in the 
ase whereinterests are 
ooded through a sensor �eld. Unlike the sim-pli�ed des
ription in Figure 1(b), noti
e that every pair ofneighboring nodes establishes a gradient towards ea
h other.This is a 
ru
ial 
onsequen
e of lo
al intera
tions. When anode re
eives an interest from its neighbor, it has no way ofknowing whether that interest was in response to one it sentout earlier, or is an identi
al interest from another sink onthe \other side" of that neighbor. Su
h two-way gradients
an 
ause a node to re
eive one 
opy of low data rate eventsfrom ea
h of its neighbors. However, as we show later, thiste
hnique 
an enable fast re
overy from failed paths or re-infor
ement of empiri
ally better paths (Se
tion 3.4), anddoes not in
ur persistent loops (Se
tion 3.3).Note that for our sensor network, a gradient spe
i�es botha data rate and a dire
tion in whi
h to send events. Moregenerally, a gradient spe
i�es a value and a dire
tion. Thedire
ted di�usion paradigm gives the designer the freedomto atta
h di�erent semanti
s to gradient values. We haveshown two examples of gradient usage. Figure 1(
) impli
itlydepi
ts binary valued gradients. In our sensor networks,gradients have two values that determine event reportingrate. In other sensor networks, gradient values might beused to, for example, probabilisti
ally forward data alongdi�erent paths, a
hieving some measure of load balan
ing(Figure 3).In summary, interest propagation sets up state in the net-work (or parts thereof) to fa
ilitate \pulling down" datatowards the sink. The interest propagation rules are lo
al,and bear some resemblan
e to join propagation in some In-ternet multi
ast routing proto
ols [9℄. One 
ru
ial di�eren
eis that join propagation 
an leverage uni
ast routing tablesto dire
t joins towards sour
es, whereas interest propagation
annot.In this se
tion, we have des
ribed interest propagation rulesfor a parti
ular type of task. More generally, a sensor net-work may support many di�erent task types. Interest prop-agation rules may be di�erent for di�erent task types. Forexample, a task type of the form \Count the number of dis-tin
t four-legged animals in re
tangle R seen over the next Tse
onds" 
annot leverage the event data rate as our exampledoes. However, some elements of interest propagation aresimilar to both: the form of the 
a
he entries, the interestre-distribution rules et
.. As part of our future resear
h, wehope to 
ull these similarities into a di�usion substrate atea
h node, so that sensor network designers 
an use a libraryof interest propagation te
hniques (or, for that matter, rulesdis
ussed in the subsequent se
tions for data pro
essing andreinfor
ement) for di�erent task types.

3.3 Data PropagationA sensor node that is within the spe
i�ed re
t pro
essesinterests as des
ribed in the previous se
tion. In addition,the node tasks its lo
al sensors to begin 
olle
ting samples.In this paper, we do not dis
uss the details of target re
og-nition algorithms. Brie
y, these algorithms simply mat
hsampled waveforms against a library of pre-sampled, storedwaveforms. This is based on the observation that a four-legged animal has a di�erent a
ousti
 or seismi
 footprintthan, for example, a human being. The sampled waveformmay mat
h the stored waveform to varying extents; the al-gorithms usually asso
iate a degree of 
on�den
e with themat
h. Furthermore, the intensity of the sampled waveformmay roughly indi
ate distan
e of the signal origin, thoughperhaps not dire
tion.A sensor node that dete
ts a target sear
hes its interest
a
he for a mat
hing interest entry. In this 
ase, a mat
hingentry is one whose re
t en
ompasses the sensor lo
ation,and the type of the entry mat
hes the dete
ted target type.When it �nds one, it 
omputes the highest requested eventrate among all its outgoing gradients. The node tasks itssensor subsystem to generate event samples at this highestdata rate. In our example, this data rate is initially 1 eventper se
ond (until reinfor
ement is applied, Se
tion 3.4). Thesour
e then sends to ea
h neighbor for whom it has a gradi-ent, an event des
ription every se
ond of the form:type = four-legged animal // type of animal seeninstan
e = elephant // instan
e of this typelo
ation = [125, 220℄ // node lo
ationintensity = 0.6 // signal amplitude measure
onfiden
e = 0.85 // 
onfiden
e in the mat
htimestamp = 01:20:40 // lo
al time when event was generatedThis data message is, in e�e
t4, uni
ast individually to therelevant neighbors.A node that re
eives a data message from its neighbors at-tempts to �nd a mat
hing interest entry in its 
a
he. Themat
hing rule is as des
ribed in the previous paragraph. Ifno mat
h exists, the data message is silently dropped. Ifa mat
h exists, the node 
he
ks the data 
a
he asso
iatedwith the mat
hing interest entry. This 
a
he keeps tra
k ofre
ently seen data items. It has several potential uses, oneof whi
h is loop prevention. If a re
eived data message hasa mat
hing data 
a
he entry, the data message is silentlydropped. Otherwise, the re
eived message is added to thedata 
a
he and the data message is re-sent to the node'sneighbors.By examining its data 
a
he, a node 
an determine the datarate of re
eived events5. To re-send a re
eived data mes-sage, a node needs to examine the mat
hing interest entry'sgradient list. If all gradients have a data rate that is greaterthan or equal to the rate of in
oming events, the node maysimply send the re
eived data message to the appropriateneighbors. However, if some gradients have a lower datarate than others (
aused by sele
tively reinfor
ing paths,4The exa
t me
hanism used is a fun
tion of the radio's MAC layer and 
an havea signifi
ant impa
t on performan
e (Se
tion 4.4).5In our simulations in Se
tion 4, as a simplifi
ation, we in
lude the data rate inthe event des
riptions.
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tion 3.4), then the node may down
onvert to the appro-priate gradient. For example, 
onsider a node that has beenre
eiving data at 100 events per se
ond, but one of its gradi-ents (e.g., set up by a se
ond sink originating an indistin
ttask with a larger interval) is at 50 events per se
ond. Inthis 
ase, the node may only transmit every alternate eventtowards the 
orresponding neighbor. Alternately, it mightinterpolate two su

essive events in an appli
ation-spe
i�
way (in our example, it might 
hoose the sample with thehigher 
on�den
e mat
h).Loop prevention and down
onversion illustrate the power ofembedding appli
ation semanti
s in all nodes (Figure 3). Al-though this design is not pertinent to traditional networks,it is feasible with appli
ation-spe
i�
 sensor networks. In-deed, as we show in Se
tion 4.4, it 
an signi�
antly improvenetwork performan
e.
3.4 ReinforcementIn the s
heme we have des
ribed so far, the sink initiallydi�uses an interest for a low event-rate noti�
ation (1 eventper se
ond). On
e sour
es dete
t a mat
hing target, theysend low-rate events, possibly along multiple paths, towardsthe sink. After the sink starts re
eiving these low datarate events, it reinfor
es one parti
ular neighbor in orderto \draw down" higher quality (higher data rate) events. Ingeneral, this novel feature of dire
ted di�usion is a
hieved bydata driven lo
al rules. One example of su
h a rule is to re-infor
e any neighbor from whi
h a node re
eives a previouslyunseen event. To reinfor
e this neighbor, the sink re-sendsthe original interest message but with a smaller interval(higher data rate):type = four-legged animalinterval = 10msre
t = [-100, 200, 200, 400℄timestamp = 01:22:35expiresAt = 01:30:40When the neighboring node re
eives this interest, it no-ti
es that it already has a gradient towards this neighbor.Furthermore, it noti
es that the sender's interest spe
i�esa higher data rate than before. If this new data rate isalso higher than that of any existing gradient (intuitively, ifthe \out
ow" from this node has in
reased), the node mustalso reinfor
e at least one neighbor. How does it do this?

The node uses its data 
a
he for this purpose. Again, thesame lo
al rule 
hoi
es apply. For example, this node might
hoose that neighbor from whom it �rst re
eived the latestevent mat
hing the interest. Alternatively, it might 
hooseall neighbors from whi
h new events6 were re
ently re
eived(this is the alternative we evaluate in Se
tion 4). Throughthis sequen
e of lo
al intera
tions, a path is established fromsour
e to sink transmission for high data rate events.The lo
al rule we des
ribed above, then, sele
ts an empir-i
ally low delay path (Figure 2(b) shows the path that 
anresult when the sink reinfor
es the path). It is very rea
-tive to 
hanges in path quality; whenever one path deliv-ers an event faster than others, the sink attempts to usethis path to draw down high quality data. However, be-
ause it is triggered by re
eiving one new event, this 
ouldbe wasteful of resour
es. More sophisti
ated lo
al rules arepossible (Figure 3), in
luding 
hoosing that neighbor fromwhi
h the most events have been re
eived, or that neigh-bor whi
h 
onsistently sends events before other neighbors.These 
hoi
es trade o� rea
tivity for in
reased stability; ex-ploring this tradeo� requires signi�
ant experimentation andis the subje
t of future work.The algorithm des
ribed above 
an result in more than onepath being reinfor
ed. For example, if the sink reinfor
esneighbor A, but then re
eives a new event from neighbor B,it will reinfor
e the path through B7. If the path through Bis 
onsistently better (i.e.,B sends events beforeA does), weneed a me
hanism to negatively reinfor
e the path throughA.One me
hanism for negative reinfor
ement is to time out allhigh data rate gradients in the network unless they are ex-pli
itly reinfor
ed. With this approa
h, the sink would peri-odi
ally reinfor
e neighbor B, and 
ease reinfor
ing neighborA. The path throughA would eventually degrade to the lowdata rate. Another approa
h, and one that we evaluate inthis paper, is to expli
itly degrade the path through A byre-sending the interest with the lower data rate. WhenA re-
eives this interest, it degrades its gradient towards the sink.Furthermore, if all its gradients are now low data rate, A6The statement \reinfor
e a neighbor from whi
h new events are re
eived" im-plies that we reinfor
e that neighbor only if it is sending low data rate events.Obviously, we do not need to reinfor
e neighbors that are already sending traffi
at the higher data rate.7This path may or may not be 
ompletely disjoint from the path through neigh-bor A.



Di�usion element Design Choi
es� FloodingInterest Propagation � Constrained or dire
tional 
ooding based on lo
ation� Dire
tional propagation based on previously 
a
hed data� Reinfor
ement to single path deliveryData Propagation � Multipath delivery with sele
tive quality along di�erent paths� Multipath delivery with probabilisti
 forwarding� For robust data delivery in the fa
e of node failureData 
a
hing and aggregation � For 
oordinated sensing and data redu
tion� For dire
ting interests� Rules for de
iding when to reinfor
eReinfor
ement � Rules for how many neighbors to reinfor
e� Negative reinfor
ement me
hanisms and rulesFigure 3: Design Spa
e for Di�usionnegatively reinfor
es those neighbors that have been send-ing data to it at a high data rate. This sequen
e of lo
alintera
tions ensures that the path through A is degradedrapidly, but at the 
ost of in
reased resour
e utilization.To 
omplete our des
ription of negative reinfor
ement, weneed to spe
ify what lo
al rule a node uses in order to de-
ide whether to negatively reinfor
e a neighbor or not. Notethat this rule is orthogonal to the 
hoi
e of me
hanism fornegative reinfor
ement. One plausible 
hoi
e for su
h a ruleis to negatively reinfor
e that neighbor from whi
h no newevents have been re
eived (i.e., other neighbors have 
onsis-tently sent events before this neighbor) within a window ofN events or time T . The lo
al rule we evaluate in Se
tion 4is based on a time window of T , 
hosen to be 2 se
onds inour simulations. Su
h a rule is a bit 
onservative and en-ergy ineÆ
ient. For example, even if one event in ten wasre
eived �rst from neighbor A, the sink will not negativelyreinfor
e that neighbor. Other variants in
lude negativelyreinfor
ing that neighbor from whi
h fewer new events havebeen re
eived. Signi�
ant experimentation is required be-fore de
iding whi
h lo
al rule a
hieves an energy eÆ
ientglobal behavior.In des
ribing reinfor
ement so far, we may have appearedto impli
itly des
ribe a single-sour
e s
enario. In fa
t, therules we have des
ribed work with multiple sour
es. To seethis, 
onsider Figure 2(
). Assume initially that all initialgradients are low data rate. A

ording to this topology, datafrom both sour
es rea
hes the sink via both of its neighborsC and D. If one of the neighbors, say C has 
onsistentlylower delay, our rules will only reinfor
e the path throughC (this is depi
ted in the �gure). However, if the sink hearsB's events earlier via D, but A's events8 earlier via C, thesink will attempt to draw down high quality data streamsfrom both neighbors (not shown). In this 
ase, the sink getsboth sour
es' data from both neighbors, a potential sour
eof energy ineÆ
ien
y. Reinfor
ement rules that avoid this isthe subje
t of future work.Similarly, if two sinks express identi
al interests, our interestpropagation, gradient establishment and reinfor
ement ruleswork 
orre
tly. Without loss of generality, assume that sinkY in Figure 2(d) has already reinfor
ed a high quality path8Note that in dire
ted diffusion, the sink would not be able to asso
iate a sour
ewith an event. Thus, the phrase \A's events" is somewhat misleading. What wereally mean is that data generated by A that is distinguishable in 
ontent fromdata generated by B.

to the sour
e. Note however, that other nodes 
ontinue tore
eive low data rate events. When a human operator tasksthe network at sink X with an identi
al interest, X 
anuse the reinfor
ement rules to a
hieve the path shown. Todetermine the empiri
ally best path, X need not wait fordata|rather, it 
an use its data 
a
he to immediately drawdown high quality data towards itself.So far, we have des
ribed situations in whi
h reinfor
ementis triggered by a sink. However, in dire
ted di�usion, inter-mediate nodes on a previously reinfor
ed path 
an apply thereinfor
ement rules. This is useful to enable lo
al repair offailed or degraded paths. Causes for failure or degradationin
lude node energy depletion, and environmental fa
tors af-fe
ting 
ommuni
ation (e.g., obsta
les, rain fade). ConsiderFigure 2(e), in whi
h the quality of the link between thesour
e and node C degrades and events are frequently 
or-rupted. When C dete
ts this degradation|either by noti
-ing that the event reporting rate from its upstream neigh-bor (the sour
e) is now lower, or by realizing that otherneighbors have been transmitting previously unseen lo
a-tion estimates|it 
an apply the reinfor
ement rules to dis-
over the path shown in the �gure. Eventually, C negativelyreinfor
es the dire
t link to the sour
e (not shown in the �g-ure). Our des
ription so far has glossed over the fa
t that astraightforward appli
ation of reinfor
ement rules will 
auseall nodes downstream of the lossy link to also initiate re-infor
ement pro
edures. This will eventually lead to thedis
overy of one empiri
ally good path, but may result inwasted resour
es. One way to avoid this is for C to inter-polate lo
ation estimates from the events that it re
eives sothat downstream nodes still per
eive high quality tra
king.We are 
urrently investigating other approa
hes.
3.5 DiscussionIn introdu
ing the various elements of dire
ted di�usion, wealso impli
itly des
ribed a parti
ular usage|interests setup gradients drawing down data. The dire
ted di�usionparadigm itself does not limit the designer to this parti
ularusage. Other usages are also possible, su
h as the one inwhi
h nodes may propagate data in the absen
e of interests,impli
itly setting up gradients when doing so. This is useful,for example, to spontaneously propagate an important eventto some se
tion of the sensor �eld. A sensor node 
an usethis to warn other sensor nodes of impending a
tivity.Our des
ription points out several key features of di�usion,



and how it di�ers from traditional networking. First, di�u-sion is data-
entri
; all 
ommuni
ation in a di�usion-basedsensor network uses interests to spe
ify named data. All
ommuni
ation in di�usion is neighbor-to-neighbor, unlikethe end-to-end 
ommuni
ation in traditional data networks.In other words, every node is an \end" in a sensor net-work. Se
ond, there are no \routers" in a sensor network.Ea
h sensor node 
an interpret data and interest messages.This design 
hoi
e is justi�ed by the task-spe
i�
ity of sen-sor networks. Sensor networks are not general-purpose 
om-muni
ation networks. Third, sensor nodes do not need tohave globally unique identi�ers or globally unique addresses.Nodes, however, do need to distinguish between neighbors.Finally, in an IP-based sensor network, for example, sensordata 
olle
tion and pro
essing might be performed by a 
ol-le
tion of spe
ialized servers whi
h may, in general, be farremoved from the sensed phenomena. In our sensor network,be
ause every node 
an 
a
he, aggregate, and more gener-ally, pro
ess messages, it is possible to perform 
oordinatedsensing 
lose to the sensed phenomena.Di�usion is 
learly related to traditional network data rout-ing algorithms. In some sense, it is a rea
tive routing te
h-nique, sin
e \routes" are established on demand. However,it di�ers from other ad-ho
 rea
tive routing te
hniques inseveral ways. First, no attempt is made to �nd one loop-free path between sour
e and sink before data transmission
ommen
es. Instead, 
onstrained or dire
tional 
ooding isused to set up a multipli
ity of paths, and data messagesare initially sent redundantly along these paths. Se
ond,soon thereafter, reinfor
ement attempts to redu
e this mul-tipli
ity of paths to a small number, based on empiri
allyobserved path performan
e. Finally, a message 
a
he is usedto perform loop avoidan
e. The interest and gradient setupme
hanisms themselves do not guarantee loop-free paths be-tween sour
e and sink.Why this pe
uliar 
hoi
e of design? At the outset of thisresear
h, we 
ons
iously 
hose to explore path setup al-gorithms that establish network paths using stri
tly lo
al(neighbor-to-neighbor) 
ommuni
ation. The intuition be-hind this 
hoi
e is the observation that physi
al systems(e.g., ant 
olonies [5℄) that build up transmission paths us-ing su
h 
ommuni
ation s
ale well and are extraordinarilyrobust. However, using stri
tly lo
al 
ommuni
ation im-plies that path setup 
annot use global topology metri
s;lo
al 
ommuni
ation implies that, as far as a node knows,the data that it re
eived from a neighbor 
ame from thatneighbor 9. This 
an be energy eÆ
ient in highly dynami
networks when 
hanges in topology need not be propagateda
ross the network. Of 
ourse, the resulting 
ommuni
ationpaths may be sub-optimal. However, the energy ineÆ
ien
ydue to path sub-optimality 
an be 
ountered by 
arefullydesigned in-network aggregation te
hniques. Overall, we be-lieve that this approa
h trades o� some energy eÆ
ien
y forin
reased robustness and s
ale.Finally, it might appear that the parti
ular instantiationthat we 
hose, lo
ation tra
king, has limited appli
ability.We believe, however, that su
h lo
ation tra
king 
apturesmany of the essential features of a large 
lass of remote9The lo
ation information in a data message might reveal otherwise, but thatinformation still doesn't 
ontain topology metri
s.

surveillan
e sensor networks. We emphasize that, even thoughwe have dis
ussed our tra
king network in some detail, mu
hexperimentation and evaluation of the various me
hanisms isne
essary before we fully understand the robustness, s
aleand performan
e impli
ations of di�usion in general, andsome of our me
hanisms in parti
ular. The next se
tiontakes an initial step in this dire
tion.
4. EVALUATING DIRECTED DIFFUSIONIn this se
tion, we report on some results from a prelimi-nary performan
e evaluation of our lo
ation tra
king sen-sor network. We use pa
ket-level simulation to explore, insome detail, the impli
ations of some of our design 
hoi
es.This se
tion des
ribes our methodology, 
ompares the per-forman
e of di�usion against some idealized s
hemes, thenexplores impa
t of network dynami
s on simulation.
4.1 Goals, Metrics, and MethodologyWe implemented our animal tra
king instan
e of dire
teddi�usion in the ns-2 [2℄ simulator. Our goals in 
ondu
tingthis evaluation study were four-fold: First, pla
e the per-forman
e of di�usion in the 
ontext of idealized s
hemes,su
h as 
ooding and omnis
ient multi
ast (des
ribed be-low). This serves as a sanity 
he
k for the intuition be-hind dire
ted di�usion. Se
ond, understand the impa
t ofdynami
s|su
h as node failures|on di�usion. Third, ex-plore the in
uen
e of the radio MAC layer on di�usion per-forman
e. Finally, study the sensitivity of dire
ted di�usionperforman
e to the 
hoi
e of parameters.We 
hoose two metri
s to analyze the performan
e of di-re
ted di�usion and to 
ompare it to other s
hemes: Av-erage dissipated energy measures the ratio of total dis-sipated energy per node in the network to the number ofdistin
t events seen by sinks. This metri
 
omputes theaverage work done by a node in delivering useful tra
kinginformation to the sinks. The metri
 also indi
ates the over-all lifetime of sensor nodes. Average delay measures theaverage one-way laten
y observed between transmitting anevent and re
eiving it at ea
h sink. This metri
 de�nes thetemporal a

ura
y of the lo
ation estimates delivered by thesensor network. We study these metri
s as a fun
tion of sen-sor network size.In all our experiments, we operate the sensor network in aregime far from overload. Thus, our sensor nodes do notexperien
e 
ongestion. We do this to simplify our under-standing of the results. Exploring the behavior of di�u-sion under 
ongestion is the subje
t of future resear
h. Inpassing, we note that there exist plausible approa
hes (su
has in-network data rate down
onversion or aggressive dataquality redu
tion through aggregation) for dealing with 
on-gestion in di�usion-based sensor networks.Despite this fo
us on un
ongested operating regimes, di-re
ted di�usion 
an in
ur event losses, parti
ularly underdynami
s. In these situations, another metri
 for the per-forman
e of di�usion, is the event delivery ratio. This is theratio of the number of distin
t events re
eived to the numberoriginally sent. A similar metri
 was used in earlier work to
ompare ad-ho
 routing s
hemes [4℄.To 
ompletely spe
ify our experimental methodology, we



need to des
ribe the sensor network generation pro
edure,our 
hoi
e of radio parameters, and our workload. The fol-lowing paragraphs do this.In order to study the performan
e of di�usion as a fun
-tion of network size, we generate a variety of sensor �eldsof di�erent sizes. In ea
h of our experiments, we study �vedi�erent sensor �elds, ranging from 50 to 250 nodes in in-
rements of 50 nodes. Our 50 node sensor �eld generatedby randomly pla
ing the nodes in a 160m by 160m square.Ea
h node has a radio range of 40m. Other sizes are gen-erated by s
aling the square and keeping the radio range
onstant in order to approximately keep the average densityof sensor nodes 
onstant. For ea
h network size, our resultsare averaged over three di�erent generated �elds.The ns-2 simulator implements a 1.6 Mbps 802.11 MAClayer. Our simulations use this MAC layer. This is not a
ompletely satisfa
tory 
hoi
e of MAC layer, sin
e there are
ompelling energy eÆ
ien
y reasons for sele
ting a TDMA-style MAC for sensor networks rather than one based on
hannel a
quisition using RTS/CTS [21℄. Brie
y, these rea-sons have to do with energy 
onsumed by the radio duringidle intervals; with a TDMA-style MAC, it is possible toput the radio in standby mode during su
h intervals. By
ontrast, an 802.11 radio 
onsumes as mu
h power when itis idle as when it re
eives transmissions. To more 
loselymimi
 realisti
 sensor network radios [13℄, we altered thens-2 radio energy model su
h that the idle time power dissi-pation was about 35mW, or nearly 10% of its re
eive powerdissipation (395mW), and about 5% of its transmit powerdissipation (660mW). In Se
tion 4.4, we analyze the impa
tof a MAC energy model in whi
h listening for transmissionsdissipates as mu
h energy as re
eiving them.Finally, in most of our simulations, we use a �xed workloadwhi
h 
onsists of �ve sour
es and �ve sinks. All sour
esare randomly sele
ted from nodes in a 70m by 70m squarewithin the sensor �eld. Sinks are uniformly s
attered a
rossthe sensor �eld. Ea
h sour
e generates two events per se
-ond. The low data rate for dire
ted di�usion was 
hosento be one event in 50 se
onds. Events were modeled as 64byte pa
kets, interests as 36 byte pa
kets. Interests wereperiodi
ally generated every 5 se
onds, and the interest du-ration was 15 se
onds. We 
hose the window for negativereinfor
ement to be 2 se
onds.
4.2 Comparative EvaluationOur �rst experiment 
ompares di�usion to two idealizeds
hemes for data dissemination in networks. In the 
ood-ing s
heme, sour
es 
ood all events to every node in thenetwork. Flooding is a watermark for dire
ted di�usion;if the latter is not signi�
antly more energy eÆ
ient than
ooding, it 
annot be 
onsidered viable for sensor networks.In the omnis
ient multi
ast s
heme, ea
h sour
e trans-mits its events along a shortest-path multi
ast tree to allsinks. We do not simulate the tree 
onstru
tion proto
ols.Rather, we 
entrally 
ompute the distribution trees and donot assign energy 
osts to this 
omputation. Omnis
ientmulti
ast approximately indi
ates the performan
e a
hiev-able in an IP-based sensor network. We use this s
hemeto give the reader some intuition for how our me
hanism
hoi
es impa
t performan
e.

Figure 4(a) shows the average dissipated energy per pa
ketas a fun
tion of network size. Omnis
ient multi
ast dissi-pates a little less than a half as mu
h energy per pa
ketper node than 
ooding. It a
hieves su
h energy eÆ
ien
yby delivering events along a single path from ea
h sour
eto every sink. Dire
ted di�usion has noti
eably better en-ergy eÆ
ien
y than omnis
ient multi
ast. For some sensor�elds, its dissipated energy is only 60% that of omnis
ientmulti
ast. As with omnis
ient multi
ast, it also a
hievessigni�
ant energy savings by redu
ing the number of pathsover whi
h redundant data is delivered. In addition, di�u-sion bene�ts signi�
antly from in-network aggregation. Inour experiments, the sour
es deliver identi
al lo
ation esti-mates, and intermediate nodes suppress dupli
ate lo
ationestimates. This 
orresponds to the situation where there is,for example, a single four-legged animal within the spe
i�edsub-region.Why then, given that there are �ve sour
es, is di�usion notnearly �ve times more energy eÆ
ient than omnis
ient mul-ti
ast? First, both s
hemes expend 
omparable|and non-negligible|energy listening for transmissions. Se
ond, our
hoi
e of reinfor
ement and negative reinfor
ement resultsin dire
ted di�usion frequently drawing down high qualitydata along multiple paths, thereby expending additional en-ergy. Spe
i�
ally, our reinfor
ement rule that reinfor
es aneighbor who sends a new (i.e., previously unseen) eventis very aggressive. Conversely, our negative reinfor
ementrule, whi
h negatively reinfor
es neighbors who only 
onsis-tently send dupli
ate (i.e., previously seen) events, is very
onservative.Figure 4(b) plots the average delay observed as a fun
tionof network size. Dire
ted di�usion has a delay 
omparableto omnis
ient multi
ast. This is en
ouraging. To a �rst ap-proximation, in an un
ongested sensor network and in theabsen
e of obstru
tions, the shortest path is also the lowestdelay path. Thus, our reinfor
ement rules seem to be �nd-ing the low delay paths. However, the delay experien
ed by
ooding is almost an order of magnitude higher than others
hemes. This is an artifa
t of the MAC layer: to avoidbroad
ast 
ollisions, a randomly 
hosen delay is imposed onall MAC broad
asts. Flooding uses MAC broad
asts ex
lu-sively. Di�usion only uses su
h broad
asts to propagate theinitial interests. On a sensor radio that employs a TDMAMAC-layer, we might expe
t 
ooding to exhibit a delay 
om-parable to the other s
hemes.
4.3 Impact of DynamicsTo study the impa
t of dynami
s on dire
ted di�usion, wesimulated node failures as follows. For ea
h sensor �eld,repeatedly turned o� a �xed fra
tion of nodes for 30 se
-onds. These nodes were uniformly 
hosen from the sensor�eld, with the additional 
onstraint that an equal fra
tionof nodes on the sour
es to sinks shortest path trees wasalso turned o� for the same duration. The intent was to
reate node failures in the paths di�usion is most likely touse, and to 
reate random failures elsewhere in the network.Furthermore, unlike the previous experiment, ea
h sour
esends di�erent lo
ation estimates (
orresponding to the sit-uation in whi
h ea
h sour
e \sees" di�erent animals). Wedid this be
ause the impa
t of dynami
s is less evident whendi�usion suppresses identi
al lo
ation estimates from other
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t of node failures on dire
ted di�usion.sour
es. We 
ould also have studied the impa
t of dynami
son other proto
ols, but, be
ause omnis
ient multi
ast is anidealized s
heme that doesn't fa
tor in the 
ost of route re-
omputation, it is not entirely 
lear that su
h a 
omparisonis meaningful.Our dynami
s experiment imposes fairly adverse 
onditionsfor a data dissemination proto
ol. At any instant, 10 or20 per
ent of the nodes in the network are unusable. Fur-thermore, we do not permit any \settling time" betweennode failures. Even so, di�usion is able to maintain reason-able, if not stellar, event delivery (Figure 5(
)) while in
ur-ring less than 20% additional average delay (Figure 5(b)).Moreover, the average dissipated energy a
tually improves,in some 
ases, in the presen
e of node failures. This is abit 
ounter-intuitive, sin
e one would expe
t that dire
teddi�usion would expend energy to �nd alternative paths. Asit turns out, however, our negative reinfor
ement rules are
onservative enough that several high-quality paths are keptalive in normal operation. Thus, at the levels of dynam-i
s we simulate, di�usion doesn't need to do extra work.The lower energy dissipation results from the failure of somehigh-quality paths.We take these results to indi
ate that the me
hanisms indi�usion are relatively stable at the levels of dynami
s wehave explored. By this we mean that di�usion does not,

under dynami
s, in
ur remarkably higher energy dissipationor event delivery delays.
4.4 Impact of Various FactorsTo explain what 
ontributes to dire
ted di�usion's energyeÆ
ien
y, we now des
ribe two separate experiments. Inboth of these experiments, we do not simulate node failures.First, we 
ompute the energy eÆ
ien
y of di�usion with andwithout aggregation. Re
all from Se
tion 4.2 that in oursimulations, we implement a simple aggregation strategy,in whi
h a node suppresses identi
al data sent by di�erentsour
es. As Figure 6(b) shows, di�usion expends nearly 5times as mu
h energy, in smaller sensor �elds, as when it
an suppress dupli
ates. In larger sensor �elds, the ratiois 3. Our 
onservative negative reinfor
ement rule a

ountsfor the di�eren
e in the performan
e of di�usion withoutsuppression as a fun
tion of network size. With the samenumber of sour
es and sinks, the larger network has longeralternate paths. These alternate paths are trun
ated by neg-ative reinfor
ement be
ause they 
onsistently deliver eventswith higher laten
y. As a result, the larger network expendsless energy without suppression. We believe that suppres-sion also exhibits the same behavior, but the energy di�er-en
e is relatively small.The se
ond me
hanism whose bene�ts we quantify is neg-ative reinfor
ement. This me
hanism prunes o� higher la-



ten
y paths, and 
an 
ontribute signi�
antly to energy sav-ings. In this experiment, we sele
tively turn o� negative re-infor
ement and 
ompare the performan
e of dire
ted di�u-sion with and without reinfor
ement. Intuitively, one wouldexpe
t negative reinfor
ement to 
ontribute signi�
antly toenergy savings. Indeed, as Figure 6(a) shows, di�usion with-out negative reinfor
ement expends nearly twi
e as mu
henergy as when negative reinfor
ement is employed. Thissuggests that even our 
onservative negative reinfor
ementrules prune o� paths whi
h deliver 
onsistently higher la-ten
y.In the absen
e of negative reinfor
ement or suppression, dif-fusion's delay in
reases by fa
tors of three to eight (thegraphs are not in
luded for la
k of spa
e). This is an ar-tifa
t of the 802.11 MAC layer. In di�usion, data traÆ
 istransmitted using MAC uni
ast. As more paths are used(in the absen
e of negative reinfor
ement), or more 
opiesof data are sent (without suppression), MAC-layer 
hannel
ontention in
reases, resulting in ba
ko�s and subsequentdelays.Finally, we evaluate the sensitivity of our 
omparisons (Se
-tion 4.2) to our 
hoi
e of energy model. Sensitivity of di�u-sion to other fa
tors (numbers of sinks, size of sour
e region)is dis
ussed in greater detail in [11℄.In our 
omparisons, we sele
ted radio power dissipation pa-rameters to more 
losely mimi
 realisti
 sensor radios [13℄.We re-ran the 
omparisons of Se
tion 4.2, but with powerdissipation 
omparable to the AT&T Wavelan: 1.6W trans-mission, 1.2W re
eption and 1.15W idle. In this 
ase, asFigure 6(
) shows, the distin
tion between the s
hemes dis-appears. In this regime, we are better o� 
ooding all events.This is be
ause idle time energy utilization 
ompletely dom-inates the performan
e of all s
hemes. This is the reasonwhy sensor radios try very hard to minimize listening fortransmissions.
5. RELATED WORKTo our knowledge, distributed sensor networks have not beenextensively studied in the networking literature. However,our work has been informed and in
uen
ed by a variety ofother resear
h e�orts, whi
h we now des
ribe.Distributed sensor networks are a spe
i�
 instan
e of ubiq-uitous 
omputing as envisioned by Weiser [24℄. Early ubiq-uitous 
omputing e�orts, however, did not approa
h the is-sues of s
alable node 
oordination, fo
using more on issuesin the design and pa
kaging of small, wireless devi
es. Morere
ent e�orts, su
h as WINS [22℄ and Pi
onet [3℄ have be-gun to 
onsider networking and 
ommuni
ation issues forsmall wireless devi
es. The WINS proje
t has made signi�-
ant progress in identifying feasible radio designs for low-power environmental sensing. Their proje
t has fo
usedalso on low-level network syn
hronization ne
essary for net-work self-assembly. Our dire
ted di�usion primitives pro-vide inter-node 
ommuni
ation on
e network self-assemblyis 
omplete. Although the Pi
onet proje
t is more fo
usedon enabling home and oÆ
e information dis
overy, their ap-pli
ation designs have some similarity to the data 
a
hingand aggregation that di�usion employs.

In addition, re
ent work has pointed out some of the advan-tages of di�usion-like appli
ation-spe
i�
ity in the 
ontext ofsensor networks [15℄. Spe
i�
ally, this work showed how em-bedding appli
ation semanti
s in 
ooding 
an help a
hieveenergy-eÆ
ien
y. Dire
ted di�usion explores some of thesesame ideas in the 
ontext of more sophisti
ated distributedsensing algorithms.Some of the inspiration for dire
ted di�usion 
omes frombiologi
al metaphors, su
h as rea
tion-di�usion models formorphogenesis [23℄, and models of ant 
olony behavior [5℄.Dire
ted di�usion borrows heavily from the literature on ad-ho
 uni
ast routing. Spe
i�
ally, it is a 
lose kin of the 
lassof several rea
tive routing proto
ols proposed in the litera-ture [12, 20, 19℄. Of these, it is possibly 
losest to [19℄ inits attempt to lo
alize repair of node failures, and its deem-phasis of optimal routes. The di�eren
es between ad-ho
routing and dire
ted di�usion have already been dis
ussedin Se
tion 3.5.Many of the te
hniques developed for improving ad ho
 rout-ing performan
e 
an be dire
tly applied to dire
ted di�usion.In this 
lass, we in
lude te
hniques that redu
e the impa
t ofbroad
ast storms [17℄, te
hniques that lo
alize route queriesbased on geographi
al information [14℄ or based on routehistory [6℄. Dire
ted di�usion has the additional degree offreedom in being able to use appli
ation semanti
s to a
hievefurther eÆ
ien
yDire
ted di�usion is in
uen
ed by the design of multi
astrouting proto
ols. In parti
ular, propagation of reinfor
e-ments and negative reinfor
ements are similar to joins andprunes in shared-tree 
onstru
tion [9℄. The initial interestdissemination and gradient setup is similar to data-drivenshortest-path tree setup [8℄. The di�eren
e, of 
ourse, is thatwhere Internet proto
ols rely on underlying uni
ast routingto aid tree setup, di�usion 
annot. Di�usion 
an, however,do in-network pro
essing of data (
a
hing and aggregation)unlike existing multi
ast routing s
hemes.The in-network pro
essing feature of dire
ted di�usion bearssome resemblan
e to router assist for lo
alized error re
ov-ery in reliable multi
ast [16, 18℄. These s
hemes allow min-imal router fun
tionality that allows spe
ialized forwardingmodes for 
ertain kinds of data. Dire
ted di�usion 
arriesthis idea further, leveraging the task spe
i�
ity of sensornetworks to embed appli
ation knowledge in network nodes.Finally, interest dissemination, data propagation and 
a
hingin dire
ted di�usion are all similar to some of the ideas usedin adaptive Web 
a
hing [25℄. In these s
hemes, 
a
hes self-organize themselves into a hierar
hy of 
ooperative 
a
hesthrough whi
h requests for pages are e�e
tively di�used.
6. CONCLUSIONS AND FUTURE WORKIn this paper, we des
ribed the dire
ted di�usion paradigmfor designing distributed sensing algorithms. There are sev-eral lessons we 
an draw from our preliminary evaluation ofdi�usion. First, dire
ted di�usion has the potential for sig-ni�
ant energy eÆ
ien
y. Even with relatively unoptimizedpath sele
tion, it outperforms an idealized traditional datadissemination s
heme like omnis
ient multi
ast. Se
ond, dif-
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t of various fa
tors on dire
ted di�usion.fusion me
hanisms are stable under the ranges of networkdynami
s 
onsidered in this paper. Finally, for dire
ted dif-fusion to a
hieve its full potential, however, 
areful attentionhas to be paid to the design of sensor radio MAC layers.Dire
ted di�usion has some novel features|data-
entri
 dis-semination, reinfor
ement-based adaptation to the empiri-
ally best path, and in-network data aggregation and 
a
hing.To our knowledge, no previous networking work has de-signed and evaluated a data distribution me
hanism in
or-porating these features. There is a good reason for this|these features may not be justi�able in the 
ontext of tra-ditional networks. However, as we show here, these features
an enable highly energy-eÆ
ient and robust disseminationin dynami
 sensor networks, while at the same time mini-mizing the per-node 
on�guration that is 
hara
teristi
 oftoday's networks.As we have emphasized before, this work represents an ini-tial foray into the design of di�usion me
hanisms. Ourremote surveillan
e network represents a non-trivial explo-ration of this design spa
e. Even for this network, we havenot explored the entire spa
e of alternative designs. To drawa simple analogy, we are with sensor networks where we werewith the Internet about 3 de
ades ago.
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